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Goals and Assumptions of this Lecture

Introduction to the field of Numeric AI Planning in which we

• Define the problem, present the main representation language, main
planning algorithms and systems

• Focus on the state-based model for (numeric) planning with

– discrete time and “instantaneous” actions

– full observability of states

– deterministic action effects

– no state changes other than those caused by the plan

2 / 69



Outline

State-based Numeric Planning

Representation and Languages (PDDL2.1)

Solving Numeric Planning through Heuristic Search

Relaxation-based Heuristics for Numeric Planning
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Basic State-based Model (Classical Planning)

Plan generation as state-transition problem:

• a finite and discrete state space S (potentially huge!)
• a known initial state s0 ∈ S
• a set SG ⊆ S of goal states
• a finite set of actions A
• actions A(s) ⊆ A applicable in each s ∈ S
• a deterministic state transition function s ′ = γ(a, s) for a ∈ A(s)
• action costs c(a, s) ≥ 0

A solution is a sequence of applicable actions that maps s0 into SG

It is optimal if minimizes the sum of action costs

Related problems: plan existence, plan validation, plan revision,
goal recognition, interleaved planning/execution
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Propositional Planning Language

In a propositional planning language
• states represented by propositions (atoms, Boolean vars, facts)
• γ and A represented by action preconditions/effects over atoms

A problem in the STRIPS language is a tuple 〈F ,A, I,G〉:
• F = set of all atoms
• A = set of all actions
• I ⊆ F is an initial state Note: all other states are implicit!
• G ⊆ F is a set of goals

Each a ∈ A represented by
• Positive effects Add(a) ⊆ F and negative effects Del(a) ⊆ F
• Preconditions Pre(a) ⊆ F

Many extensions: conditional effects, non-atomic preconditions,
domain axioms, state trajectory constraints, etc.
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Why Numeric Planning?

Numbers are very useful for modelling problems involving, e.g.,

• Available Resources (fuel, energy, money, ...)

• Physical quantities (temperature, velocity, pressure, density, ...)

• Spatial information (cartesian coordinates, GPS position, size, ...)

⇒ We add numbers in the planning model and in the language:

• Actions with numeric preconditions and numeric effects
fuel-level > 100 before moving and reduced by 88.5 after moving

• Numeric goals
target location has been visited and fuel-level > 10
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Basic State-based Model for Numeric Planning

States are specified by variables whose values are (rational) numbers

• an infinite space of numeric states S
• a known initial numeric state s0 ∈ S
• a possibly infinite set SG ⊆ S of goal states
• A finite set of actions A
• actions A(s) ⊆ A applicable in each s ∈ S

• a deterministic state transition function s ′ = γ(a, s) for a ∈ A(s)

• action costs c(a, s) ≥ 0

Note: γ has a potentially infinite number of state transitions

⇒ How do we represent states, γ, and action preconditions/effects?
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Languages for Numeric Planning

PDDL (Planning Domain Definition Language) is the mostly used
standard language for planning

Incrementally developed
• PDDL1 [McDermott and others, 1998]
• PDDL1.2 [Bacchus, 2000]

• PDDL2.1 [Fox and Long, 2003]

• PDDL2.2 [Hoffmann and Edelkamp, 2004]
• PDDL+ [Fox and Long, 2006]
• PDDL3.0 [Gerevini and Long, 2006]
• PDDL3.1 [Helmert et al., 2008]

PDDL2.1 introduced numeric planning and temporal planning in PDDL

PDDL+ and PDDL3: numeric planning problems with events, processes,
soft goals, metric state-trajectory constraints
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Numeric Planning Supported in PDDL2.1

A planning problem is a tuple 〈F ,X ,A, s0,G〉 where

• F is a finite set of Boolean variables (propositions/atoms/facts)

• X is a set numeric variables over Q (numeric fluents)

• A is a set of actions (with preconditions and effects)

• s0 is the initial problem state (an assignment to all vars in F ∪ X )

• G are the problem goals (subset of atoms in F plus numeric
conditions over the vars in X )

⇒ Which class of action models (preconditions and effects) and goals
can be represented in PDDL2.1?
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Action Precondions/Effects & Goals (PDDL2.1 Models)

Preconditions (Pre(a)):

