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Abstract
When AI systems interact with humans in the loop,
they are often called on to provide explanations for
their plans and behavior. Past work on plan expla-
nations primarily involved the AI system explain-
ing the correctness of its plan and the rationale for
its decision in terms of its own model. Such solil-
oquy is wholly inadequate in most realistic scenar-
ios where the humans have domain and task mod-
els that differ significantly from that used by the
AI system. We posit that the explanations are best
studied in light of these differing models. In par-
ticular, we show how explanation can be seen as a
“model reconciliation problem” (MRP), where the
AI system in effect suggests changes to the human’s
model, so as to make its plan be optimal with re-
spect to that changed human model. We will study
the properties of such explanations, present algo-
rithms for automatically computing them, and eval-
uate the performance of the algorithms.

1 Introduction
There has been significant renewed interest recently in devel-
oping AI systems that can automatically provide explanations
to humans in the loop. While much of the interest has been fo-
cused on learning systems that can explain their classification
decisions, a related broader problem involves providing ex-
planations in the context of human-AI interaction and human-
in-the-loop decision making systems. In such scenarios, the
automated agents are called upon to provide explanation of
their behavior or plans [Langley, 2016].

Although explanation of plans has been investigated in the
past (c.f. [Kambhampati, 1990; Sohrabi et al., 2011]), much
of that work involved the planner explaining its decisions with
respect to its own model (i.e. current state, actions and goals)
and assuming that this “soliloquy” also helps the human in the
loop. While such a sanguine assumption may well be requited
when the human is an expert “debugger” and is intimately fa-
miliar with the agent’s innards, it is completely unrealistic in
most human-AI interaction scenarios, where the humans may
have a domain and task model that differs significantly from
that used by the AI system. This is illustrated in Figure 1,
∗Authors marked with asterix contributed equally.

Figure 1: Interaction between humans and AI systems is best an-
alyzed in light of their differing models. The robot here generates
an optimal plan π∗R with respect to its model MR, which is inter-
preted by the human with respect to his model MH . Explanations
are needed when π∗R is not an optimal plan with respect to MH .

where the plans generated by the AI system with respect to
its model need to be interpreted by the human with respect to
his model. Of course, the AI system can avoid the need to pro-
vide explanations by being “explicable” [Zhang et al., 2017;
Kulkarni et al., 2016] - i.e., generate plans that also make
sense with respect to the humans’ model. Such explicabil-
ity requirement however puts additional constraints on the
agent’s plans, and may not always be feasible. When the
robot’s plan is different from what the human would expect
given his model of the world, the robot will be called on to
“explain” its plan. We posit that such explanations should be
seen as the robot’s attempt to move the human’s model to be
in conformance with its own.

The primary contribution of this paper is to show how such
model updates or explanations can be formulated concisely
as the model reconciliation problem (MRP), which aims to
make minimal changes to the human’s model to bring it closer
to the robot’s model, in order to make the robot’s plan optimal
with respect to this changed human’s model. One immediate
complication in tackling an MRP is that the human’s model
is not directly made available to the robot, and will have to be
learned instead (c.f. [Zhang et al., 2017]). The learned model
may also be in a different form and at a different level of ab-
straction than the one used by the robot [Tian et al., 2016;
Perera et al., 2016]. Nevertheless, for the purposes of this pa-
per, we will assume that the human’s model is made available
and is in PDDL format, just like the robot’s one. This allows
us to focus on the explanation generation aspects.

In the rest of the paper, we will formalize the scenario in
Figure 1 as the Multi-Model Planning setting, and character-
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Figure 2: The Fetch in the crouched position with arm tucked (left),
torso raised and arm outstretched (middle) and the rather tragic con-
sequences of a mistaken action model (right).

ize explanation generation as a model reconciliation process
in it. We start by enumerating a few desirable requirements
of such explanations - namely completeness, conciseness,
monotonicity and computability. We then formulate different
kinds of explanations that satisfy these requirements and re-
lax one of these requirements at a time in the interests of com-
putability. We present an A∗-search formulation for searching
in the space of models to compute these explanations, and de-
velop approximations and heuristics for the same. Finally, we
present a preliminary evaluation of the efficiency of our al-
gorithms for generating explanations in randomly generated
problems in a few benchmark planning domains.

