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Abstract
In HTN planning, the hierarchy has a wide im-
pact on solutions. First, there is (usually) no state-
based goal given, the objective is given via the hi-
erarchy. Second, it enforces actions to be in a
plan. Third, planners are not allowed to add ac-
tions apart from those introduced via decomposi-
tion, i.e. via the hierarchy. However, no heuristic
considers the interplay of hierarchy and actions in
the plan exactly (without relaxation) because this
makes heuristic calculation NP-hard even under
delete relaxation. We introduce the problem class
of delete- and ordering-free HTN planning as ba-
sis for novel HTN heuristics and show that its plan
existence problem is still NP-complete. We then in-
troduce heuristics based on the new class using an
integer programming model to solve it.

1 Introduction
Planning is the task of finding a course of action that trans-
forms a given state of the world into one where certain desir-
able conditions hold. This allows systems to act goal-directed
and in a situation-adaptive way. It is commonly solved based
on a model of the environment and how it can be changed.
The maybe most widely used approaches are classical plan-
ning and hierarchical task network (HTN) planning.

In classical planning, the environment is described via
propositional state variables. Actions include state features
that need to hold for the action to be applicable, its precondi-
tions, and state features added and removed by the action, its
effects. The objective is to fulfill some state features.

HTN planning incorporates a grammar-like decomposition
structure: abstract tasks cannot be executed directly and are
decomposed into other tasks until only actions are left. These
are defined in the same way as in classical planning. The hi-
erarchy enables the description of complex behavior [Höller
et al., 2014; Höller et al., 2016] like the grammar intersection
problem of context-free languages [Erol et al., 1996]. Usu-
ally there is no state-based goal given – the objective is to
execute the tasks resulting from decomposition.

The hierarchy has a wide impact on the set of solutions:
(1) The objective is defined via the hierarchy, (2) the planner
needs to integrate the tasks resulting from it in an executable

sequence, and (3) is not allowed to add other tasks, i.e., it
restricts which tasks are included in a solution.

Heuristic search is a common technique to solve HTN
planning problems.1 However, the interplay of state-transition
and hierarchy makes the design of heuristics difficult. So
far, there is no heuristic in the literature that captures it ex-
actly (without relaxation). This is NP-hard even under delete-
relaxation [Alford et al., 2014]. A common way to enable
a calculation in P is to additionally allow for task insertion
[Alford et al., 2014], i.e. heuristic functions may insert ad-
ditional actions apart from those that have been introduced
via decomposition while computing their relaxed plan (done
e.g. by Bercher et al. [2017], or Höller et al. [2018]). This,
however, can severely relax the underlying problem.

Towards the aim of taking the interplay of state-transition
and decomposition better into account, we (1) introduce the
class of delete- and ordering-free (DOF) HTN planning and
show that its plan existence problem is NP-complete, thereby
generalizing a result from the literature [Alford et al., 2014].
Based on an integer programming (IP) model for classical
planning [Imai and Fukunaga, 2015], we (2) introduce a
model to solve DOF problems and present several heuris-
tics based on it.2 Calculation based on an IP model provides
a straightforward way to approximate the result in P by us-
ing the relaxation to a linear programming (LP) model. We
show that our heuristics are competitive with state-of-the-art
heuristics in terms of coverage, but much more informed.

2 Formal Framework
Throughout the paper we use the HTN formalism of Geier
and Bercher [2011] that is introduced in this section.

LetC be the set of abstract (also called compound) tasks,A
the set of actions, and N = A ∪ C the set of all tasks. Tasks
are maintained in task networks. A task network is a triple
tn = (T ,≺, α), where T is a set of unique task identifiers
(ids) that are mapped to N by the mapping function α : T →
N . That way, a single task can be contained more than once.
≺ defines a partial ordering on the task ids.

1Heuristic search is also successful in Hierarchical Goal Net-
work (HGN) planning [Shivashankar et al., 2017], which differs
severely from HTN planning in that hierarchies are defined among
goals (facts) rather than tasks (cf. overview by Bercher et al. [2019]).