• Truth conditions on Boolean vars
• Conditions on numeric vars of the form “ξ Rel k”
k ∈ Q, ξ is arithmetic expression, Rel ∈ {≤, <,=, >,≥}

Effects (Eff (a)):

• Truth changes to Boolean vars
• Changes to numeric vars of the form increase, decrease, assign,
scale-up/down by an arithmetic expression

⇒ Should not conflict! (e.g. decrease and scale up the same var)

Problem goals:

• Propositional goals as in propositional planning
• Numeric goals (same as the numeric action conditions)
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State Dependency of Numeric Action Effects

Note that

In classical planning (STRIPS) action effects are state-independent:

every action has predefined effects that are the same for every state
where the action can be applied

But this does not hold for numeric effects
E.g.: (decrease fuel 10) assigns 40 to fuel if it was 50, 0 if it was 10

⇒ The “state dependency” of the action effects can make the design of
effective algorithms for numeric planning more difficult
(see heuristic search techniques in the 2nd part of this lecture)
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Example in PDDL Syntax (plant watering)

Task: one or more agents on a grid-like map have to water some plans at
different locations using water loaded and carried from sources (taps)
available at different locations
• water tank of an agent has limited capacity
• water loaded in the tank by smaller container (multiple load actions)
• each plant needs its amount of water
• each move (up, down, left, right) and water load/unload has a cost
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Example in PDDL (objects, predicates and functions)

PDDL supports the definition of

• Problem objects with types

(:objects agent1 agent2 ... - agent)

• Predicates

(:predicates (open ?t - wathersource))

Grounded predicate (open tap1) is a Boolean var/proposition

• Functions (numerical fluents/numeric vars)
(:functions (x-pos ?a - agent)

(y-pos ?a - agent))

(x-pos agent1) and (y-pos agent2) are numeric fluents (vars)

• Action models with parameters (next slide)
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Example of Action Schemata in PDDL2.1 Syntax

Problem action = PDDL action with instantiated parameters

(:action load-water
:parameters (?a - agent ?t - watersource)
:precondition (and (open ?t)

(= (x-pos ?a) (x ?t))
(= (y-pos ?a) (y ?t))
(<= (+ (carrying) 1) (max_load)) )

:effect (increase (carrying) 1)
(increase (total_loaded) 1) ) )

If ?a = agent1 and ?t = watercourse, the involved numeric vars are:

(x-pos agent1) (y-pos agent1) (carrying) (max_load) (total_loaded)
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Numeric Plans (PDDL2.1 Models)

Applicable action
– An action a is applicable in a state s when s |= Pre(a)
– An action a applied in s generates the state s ′ where the variable

values of s are changed according to Eff (a)

Applicable action sequence
A sequence of actions 〈a0, ..., an−1〉 is a applicable in state s0 when
• a0 is applicable in s0
• each action ai is applicable in the state si generated by the

application of ai−1 in si−1

Valid plan (solution) is a sequence of actions 〈a0, ..., an−1〉 that, when
applied in s0, generates a sequence of states 〈s1, ..., sn〉 such that sn |= G.
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Non-Linear Plans in PDDL2.1 (informally)

A valid plan may also be a sequence of sets of actions 〈A0, ...,Am−1〉
where each pair of actions in Ai does not interfere (i = 0...m − 1)

Interference of a with b (informally)

• An effect in Eff (a) modifies the value of a var involved in Pre(b)

– (decrease fuel 10) ∈ Eff (a) and (fuel > 100) ∈ Pre(b)

• The effects in Eff (a) do not commute with the effects in Eff (b)

– (assign x 0) ∈ Eff (a) and (assign y x) ∈ Eff (b)

18 / 69



Plan Metrics for Numeric Planning in PDDL2.1

PDDL plans have a plan quality defined through numeric variables

• Action costs can be defined in terms of a numeric effect increasing
var total-cost

• Quality of plans can be defined in terms of

– minimizing total-cost or

– minimizing a numeric (arithmetic) expression

• Example using simplified PDDL syntax:

(:metric minimize (+ moving_cost (* 2 total_loaded)))

Actions can only increase moving_cost and total_loaded
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Complexity of Numeric Planning

Numeric planning with PDDL2.1 is semi-decidable [Helmert 2002]
(harder than classical planning)