A Motivating Example Let us illustrate the concept of ex-
planations via model reconciliation through an example based
on the Fetch robot whose design requires it to tuck its arms
and lower its torso or crouch before moving - which is not
obvious to a human navigating it. This may lead to an un-
balanced base and toppling of the robot if the human deems
such actions as unnecessary. The move action for the robot is
described in PDDL in the following model snippet -
(:action move
:parameters (?from ?to - location)
:precondition (and (robot-at ?from)

(hand-tucked) (crouched))
:effect (and (robot-at ?to)

(not (robot-at ?from))))
(:action tuck
:parameters ()
:precondition ()
:effect (and (hand-tucked)

(crouched)))
(:action crouch
:parameters ()
:precondition ()
:effect (and (crouched)))

Notice that the tuck action also involves a lowering of
torso so that the arm can rest on the base once it is tucked in.
Now, consider a problem with the following initial and goal
states (here, identical for both the robot and the human) -
(:init (block-at b1 loc1) (robot-at loc1) (hand-empty))
(:goal (and (block-at b1 loc2)))

An optimal plan for the robot, in this case, involves a tuck
action followed by a move -
pick-up b1 -> tuck -> move loc1 loc2 -> put-down b1

The human, on the other hand, expects a much simpler
model, as shown below. The move action does not have the
preconditions for tucking the arm and lowering the torso,
while tuck does not automatically lower the torso either.

(:action move
:parameters (?from ?to - location)
:precondition (and (robot-at ?from)
:effect (and (robot-at ?to)

(not (robot-at ?from))))
(:action tuck
:parameters ()
:precondition ()
:effect (and (hand-tucked))

(:action crouch
:parameters ()
:precondition ()
:effect (and (crouched)))

Clearly, the original plan is no longer optimal (and hence
explicable) here. One possible model update (i.e. explanation)
that can mitigate this situation is -
Explanation >> MOVE_LOC1_LOC2-has-precondition-HAND-TUCKED

This correction brings the human and the robot model
closer, and is necessary and sufficient to make the robot’s plan
optimal in the resultant domain. As indicated before, we refer
to such model corrections as multi-model explanations.

2 Related Work
Our view of explanation as a model reconciliation process is
supported by studies in the field of psychology which stipu-
late that explanations “privilege a subset of beliefs, excluding
possibilities inconsistent with those beliefs... can serve as a
source of constraint in reasoning...” [Lombrozo, 2006]. This
is achieved in our case by the appropriate change in the ex-
pectation of the model that is believed to have engendered the
plan in question. Further, authors in [Lombrozo, 2012] also
underline that explanations are “typically contrastive... the
contrast provides a constraint on what should figure in a se-
lected explanation...” - this is especially relevant in order for
an explanation to be self-contained and unambiguous. Hence
the requirement of optimality in our explanations, which not
only ensures that the current plan is valid in the updated
model, but is also better than other alternatives. This is con-
sistent with the notion of optimal (single-model) explanations
investigated in [Sohrabi et al., 2011] where less costly plans
are referred to as preferred explanations. The optimality cri-
terion, however, makes the problem fundamentally different
from model change algorithms in [Göbelbecker et al., 2010;
Herzig et al., 2014; Bryce et al., 2016] which focus more on
the feasibility of plans or correctness of domains.

Finally, while the human-in-the-loop setting discussed here
does bring back memories of mixed-initiative planners of the
past [Ferguson et al., 1996; Ai-Chang et al., 2004], most of
the work there involved the humans entering the land of plan-
ners; and not the other way around. Not surprisingly, it did
not have the planner taking the human model into account in
its planning or explanation.

3 The Multi-Model Planning (MMP) Setting
A Classical Planning Problem [Russell et al., 2003] re-
quires a model M = 〈D, I,G〉 (represented in PDDL
[McDermott et al., 1998]) consisting of the domain D =
〈F,A〉 - where F is a finite set of fluents that define
the world state s ⊆ F , and A is a finite set of ac-
tions - and the initial and goal states I,G ⊆ F . Action
a ∈ A is a tuple 〈ca, pre(a), eff+(a), eff−(a)〉 where ca
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denotes cost, and pre(a), eff+(a), eff−(a) ⊆ F is the set
of preconditions and add / delete effects, i.e. δM(s, a) |=
⊥ if s 6|= pre(a); else δM(s, a) |= s ∪ eff+(a) \ eff−(a)
where δM(·) is the transition function. The cumulative
transition function is given by δM(s, 〈a1, a2, . . . , an〉) =
δM(δM(s, a1), 〈a2, . . . , an〉). The solution to the planning
problem is a sequence of actions or a (satisficing) plan
π = 〈a1, a2, . . . , an〉 such that δM(I, π) |= G. The
cost of a plan π is given by C(π,M) =

∑
a∈π ca if

δM(I, π) |= G; ∞ otherwise. The cheapest plan π∗ =
arg minπ{C(π,M) ∀π such that δM(I, π) |= G} is called
the (cost) optimal plan. We will refer to the cost of the opti-
mal plan in the modelM as C∗M.

