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A Feedback Scheme to Reorder a Multi-Agent Execution Schedule by Persistently
Optimizing a Switchable Action Dependency Graph

Alexander Berndt* Niels van Duijkeren† Luigi Palmieri† Tamás Keviczky*

Abstract

In this paper we consider multiple Automated Guided Vehi-
cles (AGVs) navigating a common workspace to fulfill var-
ious intralogistics tasks, typically formulated as the Multi-
Agent Path Finding (MAPF) problem. To keep plan execution
deadlock-free, one approach is to construct an Action Depen-
dency Graph (ADG) which encodes the ordering of AGVs
as they proceed along their routes. Using this method, de-
layed AGVs occasionally require others to wait for them at
intersections, thereby affecting the plan execution efficiency.
If the workspace is shared by dynamic obstacles such as hu-
mans or third party robots, AGVs can experience large delays.
A common mitigation approach is to re-solve the MAPF us-
ing the current, delayed AGV positions. However, solving the
MAPF is time-consuming, making this approach inefficient,
especially for large AGV teams. In this work, we present an
online method to repeatedly modify a given acyclic ADG to
minimize the cumulative AGV route completion times. Our
approach persistently maintains an acyclic ADG, necessary
for deadlock-free plan execution. We evaluate the approach
by considering simulations with random disturbances on the
execution and show faster route completion times compared
to the baseline ADG-based execution management approach.

Index terms— Robust Plan Execution, Scheduling and
Coordination, Mixed Integer Programming, Multi-Agent
Path Finding, Factory Automation

1 Introduction
Multiple Automated Guided Vehicles (AGVs) have shown
to be capable of efficiently performing intra-logistics tasks
such as moving inventory in distribution centers (Wur-
man, D’Andrea, and Mountz 2008). The coordination of
AGVs in shared environments is typically formulated as the

*Alexander Berndt and Tamás Keviczky are with the
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2628 CN Delft, The Netherlands berndtae@gmail.com,
T.Keviczky@tudelft.nl.
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Robert Bosch GmbH, Corporate Research, Rennin-
gen, 71272, Germany {Niels.vanDuijkeren,
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Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A roadmap occupied by 50 AGVs (represented by
colored dots). AGVs must efficiently navigate from a start to
a goal position while avoiding collisions with one another,
despite being subjected to delays.

Multi-Agent Path Finding (MAPF) problem, which has been
shown to be NP-Hard (Yu and LaValle 2012). The problem
is to find trajectories for each AGV along a roadmap such
that each AGV reaches its goal without colliding with the
other AGVs, while minimizing the makespan. The MAPF
problem typically considers an abstraction of the workspace
to a graph where vertices represent spatial locations and
edges pathways connecting two locations.

Recently, solving the MAPF problem has garnered
widespread attention (Stern et al. 2019; Felner et al. 2017).
This is mostly due to the abundance of application do-
mains, such as intralogistics, airport taxi scheduling (Mor-
ris et al. 2016) and computer games (Ontanón et al. 2013).
Solutions to the MAPF problem include Conflict-Based
Search (CBS) (Sharon et al. 2015), Prioritized Planning us-
ing Safe Interval Path Planning (SIPP) (Yakovlev and An-
dreychuk 2017), declarative optimization approaches using
answer set programming (Bogatarkan, Patoglu, and Erdem
2019), heuristic-guided coordination (Pecora et al. 2018)
and graph-flow optimization approaches (Yu and LaValle
2013).

Algorithms such as CBS have been improved by exploit-
ing properties such as geometric symmetry (Li et al. 2019),
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using purpose-built heuristics (Felner et al. 2018), or adopt-
ing a Mixed-Integer Linear Program (MILP) formulation
where a branch-cut-and-price solver is used to yield signifi-
cantly faster solution times (Lam et al. 2019).

Similarly, the development of bounded sub-optimal
solvers such as Enhanced Conflict-Based Search (ECBS)
(Barer et al. 2014) have further improved planning per-
formance for higher dimensional state spaces. Continuous
Conflict-Based Search (CCBS) can be used to determine
MAPF plans for more realistic roadmap layouts (Andrey-
chuk et al. 2019). As opposed to CBS, CCBS considers a
weighted graph and continuous time intervals to describe
collision avoidance constraints, albeit with increased solu-
tion times.

The abstraction of the MAPF to a graph search problem
means that executing the MAPF plans requires monitoring
of the assumptions made during the planning stage to en-
sure and maintain their validity. This is because irregularities
such as vehicle dynamics and unpredictable delays influence
plan execution. kR-MAPF addresses this by permitting de-
lays up to a duration of k time-steps (Atzmon et al. 2020).
Stochastic AGV delay distributions are considered in (Ma,
Kumar, and Koenig 2017), where the MAPF is solved by
minimizing the expected overall delay. These robust MAPF
formulations and solutions inevitably result in more conser-
vative plans compared to their nominal counterparts.

An Action Dependency Graph (ADG) encodes the order-
ing between AGVs as well as their kinematic constraints
in a post-processing step after solving the MAPF (Hönig
et al. 2017). Combined with an execution management ap-
proach, this allows AGVs to execute MAPF plans success-
fully despite kinematic constraints and unforeseen delays.
This work was extended to allow for persistent re-planning
(Hönig et al. 2019).

The aforementioned plan execution solutions in (Hönig
et al. 2019; Atzmon et al. 2020; Ma, Kumar, and Koenig
2017) address the effects of delays by ensuring synchronous
behavior among AGVs while maintaining the originally
planned schedule’s ordering. The result is that plan exe-
cution is unnecessarily inefficient when a single AGV is
largely delayed and others are on schedule, since AGVs need
to wait for the delayed AGV before continuing their plans.
We observe that to efficiently mitigate the effects of large
delays the plans should be adjusted continuously in an on-
line fashion, where the main challenges are to maintain the
original plan’s deadlock- and collision-free guarantees.

In this paper, we present such an online approach capable
of reordering AGVs based on a MAPF solution, allowing
for efficient MAPF plan execution despite AGVs being sub-
jected to large delays. This approach is fundamentally differ-
ent from the aforementioned approaches (Hönig et al. 2017;
Ma, Kumar, and Koenig 2017; Atzmon et al. 2020; Hönig et
al. 2019) in that delays can be accounted for as they occur,
instead of anticipating them a priori. The feedback nature of
our approach additionally means solving the initial MAPF
can be done assuming nominal plan execution, as opposed
to solving a robust formulation which necessarily results in
plans of longer length due to the increased conservativeness.

Our contributions include an optimization formulation

based on a novel Switchable Action Dependency Graph
(SADG) to re-order AGV dependencies. Monte-Carlo simu-
lation results show lower cumulative route completion times
with real-time applicable optimization times while guaran-
teeing collision- and deadlock-free plan execution.

Working towards our proposed solution, we formally de-
fine the MAPF problem and the concept of an ADG in Sec-
tion 2. Based on a modified version of this ADG, we intro-
duce the concept of a reverse agent dependency in Section 3.
This will allow an alternative ordering of Automated Guided
Vehicles, while maintaining a collision-free schedule. In
Section 4, we formulate the choice of selecting between for-
ward or reverse ADG dependencies as a mixed-integer linear
programming problem. The optimization problem formula-
tion guarantees that the resulting ADG allows plan execu-
tion to be both collision- and deadlock-free, while minimiz-
ing the predicted plan completion time. Finally, we compare
this approach to the baseline ADG method in Section 5.