• In numeric planning plans can have no bound in their length

• In principle we can find a plan by enumerating all sequences of
actions with increasing length

• But enumeration may not terminate if a plan does not exists
(semi-decidability)

Decidable for some other fragments of PDDL2.1 , [see Helmert 2002]
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Fragments of PDDL2.1 for Numeric Planning

Researchers have studied numeric planning with one or more of the
following restrictions to PDDL2.1:

• The numeric expression ξ in a precondition ξ Rel k is linear
• assign effects excluded
• scale-up/down effects excluded
• increase/decrease effects modify the vars by constants instead of
generic arithmetic expressions- E.g. (increase x 5)

A Simple Numeric Problem has all these but still semi-decidable /
(see how to solve them in the 2nd part of the lecture)
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Some Limits and Extensions of PDDL2.1

/ A numeric var may be undefined in a state (no initial value)
With x is undefined and y = 5, are these true/false/undefined?
(x > 0) (not (x > 0)) (or (x > 0) (y < 10))

/ Only arithmetic expressions: no min, max , log , exp, sin, cos, etc.

/ Conflicts of numeric effects of type scale-up/down could be removed

/ Numeric parameters for an action are forbidden (finite action set)

, Nevertheless PDDL2.1 is a powerful language and researchers have
addressed some of these limits [e.g., Savas-et-al 2016, Scala-et-al, 2016]

, Numeric planning can be combined with temporal planning
(PDDL2.1/2.2) and enriched with: state trajectory constraints
(PDDL3), exogenous events and continuous processes (PDDL+)

⇒ The full PDDL language is very powerful!
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PDDL Example: Travelling Purchaser Problem (TPP)

Given (1) a set of types of goods (2) a set of markets (M) selling
different types and amounts of goods at different prices, (3) a demand of
each type of goods to be purchased and transported to some depot (D),

⇒ satisfy the demand minimizing the routing cost of the trucks and the
purchasing cost

6 different PDDL versions (see IPC5) with simplifications and extensions
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PDDL Example: Travelling Purchaser Problem (TPP)

(:predicates (at ?t - truck ?p - place))

(:functions (on-sale ?g - goods ?m - market)
(drive-cost ?p1 ?p2 - place)
(price ?g - goods ?m - market)
(bought ?g - goods)
(request ?g - goods)
(total-cost))

(:objects
market1 market2 ... - market
depot1 depot2 ... - depot
truck1 track2 ... - truck
goods1 goods2 ... - goods)
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PDDL Example: Travelling Purchaser Problem (TPP)

(:init (= (price goods1 market1) 15)
(= (price goods1 market2) 8)
....
(= (on-sale goods1 market1) 4)
(= (on-sale goods1 market2) 9)
....
(at truck1 depot0)
(at truck2 depot1)
....
(= (drive-cost depot0 market1) 381.20)
(= (drive-cost market1 market2) 1033.70)
....
(= (bought goods1) 0)
(= (bought goods1) 0)
....
(= (request goods1) 20)
(= (request goods2) 23)
....
(= (total-cost) 0))

(:goal (and (>= (bought goods1) (request goods1) ....)))

(:metric minimize (total-cost))
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PDDL Example: Travelling Purchaser Problem (TPP)
(:action drive

:parameters (?t - truck ?from ?to - place)
:precondition (and (at ?t ?from))
:effect (and (not (at ?t ?from)) (at ?t ?to)

(increase (total-cost) (drive-cost ?from ?to))))

(:action buy-all
:parameters (?t - truck ?g - goods ?m - market)
:precondition (and (at ?t ?m) (> (on-sale ?g ?m) 0)

(<= (on-sale ?g ?m) (- (request ?g) (bought ?g))))

:effect (and ((assign (on-sale ?g ?m) 0)
(increase (total-cost) (* (on-sale ?g ?m) (price ?g ?m)))
(increase (bought ?g) (on-sale ?g ?m))))

(:action buy-allneeded
:parameters (?t - truck ?g - goods ?m - market)
:precondition (and (at ?t ?m) (> (on-sale ?g ?m) 0)

(> (on-sale ?g ?m) (- (request ?g) (bought ?g))))

:effect (and (decrease (on-sale ?g ?m) (- (request ?g) (bought ?g)))
(increase (total-cost) (* (- (request ?g) (bought ?g))

(price ?g ?m)))
(assign (bought ?g) (request ?g))))
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More on Numeric Planning in PDDL?