2Source code is available at panda.hierarchical-task.net
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Abstract tasks are decomposed by using (decomposition)
methods. A method m is a pair (c, tn) of a compound task
c ∈ C and a task network tn . The task c defines the abstract
task the method is applicable to, and tn the tasks c can be
decomposed into, the method’s subtasks. The set of methods
is denoted M . Formally, a task network tn1 = (T1,≺1, α1)
is decomposed into a task network tn2 = (T2,≺2, α2) by
a method (c, tn) if and only if there is a task t ∈ T1 with
α1(t) = c and a task network tn ′ = (T ′,≺′, α′) equal to tn
but with ids not contained in the decomposed network (i.e.
T1 ∩ T ′ = ∅); then, tn2 is defined as follows:

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D = {(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

Let L be a set of propositional state features. A state s
is represented by the subset of features that hold in it, i.e.,
s ∈ 2L. Preconditions, add and delete effects are defined
by the functions prec, add , and del with {prec, add , del} :
A → 2L. An action a is applicable (also called executable)
in a state s if and only if s ⊇ prec(a). When a is applicable
in a state s, the state s′ resulting from applying a is defined
as s′ = (s \ del(a)) ∪ add(a). Applicability and state tran-
sition of action sequences are defined accordingly. g ⊆ L
is the goal definition. A state s is a goal state if and only
if s ⊇ g. The planning process starts with the initial net-
work tnI . An HTN planning problem p is defined as a tuple
p = (L,C,A,M, s0, tnI , g, δ) with δ = (prec, add , del).
tn ′ = (T ′,≺′, α′) is a solution to p if and only if: (1) tn ′
can be obtained from tnI by applying a sequence of decom-
positions, (2) all task ids in T ′ are (mapped to) actions, and
(3) there is a sequence 〈t1t2 . . . tn〉 of all ids in T ′ in line with
≺′ such that 〈α′(t1)α′(t2) . . . α′(tn)〉 is applicable in s0 and
results in a goal state.

In the following we need to show that a task network tn
can be reached by decomposing tnI . This is the case if and
only if there is a (valid) Decomposition Tree encoding the
methods leading from tnI to tn [Geier and Bercher, 2011].
Definition 1 (Decomposition Tree). Given an HTN problem,
a Valid Decomposition Tree (DT) is a tuple g = (T,E,≺,
α, β), where (T,E) is a directed tree, and ≺ a strict partial
order on the nodes. Nodes are labeled with task names by the
function α : T → N . Those labeled with abstract tasks are
further labeled with methods by β : T →M .

The tree’s root is labeled with the initial task3 and for any
node t labeled with an abstract task c the following holds:

1. It is labeled with a method (c, tnm)

2. Let ch(g, t) be the children of t in g. The task network
induced by ch(g, t) differs from tnm only in the task ids.

3. For all t′ ∈ T and for all t′′ ∈ ch(g, t), it holds that

3Be aware of the equivalence of HTN problems with initial task
and problems with initial task network (as used here). Given a prob-
lem with initial task network tnI , we can introduce a new task cI
and a new method (cI , tnI) to compile it into a problem with initial
task. I.e. we can use this definition also for our formalism.

(a) if (t, t′) ∈ ≺ then (t′′, t′) ∈ ≺
(b) if (t′, t) ∈ ≺ then (t′, t′′) ∈ ≺

4. ≺ contains only orderings introduced by 2 and 3.

In the remaining paper we deal with HTN problems not
including ordering relations, so 3 and 4 are not needed.

3 Delete & Ordering-Free HTN Planning
We first introduce a new subclass of HTN planning called
delete- and ordering-free HTN planning where

• the set of delete-effects of all actions is empty and

• the set of ordering relations of all task networks defined
in methods as well as in the initial task network is empty.

Our intention is not to use this class to model problems, but
to use it to create heuristics by relaxing the HTN planning
problem induced by a given search node into a DOF HTN
planning problem. Such heuristics are defined in Section 4.

Definition 2 (Delete- and Ordering-free HTN Planning Prob-
lems). An HTN problem p = (L,C,A,M, s0, tnI , g, δ) with
tnI = (TI ,≺I , αI) and δ = (prec, add , del) is called
delete- and ordering-free (DOF) if and only if ≺I = ∅,
∀(c, (T ,≺, α)) ∈M : ≺ = ∅, and ∀a ∈ A : del(a) = ∅.

The plan existence problem in delete-relaxed HTN plan-
ning is NP-hard [Alford et al., 2014]. The problem class we
introduced further does not allow to include ordering relations
into the HTN model, so the question is whether this result still
holds. The following theorem answers this question.

Theorem 1. The plan existence problem in DOF HTN plan-
ning is NP-hard.

Proof Sketch. We construct an DOF HTN problem that has a
solution if and only if a given 3-SAT problem has a solution.
For every variable in the SAT formula, we define (1) two state
features indicating it to be true or false; (2) two actions set-
ting either the first or the second state feature and (3) a single
abstract task that has two methods, decomposing it into one
of the two actions. Let Cset be the set of these abstract tasks.

For every clause of the SAT formula we introduce an ab-
stract task with three methods decomposing it into distinct
actions, each having a precondition checking that one term of
the clause is fulfilled. Let Ccheck be these abstract tasks.