2 Preliminaries
Let us now introduce the fundamental concepts on which
our approach is based, facilitated by the example shown
in Fig. 2. Consider the representation of a workspace by a
roadmap G = (V, E), where V is a set of vertices and E a set
of edges, e.g., as in Fig. 2a.
Definition 1 (MAPF Solution). The roadmap G = (V, E)
is occupied by a set of N AGVs where the ith AGV has
start si ∈ V and goal gi ∈ V , such that si 6= sj and
gi 6= gj ∀ i, j ∈ {1, . . . , N}, i 6= j. A MAPF solution
P = {P1, . . . ,PN} is a set of N plans, each defined by a
sequence P = {p1, . . . , pNi} of tuples p = (l, t), with a
location l ∈ V and a time t ∈ [0,∞). The MAPF solution
is such that, if every AGV perfectly follows its plan, then all
AGVs will reach their respective goals in finite time without
collision.

For a plan tuple p = (l, t), let us define the operators
l = loc(p) and t = t̂(p) which return the location l ∈ V and
planned time of plan tuple p respectively. Let S(l) 7→ S ⊂
R2 be an operator which maps a location l (obtained from
l = loc(p)) to a spatial region in the physical workspace in
R2. Let SAGV ⊂ R2 refer to the physical area occupied by
an AGV.

In Fig. 2a, AGV1 and AGV2 have start and goal s1 =
A, g1 = H and s2 = E, g2 = D, respectively. For this
example, using CCBS (Andreychuk et al. 2019) yields P =
{P1,P2} as
P1 = {(A, 0), (B, 1.0), (C, 2.2), (G, 3.1), (H, 3.9)},
P2 = {(E, 0), (F, 1.1), (G, 3.9), (C, 4.8), (D, 5.9)}.

Note the implicit ordering in P , statingAGV1 traverses C−
G before AGV2.

2.1 Modified Action Dependency Graph
Based on a MAPF solution P , we can construct a modified
version of the original Action Dependency Graph (ADG),
formally defined in Definition 2. This modified ADG en-
codes the sequencing of AGV movements to ensure the
plans are executed as originally planned despite delays.
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Definition 2 (Action Dependency Graph). An ADG is a di-
rected graph GADG = (VADG, EADG) where the vertices rep-
resent events of an AGV traversing a roadmap G. A ver-
tex vki = ({p1, . . . , pq}, status) ∈ VADG denotes the kth

event of the ith AGV moving from loc(p1), via intermedi-
ate locations, to loc(pq), where q ≥ 2 denotes the num-
ber of consecutive plan tuples encoded within vki . status ∈
{staged, in-progress, completed}. The edge (vki , v

l
j) ∈ EADG,

from here on referred to as a dependency, states that vlj can-
not be in-progress or completed until vki = completed. An
edge (vki , v

l
j) ∈ EADG is classified as Type 1 if i = j and

Type 2 if i 6= j.

Initially, the status of vki are staged ∀ i, k. Let us intro-
duce plan(vki ) which returns the sequence of plan tuples
{p1, . . . , pq} for vki ∈ VADG. Let the operators s(vki ) and
g(vki ) return the start and goal vertices loc(p1) and loc(pq)
of vertex vki respectively and ⊕ denote the Minkowski sum.
We also differentiate between planned and actual ADG ver-
tex completion times. Let t̂s(vki ) and t̂g(vki ) denote the
planned time that event vki ∈ VADG starts (status changes
from staged to in-progress) and is completed (status changes
from in-progress to completed), respectively. An ADG can
be constructed from a plan P using Algorithm 1. AGVs can
execute their plans as originally described by the MAPF so-
lution P by adhering to the ADG, defined next in Defini-
tion 3.

Definition 3 (Executing ADG based plans). AGVs adhere
to the ADG if each AGV only starts executing an ADG event
vki (status of vki changes from staged to in-progress) if all
dependencies pointing to vki have status = completed for all
vki ∈ VADG.

Fig. 2b shows an example of AGVs adhering to the ADG.
Observe howAGV2 cannot start v22 before v41 has been com-
pleted by AGV1, as dictated by Definition 3.

Next, we introduce Assumption 1 which we require to
maintain deadlock-free behavior between AGVs when ex-
ecuting an ADG based plan as described in Definition 3.

Assumption 1 (Acyclic ADG). The ADG constructed by Al-
gorithm 1 using P as defined in Definition 1 is acyclic.

Remark 1. Assumption 1 can in practice always be satisfied
in case the roadmap vertices outnumber the AGV fleet size,
i.e. |V| > N (as is typically the case in warehouse robotics).
Simple modificationa to existing MAPF solvers (e.g. an extra
edge constraint in CBS) is sufficient to obtain ADGs that
satisfy Assumption 1 (Hönig et al. 2019).

Unlike the originally proposed ADG algorithm, Algo-
rithm 1 ensures that non-spatially-exlusive subsequent plan
tuples are contained within a single ADG vertex, cf. line 7
of the algorithm. This property will prove to be useful with
the introduction of reverse dependencies in Section 3.1. De-
spite these modifications, Algorithm 1 maintains the orig-
inal algorithm’s time complexity of O(N2n̄2) where n̄ =
maxiNi.

Due to delays, the planned and actual ADG vertex times
may differ. Much like the previously introduced planned
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(a) A roadmap graph occupied by two AGVs with start si and
goal gi for i = {1, 2}. The start and goal vertices are highlighted
with dotted and solid colored circle outlines respectively. The edge
weights indicate the expected traversal times.
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(b) Illustration of the ADG where each vertex status is color coded.
It reflects the momentary progress of the AGVs in Fig. 2a.

Figure 2: Illustrative MAPF problem example alongside the
constructed Action Dependency Graph

Algorithm 1 Modified ADG construction based on (Hönig
et al. 2019)

Input: MAPF solution P = {P1, . . . ,PN}
Result: GADG

// Add ADG vertices and Type 1 dependencies
1: for i = 1 to N do
2: p← p1i
3: v ← ({p}, staged)
4: vprev ← None
5: for k = 2 to Ni do
6: Append pki to plan(v)
7: if S(loc(p))⊕SAGV∩S(loc(pki ))⊕SAGV = ∅ then
8: Add v to VADG
9: if vprev not None then

10: Add edge (vprev, v) to EADG
11: vprev ← v

12: p← pki
13: v ← ({p}, staged)

// Add Type 2 dependencies
14: for i = 1 to N do
15: for k = 1 to Ni do
16: for j = 1 to N do
17: if i 6= j then
18: for l = 1 to Nj do
19: if s(vki ) = g(vlj) and t̂g(vki ) ≤ t̂g(vlj)

then
20: Add edge (vki , v

l
j) to EADG

21: return GADG

3



event start and completion times t̂s(v
k
i ) and t̂g(vki ), we

also introduce ts(vki ) and tg(vki ) which denote the actual
start and completion times of event vki ∈ VADG respec-
tively. Note that if the MAPF solution is executed nomi-
nally, i.e. AGVs experience no delays, then ts(vki ) = t̂s(v

k
i )

and tg(vki ) = t̂g(vki ) for all vki ∈ VADG. Let us introduce
an important property of an ADG-managed plan-execution
scheme, Proposition 1, concerning guarantees of successful
plan execution.