• Many benchmarks from the International Planning Competitions
https://www.icaps-conference.org/competitions/

• PDDL Wikipedia page:
https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language

• Paper on PDDL 2.1 [Fox and Long, JAIR 2003]:
https://www.jair.org/index.php/jair/article/view/10352

• Paper on PDDL3.0 [Gerevini et al., AIJ 2009]:
https://www.sciencedirect.com/science/article/pii/S0004370208001847

• Complexity of PDDL Numeric Planning [Helmert, AIPS 2002]

• Book on PDDL: "An Introduction to the Planning Domain Definition
Language", Haslum et al., 2019, Morgan & Claypool Publishers
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Solving Numeric Planning Problems: Approaches

As for propositional planning, several different approaches and algorithms

• Planning by compilation: Translates the original problem into an
equivalent one solved by existing solvers

E.g., SAT for propositional planning, SMT for numeric planning

• Planning as heuristic search: We use general search algorithms
with effective domain-independent heuristics

E.g., Best-first search, A*, local search

• directional (forward/backward) search in the space of states
E.g., the Metric-FF planner

• non-directional search in the space of partial plans
E.g., the LPG planner

In this lecture we focus on forward state-based search
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State Space Search

Informal Definition
State space search is about iterating over paths of a transition system
until either
• there is no new path to explore
• a path proved to be a valid solution is found

Forward State Space Search is the variant where we always start from
some initial condition
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Forward State-Space Search Planning

Forward State Space Search for Planning revolves around a few, simple
ideas:
• Map problem into underlying transition system (TS) and seek

trajectory belonging to it. Two states s0 and s1 are connected
whenever there is an action applicable in s0 yielding s1

• Focus on reachable sequences only! Simulate possible futures
starting from initial condition

• Discard Loops! Focus only on simple plans; each state does not
need to be visited more than once

• Do not construct the whole TS upfront, but incrementally. Realistic
planning instances induce way too large TSs
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Best-First-Search in the State Space

Best-First-Search(problem)
Q = { Node(problem.init, 0, h(problem.init))}
while Q is not empty do

n = pop_best_node(Q)
if n.s is a goal state then

return extract_plan(n.s)
for all s’ ∈ succ(n.s) do

insert(Q, Node(s’, n.g+1, h(s’)))
return problem is not solvable

• Q contains all plan-prefixes, each implicitly represented by a node
with a pointer to its parent

• BFS operates Q in two ways:
• pop next node according to some ordering function f
• push new plan prefixes by appending new nodes obtained through

successor function
For simplicity, duplicate checking and node re-opening is not detailed
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Best-First-Search in the State Space

Best-First-Search(problem)
Q = { Node(problem.init, 0, h(problem.init))}
while Q is not empty do

n = pop_best_node(Q)
if n.s is a goal state then

return extract_plan(n.s)
for all s’ ∈ succ(n.s) do

insert(Q, Node(s’, n.g+1, h(s’)))
return problem is not solvable

• f determines the particular algorithm
• UCS –> f (n) = g(n)
• A* –> f (n) = g(n) + h(n)
• WA* –> f (n) = g(n) + w × h(n)
• GBFS –> f (n) = h(n)

For simplicity, duplicate checking and node re-opening is not detailed
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Forward State-Space Search for Numeric Planning

Solving numeric planning through forward state space search is
straightforward:

1 State representation. Variables that keep track of values of numeric
fluents

2 Extend successor function using numeric planning semantics
• An action is applicable in state s iff its precondition evaluates

to true in s. This needs to include reasoning over numeric
conditions (e.g., yx + z > 5 is satisfied in s)

• Successor of a state computed using actions’ effects semantics
3 Goal test. Ability to evaluate formulas involving numeric terms
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Best-First-Search in the State Space

Best-First-Search(problem)
Q = { Node(problem.init, 0, h(problem.init))}
while Q is not empty do

n = pop_best_node(Q)
if n.s is a goal state then

return extract_plan(n.s)
for all s’ ∈ succ(n.s) do

insert(Q, Node(s’, n.g+1, h(s’)))
return problem is not solvable

goal state check, succ are the key points that need to be revised in
order for getting the schema work for numeric planning problems

For simplicity, duplicate checking and node re-opening is not detailed
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Plant-Watering Example Search Tree

• Actions: East, West,
South, North, Load-
Water, Pour-Plant

• Goal: Get plant poured
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Best-First Search Performance

• Number of iterations (AKA size of the search tree) can be
prohibitively large. Note that numeric planning transition system is
infinite.