The planning process is started with one instance of each
task from Cset and Ccheck in tnI . Each variable is set once,
so we get an assignment. When an executable plan is found,
at least one term of each clause holds.

Alford et al. have shown NP membership for delete-
relaxed HTN planning [2014, Thm. 5.11], so for DOF HTN
planning it follows directly and the following theorem holds:

Corollary 1. The plan existence problem in DOF HTN plan-
ning is NP-complete.

4 Delete- & Ordering-Relaxation Heuristics
For heuristic calculation we relax the HTN planning prob-
lem induced by a search node into a DOF planning problem,
calculate the goal distance in the DOF problem, and use it as
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drive(t0 ,c0 ,c1)

drive(t0 ,c1 ,c0)

pickup(t0 ,c0 ,p)

drop(t0 ,c1 ,p)

drive(t1 ,c0 ,c1)

drive(t1 ,c1 ,c0)

pickup(t1 ,c0 ,p)

drop(t1 ,c1 ,p)

get-to(t0 ,c0)

get-to(t0 ,c1)

load(t0 ,c0 ,p)

unload(t0 ,c1 ,p)

deliver(p,c1)

get-to(t1 ,c0)

get-to(t1 ,c1)

load(t1 ,c1 ,p)

unload(t1 ,c0 ,p)

Figure 1: Black dots indicate method nodes, text without frame in-
dicates abstract nodes, and text with frame primitive task nodes.

heuristic value in the original problem. Analog to the decision
problem defined before, we define the following distance as
the delete- and ordering-relaxation (hdor ) heuristic. We will
introduce several variations later on in the evaluation section.

Definition 3 (The hdor Heuristic). The delete- and ordering-
relaxation (hdor ) heuristic for a search node n is the minimal
goal distance for the planning problem p induced by n when
setting all actions’ delete effects to ∅ and all ordering rela-
tions of tnI and all methods to ∅.

A DT contains one node per action in a solution and one
node per abstract task (that needs to be decomposed to reach
a solution), i.e. the goal distance is equivalent to the num-
ber of nodes in a DT. The DTs of solutions to the original
problem are still valid for the DOF problem, i.e. we cannot
overestimate the nodes of a tree (i.e. the goal distance):

Corollary 2 (Properties of hdor ). The hdor heuristic is ad-
missible (in the goal distance), goal aware, and safe.

To calculate our heuristics efficiently, we decided to use IP
solvers for the calculation. Before we come to our IP model,
we want to give an intuition about the constraint system.

A data structure that has often been used to calculate
heuristics in HTN planning is the Task Decomposition Graph
(TDG) [Bercher et al., 2017]. It compactly represents the de-
composition hierarchy of the problem.

Definition 4 (Task Decomposition Graph). Let G = (V,E)
be a directed graph. Given an HTN planning problem p =
(L,C,A,M, s0, tnI , g, δ), we define V = C ∪ A ∪M 4. Let
n be an element of N and m of M . E contains the edge
(n,m) if and only if m = (n, tn), i.e., when m decomposes
the task n. E contains the edge (m,n) if and only if m =
(c, (T ,≺, α)) and there is a task id t ∈ T with α(t) = n,
i.e., when the task n is contained in the subtasks of m.

An example is given in Fig. 1. It captures the decomposi-
tion structure of a simple transport problem with two cities c0
and c1; two trucks t0 and t1; and a single package p that is

4WLOG, we assume that the three sets are disjunct.

located at c0 and shall be delivered to c1. The deliver task at
the top can be fulfilled either by using transporter t0 or t1.

A TDG is an AND/OR graph. The initial task given at the
top needs to be decomposed either by the left or by the right
method, i.e., this node is an OR node as the planner needs to
select one option. Method nodes represent AND nodes as all
its children have to be included in a solution. From a plan-
ner’s perspective, a TDG could be used directly for planning
by starting at the top, assigning the OR decisions, and gener-
ating the decomposition tree, i.e. the witness for a solution5.
Every DT can be built that way. The structure of the con-
straints and their relationship in our IP model is similar to a
TDG. They capture the relationship of the number of abstract
tasks, methods, and actions in a solution (i.e., in a valid DT).

4.1 Task Decomposition Constraints
We first introduce constraints describing the decomposition
hierarchy and then combine it with the model of Imai and
Fukunaga [2015] for classical planning that encodes a delete-
relaxed planning graph (making sure that there is an applica-
ble sequence of the actions). I.e. the constraints C1-C6 are
from related work6 and adapted to our needs, while C7-C13
are contributions of this paper.

The definition is quite simple for acyclic TDGs, but be-
comes more complicated for cyclic ones. First we calculate
the TDG’s strongly connected components (SCCs).
Definition 5 (TDG SCCs). We define the set of SCCs of the
given TDG as SCC = {scc0, scc1, . . . , sccn} with scci ∩
sccj = ∅ for all 0 ≤ i, j ≤ n and i 6= j.