From the perspective of classical planning, the question of
plan explicability may indeed be posed in terms of plan op-
timality. The intuition here is that if a plan is the best pos-
sible plan that the planner could have come up with, then it
is also comprehensible to a human with the same planning
model and reasoning capabilities, i.e. the existence of such a
plan requires no further explanation. However, the human’s
understanding of a planning problem often differs from the
planner’s, e.g. if she does not have access to the planner’s ac-
tual goal, or does not know the current state accurately, or
has a different perception of the action model being used. In
such situations, a plan π produced in the robot’s modelMR

is being evaluated in terms of a different model MH in the
human’s mind, as a result of which what is optimal (and ex-
plicable) in the planner’s model may no longer be so in the
human’s, i.e C(π,MR) = C∗MR , but C(π,MH) > C∗MH .
Based on this, we define the following setting -

A Multi-Model Planning (MMP) Setting is given by the
tuple 〈MR,MH〉, where MR = 〈DR, IR,GR〉 is the
planner’s model of the planning problem, while MH =
〈DH , IH ,GH〉 is the human’s approximation of the same.

As we mentioned in the introduction, from the point of
view of the planner, there can be two approaches to achieve
common ground with the human in such settings - (1) Change
its own behavior in order to be explicable to the human - in
[Zhang et al., 2017; Kulkarni et al., 2016] the authors pro-
pose to modify the robot plan π itself so that C(π,MH) ≈
C∗MH ∧ δMR(IR, π) |= GR. Thus the planner chooses to
sacrifice optimality in order to make its behavior explicable to
the human observer; and (2) Bring the human’s model closer
to its own by means of explanations in the form of model up-
dates - here, the planner does not change its own behavior, but
rather corrects the human’s incorrect perception of its model
via explanations. We refer to this as the model reconciliation
process. In this paper, we will focus on this only.

The Model Reconciliation Problem (MRP) is a tuple
〈π∗, 〈MR,MH〉〉 where C(π∗,MR) = C∗MR , i.e. the
robot’s model, the human’s approximation of it, and a plan
that is optimal in the former.

Before we go into the details of the model reconciliation
process, we will define the following state representation over
planning problems. We intend to use this in our “model-space

search” for model reconciliation.
F = {init-has-f | ∀f ∈ FH ∪ FR} ∪ {goal-has-f | ∀f ∈ FH ∪ FR}⋃

a∈AH∪AR

{a-has-precondition-f, a-has-add-effect-f,

a-has-del-effect-f | ∀f ∈ FH ∪ FR}

∪ {a-has-cost-ca | a ∈ AH} ∪ {a-has-cost-ca | a ∈ AR}.

A mapping function Γ : M 7→ s represents any planning
problemM = 〈〈F,A〉, I,G〉 as a state s ⊆ F as follows -

τ(f) =



init-has-f if f ∈ I,
goal-has-f if f ∈ G,
a-has-precondition-f if f ∈ pre(a), a ∈ A
a-has-add-effect-f if f ∈ eff+(a), a ∈ A
a-has-del-effect-f if f ∈ eff−(a), a ∈ A
a-has-cost-f if f = ca, a ∈ A

Γ(M) =
{
τ(f) | ∀f ∈ I ∪ G∪⋃

a∈A
{f ′ | ∀f ′ ∈ {ca} ∪ pre(a) ∪ eff+(a) ∪ eff−(a)}

}
We can now define a model-space search problem
〈〈F ,Λ〉,Γ(M1),Γ(M2)〉 with a new action set Λ contain-
ing unit model change actions λ : F → F such that
|s1∆s2| = 1, where the new transition or edit function is
given by δM1,M2

(s1, λ) = s2 such that condition 1 :
s2 \ s1 ⊆ Γ(M2) and condition 2 : s1 \ s2 6⊆ Γ(M2)
are satisfied. This means that model change actions can only
make a single change to a domain at a time, and all these
changes are consistent with the model of the planner. The
solution to a model-space search problem is given by a set of
edit functions {λi} that can transform the modelM1 to the
modelM2, i.e. δM1,M2(Γ(M1), {λi}) = Γ(M2).

A Multi-Model Explanation denoted by E is a solution
to an MRP, i.e. a solution to the model-space search prob-
lem 〈〈F ,Λ〉,Γ(MH),Γ(M̂)〉 with the transition function
δMH ,MR

such thatC(π∗,M̂)−C∗
M̂
< C(π∗,MH)−C∗MH .