• The function f plays critical role. It is what guides the exploration

• Even though we cannot change the action costs, we can change the
way we predict how distant the goal is and use an informed BFS
(e.g., A*, GBFS, WA*)

• That is: We can change the heuristic
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Heuristics

Known facts:
• If heuristic is perfect (true distance to the goal for each state),

number of expansions is linear with the length of the solution
• The closer the heuristic is to the perfect estimate (called h∗), the
less is the number of expanded nodes (Dechter and Pearl 1983)

• Most research look into making heuristic functions as much precise
as possible

Almost perfect heuristics can still cause exponential blow ups, Helmert and Roger
2008.
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Heuristics

Definition (Heuristic)
Heuristic is a function h : S → Q ∪ {∞}

Definition (Admissibility)
Heuristic h is said to be admissible if ∀s ∈ S.h(s) ≤ h∗(s); A* with
admissible heuristic finds optimal solutions.

Definition (Safe-Pruning)
Heuristic h is said to be safe-pruning if ∀s ∈ S.h(s) =∞⇒ there is no
solution from s

Definition (Tractability)
Heuristic is tractable if computable in poly-time (w.r.t. problem size).
Heuristic should be easy than the problem they are approximating
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How to Define Heuristics for Numeric Planning Problems

• The user defines it. Can work well, but how general can it ever be?

• Construct an algorithm that can look at the problem and tell us
what the value of the heuristic is. Automatically!

• Heuristics of this kind are often called Domain Independent
Heuristics

We will show domain independent heuristics for numeric planning, by
investigating their properties. Admissibility, Safe-Pruning, Tractability
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Relaxation-Based Heuristics. The Intuition

Π
accuracy

R(Π)

• Devise a new problem that
relaxes the problem you are
interested to solve

• Make sure the arising relaxed
problem is easier, yet contains
enough information

• Solve the relaxed problem, and
use the solution to guide the so-
lution of the new problem. This
is what gives you your heuris-
tic

Bonet and Geffner 2001, Hoffmann and Nebel 2001
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Relaxation-based Approach in Numeric Planning

• Interval-based Relaxation (Hoffmann 2003, Aldinger et al. 2015)
• Decompose/ignore interactions among the numeric
variables of your problem

• Characterized by starting from initial state up to a point in
which the goal is relaxed satisfied

• Subgoaling-based Relaxation (Bonet and Geffner 2001, Scala et al.
2016)
• Decompose/ignore interactions among the numeric
subgoals of your problem

• Characterized by starting regressively from the goal condition
up to the point in which all action supporters have been found

Both frameworks can be used to devise a variety of heuristics
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Interval-based Relaxation (Intuitively)

• Map numeric state variables into intervals (many states at once)
• Ex. s : {x = 0, y = 0} → s+ : {x = [0, 0], y = [0, 0]}

• Change semantics of effects through convex union (intervals
only grow)
• Ex. s+[x+ = 1] = {x = [0, 1], y = [0, 0]} Just update the

max
• Ex. s+[x = 5] = {x = [0, 5], y = [0, 0]} Intervals don’t

have holes!

• Change semantics of formulas so as to over-approximate
satisfiability
• Ex. x = 10 is satisfied in [0, 10]
• Ex. x + y = 10 ?
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Interval Analysis

Each operation is computed so as to enclose all values that can ever be
attained

Arithmetical Operations
• x + y = [x + y , x + y ];
• x − y = [x − y , x − y ];
• x × y = [min(xy , xy , xy , xy),max(xy , xy , xy , xy)];
• x÷y = [min(x÷y , x÷y , x÷y , x÷y),max(x÷y , x÷y , x÷y , x÷y)]
(if 0 /∈ y otherwise one of the bounds diverges).