Proposition 1 (Collision- and deadlock-free ADG plan exe-
cution). Consider an ADG, GADG, constructed from a MAPF
solution as defined in Definition 1 using Algorithm 1, sat-
isfying Assumption 1. If the AGV plan execution adheres to
the dependencies in GADG, then, assuming the AGVs are sub-
jected to a finite number of delays of finite duration, the plan
execution will be collision-free and completed in finite time.

Proof 1: Proof by induction. Consider that AGVi and
AGVj traverse a common vertex p̄ ∈ G along their plans
Pi and Pj , for any i, j ∈ {1, . . . , N}, i 6= j. By lines 1-13
of Algorithm 1, this implies g(vki ) = s(vlj) = p̄ for some
vki , v

l
j ∈ VADG. By lines 14-20 of Algorithm 1, common ver-

tices of Pi and Pj in G will result in a Type 2 dependency
(vlj , v

k
i ) if p = s(vlj) = g(vki ) and t̂g(vki ) ≤ t̂g(vlj). For

the base step: initially, all ADG dependencies have been ad-
hered to since v1i is staged ∀ i ∈ {1, . . . , N}. For the in-
ductive step: assuming vertices up until vk−1i and vl−1j have
been completed in accordance with all ADG dependencies,
it is sufficient to ensure AGVi and AGVj will not collide
at p̄ while completing vki and vlj respectively, by ensuring
ts(v

k
i ) > tg(vlj). By line 19 of Algorithm 1 the Type 2 de-

pendency (vki , v
l
j) guarantees ts(vki ) > tg(vlj). Since, by As-

sumption 1, the ADG is acyclic, at least one vertex of the
ADG can be in-progress at all times. By the finite nominal
execution time of the MAPF solution in Definition 1, despite
a finite number of delays of finite duration, finite-time plan
completion is established. This completes the proof. �

3 Switching Dependencies in the Action
Dependency Graph

We now introduce the concept of a reversed ADG depen-
dency. In the ADG, Type 2 dependencies essentially encode
an ordering constraint for AGVs visiting a vertex in G. The
idea is to switch this ordering to minimize the effect an un-
foreseen delay has on the task completion time of each AGV.

3.1 Reverse Type 2 Dependencies
We introduce the notion of a reverse Type 2 dependency in
Definition 4. It states that a dependency and its reverse en-
code the same collision avoidance constraints, but with a
reversed AGV ordering. Lemma 1 can be used to obtain a
dependency which conforms to Definition 4. Lemma 1 is il-
lustrated graphically in Fig. 3.

Definition 4 (Reverse Type 2 dependency). Consider a Type
2 dependency d = (vki , v

l
j). d requires ts(vlj) ≥ tg(vki ).

vk−1i vki vk+1
i

vl−1j vlj vl+1
j

forward reverse

Figure 3: A subset of an ADG with a dependency (black)
and its reverse (red)

A reverse dependency of d is a dependency d′ that ensures
ts(v

k
i ) ≥ tg(vlj).

Lemma 1 (Reversed Type 2 dependency). Let
vki , v

l
j , v

l+1
j , vk−1i ∈ VADG. Then d′ = (vl+1

j , vk−1i )

is the reverse dependency of d = (vki , v
l
j).

Proof 2: The dependency d = (vki , v
l
j) encodes the con-

straint ts(vlj) ≥ tg(vki ). The reverse of d is denoted as
d′ = (vl+1

j , vk−1i ). d′ encodes the constraint ts(vk−1i ) ≥
tg(vl+1

j ). By definition, ts(vki ) ≥ tg(vk−1i ) and ts(vl+1
j ) ≥

tg(vlj). Since tg(v) ≥ ts(v), this implies that d′ encodes the
constraint ts(vki ) ≥ tg(vlj), satisfying Definition 4. �

The modified ADG ensures that reverse dependencies
maintain collision avoidance since adjacent vertices in VADG
refer to spatially different locations, cf. line 7 in Algo-
rithm 1.

3.2 Switchable Action Dependency Graph
Having introduced reverse Type 2 dependencies, it is nec-
essary to formalize the manner in which we can select de-
pendencies to obtain a resultant ADG. A cyclic ADG im-
plies that two events are mutually dependent, in turn imply-
ing a deadlock. To ensure deadlock-free plan execution, it
is sufficient to ensure that the selected dependencies result
in an acyclic ADG. Additionally, to maintain the collision-
avoidance guarantees implied by the original ADG, it is suf-
ficient to select at least one of the forward or reverse de-
pendencies of each forward-reverse dependency pair in the
resultant ADG. Since selecting both a forward and reverse
dependency always results in a cycle within the ADG, we
therefore must either select between the forward or the re-
verse dependency. To this end, we formally define a Switch-
able Action Dependency Graph (SADG) in Definition 5
which can be used to obtain the resultant ADG given a se-
lection of forward or reverse dependencies.
Definition 5 (Switchable Action Dependency Graph). Let
an ADG as in Definition 2 contain mT forward-reverse de-
pendency pairs determined using Definition 4. From this
ADG we can construct a Switchable Action Dependency
Graph SADG(b) : {0, 1}mT → G where G is the set of
all possible ADG graphs obtained by the boolean vector
b = {b1, . . . , bmT

}, where bm = 0 and bm = 1 imply se-
lecting the forward and reverse dependency of pair m re-
spectively, for m ∈ {1, . . . ,mT }.
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Corollary 1 (SADG plan execution). Consider an SADG,
SADG(b), as in Definition 5. If b is chosen such that GADG
= SADG(b) is acyclic, and no dependencies in GADG point
from vertices that are staged or in-progress to vertices that
are completed, GADG will guarantee collision- and deadlock-
free plan execution.

Proof 3: By definition, any b will guarantee collision-free
plans, since at least one dependency of each forward-reverse
dependency pair is selected, by Proposition 1. If b ensures
ADG = SADG(b) is acyclic, and the resultant ADG has
no dependencies pointing from vertices that are staged or
in-progress to vertices that are completed, the dependencies
within the ADG are not mutually constraining, guaranteeing
deadlock-free plan execution.

The challenge is finding b which ensures SADG(b) is
acyclic, while simultaneously minimizing the cumulative
route completion times of the AGV fleet. This is formulated
as an optimization problem in Section 4.

4 Optimization-Based Approach
Having introduced the SADG, we now formulate an opti-
mization problem which can be used to determine b such
that the resultant ADG is acyclic, while minimizing cumu-
lative AGV route completion times. The result is a Mixed-
Integer Linear Program (MILP) which we solve in a closed-
loop feedback scheme, since the optimization problem up-
dates the AGV ordering at each iteration based on the delays
measured at that time-step.