This means that in the updated model after the explanation,
the plan in question is closer to the optimal (and hence less
inexplicable) than it was in the original model that the human
had. The human in the loop can either chose to use this ex-
planation to update her own model or negotiate in course of
further dialog (e.g. to update the robot’s model).

As we go on to develop approaches to compute different
types of such explanations, we will consider the following
four requirements that characterize each solution.

R1. Completeness - Explanations of a plan should be able
to be compared and contrasted against other alternatives,
so that no better solution exists. We enforce this property
by requiring that in the updated human model the plan
being explained is optimal.

– An explanation is complete iff C(π∗,M̂) = C∗
M̂

.

R2. Conciseness - Explanation should be concise so that
they are easily understandable to the explainee. Larger
an explanation is, the harder it is for the human to incor-
porate that information into her deliberative process.

R3. Monotonicity - This ensures that remaining model dif-
ferences cannot change the completeness of an explana-
tion, i.e. all aspects of the model that engendered the
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plan have been reconciled. This thus subsumes com-
pleteness and requires more detailed1 explanations.

– An explanation is monotonic iff C(π∗,M̂) = C∗M̂
∀M̂ : Γ(M̂)∆Γ(MH) ⊂ Γ(M̂)∆Γ(MH).

R4. Computability - While conciseness deals with how easy
it is for the explainee to understand an explanation, com-
putability measures the ease of computing the explana-
tion from the point of view of the planner.

We will now introduce different kinds of multi-model ex-
planations that can participate in the model reconciliation
process, propose algorithms to compute them, and compare
and contrast their respective properties. We note that the re-
quirements outlined above are in fact often at odds with each
other - an explanation that is very easy to compute may be
very hard to comprehend. This (as seen in Table 1) will be-
come clearer in course of this discussion.

A simple way to compute an explanation would be to pro-
vide the model differences pertaining to only the actions that
are present in the plan that needs to be explained -

A Plan Patch Explanation (PPE) is given by EMPE =
∆i∈{H,R}

⋃
f∈{ca}∪pre(a)∪eff+(a)∪eff−(a) : a∈π∗∩Ai τ(f).

Clearly, such an explanation is easy to compute and concise
by focusing only on plan being explained. However, it may
also contain information that need not have been revealed,
while at the same time ignoring model differences elsewhere
inMH that could have contributed to the plan being subopti-
mal in it. Thus, it is incomplete. An adoption of VAL [Howey
et al., 2004] to the MMP setting will be, in fact, a subset of
such PPEs, and suffer from the same limitations. An easy way
to compute a complete explanation would be to provide the
entire model difference to the human –

A Model Patch Explanation (MPE) is given by EMPE =
Γ(MR)∆Γ(MH).

This is clearly also easy to compute but can be quite large
and is hence far from being concise. Thus, in the rest of paper,
we will try to minimize the size (and hence increase the com-
prehensibility) of explanations by searching in the space of
models and thereby not exposing information that is not rele-
vant to the plan being explained while still trying to satisfy as
many requirements as we can.

A Minimally Complete Explanation (MCE) is the short-
est complete explanation, i.e.

EMCE = arg minE |Γ(M̂)∆Γ(MH)| with R1.
The explanation provided before in the Fetch domain is in-

deed the smallest domain change that may be made to make
the given plan optimal in the updated action model, and is
thus an example of a minimally complete explanation. An
implicit assumptions we make here is that the computation

1This is a very useful property to have. Doctors, for example, re-
veal different amount of details of their model to their patients as
opposed to their peers. Further, the idea of completeness, i.e. with-
holding information on other model changes as long as they explain
the observed plan, is also quite prevalent in how we deal with simi-
lar scenarios ourselves - e.g. progressing from Newtonian physics in
high school to Einsteins Laws of Relativity in college.

Explanation Type R1 R2 R3 R4
Plan Patch Explanation / VAL 7 3 7 3

Model Patch Explanation 3 7 3 3

Minimally Complete Explanation 3 3 7 ?
Minimally Monotonic Explanation 3 3 3 ?

(Approximate) Minimally Complete Explanation 7 3 7 3

Table 1: Requirements for different types of explanations.

power (or planning capability) of the human is is the same as
that of the planner. This means that the human can compute
the optimal plan given a planning problem.

Model-space search for MCEs To compute MCEs, we
employ A∗ search, similar to [Wayllace et al., 2016], in the
space of models, as shown in Algorithm 1. Given an MRP,
we start off with the initial state Γ(MH) derived from the
human’s expectation of a given planning problem MR, and
modify it incrementally until we arrive at a planning problem
M̂ with C(π∗,M̂) = C∗

M̂
, i.e. the given plan is explained.