Note
Interval analysis is a very powerful framework, Many other mathematical
operations can be defined. More dtails in Moore et al. 2009, and their
application into planning in Aldinger et al. 2015, Scala et al. 2016.
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Examples

Example 1
Condition ψ : x + y = 0; Interval State s : {x = [0, 10], y = [−15,−15]}
Is condition satisfied? No, indeed [0, 10] + [−15,−15] = [−15,−5]

Example 2
Condition ψ : x + y = 0; Interval State s : {x = [0, 10], y = [−15,−5]} Is
condition satisfied? Yes, indeed [0, 10] + [−15,−5] = [−15, 5] and it is
possible to pick 0 within [−15, 5] so as to satisfy the condition
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Interval-based Relaxation. The problem

Interval-based Relaxation
Given a planning problem Π = 〈s0,A,G ,X 〉, Π+ = 〈s+

0 ,A+,G+,X+〉 is
its Interval-based relaxation where
• s+

0 is represented as a set of intervals.
• A+ syntactical equivalent to A, but different semantics:

1 Successor state via convex union
2 Preconditions only relaxed satisfied (∃v ∈ [x , x ] : v |= pre(a))

• G+ is syntactical equivalent to G . Semantics as for action
precondition

• X+ ≡ X . Variables don’t change, but expressions follow Interval
Algebra

How to solve it?
Two step process:

1 Reachability analysis of the goal (forward analysis)
2 Extraction of a relaxed plan solution (backward analysis)
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Reachability through Example

The process
• Determine action applicability using intervals
• Apply actions with convex union up to the point where goal is

satisfied
• Store actions for each encountered level

Observations
1 Conditions satisfied at level i will also be satisfied in any level j > i
2 Applicable actions never decrease

All good when the problem is solvable What about when the problem
isn’t solvable? 48 / 69



Termination Criteria

• Metric-ff mneed criteria (Hoffman 2003) (linear expressions, acyclic
assignments)
• Compute max sufficient value for each variable. Stop when fix
point is reached, or all intervals contain mneed

• Asymptotic reachability (Aldinger et al. 2015, Scala et al. 2016)
(linear, non-linear, state dependent effects that can be acyclic, too)
• make hidden state dependency explicit in preconditions of
supporters (constructed from actions). Substitute increase and
decrease with infinity assignments
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The Metric-FF heuristic

• Relaxed Plan is π+ = {5× water-plant, load-water, 2× east, south}
• This plan solves Π+...does it solve Π, too?
• No, but its cost can be used to guide the search:

hMFF =
∑

a∈π+

a
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Interval-based Relaxation Properties

• Computable?
• Yes! it eventually terminates because of the mneed criteria

• Tractable?
• Yes! Π+ can be decided in polytime

• Safe-pruning?
• Yes! The existence of a plan for Π always implies that there is a

relaxed plan for Π+

• Admissible?
• No!
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Subgoaling-based Relaxation

Intuition
Backward from the goal and recursively over subgoals that need to be
achieved. Focus on subgoals independently

Two interpretations
• Pessimistic: sum cost
of subgoals
• Optimistic: maximize
cost of subgoals
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Regression in Planning

Intuitively
An operation that combines some formula ψ with an action a to obtain a
new formula ψ′ which establishes sufficient and necessary conditions for
reaching ψ through a

Formally
Regression is a function regr : Γ× A→ Γ for which:

∀ψ ∈ Γ.∀a ∈ .∀s ∈ S.s |= regr(ψ, a) ⇐⇒ s[a] |= ψ

• Regression is at the basis of subgoaling-based relaxation.
• In classical planning, if ψ is an atom and action a adds ψ,

regr(ψ, a) = pre(a) - This is fundamental for making subgoaling
so effective..
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Subgoaling in Classical Planning

hmax (s, ψ) =̇


0 if s |= ψ

min
a∈ach(s,ψ)

(hmax (s, pre(a)) + c(a)) if ψ is a PC

max
ψ′∈ψ

(hmax (s, ψ′)) if ψ is ∧

• ach(s, ψ) denotes the set of achievers of a proposition
• Decomposition comes from ignoring interactions among conjucts
• Pillar in optimal planning (Helmert and Domshlak 2006)

54 / 69



Properties

hmax is:
• Admissible
• Safe-pruning
• Tractable

Question
How to extend it to consider numeric variables, but in particular numeric
conditions?
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Simple Numeric Planning