4.1 Translating a Switchable Action Dependency
Graph to Temporal Constraints

Regular ADG Constraints Let us introduce the optimiza-
tion variable tki,s which, once a solution to the optimization
problem is determined, will be equal to ts(vki ). The same
relation applies to the optimization variable tki,g and tg(vki ).
The event-based constraints within the SADG can be used in
conjunction with a predicted duration of each event to deter-
mine when each AGV is expected to complete its plan. Let
τ(vki ) be the modeled time it will take AGVi to complete
event vki ∈ VADG based solely on dynamical constraints,
route distance and assuming the AGV is not blocked. For
example, we could let τ equal the roadmap edge length di-
vided by the expected nominal AGV velocity. We can now
specify the temporal constraints corresponding to the Type 1
dependencies of the plan of AGVi as

t1i,g ≥ t1i,s + τ(v1i ),

t2i,s ≥ t1i,g,
t2i,g ≥ t2i,s + τ(v2i ),

t3i,s ≥ t2i,g,
...

...

tNi
i,s ≥ t

Ni−1
i,g ,

tNi
i,g ≥ t

Ni
i,s + τ(vNi

i ).

(1)

Consider a Type 2 dependency (vki , v
l
j) within the ADG.

This can be represented by the temporal constraint

tlj,s > tki,g, (2)

where the strict inequality is required to guarantee that
AGVi and AGVj never occupy the same spatial region.

Adding Switchable Dependency Constraints We now
introduce the temporal constraints which represent the se-
lection of forward or reverse dependencies in the SADG.
Initially, consider the set EType 2

ADG = {e ∈ EADG|e is Type 2}
which represents the sets of all Type 2 dependencies. The
aim here is to determine a set E switchable

ADG ⊂ EType 2
ADG containing

the dependencies which could potentially be switched and
form part of the MILP decision space.

Consider efwd = (vf , v
′
f ) ∈ EType 2

ADG and its reverse de-
pendency erev = (vr, v

′
r). efwd and erev are contained within

E switchable
ADG if the status of vf , v′f , vr, v

′
r is staged. An illustra-

tive example of the dependencies contained within E switchable
ADG

is shown in Fig. 4. Having determined E switchable
ADG , the next

step is to include the switched dependencies as temporal
constraints. Directly referring to Section 3.2, we assume
mT forward-reverse dependency pairs in E switchable

ADG , where
the Boolean bm is used to select the forward or reverse
dependency of the mth forward-reverse dependency pair,
m ∈ {1, . . . ,mT }. These temporal constraints can be writ-
ten as

tlj,s > tki,g − bmM,

tk−1i,s > tl+1
j,g −

(
1− bm

)
M,

(3)

where M is a large, positive constant such that M >
maxi t

Ni
i . Note that maxi t

Ni
i can be approximated by esti-

mating the maximum anticipated delays experienced by the
AGVs. In practice, however, finding such an upper bound on
delays is not evident, meaning we choose M to be a conser-
vatively high value.

4.2 Optimization Problem Formulation
We have shown that an SADG is represented by the tempo-
ral constraints in Eq. (1) through Eq. (3) for i ∈ {1, . . . , N},
m ∈ {1, . . . ,mT }. Minimizing the cumulative route com-
pletion time of all AGVs is formulated as the following op-
timization problem

min
b, ts, tg

N∑
i=1

tNi
i,g

s.t. Eq. (1) ∀ i = {1, . . . , N},
Eq. (2) ∀ e ∈ EType 2

ADG \ E
switchable
ADG ,

Eq. (3) ∀ e ∈ E switchable
ADG ,

(4)

where b : {0, 1}mT is a vector containing all the binary
variables bm and the vectors ts and tg contain all the vari-
ables tki,s and tki,g respectively ∀ k ∈ {1, . . . , Ni}, i ∈
{1, . . . , N}.
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Figure 4: Dependencies contained in E switchable
ADG , shown in

black (forward) and red (reverse). Gray dependencies are in
EType 2

ADG \ E switchable
ADG .

4.3 Solving the MILP in a Feedback Loop
The aforementioned optimization formulation can be solved
based on the current AGV positions in a feedback loop.
The result is a continuously updated GADG which guaran-
tees minimal cumulative route completion times based on
current AGV delays. This feedback strategy is defined in Al-
gorithm 2.

An important aspect to optimal feedback control strate-
gies is that of recursive feasibility, which means that the op-
timization problem will remain feasible as long as the con-
trol law is applied. The control strategy outlined in Algo-
rithm 2 is guaranteed to remain recursively feasible, as for-
mally shown in Proposition 2.

Algorithm 2 Switching ADG Feedback Scheme

1: Get goals and locations
2: Solve MAPF to obtain P
3: Construct ADG using Algorithm 1
4: Determine SADG(b) and set b = 0 (see Section 4.1)
5: while Plans not done do
6: get current position along plans for each robot
7: b←MILP in Eq. (4)
8: ADG← SADG(b)

Proposition 2 (Recursive Feasibility). Consider an ADG, as
defined in Definition 2, which is acyclic at time t = 0. Con-
secutively applying the MILP solution from Eq. (4) is guar-
anteed to ensure the resultant ADG remains acyclic for all
t > 0.
Proof 4: Proof by induction. Consider an acyclic ADG as
defined in Definition 2, at a time t. The MILP in Eq. (4) al-
ways has the feasible solution b = 0 if the initial ADG (from
which the MILP’s constraints in Eq. (1) through Eq. (3) are
defined) is acyclic. Any improved solution of the MILP with
b 6= 0 is necessarily feasible, implying a resultant acyclic
ADG. This implies that the MILP is guaranteed to return a
feasible solution, the resultant ADG will always be acyclic if
the ADG before the MILP was solved, was acyclic. Since the
ADG at t = 0 is acyclic (a direct result of a MAPF solution),
it will remain acyclic for t > 0. �

4.4 Decreasing Computational Effort
The time required to solve the MILP will directly affect the
real-time applicability of this approach. In general, the com-
plexity of the MILP increases exponentially in the number
of binary variables. To render the MILP less computation-
ally demanding, it is therefore most effective to decrease the

Figure 5: Dependency selection for a horizon of 4 vertices.
Switchable dependency pairs are shown in black (forward)
and red (reverse). Regular dependencies considered in the
MILP are green. Dependencies not considered are gray.

number of binary variables. We present two complementary
methods to achieve this goal.

Switching Dependencies in a Receding Horizon Instead
of including all switchable dependency pairs in the set
E switchable

ADG , we can only include the switchable dependen-
cies associated with vertices within a horizon H from the
last completed vertex. An illustration of such selection for
H = 4 is shown in Fig. 5. Note that dependency selection
using this approach maintains ADG acyclicity as in the in-
finite horizon case, because the set E switchable

ADG is smaller, but
Eq. (4) remains recursively feasible since the trivial solution
guarantees a acyclic ADG at every time-step. Proposition 2
is equally valid when only considering switchable depen-
dencies in a receding horizon. The horizon length H can be
seen as a tuning parameter which can offer a trade-off be-
tween computational complexity and solution optimality.

Note that, to guarantee recursive feasibility, any switch-
able dependencies which are not within the horizon H (e.g.
the green dependencies in Fig. 5) still need to be considered
within the MILP by applying the constraint in Eq. (2). Fu-
ture work will look into a receding horizon approach that
does not necessarily require the consideration of all these
constraints while guaranteeing recursive feasibility.