Note that the model changes are represented as a set, i.e.
there is no sequentiality in the search problem. Also, we as-
sign equal importance to all model corrections. We can easily
capture differential importance of model updates by attaching
costs to the edit actions λ - the algorithm remains unchanged.

We also employ a selection strategy of successor nodes to
speed up search (by overloading the way the priority queue
is being popped) by first processing model changes that are
relevant to the actions in π∗R and πH before the rest.

Proposition 1 The successor selection strategy outlined in
Algorithm 1 yields an admissible heuristic for model space
search for minimally complete explanations.

Proof Let E be the MCE for an MRP problem and let E ′ be
any intermediate explanation found by our search such that
E ′ ⊂ E , then the set E \ E ′ must contain at least one λ related
to actions in the set {a | a ∈ π∗R∨a ∈ π′} (where π′ is the op-
timal plan for the model M̂ where δMH ,MR

(Γ(MH), E ′) =

Γ(M̂). To see why this is true, consider an E ′ where |E ′| =
|E| − 1. If the action in E \ E ′ does not belong to either π∗R or
π′ then it can not improve the cost of π∗R in comparison to π′
and hence E can not be the MCE. Similarly we can show that
this relation will hold for any size of E ′. We can leverage this
knowledge about E \ E ′ to create an admissible heuristic that
will only consider the relevant changes at any given point of
time (by giving very large values to all other changes).

We also note that the optimality criterion is relevant to both
the cases where the human expectation is better, or when it
is worse, than the plan computed by the planner. This might
be counter to intuition, since in the latter case one might ex-
pect that just establishing feasibility of a better (than expected
optimal) plan would be enough. Unfortunately, this is not
the case, as can be easily seen by creating counter-examples
where other faulty parts of the human model might disprove
the optimality of the plan in the new model –

Proposition 2 If C(π∗,MH) < minπ C(π,MH), then
ensuring feasibility of the plan in the modified planning prob-
lem, i.e. δM̂(Î, π∗) |= Ĝ, is a necessary but not a sufficient
condition for M̂ = 〈D̂, Î, Ĝ〉 to yield a valid explanation.
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Algorithm 1 Search for Minimally Complete Explanations
1: procedure MCE-SEARCH

2: Input: MRP 〈π∗, 〈MR,MH〉〉
3: Output: Explanation EMCE

4: Procedure:
5: fringe ← Priority Queue()
6: c list ←{} . Closed list
7: π∗R ← π∗ . Optimal plan being explained
8: πH ← π such that C(π,MH) = C∗MH . Plan expected by human

9: fringe.push(〈MH , {}〉, priority = 0)

10: while True do
11: 〈M̂, E〉, c← fringe.pop(M̂)

12: if C(π∗R,M̂) = C∗M̂ then return E . Return E if π∗R optimal in M̂
13: else
14: c list← c list ∪ M̂
15: for f ∈ Γ(M̂) \ Γ(MR) do .Models that satisfy condition 1
16: λ← 〈1, {M̂}, {}, {f}〉 . Removes f from M̂
17: if δMH,MR (Γ(M̂), λ) 6∈ c list then

18: fringe.push(〈δMH,MR (Γ(M̂), λ), E ∪ λ〉, c+ 1)

19: for f ∈ Γ(MR) \ Γ(M̂) do .Models that satisfy condition 2
20: λ← 〈1, {M̂}, {f}, {}〉 . Adds f to M̂
21: if δMH,MR (Γ(M̂), λ) 6∈ c list then

22: fringe.push(〈δMH,MR (Γ(M̂), λ), E ∪ λ〉, c+ 1)

23: procedure PRIORITY QUEUE.POP(M̂)

24: candidates← {〈〈M̂, E〉, c∗〉 | c∗ = arg minc〈〈M̂, E〉, c〉}
25: pruned list← {}
26: πH ← π such that C(π,M̂) = C∗M̂
27: for 〈〈M̂, E〉, c〉 ∈ candidates do
28: if ∃a ∈ π∗R∪πH such that τ−1(Γ(M̂) ∆ Γ(M̂)) ∈ {ca}∪pre(a)∪

eff+(a) ∪ eff−(a) then . Candidates relevant to π∗R or πH

29: pruned list← pruned list ∪ 〈〈M̂, E〉, c〉

30: if pruned list = φ then 〈M̂, E〉, c ∼ Unif(candidate list)
31: else 〈M̂, E〉, c ∼ Unif(pruned list)