Definition (Simple Numeric Condition)
A numeric condition is said to be simple if it is linear and all actions
interacting with it are either increase or decrease by a constant

Definition (Simple Numeric Planning)
A numeric planning problem is said to be simple if it only contains simple
numeric conditions.
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Regression in Simple Numeric Planning
Intuition
For each numeric formula, produce a new formula where each variable is
substituted with the way such variable is modified by the action

Example
• ψ : x + y ≥ 10, an action a where eff(a) : x+ = 1, and an action b

where eff(b) : x− = 1
• regr(ψ, a) = (x + 1) + y ≥ 10
• regr(ψ, b) = (x − 1) + y ≥ 10

What can we say?
• Action a is a possible achiever for ψ. Also it seems you need at least
10 executions of a if you are in a state where both x and y are set to
0.

• Action b is not a possible achiever for ψ.
• These observations are independent on the state in which the
actions are applied
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Possible achievers through multi-time regression
Problem. Numeric effects are not idempotent, and we need a way
to count the needed amount of actions
Observation: regr(...regr(ψ, a), a) m times is equivalent to operator
ψr(a,m):

ψr(a,m) ≡ m

Nψ,a︷ ︸︸ ︷ ∑
x=lhs(e),e∈effnum(a)

wψ,xka,x

+

ξψ︷ ︸︸ ︷(∑
x∈X

wψ,xx
)

+ kψ ≥ 0

This operator gives us:
• way to establish whether an action a is a possible achiever by

inspecting the sign of Nψ,a.
• easy counting mechanism:

r̂ep(a, ψ, s) =


0 if s |= ψ
−[ξψ ]s
Nψ,a else if a ∈ ach(ψ)
∞ otherwise
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hmax
hbd for numeric planning

hmax
hbd (s, ψ) =̇



0 if s |= ψ

min
a∈ach(s,ψ)

(hmax
hbd (s, pre(a)) + c(a)) if ψ ∈ PC

min
a∈ach(s,ψ)

(r̂ep(a, ψ, s) · c(a) + hadd
hbd (pre(a))) if ψ ∈ SC

max
ψ′∈ψ

hadd
hbd (s, ψ′) if ψ is ∧

Note that r̂ep(·, ·, ·) induces a continuous relaxation. The integral version
of the minimisation problem is NP-Hard (Scala et al. 2020).
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Properties

• Safe Pruning?
• It can be shown by observing that one can always find all necessary

achievers if unrelaxed problem is solvable
• If heuristic yields infinity, the problem from that state is indeed

unsolvable
• Tractable?

• Can pose the problem as a blind search over atoms
• Complexity polynomial on the number of actions and conditions of

the problem
• Admissible?

• NO!

60 / 69



Counterexample

Example Problem
• One goal x + y > 9, initial state is {x = 0, y = 0}.
• Two actions a and b such that

• pre(a) = (y ≥ 10) eff(a) = {x+ = 1}
• pre(b) = > eff(b) = {(x+ = 0.5), (y+ = 5)}

• Cost optimal plan for this problem? 11! I.e., 〈2× b, 9× a〉
• Cost optimal through hmax

hbd is 12!
• Obtained by choosing a as a best achiever, and recursively b for its

precondition. Decomposition does not look into the positive
interactions among the actions.

• This is not a pathological case. Happens in real instances.
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Make it admissible

hmax
hbd (s, ψ) =̇



0 if s |= ψ

min
a∈ach(s,ψ)

(hmax
hbd (s, pre(a)) + c(a)) if ψ ∈ PC

min
a∈ach(s,ψ)

(r̂ep(a, ψ, s) · c(a) + hadd
hbd (pre(a))) if ψ ∈ SC

max
ψ′∈ψ

hadd
hbd (s, ψ′) if ψ is ∧

(
min

a∈A+∩ach(s,ψ)
r̂ep(a, ψ, s) · c(a)

)
+
(

min
a∈A+∩ach(s,ψ)

ĥmax
hbd (s, pre(a))

)
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Search Tree with hmax
hbd over a 10× 10 Grid
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Search Tree with no heuristic over a 10× 10 Grid
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Inadmissible Variant

hadd
hbd (s, ψ) =̇



0 if s |= ψ

min
a∈ach(s,ψ)