Dependency Grouping We observed that multiple depen-
dencies would often form patterns, two of which are shown
in Fig. 6. These patterns are referred to as same-direction
and opposite-direction dependency groups, shown in Fig. 6a
and Fig. 6b respectively. These groups share the same prop-
erty that the resultant ADG is acyclic if and only if either all
the forward or all the reverse dependencies are active. This
means that a single binary variable is sufficient to describe
the switching of all the dependencies within the group, de-
creasing the variable space of the MILP in Eq. (4). Once
such a dependency group has been identified, the temporal
constraints can then be defined as

tlj,s > tki,g − bDGM ∀ (vki , v
l
j) ∈ DGfwd,

tlj,s > tki,g − (1− bDG)M ∀ (vki , v
l
j) ∈ DGrev,

(5)

where DGfwd and DGrev refer to the forward and reverse de-
pendencies of a particular grouping respectively, and bDG is
a binary variable which switches all the forward or reverse
dependencies in the entire group simultaneously.
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(a) same (b) opposite

Figure 6: Dependency groups. Each dependency is either
original (black) or reversed (red). Reverse and forward de-
pendency pairings are differentiated by line styles.

5 Evaluation
We design a set of simulations to evaluate the approach in
terms of re-ordering efficiency when AGVs are subjected to
delays while following their initially planned paths. We use
the method presented by Hönig et al. (Hönig et al. 2019) as
a comparison baseline. All simulations were conducted on a
Lenovo Thinkstation with an Intel® Xeon E5-1620 3.5GHz
processor and 64 GB of RAM.

5.1 Simulation Setup
The simulations consider a roadmap as shown in Fig. 1. A
team of AGVs of size {30, 40, 50, 60, 70} are each initial-
ized with a random start and goal position. ECBS (Barer
et al. 2014) is used to solve the MAPF with sub-optimality
factor w = 1.6. We consider delays of duration k =
{1, 3, 5, 10, 15, 20, 25} time-steps. At the kth time-step, a
random subset (20%) of the AGVs are stopped for a length
of k. Eq. (4) is solved at each time-step with M = 104. We
evaluate our approach using a Monte Carlo method: for each
AGV team size and delay duration configuration, we con-
sider 100 different randomly selected goal/start positions.
The receding horizon dependency selection and dependency
groups are used as described in Section 4.4.

5.2 Performance Metric and Comparison
Performance is measured by considering the cumulative
plan completion time of all the AGVs. This is compared to
the same metric using the original ADG approach with no
switching as in (Hönig et al. 2019), which is equivalent to
forcing the solution of Eq. (4) to b = 0 at every time-step.
The improvement is defined as

improvement =

∑
tbaseline −

∑
tswitching∑

tbaseline
· 100%,

where
∑
t∗ refers to the cumulative plan completion time

for all AGVs. Note that we consider cumulative plan com-
pletion time instead of the make-span because we want to
ensure each AGV completes its plans as soon as possible,
such that it can be assigned a new task.

Another important consideration is the time it takes to
solve the MILP in Eq. (4) at each time-step. For our sim-
ulations, the MILP was solved using the academically ori-
entated Coin-Or Branch-and-Cut (CBC) solver (Forrest et
al. 2018). However, based on preliminary tests, we did
note better performance using the commercial solver Gurobi
(Gurobi Optimization, LLC 2020). This yielded computa-
tional time improvements by a factor 1.1 up to 20.
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Figure 7: Average improvement of 100 scenarios for various
delay lengths and AGV group sizes. Each scenario refers
to different randomly generated starts/goals and a randomly
selected subset of delayed AGVs. Solid lines depict the av-
erage, lighter regions encapsulate the min-max values.

5.3 Results and Discussion
To showcase the efficacy of our approach, we first determine
the average improvement of 100 random scenarios using the
minimum switching horizon length of 1 for different AGV
team sizes and delay lengths, shown in Fig. 7. The average
improvement is highly correlated to the delay duration ex-
perienced by the AGVs.

Considering Fig. 7, it is worth noting how the graph layout
and AGV-to-roadmap density affects the results: the AGV
group size of 40 shows the best average improvement for a
given delay duration. This leads the authors to believe there
is an optimal AGV group size for a given roadmap, which
ensures the workspace is both:

1. Not too congested to make switching of dependencies im-
possible due to the high density of AGVs occupying the
map.

2. Not too sparse such that switching is never needed since
AGVs are distant from each other, meaning that switching
rarely improves task completion time.

Considering the switching dependency horizon, Fig. 8
shows the average improvement for 100 random start/goal
positions and delayed AGV subset selection. We observe
that a horizon length of 1 already significantly improves per-
formance, and larger horizons seem to gradually increase
performance for larger AGV teams.

Fig. 9 shows the peak computation time for various hori-
zon lengths and AGV team sizes. As expected, the compu-
tation time is exponential with horizon size and AGV team
size. Two additional observations that were made:

1. High variability in results. Note the high variability in im-
provement indicated by the large lighter regions in Fig. 7.
This means that for different random start/goal and delay
configurations, the improvement varied significantly. This
is due to the fact that each start/goal combination pro-
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Figure 8: Average improvement of 100 random start/goal
positions and delayed AGV subset, for different switching
horizon lengths, for different AGV group sizes. Solid lines
depict the average, lighter regions encapsulate the min-max
values.
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Figure 9: The peak computation to solve the optimization
problem for different AGV team sizes and considered de-
pendency horizon lengths. This plot considers the average
improvement for delays k = {1, 3, 5, 10, 15, 20, 25}. Solid
lines depict the average, lighter regions encapsulate the min-
max values.

vides differing degrees-of-freedom from an ADG switch-
ing perspective.

2. Occasional worse performance. Occasionally, albeit
rarely, our approach would yield a negative improvement
for a particular random start/goal configuration. This was
typically observed for small delay durations. The reason
is that the optimization problem solves the switching as-
suming no future delays. However, it may so happen that
the AGV which was allowed ahead of another, is delayed
in the near future, additionally delaying the AGV it sur-
passed. We believe a robust optimization approach could
potentially resolve this.

Finally, we emphasize that our proposed approach:

1. Is a complementary approach which could be used to-
gether with the methods presented in (Atzmon et al. 2020;
Hönig et al. 2019) and other works.

2. Applies to directional and weighted roadmaps (since
ADG switching retains the direction of the original MAPF
plan);

3. Persistent planning schemes as in (Hönig et al. 2019), as
long as all AGV plans P are known when the ADG is
constructed.

6 Conclusions and Future Work
In this paper, we introduced a novel method which, given
a MAPF solution, can be used to switch the ordering of
AGVs in an online fashion based on currently measured
AGV delays. This switching was formulated as an optimiza-
tion problem as part of a feedback control scheme, while
maintaining the deadlock- and collision-free guarantees of
the original MAPF plan. Results show that our approach
clearly improves the cumulative task completion time of the
AGVs when a subset of AGVs are subjected to delays.

In future work, we plan to consider a receding horizon op-
timization approach. In this work, ADG dependencies can
be switched in a receding horizon fashion, but the plans still
need to be of finite length for the optimization problem to
be formulated. For truly persistent plans (theoretically infi-
nite length plans), it is necessary to come up with a receding
horizon optimization formulation to apply the method pro-
posed in this paper.