Each scci contains nodes from the TDG, i.e. tasks and
methods from the problem. In the following definitions we
are not interested in the method nodes. Therefore we define
SCC>1 = {scc ∩ N | scc ∈ SCC, |scc| > 1}. For each
cyclic SCC, i.e. containing more than one node, it includes a
set containing the tasks in the SCC.

We now introduce our IP model. Its variable set is defined
in Fig. 2. Our objective function minimizes the goal distance,
i.e. the number of applied actions (i.e. the sum over all vari-
ables UAa belonging to actions a) and applied methods (i.e.
the sum over all variables Mm belonging to methods m).

min
∑
a∈A

UAa +
∑
m∈M

Mm (O)

Next we introduce the constraints belonging to the decom-
position structure. We need the following function.
Definition 6 (mst). Let mst(n) be the multiset7 of methods
where the task n is contained as a subtask. A method m ∈M
is as often in mst(n) as n is a subtask of m.

A certain instance of a task is in a DT if and only if it is
contained in tnI or in the subtasks of an applied method.

∀n ∈ N : UAn = TNIn +
∑

m∈mst(n)

Mm (C7)

5One would have to consider some special cases we omitted.
6We start with constraint C7 to leave the labeling of Imai and

Fukunaga [2015] unchanged.
7Defining mst as multiset is necessary to be correct when a task

is contained in the subtasks of a method more than once.
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• {UFf | f ∈ L} (bool) – flag indicating whether a state feature
is eventually set or not.

• {UAn | n ∈ N} (int) – value indicating how often a certain
primitive or abstract task is in the solution.

• {Ea,f | a ∈ A, f ∈ add(a)} (bool) – flag indicating if the
given action is the first achiever of the state feature f .

• {TPf | f ∈ L} (int) – time step when a given state feature is
made true.

• {TAa | a ∈ A} (int) – time step when an action is added to the
relaxed planning graph.

• {Mm | m ∈ M} (int) – value indicating how often a certain
method is in the solution.

• {TNIn | n ∈ N} (int) – value indicating how often a certain
task is in the initial task network.

• {Rs
c | ∀scc ∈ SCC>1 : c ∈ scc, s ∈ {0 . . . |scc|}},

• {I s
c′→c | ∀scc ∈ SCC>1 : c, c′ ∈ scc, s ∈ {1 . . . |scc|}}

both (bool) – reachability bits; the former indicating which tasks
inside an SCC are reachable by a directed path of included
tasks/methods from outside the SCC or from tnI , the latter
whether a method from c′ to c is set.

Figure 2: Variable set of our IP model. The variables on the left are the same as those used by Imai and Fukunaga. We had to adapt the types
of some of them as will be discussed later in this section. On the right are the newly introduced variables.

Each abstract task included in a DT needs to be decom-
posed. Therefore the number of all methods that might de-
compose it is equal to the number of instances of that task.

Definition 7 (mdec). Let mdec(c) be the set of methods de-
composing the abstract task c.

∀c ∈ C : UAc =
∑

m∈mdec(c)

Mm (C8)

For acyclic problems, these constraints specify the relation-
ship between tasks and methods in a DT. However, consider
the TDG given in Fig. 1 containing cycles (marked in gray).
Here, it would be possible for the IP solver to introduce tasks
(by building a self-sustaining circle) that form a component
in the DT that is disconnected from the initial tasks.

To prevent this, we encode the reachability of tasks in an
SCC in a structure that can be seen as an instance of the
Floyd-Warshall algorithm. For each task c we introduce a
new variable R0

c that is set if and only if the node is reached
from the outside, i.e., by a method decomposing a task not
included in the same SCC.

∀scc ∈ SCC>1 : ∀c ∈ scc : R0
c ≤

∑
m∈mst(c), s.t. m 6∈scc

Mm + TNIc (C9)

C10-C13 ensure that methods and tasks inside the SCC that
are set are connected to tasks reached from outside or to tasks
in tnI . The encoding is cubic in the number of tasks in the
SCC. s indicates a time step. A task c′ might be reached in
time step s with s > 0 if and only if it was set in s−1 (C10) or
if there is a task c′′ set in s− 1 (C10, C11) and a method that
is set in s−1 that decomposes c′′ into c′ (C12). C13 connects
C9-C12 to the other constraints (cl is a large constant).

Definition 8 (mto). Let mto(c → n) be the methods decom-
posing the task c and where n is included in the subtasks.