Note that a minimally complete explanation for an MRP
can be rendered invalid given further updates to the model.
This can be easily demonstrated in our running example in
the Fetch domain. Imagine that if, at some point, the human
were to find out that the action move also has a precondition
(crouched), then the previous robot plan will no longer
make sense to the human since now, according to the human’s
faulty model (being unaware that the tucking action also low-
ers the robot’s torso) the robot would need to do both tuck
and crouch actions before moving. Consider the following
explanation in the Fetch domain instead –

Explanation >>
TUCK-has-add-effect-CROUCHED
MOVE_LOC2_LOC1-has-precondition-CROUCHED

This explanation does not reveal all model differences but
at the same time ensures that the robot’s plan remains op-
timal for this problem, irrespective of any other changes to
the model, by accounting for all the relevant parts of the
model that engendered the plan. It is also the smallest pos-
sible among all such explanations. The requirement of mono-
tonicity and minimality brings us to the notion of -

A Minimally Monotonic Explanation (MME) is the
shortest explanation that preserves both completeness and
monotonicity, given the MRP 〈π∗, 〈MR,MH〉〉, i.e.

EMME = arg minE |Γ(M̂)∆Γ(MH)| with R1 & R3.

Algorithm 2 Search for Minimally Monotonic Explanations
1: procedure MME-SEARCH

2: Input: MRP 〈π∗, 〈MR,MH〉〉
3: Output: Explanation EMME

4: Procedure:
5: EMME ←{}
6: fringe ← Priority Queue()
7: c list ←{} . Closed list
8: h list ←{} . List of incorrect model changes
9: fringe.push(〈MR, {}〉, priority = 0)

10: while fringe is not empty do

11: 〈M̂, E〉, c← fringe.pop(M̂)

12: if C(π∗,M̂) > C∗M̂ then
13: h list← h list ∪ (Γ(M̂) ∆ Γ(MR)) . Updating h list
14: else
15: c list← c list ∪ M̂
16: for f ∈ Γ(M̂) \ Γ(MH) do .Models that satisfy condition 1
17: λ← 〈1, {M̂}, {}, {f}〉 . Removes f from M̂
18: if δMR,MH (Γ(M̂), λ) 6∈ c list

and @S s.t. (Γ(M̂)∆Γ(MR)) ⊇ S ∈ h list then . Prop 3
19: fringe.push(〈δMR,MH (Γ(M̂), λ), E ∪ λ〉, c+ 1)

20: EMME ← max|·|{EMME , E}

21: for f ∈ Γ(MH) \ Γ(M̂) do .Models that satisfy condition 2
22: λ← 〈1, {M̂}, {f}, {}〉 . Adds f from M̂
23: if δMR,MH (Γ(M̂), λ) 6∈ c list

and @S s.t. (Γ(M̂)∆Γ(MR)) ⊇ S ∈ h list then . Prop 3
24: fringe.push(〈δMR,MH (Γ(M̂), λ), E ∪ λ〉, c+ 1)

25: EMME ← max|·|{EMME , E}

26: EMME ← (Γ(M̂) ∆ Γ(MR)) \ EMME

27: return EMME

The last constraint enforces the monotonicity requirement.
This means that beyond the model obtained from the mini-
mally monotonic explanation, there do not exist any models
which are not explanations of the same MRP, while at the
same time making as few changes to the original problem as
possible. It follows that this is the largest set of changes that
can be done on the planner’s planning problemMR and still
find a model M̂ where C(π∗,M̂) = C∗

M̂
- we are going to

use this property in the search for MMEs.

Proposition 3 EMME = arg maxE |Γ(M̂)∆Γ(MR)| such
that ∀M̂ Γ(M̂)∆Γ(MR) ⊆ Γ(M̂)∆Γ(MR) it is guarantee
to have C(π∗,M̂) = C∗M̂.

We also note that an MME solution may not be unique to
an MRP problem. This can happen when there are multiple
model differences supporting the same causal links in the plan
- an MME can get by (i.e. guarantee optimality in the modi-
fied model) by only exposing one of them to the human.

Proposition 4 MMEs are not unique, i.e. there might be
multiple minimally monotonic solutions to an MRP.

We also note that even though MCEs are an abridged ver-
sion of an MME, it is easy to see that an MCE may not nec-
essarily be part of an actual MME. This is due to the non-
uniqueness of MMEs. Thus, we emphasize -

Proposition 5 An MCE may not be a subset of an MME,
but it is always smaller or equal in size, i.e. |MCE| ≤
|MME|.
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Figure 3: Illustration of model space search for MCE & MME.