Another possible extension is complementing our ap-
proach with a local re-planning method. This is because our
approach maintains the originally planned trajectories of the
AGVs. However, we observed that under large delays, the
originally planned routes can become largely inefficient due
to the fact the AGVs are in entirely different locations along
their planned path. This could potentially be addressed by
introducing local re-planning of trajectories.

To avoid the occasional worse performance, we suggest a
robust optimization approach to avoid switching dependen-
cies which could have a negative impact on the plan execu-
tion given expected future delays.

Finally, to further validate this approach, it is desirable to
move towards system-level tests on a real-world intralogis-
tics setup.
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Abstract

Epistemic planning has been employed as a means to achieve
implicit coordination in cooperative multi-agent systems
where world knowledge is distributed between the agents,
and agents plan and act individually. However, recent work
has shown that even if all agents act with respect to plans
that they consider optimal from their own subjective perspec-
tive, infinite executions can occur. In this paper, we analyze
the idea of using a single token that can be passed around
between the agents and which is used as prerequisite for act-
ing. We show that introducing such a token to any planning
task will prevent the existence of infinite executions. We fur-
thermore analyze the conditions under which solutions to a
planning task are preserved under our tokenization.

1 Introduction
Epistemic implicit coordination planning (Engesser et al.
2017) is a technique for planning and coordination in multi-
agent systems in which agents try to collaboratively reach
a joint goal. The knowledge and abilities required to reach
the goal can be distributed among the agents. With no cen-
tralized coordination instance and without the possibility for
the agents to agree on a joint plan, the agents need to plan
individually and execute their plans in a decentralized way.

A central assumption Engesser et al. (2017) make for their
notion of policies and policy execution is that actions are ap-
plied in sequence by the agents. However, the order in which
agents are allowed to act is not preimposed, i.e., situations
where multiple agents have an applicable action are allowed.

The advantage of this kind of sequentiality over joint ac-
tions is that for a problem to be solvable, solution existence
does not have to be common knowledge between all agents.
Instead, only the agent that performs the first action of a plan
has to know that the plan leads to the goal and that after the
execution of the first action, the next agent who is designated
to act will know, and so on. This is helpful since often it is
not known in advance which orders of agents will work. In
such cases, any agent that finds a plan can begin, with the
other agents waiting until they have sufficient information.

One issue with this approach is that agents who each plan
for themselves and act according to their own policies may
want to act at the same time. These kinds of “conflicts of
interest” are not considered at the policy level but at the ex-
ecution level. Since the idea of planning for implicit coor-

Anne Bill

Figure 1: Two agents and a lever.

dination is that there should be no centralized instance co-
ordinating the agents, one has to consider all possible exe-
cutions resulting from each order in which the agents could
act, given each of their individual plans. While this inter-
leaving semantics is harmless in some cases, in other cases
it results in agents inadvertently working against each other.

Consider, for example, the situation depicted in Figure 1,
in which a lever can be pulled left or right, with both the
leftmost and the rightmost position being a goal state. If
Anne’s plan is to pull the lever all the way to the left and
Bill’s plan is to pull the lever all the way to the right, there
are executions in which the lever is pulled back and forth
indefinitely. An obvious fix that works in this particular in-
stance is to require the agents to act only with respect to
optimal plans and thus pull the lever only towards the near-
est goal configuration. However, Bolander et al. (2018) have
shown that problems with infinite executions can still occur
if the agents’ knowledge about the world differs. E.g., we
could have the situation in which both the leftmost and the
rightmost configuration can be, but are not necessarily, goal
configurations. Imagine Anne only knows about whether or
not the leftmost configuration is a goal configuration and Bill
only knows about whether or not the rightmost configuration
is one. Using our solution concept, both have to assume the
worst case of their configuration being the only goal config-
uration and we still end up with infinite executions.

Instead of trying to provide success guarantees by only
restricting the types of policies which the agents are allowed
to take, in the present paper, we try to tackle the problem
of infinite executions on the planning task level. The reason
why requiring policies to be optimal does not always pre-
vent infinite executions is that optimality is judged from the
subjective perspective of each agent. Thus an agent may act
because from his perspective the action is part of an optimal
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plan, while from the perspective of the agent who acted be-
fore it is not, and another agent was expected to act instead.
To prevent this from happening, we exclude all agents ex-
cept for one from performing actions. The acting agent can
then specify the agent who is allowed to act next. To model
this, we introduce a token that can be passed around by the
agents. Only the agent with the token is allowed to perform
an action. We show that this approach does not only solve
the lever problem from the example but prevents infinite ex-
ecution in general, while preserving plan existence, given
some formal criteria are met.

The remainder of this paper is structured as follows: First,
we are going to give a brief overview of related work, and
highlight how this paper builds on it. Next, we will intro-
duce the formal framework, dynamic epistemic logic (DEL).
In the main part of the paper, we demonstrate how to rewrite
a given planning task to include tokens, show that this elim-
inates infinite executions, and discuss under which condi-
tions plan existence can be preserved. Finally, we conclude
and discuss future work.

2 Related Work
In this paper, we attempt to provide success guarantees of
interleaved plan executions, just like Bolander et al. (2018)
did. Unlike them, we do not study how agent types impact
the success of implicitly coordinated plans, but rather im-
pose restrictions on allowed behavior by modifying the rules
of the planning task. Imposing the rule that only an agent
that possesses the token may act overcomes a limitation of
the agent-types approach: Without tokens, even optimally
eager agents are only guaranteed to prevent infinite execu-
tions if there is uniform observability.

In recent work orthogonal to the tokenization approach we
present here, Nebel et al. (2019) investigated how implicitly
coordinated plans without communications can succeed in
the special case of multi-agent path finding with destination
uncertainty, in which agents have to move to different des-
tinations in a collision free manner without communicating,
while the agents’ individual destinations are not common
knowledge among them. It was shown that, in such sce-
narios, eagerness and the capability to perform conservative
re-planning, are sufficient to ensure that plans succeed.

Besides planning with the intent to allow agents to self-
coordinate, epistemic planning has been mostly applied to
finding centralized plans in the presence of knowledge pre-
conditions and goals (Kominis and Geffner 2015; Muise et
al. 2015; Huang et al. 2017; Le et al. 2018). In more recent
work, Maubert, Pinchinat, and Schwarzentruber (2019) have
looked at modeling and synthesizing strategies for reachabil-
ity games in DEL, which is a setting which is more similar
to ours. While in their formalism, agents also act sequen-
tially, there is no interleaving concurrency and it is assumed
that it is always commonly known which agent’s turn it is.

Tokens have also made an appearance in distributed
systems, for example in the work of Loucks and Sha-
heen (1997). Components of a distributed system are located
apart from each other, but still have to communicate and co-
ordinate their actions to achieve a common goal. Makki et
al. (1992) used a token queue and semaphore for restricting

the use of a mutual resource that can only have a small num-
ber of users at a time. In contrast to the approach taken in the
present paper, their tokens are used to restrict the access to a
limited resource. Their agents do not plan with other agents,
and handing the token to the next player is usually done by
a waiting queue. In our approach, the idea is that the agent
who has the token gets to decide which agent will have the
token next. This is not desired in distributed systems be-
cause they want all agents to have the same rights of access
to a resource with no agent being strategically excluded.