∀scc ∈ SCC>1 :∀c ∈ scc : ∀s ∈ {1 . . . |scc|} :

Rs
c ≤

∑
c′∈scc

I sc′→c + Rs−1
c (C10)

I sc′→c ≤ Rs−1
c′ (C11)

I sc′→c ≤
∑

m∈mto(c′→c)

Mm (C12)

UAc ≤ cl × R|scc|c (C13)

4.2 Planning Graph Constraints
To ensure (delete-relaxed) executability of the resulting ac-
tions, we use the encoding of Imai and Fukunaga [2015] with
minor adaptations. State features that are contained in the
state-based goal definition are eventually made true.

∀f ∈ g : UFf = 1 (C1)
The precondition of an action has to be fulfilled when the

action is included in the plan. In this constraint we had to add
the multiplication with a large constant cl, because the action
variables UAa are no boolean values anymore since the HTN
can enforce an action to be in a plan more than once. Due to
the delete-relaxed setting, this is no problem. When an action
is in a delete-relaxed plan it can be included multiple times.

∀a ∈ A : ∀f ∈ prec(a) : cl × UFf ≥ UAa (C2)
The variable Ea,f is set if and only if a is the first achiever

of f . To make this possible a must be set.
∀a ∈ A : ∀f ∈ add(a) : UAa ≥ Ea,f (C3)

A state feature is set when there is a first achiever. In the
original encoding, a separate variable indicates if it is set in
s0. We reduce the model before the IP encoding and delete
all state features already fulfilled in s0.

∀f ∈ L : UFf =
∑

a∈{a′|a′∈A,f∈add(a′)}

Ea,f (C4)

State features contained in the precondition of an action
have to be fulfilled before the action.

∀a ∈ A : ∀f ∈ prec(a) : TPf ≤ TAa (C5)
When a is the action first achieving the state feature f , the

action must be in the planning graph before the add effect.
∀a ∈ A : ∀f ∈ add(a) : TAa + 1 ≤ TPf

+ (|A|+ 1)× (1− Ea,f ) (C6)
Theorem 2. For every solution of a DOF HTN planning
problem, there is a valid assignment of the IP model.

Proof. Given a solution to a DOF HTN planning problem,
there exists a DT that represents it. We create a valuation
β : V 7→ R such that β(UAt) is equal to the number of nodes
in the DT labeled with t and β(Mm) equal to the number
of vertices decomposed with m. The values of β(TNIt) are
chosen according to tnI . This valuation fulfills C7 and C8.
C9–C13 encode reachability. Since β is based on a tree, every
node is reachable from the root(s), i.e. it is possible to set the
I st′→t and Rs

t variables appropriately.
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Figure 3: Left: Coverage table of several HTN planning systems. Right: Comparison of solution costs.

Theorem 3. For every valid assignment of the IP model,
there is a solution of the underlying DOF HTN problem.

Proof. Let β : V 7→ R be a valuation of the IP satisfying
all constraints. We have to show that there exists a solution
to the DOF problem, i.e. that a DT exists for it, such that the
(delete-free) actions in the yield have an executable order.

The encoding of Imai and Fukunaga ensures that the ac-
tions in the yield are executable. What remains to show is
that there is a DT with this yield. We construct the DT induc-
tively in a top down fashion. We start with a tree (technically
a forest) only containing the tasks of tnI as its root nodes. In
every step we systematically (1) extend the DT and (2) reduce
the valuation of the variables representing the tasks added to
the tree in a way that (i) maintains a valuation fulfilling our
constraint system and (ii) ensuring that we end up with a DT
including all tasks represented by our initial valuation.

In each step, we treat a single SCC scc of the TDG in which
at least one UAt is non-zero and for which for no incoming
method m ∈ {m = (c, tn) | ∃t ∈ scc,m ∈mst(t), c 6∈ scc}
the value β(Mm) is greater than 0. If there is no such SCC,
then all UAt are 0 and we have finished our construction.
Note that there cannot be a situation where some SCCs have
UAt > 0 for some t, but every SCC has active incoming
methods, since this would constitute a cycle between SCCs
(and there would be a single SCC instead). Let scc be such
a SCC without an incoming method where at least for one t
holds β(UAt) > 0. Assume that for all tasks t′ ∈ scc holds
β(TNIt′) = 0, then C9 can only be fulfilled by setting all R0

t
to 0. Then, all I st′→t (C11) and Rs

t (C10) are 0. C13 can only
be fulfilled if for all tasks t′ ∈ scc holds β(UAt′) = 0, which
is a contradiction. There must be at least one task t∗ ∈ scc
that is in the current tnI and thus a leaf of the current DT.