(
hadd

hbd (s, pre(a)) + c(a)
)

if ψ ∈ PC

min
a∈ach(s,ψ)

(r̂ep(a, ψ, s) · γ(a) + hadd
hbd (pre(a))) if ψ ∈ SC∑

ψ′∈ψ
hadd

hbd (s, ψ′) if ψ is ∧

• Pretend all subproblems don’t interact. That is, sum the cost of
each subproblem

• Can work much (MUCH) better than admissible variant in practice.
• Lots of research tries to understand when things can be summed up

or not. Underlying problem is NP-Hard.
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Subgoaling or Intervals

• It depends on the problem!

• Subgoaling enables optimal planning. There are at the moment no
heuristics based on intervals that do so (Piacentini et al. 2018 is a
slightly different exception). Interval-based relaxation with cost
limited, but something exists (Aldinger et al. 2015)

• Subgoaling is difficult to be extended with more general expressions,
action effects.
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Recap - Take home message

• Want to build a numeric planner?
• Can use state-space search onto which you can use best-first search

schema pretty much off the shelf.
• Heuristic reasoning is crucial. For this, two different schemata are

known: based on Subgoals decomposition or Variables
decomposition.

• Both have strengths and weaknesses. Be careful to understand your
problem better first. Simplify if complexity is not necessary!

• Plenty of problems in combining the two relaxations (Piacentini et al
2018), and extend to more powerful constructs (e.g., non-linear
problems, processes...)
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Work not covered here

• LPRPG heuristic. Builds on intervals, but reason over resource-flows
patterns much more effectively than what we have seen here (Coles
et al. 2008)

• LPG planner uses different variants of relaxed plan heuristics that
are aimed at capturing some action interference (Gerevini et al.
2008). The SAPA planner does something similar (Do and
Kambhabati 2003)

• Using Linear programs to devise optimal estimates (Piacentini et al.
2018)

• Better integration of the heuristic in the search through helpful
actions (Hoffmann 2003)

• Linear programs also in variants of hmax with the aim of capturing
conflicts among subgoals (Scala et al. 2020)
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Non-exhaustive List of Available Numeric Planners

• Optic, Colin (Kings College). PDDL 2.1, Fragments of PDDL+. No
discretisation, Heuristic search via IBR. C++

• Metric-FF (Joerg Hoffmann). PDDL 2.1. Heuristic from IBR.
Restricted to linear and acyclic tasks, C

• LPG (University of Brescia). PDDL 2.1, monotone in each variable
separately. Local Search with IBR heuristic. C

• ENHSP (Enrico Scala, ANU, University of Brescia). PDDL2.1,
PDDL+, optimality guarantees, highly customizable. Heuristic
search via IBR, Subgoaling. JAVA

• SMTPLAN (King’s College). Fragment of PDDL+. Depends on
SMT engine. Frotend in Python

• TFD (G. Roger, P. Eyerich, C. Dornhege, R. Matmuller) PDDL2.1,
heuristic search through variant of hhadd heuristic, C++

All can be found easily by googling them
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Mainly Used Available Planners (alphabetical order) 
 
ENHSP - ​https://sites.google.com/view/enhsp/​ E. Scala (see website for other contributors to the 
platform) 
LPG - ​https://lpg.unibs.it/lpg/​ A.E. Gerevini, A. Saetti, I. Serina 
LPRPG - https://nms.kcl.ac.uk/planning/software/lprpg.html Amanda Coles, Andrew Coles, M. Fox, D. 
Long 
Metric-FF - ​https://fai.cs.uni-saarland.de/hoffmann/metric-ff.html​  J. Hoffmann 
Optic - ​https://nms.kcl.ac.uk/planning/software/optic.html​  Amanda Coles, Andrew Coles, M. Fox, D. 
Long 
SMTPLAN - https://github.com/KCL-Planning/SMTPlan M. Cashmore, D. Magazzeni, M. Fox, D. Long 
TFD - ​http://gki.informatik.uni-freiburg.de/tools/tfd/​ G. Röger, P. Eyerich, C. Dornhege, and R. 
Mattmüller. 
UPMURPHI - ​https://github.com/gdellapenna/UPMurphi​ G. Della Penna, D. Magazzeni, F. Mercorio 
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