Adding tokens can be seen as implementing a simple and
practical social law (specifically the law that only allows
an agent to act if it possess the token), a concept that has
gained increasing interest in multi-agent planning lately. So-
cial laws such as the ones from Karpas, Shleyfman, and Ten-
nenholtz (2017) and Nir and Karpas (2019) have also tried
to minimize the problems that arise from multiple agents by
trying to force the agents to work together and minimize the
amount of “damage” agents can do if they want to prevent
other agents from reaching their goal. Unlike their social
laws, which have to be designed by a rational person, and
specially made to fit one specific planning task, our approach
can be applied in a generalized way to given planning tasks.

3 Epistemic Planning
In the following, we will recapitulate the syntax and seman-
tics of Dynamic Epistemic Logic (DEL) (van Ditmarsch,
van der Hoek, and Kooi 2007), which we will use as the
formal framework of this paper. We will use the conven-
tions of Bolander et al. (2018), and also use their definitions
of planning tasks, policies, agent types and executions.

Let A be a finite set of agents and P be a finite set of
atomic propositions. The epistemic language LKC is then
defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Cϕ

with p ∈ P and i ∈ A. Formula Kiϕ reads as “agent i
knows ϕ” and Cϕ reads as “it is common knowledge that
ϕ”. Furthermore, the operators >,⊥,←,→,↔ are defined
as abbreviations, analogously to their definition in proposi-
tional logic. We will refrain from specifying P and A ex-
plicitly, if their values are clear from the context.
Example 1. Recall the lever example from the introduction.
If we ignore the position of the lever, we can model the sit-
uation using A = {anne, bill}, and P = {l, r}, where l
denotes whether there is a goal position to the left and r
denotes whether there is a goal position to the right. The
formula ¬Kanner ∧ ¬Kanne¬r expresses that Anne does not
know whether or not there is a goal to the right. The for-
mula Kbill(¬Kanner ∧ ¬Kanne¬r) expresses that Bill does
know that Anne does not know.

Epistemic formulas are evaluated in epistemic models
M = 〈W, (∼i)i∈A, V 〉, where W is a non-empty finite set
of worlds (called the domain of M), ∼i⊆ W × W is an
equivalence relation called the indistinguishability relation
for each agent i ∈ A, and V : P → P(W ) is the valuation
function, assigning to each proposition p ∈ P a set of worlds
V (p) in which the proposition is true.
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We depict epistemic models as graphs where the nodes
correspond to worlds and the edges correspond to indistin-
guishability between the worlds. Nodes are labeled with the
world name and all propositions which are true in that world.
Edges are labeled with the agents for which the worlds are
indistinguishable. For better readability, we usually omit re-
flexive edges and edges that are implied by transitivity.
Example 2. Assuming that it is common knowledge that at
least one of the two positions must be a goal position, we
can model the situation from our running example as epis-
temic modelM0 with three worlds: one world w1 in which
just the left position is a goal, one world w3 in which just
the right position is a goal and one world w2 in which both
positions are a goal. The epistemic model, including the in-
distinguishabilities for the agents is depicted below:

M0 =

w1 : l w2 : l, r w3 : r

anne bill

For Wd ⊆ W , the pair (M,Wd) is called an epistemic
state (or simply a state) and the worlds of Wd are called
designated worlds. A state is called global if Wd = {w}
for some world w (called the actual world). We then often
write (M, w) instead of (M, {w}). We use Sgl(P,A) to
denote the set of global states (or simply Sgl if P and A
are clear from context). For any state s = (M,Wd) we let
Globals(s) = {(M, w) | w ∈ Wd}. A state (M,Wd) is
called a local state for agent i if Wd is closed under ∼i (that
is, if w ∈Wd and w ∼i v, then v ∈Wd).
Given a state s = (M,Wd) the associated local state of
agent i, denoted si, is (M, {v|v ∼i w and w ∈ Wd}). Go-
ing from s to si amounts to a perspective shift to the local
perspective of agent i.
Example 3. Let s0 = (M0, w2) be the global state for
the lever example. Then Anne sees the local state sanne

0 =
(M0, {w1, w2}), meaning she cannot distinguish whether
(M0, w1) or (M0, w2) from Globals(sanne

0 ) is the true
global state. Bill sees sbill

0 = (M0, {w2, w3}).
Let (M,Wd) be a state withM = 〈W, (∼i)i∈A, V 〉. For

i ∈ A, p ∈ P and ϕ,ψ ∈ LKC, truth is defined as follows:

(M,Wd) |= ϕ iff (M, w) |= ϕ for all w ∈Wd

(M, w) |= p iff w ∈ V (p)

(M, w) |= ¬ϕ iff (M, w) 6|= ϕ

(M, w) |= ϕ ∧ ψ iff (M, w) |= ϕ and (M, w) |= ψ

(M, w) |= Kiϕ iff (M, v) |= ϕ for all v ∼i w
(M, w) |= Cϕ iff (M, v) |= ϕ for all v ∼∗ w

where ∼∗ is the transitive closure of
⋃
i∈A ∼i.

Example 4. We can now verify for our running exam-
ple, that it indeed holds that s0 |= ¬Kanner ∧ ¬Kanne¬r.
Note that checking a formula Kiϕ in a state s amounts
to the same as checking the formula ϕ in si. In our ex-
ample, s0 6|= Kanner because (M0, {w1, w2}) 6|= r, and
s0 6|= Kanne¬r because (M0, {w1, w2}) 6|= ¬r.

Note that syntactically different states can be epistemi-
cally equivalent, i.e., satisfy the exact same set of epistemic

formulas. In the following, we assume that such states are
identified. In practice, one can do that by checking for bisim-
ilarity (Blackburn, de Rijke, and Venema 2001).

3.1 Epistemic Actions and the Product Update
We also need a way do define actions, which can change the
facts of the world as well as the knowledge of the agents.
The way this is done in the action model logic of DEL is
using so-called event models.

An event model is a 4-tuple E = 〈E, (∼i)i∈A, pre, eff〉
where E is a non-empty finite set of events (called the do-
main of E), ∼A⊆ E × E is an equivalence relation called
the indistinguishability relation for each agent i ∈ A, and
the functions pre : E → LKC and eff : E → LKC assign
preconditions and effects to each event. While for each event
e ∈ E, the precondition pre(e) can be an arbitrary formula
from LKC, the effect eff(e) is a conjunction of literals, i.e, of
atomic propositions and their negations, including > and ⊥.

Each event of an action represents a different possible out-
come. By using multiple events e, e′ ∈ E which are indis-
tinguishable (e ∼i e′), for some agent i ∈ A, it is possible
to model actions that are only partially observable.

We depict event models similarly to epistemic models as
graphs, where the nodes correspond to events and the edges
correspond to the indistinguishability between events. We
label each node for an event e ∈ E with e : 〈pre(e), eff(e)〉.
As before, we usually omit reflexive edges and edges that
are implied by transitivity for better readability.