By constraint C7 it holds that β(UAt∗) > 0. There are
some β(Mm) for m ∈ mdec(t∗) greater than 0 (C8). We
choose one of them and “apply” it to the leaf t∗ in the DT.
Choosing it arbitrarily is not correct, as it might end a neces-
sary recursion prematurely, but it is sufficient to apply some
method that can lead to recursion, and if none exists, any
method. To determine what “leads to recursion” means, con-
sider the graph G = (V,E), V = N and E = {(a, b) | ∃m ∈
mst(b) ∩ mdec(a) : β(Mm) > 0}, i.e. the tasks connected
by the methods that decompose them in the IP. The task t∗ is
recursively decomposed if there is a path from t∗ to t∗ in G.

Let m∗ be the selected method. We decrease β(UAt∗),
β(TNIt∗), and β(Mm∗) by 1 and increase β(TNIt′) by 1 for
every subtask t′ inm. This modification still satisfies the con-
straints C7 and C8. Note that this cannot change the values
of any UAa for a ∈ A and thus the set yield of the DT.

Next, we update the reachability tracked in the I st′→t and
Rs

t variables. Rs
t encodes that the task t is reachable with (at

most) s decompositions from either a task in tnI or from out-
side – which cannot be the case for the scc, as it has no incom-
ing methods. Before our modifications of UAt∗ ,Mm∗ , . . . ,
all tasks t in the SCC for which β(UAt) > 0 have been
reachable (C13). Assume that afterwards there is a task twith
β(UAt) > 0 not reachable from any t′ with β(TNIt′) > 0.
Suppose t was reachable from any such task other than t∗

before the modification. Then it is either still reachable, or
the only path π which made it reachable went through the
method m∗. After the modification, all subtasks t′ of m∗
have β(TNIt′) > 0 and t will be reachable from at least one
of them (starting π at the subtask of m∗ contained next in π).

Now, suppose that t was only reachable from t∗. So there
is a (shortest) sequence of methods π = (m1, . . . ,mn) con-
necting t∗ and t in G. If π contains m∗, then t was reachable
through a subtask t′ ofm∗. t is still reachable from t′ – which
will have β(TNIt′) > 0 through the modification. Now, sup-
pose π does not containm∗. Ifm∗ lies on a cycle for t∗, there
is at least one subtask of m∗ (i.e. the one on the cycle back
to t∗) from which t∗ is still reachable via edges in G. Also
this task will have β(TNIt′) > 0. Thus t is still reachable
from t′ by first following the path from t′ to t∗ and then the
original path π. Conversely, if m∗ does not lie on a cycle,
no other method m′ for t∗ with β(Mm′) > 0 lies on a cy-
cle, as we prefer methods that are on cycles in G. Since π
does not start with m∗, m1 is a second method decomposing
t∗, i.e. β(Mm1

) > 0. Since t was only reachable from t∗,
β(TNIt∗) > 2. After the modifications, β(TNIt∗) > 1 and
thus t is still reachable from t∗. Consequently, it is possible
to set I st′→t and Rs

t s.t. the modified β satisfies all constraints.
We repeat these modifications until ∀t′ ∈ scc : β(UAt′) = 0.

We then repeat the process for the next SCC. By induction,
we end up with ∀c ∈ C : β(UAc) = 0 and a DT that has
the current task network as its leafs. Since then ∀m ∈ M :
β(Mm) = 0 we have ∀a ∈ A : β(UAa) = β(TNIa). Hence
the yield of the constructed DT is equal to the set of actions
for which the IP has shown delete-relaxed executability.
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5 Discussion
The first difference between our heuristics and those from the
literature is that we take the interplay of hierarchy and actions
in the solution into account exactly. We want to make this
more clear with the following example.

Example 1. Consider the logical formula F = x ∧ ¬x.
Using the encoding given in the proof of Thm. 1 we en-
code it into a DOF HTN problem with the abstract tasks
C = {setX , checkCl1 , checkCl2}. setX can be decom-
posed by one method into the action setXtoTrue and by a
second method into setXtoFalse . checkCl1 checks whether
the first clause is fulfilled. It can be decomposed into the ac-
tion checkXisTrue; checkCl2 into checkXisFalse . The ac-
tions set and check two state features that model whether the
variable x is true or false. tnI contains all tasks from C.

An HTN planner cannot find a solution, since either
checkXisTrue or checkXisFalse is not executable. Consider
heuristic calculation: when we allow for task insertion dur-
ing heuristic calculation, heuristic functions can include both
setXtoTrue and setXtoFalse into their solution, making the
heuristic value finite. This is prevented in our approach.

A second property of our approach is that the problem that
is actually solved to calculate the heuristic value is a relaxed
class of HTN planning problems. This makes it easy to un-
derstand what is actually calculated.