Model-space search for MMEs This is similar to the
model-space search for MCEs described before, but this time
starting from the robot’s modelMR instead. The goal here is
to find the largest set of model changes for which the explica-
bility criterion becomes invalid for the first time (due to either
suboptimality or inexecutability). This requires a search over
the entire model space, as described in detail in Algorithm
2. We can leverage Proposition 3 to reduce our search space.
Starting from MR, given a set of model changes E where
δMR,MH

(Γ(MR), E) = Γ(M̂) and C(π∗,M̂) > C∗
M̂

, no
superset of E can lead to an MME solution. In Algorithm 2,
we keep track of such unhelpful model changes in the list
h list. The variable EMME keeps track of the current best
list of model changes. Whenever we find a new set of model
changes where π∗ is optimal and is larger than EMME , we
update EMME with E . The resulting MME is all the possible
model changes that did not appear in EMME .

Figure 3 contrasts MCE with MME search. MCE search
starts fromMH , computes updates M̂ towardsMR and re-
turns the first node (indicated in orange) where C(π∗,M̂) =
C∗
M̂

. MME search starts from MR and moves towards
MH . It finds the longest path (indicated in blue) where
C(π∗,M̂) = C∗

M̂
for all M̂ in the path. The MME (shown

in green) is the rest of the path towardsMH .

Approximate Solution for MCEs
Both MCEs and MMEs may be hard to compute - in the worst
case it involves a search over the entire space of model differ-
ences. Thus the biggest bottleneck here is the check for op-
timality of a plan given a new model. A check for necessary
or sufficient conditions for optimality, without actually com-
puting optimal plans can be used as a powerful tool to further
prune the search tree. In the following section, we thus in-
vestigate an approximation to an MCE by employing a few
simple proxies to the optimality test. By doing this we lose
the completeness guarantee but improve the computability of
an explanation. Specifically, we replace the equality test in
line 12 of Algorithm 1 by the following rules -

1. δM̂(Î, π∗R) |= Ĝ; and

2. C(π∗R,M̂) < C(π∗R,MH) or δM̂(Î, π∗H) 6|= Ĝ; and
3. Each action contributes at least one causal link to π∗R.

The first criterion simply ensures that the plan π∗R origi-
nally computed by the planner is actually valid in the new
hypothesis model. Criterion (2) requires that this plan has ei-
ther become better in the new model or at least that the hu-
man’s expected plan π∗H has been disproved. Finally, in Cri-
terion (3), we ensure that for each action ai ∈ π∗R there exists
an effect p that satisfies the precondition of at least one ac-
tion ak (where ai ≺ ak) and there exists no action aj (where
ai ≺ aj ≺ ak) such that p ∈ eff−(aj).
Proposition 6 Criterion (3) is a necessary condition for op-
timality of π∗ in M̂.
Proof Assume that for an optimal plan π∗R, there exists an
action ai where criterion (3) is not met. Now we can rewrite
π∗R as π′R = 〈a0, a1, . . . , ai−1, ai, ai+1, . . . , an, an+1〉,
where pre(a0) = φ and eff+(a0) = {I} and pre(an+1) =
{G} and eff(an+1) = φ. It is easy to see that
δM̂(φ, π′R) |= G. Now let us consider a cheaper plan
π̂′R = 〈a0, a1, . . . , ai−1, ai+1, . . . , an, an+1〉. Since ai does
not contribute any causal links to the original plan π∗R, we
will also have δM̂(φ, π̂′R) |= G. This contradicts our original
assumption of π∗R being optimal, hence proved.

4 Empirical Evaluations
Our explanation generation system (as previewed in the Fetch
domain) integrates calls to Fast-Downward [Helmert, 2006]
for planning, VAL [Howey et al., 2004] for plan validation,
and pyperplan [Alkhazraji et al., 2016] for parsing. The re-
sults reported here are from experiments run on a 12 core
Intel(R) Xeon(R) CPU with an E5-2643 v3@3.40GHz pro-
cessor and a 64G RAM. The latest version of the code will
be available at https://goo.gl/Bybq7E. We use three planning
domains - BlocksWorld, Logistics and Rover - for our exper-
iments. In order to generate explanations we created the hu-
man model by randomly removing parts (preconditions and
effects) of the action model. Though the following experi-
ments are only pertaining to action model differences, it does
not make any difference at all to the approaches, given the
way the state was defined. Also note that these removals, as
well as the corresponding model space search, was done in
the lifted representation of the domain.
Table 2 In Table 2 we make changes at random to the do-
mains and measure the number of explanations produced and
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Domain Name Problem
MPE PPE MME MCE (exact MCE (exact MCE

(ground truth) (exact) w/o heuristic) with heuristic) (approximate)

size time size time size time size time size time size time

BlocksWorld

1

10 n/a

5

n/a

3 1100.8 2 34.7 2 18.9 2 19.8
2 8 4 585.9 3 178.4 3 126.6 3 118.8
3 4 5 305.3 2 34.7 2 11.7 2 11.7
4 7 5 308.6 3 168.3 3 73.3 3 73.0

Rover

1

10 n/a

10

n/a

2 2093.2 2 111.3 2 100.9 2 101.0
2 10 2 2018.4 2 108.6 2 101.7 2 102.7
3 10 2 2102.4 2 104.4 2 104.9 2 102.5
4 9 1 3801.3 1 13.5 1 12.8 1 12.5

Logistics

1

5 n/a

5

n/a

4 13.7 4 73.2 4 73.5 4 63.6
2 5 4 13.5 4 73.5 4 71.4 4 63.3
3 5 5 8.6 5 97.9 5 100.4 3 36.4
4 5 5 8.7 5 99.2 5 95.4 3 36.4

Table 2: Comparison of MCEs and MMEs

|MR∆MH | problem-1 problem-2 problem-3 problem-4

3 2.2 18.2 4.7 18.5
5 6.0 109.4 15.4 110.2
7 7.3 600.1 23.3 606.8
10 48.4 6849.9 264.2 6803.6

Table 3: MCE search time for increasing model differences.

BlocksWorld problem-1 problem-2 problem-3 problem-4

Number of nodes expanded
for MME (out of 1024) 128 64 32 32

Table 4: Usefulness of Proposition 3 in pruning MME search.

the time taken (in secs) to produce them, against the ground
truth. Observe the gains produced by the heuristic in terms of
time spent on each problem. Further, note how close the ap-
proximate version of MCEs are to the exact solutions. As ex-
pected, MME search is significantly costlier to compute than
MCE. However, note that both MCEs and MMEs are signifi-
cantly smaller in size (∼ 20%) than the total model difference
(which can be arbitrarily large) in certain domains, further
underlining the usefulness of generating minimally complete
explanations as opposed to dumping the entire model differ-
ence on the human. A general rule of thumb is -

| approx.MCE | ≤ | exact.MCE | < |MME | << |MPE|

Note that the time required to calculate an MME in the
Logistics problems is lower than that for the corresponding
MCE. This is because for most of these problems a single
change in the planner’s model made the plan be no longer
optimal so that the search ended after checking all possible
unit changes. In general, closer an MCE is to the total num-
ber of changes shorter the MME search would be. Also note
how PPE solutions, though much easier to compute, do not
have completeness and monotonicity properties, and yet of-
ten spans the entire model difference, containing information
that are not needed to support the optimality of the given plan.

Table 3 We now increase the number of changes in the hu-
man model in BlocksWorld, and illustrate the relative time (in
secs) taken to search for exact MCEs in Table 3. As expected
there is an exponential increase in the time taken, which can
be problematic with even a modest number of model differ-

ences. This further highlights the importance of finding useful
approximations to the explanation generation problem.

Table 4 Finally, we demonstrate how Proposition 3 reduces
the number of nodes that need to be searched to find MMEs
in random problems from the BlocksWorld domain with 10
faults in the human model, as opposed to the total possible
210 models that can be evaluated - equal to the cardinality of
the power set of model changes |P(Γ(MR)∆Γ(MH))|.

5 Conclusions and Future Work
In this paper, we argued that to explain its plans to the hu-
man agents in the loop, an AI system needs to explicitly ac-
knowledge that the human may be using a different model
than it does. Explanations in this multi-model setting become
a process of identifying and reconciling the relevant differ-
ences between the models. One immediate future direction is
to allow for human’s models that are of different form and/or
level of abstraction than the robot’s, so as to allow effec-
tive learning of the human’s models (c.f. [Tian et al., 2016;
Zhang et al., 2017]), as well as allow for different cognitive
abilities of the human using ε-optimality or top-K plans [Ri-
abov et al., 2014] for hypothesis generation.

In cases where the ground truth is not known, the explana-
tion process might also need to consider distributions over rel-
evant models, and iterative refinement of the same via dialog
with the human. Work on plan monitoring [Fritz and McIl-
raith, 2007] can also provide clues to speeding up the search
process by providing proxies to the optimality check.

Also note that we insisted that explanations must be com-
patible with the planner’s model. If this requirement is re-
laxed, it allows the planner to generate alternative explana-
tions that it knows are not true, and thus deceive the human.
While endowing the planner with such abilities may warrant
significant ethical concerns, we note that the notion of white
lies, and especially the relationship between explanations, ex-
cuses and lies [Boella et al., 2009] has received very little
attention [van Ditmarsch, 2014] and affords a rich set of ex-
citing research problems.
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