We now discuss the relationship of our heuristics to specific
HTN heuristics from related work in more detail.

Bercher et al. [2017] introduced heuristics based on the
TDG. The heuristic value of an action is set to its own costs;
the one of a method to the sum of the costs of its subtasks and
the one of an abstract task to the minimum of methods decom-
posing it. Costs are updated until a fixpoint is reached. To im-
prove the heuristic, a planning graph is used to only consider
actions still reachable. However, this reachability analysis
includes all actions hierarchically reachable, i.e. the interplay
of hierarchy and state-based reachability is not considered ex-
actly. An action whose costs is included in the heuristic value
might have preconditions fulfilled by actions not included in
the heuristic value. This is a kind of task insertion: when we
would extract a plan with the given costs (not done by the
heuristic), we would need to insert actions to make it exe-
cutable. Even worse, the costs of the inserted actions are not
included in the heuristic value. Like ours, the heuristic value
does not reflect the ordering constraints from the HTN model
and the heuristic is calculated on a delete-relaxed model.

Höller et al. [2018] introduced an approach that relaxes
the HTN planning problem to a classical planning problem.
In contrast to the translation-based approaches by Alford et
al. [2009; 2016] that do not change the set of solutions and
use a classical planner for search, the translation of Höller et
al. increases the set of solutions, i.e. it relaxes the problem.
The relaxed model is not used for search, but to compute clas-
sical heuristics on it. The resulting heuristic values are then
used to guide the HTN search. The relaxation includes order-
ing relaxation like ours, but also task insertion. In contrast to
Bercher et al. [2017], it includes the costs of inserted actions
into the heuristic value. Whether it uses delete-relaxation de-
pends on the classical heuristic used. Interestingly, what is

encoded in the classical model can be seen as the building
process of a DT [Höller et al., 2019].

Bit-Monnot et al. [2016] introduced a translation from
HTN-like models into a temporal (non-hierarchical) planning
model that is used for a reachability analysis during search,
which prunes wide parts of the search space and is combined
with blind search (so technically, no heuristic is used). The
translation marks via state features which abstract tasks are
currently processed, allowing only the insertion of tasks be-
longing to methods that decompose these tasks; this mini-
mizes task insertion. However, the used relaxation makes it
possible to decompose a single task multiple times, which
also leads to inserted tasks.

6 Evaluation
We integrated our heuristic into the PANDA frame-
work [Bercher et al., 2014] and combined it with the pro-
gression algorithm by Höller et al. [2020]. However, it is not
restricted to this setting and can also be combined with other
systems or search methods. We recreate the IP model in each
search node. To make it as small as possible, we perform a
reachability analysis similar to the one done during ground-
ing [Behnke et al., 2020] in every search node. We included
4 configurations into the evaluation. Two of them relax the IP
to a LP model by dropping the requirement that assignments
of integer and Boolean variables are whole numbers. This
enables solving the model in P.

• hdor – Our full model with NP-hard IP calculation.

• hdorlp – Full model, but relaxed to LP.

• hdorr – Model without the constraints C9-C13 (relaxed)
with NP-hard IP calculation.

• hdorr,lp – Model without C9-C13 relaxed to a LP.

Since we are presenting a novel heuristic, we consider
heuristic search-based systems from related work as our main
competitors. However, since SAT-based approaches cur-
rently perform best, we also include those into the evaluation.
RCADD, RCFF, and RCLMC use progression search with
heuristics based on a relaxation by Höller et al. [2018; 2019;
2020] combined with the Add [Bonet and Geffner, 2001],
FF [Hoffmann and Nebel, 2001], and LM-Cut [Helmert and
Domshlak, 2009] heuristics from classical planning, TDGc

and TDGm use plan space search with the TDG-based
heuristics introduced by Bercher et al. [2017], and UMCP
is the search strategy by Erol et al. [1994] implemented in the
PANDA system. SAT’18 and SAT’19 are translations into
propositional logic as introduced by Behnke et al. [2018;
2019]. JSHOP2 is the system by Nau et al. [2003]. The
FAPE system [Bit-Monnot et al., 2016] does not support
recursion. Since some instances are recursive in the lifted
model but become non-recursive during grounding we pro-
duced groundings with PANDA and ran FAPE on these in-
stances (this increased its performance). The number of
instances is given for each domain. 2ADL-Jasper and
2ADL-LAPKT use the translation of HTN problems into
ADL by Alford et al. [2016] combined with JASPER [Xie
et al., 2014] and LAPKT-BFWS [Francès et al., 2018].
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Figure 4: Left: Search nodes needed to solve a problem for our system (x-axis) and the RC heuristics (y-axis) with LM-Cut (green), FF
(blue), and Add (red). Right: Sum of solved problems (y-axis) relative to search time (log-scale).

Heuristic search-based HTN systems have been combined
with Greedy Best First search, A∗ search, and Greedy A∗
search (GA∗) with weight 2. Due to lack of space, we
only discuss GA∗ search (the configuration with the high-
est coverage). We used a server with Xeon E5-2660 CPUs
(2.60 GHz), 4 GB RAM and 10 minutes time limit. Our
IP model was solved using the CPLEX solver (version 12.8,
restricted to 1 CPU core). We used the same problem set
used in related work [Höller et al., 2018; Behnke et al., 2018;
Behnke et al., 2019] including 144 instances.

The coverage of all systems is given in Figure 3 (left).
The SAT-based systems have the highest coverage. From
the search-based systems, the RC heuristics solve most prob-
lems. RCFF and RCLMC perform nearly identical, while
RCADD solves 11 (8) instances less. Our best configurations
are placed between the RC heuristics. Interestingly, the IP
version performs better than the one relaxed to a LP model.
From the IP configurations, the one not preventing cycles un-
connected to the tasks of the current task network performs
slightly better. The best TDG-based configuration solves 10
(RCADD) to 21 (RCFF) instances less than the RC configu-
rations and performs similar to 2ADL-Jasper. All other sys-
tems have a by far lower coverage.

Figure 4 (right) shows the number of solved instances rel-
ative to the search time (be aware of the log-scale). The
2ADL-Jasper system solves simple problems most quickly,
followed by UMCP, the RC-based systems, and our configu-
rations. Interestingly, all our systems are very close together,
but the NP-hard configurations solve more problems (i.e. NP
calculation pays off). The SAT-based systems need more time
for simple problems, but solve more instances in total.

Figure 4 (left) shows the number of search nodes needed
to find a plan, comparing our hdor system and the three RC
heuristics (since these are based on the same search algo-
rithm). Figure 3 (right) compares the action costs of the gen-
erated plans. It can be seen that our system needs less search
nodes (be aware of the log-scale) but finds plans with equal
costs. This is similar when comparing hdor to variants of our
system where the calculation is relaxed to P, i.e. hdor is the
most informed heuristic of the ones given here.

To sum up, like in evaluations in related work, the SAT-
based HTN planners performed best, followed by the best
configuration of the RC heuristic (RCFF). Our heuristics per-
formed slightly worse than RCFF, but better than RCADD.
Both RC-based and our heuristics perform much better than
the other search-based systems. Preventing self-sustaining
cycles seems not to pay off on the given problem set. Solving
the NP-hard IP model instead of the relaxed LP model payed
off. The analysis of the number of explored search nodes
showed that our IP-based heuristics are more informed both
than the LP configurations and the RC heuristics.

7 Conclusion

We introduced a new subclass of HTN planning and showed
that its plan existence problem is NP-complete. We defined
heuristics based on this type of model and showed how to
compute them efficiently using an IP model/solver. These
heuristics form a new line of research on HTN heuristics.
These are the first heuristics avoiding task insertion in the
calculation, i.e. taking the interplay of decomposition and ac-
tions in the solution into account exactly. They are more in-
formed than HTN heuristics from the literature and competi-
tive with these with respect to coverage. In difference to other
HTN heuristics, they have easy to grasp semantics since they
are based on a well-defined problem class. The declarative
model opens promising lines of research, e.g. enhanced IP
heuristics incorporating other information like landmarks or
net-change constraints [Pommerening et al., 2014]. This will
also help the configurations relaxing the model to a LP to find
more accurate heuristic values. It can also be adapted to find
HTN plans with optimal action costs.
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[Höller et al., 2018] Daniel Höller, Pascal Bercher, Gregor
Behnke, and Susanne Biundo. A generic method to guide
HTN progression search with classical heuristics. In Proc.
of ICAPS, pages 114–122. AAAI Press, 2018.
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[Höller et al., 2020] Daniel Höller, Pascal Bercher, Gregor
Behnke, and Susanne Biundo. HTN planning as heuris-
tic progression search. JAIR, 67:835–880, 2020.

[Imai and Fukunaga, 2015] Tatsuya Imai and Alex Fuku-
naga. On a practical, integer-linear programming model
for delete-free tasks and its use as a heuristic for cost-
optimal planning. JAIR, 54:631–677, 2015.

[Nau et al., 2003] Dana S. Nau, Tsz-Chiu Au, Okhtay Il-
ghami, Ugur Kuter, J. William Murdock, Dan Wu, and
Fusun Yaman. SHOP2: an HTN planning system. JAIR,
20:379–404, 2003.

[Pommerening et al., 2014] Florian Pommerening, Gabriele
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