For Ed ⊆ E, the pair (E , Ed) is called an epistemic ac-
tion, or simply action. We call (E , Ed) a local action for
agent i when Ed is closed under ∼i.
Example 5. Consider the following event model which we
will use to model a sensing action for Anne. It contains one
event for each possible sensing outcome. Event e1 occurs if
r is true and event e2 occurs if r is false. Since the action
should not change any facts, both events have the effect >.
There is no indistinguishability between e1 and e2 for Anne.
This way, after the action, she will know whether e1 or e2
has occurred and thus whether r is true or false. To make
the action as general as possible we leave the events indis-
tinguishable to Bill: If he does not know whether or not r is
true, he should not learn it as result of Anne’s sensing action.

E1 =

e1 : 〈r,>〉 e2 : 〈¬r,>〉
bill

Anne’s sensing action is then (E1, {e1, e2}). We need to
designate both worlds due to not knowing the outcome of a
sensing action in advance. The action (E1, {e1}) could also
make sense, e.g., as an action for a third agent informing
Anne that r is true, without letting Bill know about it.

The semantics of action application is given by the prod-
uct update. Let a state s = (M,Wd) and an action
a = (E , Ed) be given with M = 〈W, (∼i)i∈A, V 〉 and
E = 〈E, (∼i)i∈A, pre, eff〉. Then the product update of s
with a is defined as s⊗a = (〈W ′, (∼′i)i∈A, V ′〉 ,W ′d) where
• each world is paired up with all applicable events, i.e.,
W ′ = {(w, e) ∈W × E | M, w |= pre(e)};

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

353

12



• new worlds are indistinguishable if the old worlds were
indistinguishable and the events are indistinguishable,
i.e., (w, e) ∼′i (w′, e′) iff w ∼i w′ and e ∼i e′;

• propositions become true if they occur positively in the
effect of the event, or if they don’t occur negatively and
have already been true before, i.e., (w, e) ∈ V ′(p) iff
eff(e) |= p or (M, w |= p and eff(e) 6|= ¬p);

• worlds are designated if both predecessor world and event
are designated, i.e., (w, e) ∈W ′d iff w ∈Wd and e ∈ Ed.

We say that an action a = (E , Ed) is applicable in a state
s = (M,Wd) if for all w ∈ Wd there is an applicable event
e ∈ Ed, meaningM, w |= pre(e).

Example 6. In our running example, the action a1 is appli-
cable in s0, and after the action application, we obtain the
state s1 = (M1, {(w2, e1)}) whereM1 is depicted below:

M1 =

(w1, e2) : l (w2, e1) : l, r (w3, e1) : r

bill

We can see that in s1, Anne now knows that r. Also, while
Bill has not learned anything new about l, he knows now that
Anne knows about r. The sensing action of Anne is public
in the sense that other agents will know that the sensing has
taken place.

3.2 Planning Tasks, Policies and Executions
We now have everything that is needed to define multi-agent
epistemic planning tasks in DEL. For a fixed set of agentsA,
a planning task Π = 〈s0, A, ω, γ〉 consists of a global state
s0 called the initial state; a finite set of actions A; an owner
function ω : A→ A; assigning each action to its owner and
a goal formula γ ∈ LKC.

Example 7. For the lever problem, the planning task is a
tuple 〈s0, A, ω, γ〉 such that s0 is defined as before plus ad-
ditional propositions that indicate the position of the lever
(e.g., pl ∈ P to indicate that the lever is at the leftmost
position, pr ∈ P to indicate that the lever is at the right-
most position, and other propositions for the positions in
between). For each non-leftmost position of the lever, we
could then have an action a ∈ A for pulling the lever to the
left. These actions are owned by Anne, i.e., ω(a) = anne.
And for all non-rightmost positions we could have actions
a ∈ A for Bill pulling the lever to the right, i.e., with
ω(a) = bill. Since these pulling actions can be fully ob-
served by all agents, they could be defined using only one
single event with an appropriate precondition and effect. Fi-
nally, the goal formula would be γ = (l ∧ pl) ∨ (r ∧ pr).

A policy π for Π = 〈s0, A, ω, γ〉 is a partial mapping π :
Sgl ↪→ P(A) satisfying the conditions applicability (appl),
uniformity (unif), and single-agent determinism (det).

(appl) Actions are applicable in states they are assigned to:
for all s ∈ Sgl, a ∈ π(s) : a is applicable in s.

(unif) If in some state the policy prescribes an action to
an agent, it should prescribe the action also in states that
the agent cannot distinguish: for all s, t ∈ Sgl such that
sω(a) = tω(a), from a ∈ π(s) follows a ∈ π(t).

(det) For each state, the policy assigns at most one action
per agent. I.e., there are no s ∈ Sgl and a, a′ ∈ π(s) with
a 6= a′ and ω(a) = ω(a′).
Note that our definition of uniformity works because we

consider bisimilar states to be equal. For two epistemically
equivalent states s and s′, it thus holds that π(s) = π(s′).
The properties uniformity and applicability together imply
knowledge of preconditions, the property that in each state,
an agent who is supposed to perform a particular action must
also know that the action is applicable in that state.

Note also that because of the uniformity we must allow
policies to sometimes prescribe multiple actions of different
owners to the same state. Imagine that from some state s the
goal can be only reached via action a of agent i and from
some state s′ the goal can be only reached via action b of
agent j. If there is a state s′′ which is indistinguishable to
s for agent i and to s′ for agent j, then the policy should
assign both actions a and b to state s′′. To characterize the
different outcomes of agents acting according to a common
policy, we define the notion of policy executions:

An execution of a policy π from a global state s0 is a max-
imal (finite or infinite) sequence of alternating global states
and actions (s0, a1, s1, a2, s2, ...), such that for all m ≥ 0,

(1) am+1 ∈ π(sm), and
(2) sm+1 ∈ Globals(sm ⊗ am+1).

An execution is called successful for a planning task Π =
〈s0, A, ω, γ〉, if it is a finite execution (s0, a1, s1, ..., an, sn)
such that sn |= γ.
Example 8. In the lever example, a policy could be, starting
in the position with the lever being in the middle, Bill pulls
the lever to the right and then to the right again. This policy
satisfies all policy properties and its only execution is suc-
cessful since the goal formula is satisfied in the end. How-
ever, while from the perspective of Bill, this is a reasonable
policy, Anne cannot verify that the policy is successful be-
cause she does not know whether or not the right position is
a goal position.

We now want to restrict our focus to policies that are guar-
anteed to achieve the goal after a finite number of steps.
More formally, all of their executions must be successful. As
in nondeterministic planning, such policies are called strong
(Cimatti et al. 2003). For a planning task Π = 〈s0, A, ω, γ〉,
a policy π is called strong if s0 ∈ Dom(π)∪ {s ∈ Sgl | s |=
γ} and for each s ∈ Dom(π), any execution of π from s
is successful for Π. A planning task is called solvable if a
strong policy for Π exists. For i ∈ A , we call a policy
i-strong if it is strong and Globals(si0) ⊆ Dom(π) ∪ {s ∈
Sgl | s |= γ}.

When a policy is i-strong it means that the policy is strong
and defined on all the global states that agent i cannot distin-
guish between in the initial state. It follows directly from the
definition that any execution of an i-strong policy from any
of those initially indistinguishable states will be successful.
So if agent i comes up with an i-strong policy, then agent i
knows the policy to be successful.
Example 9. The policy from above, with Bill pulling the
lever to the right twice is bill-strong but not anne-strong.
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Sometimes the agents cannot coordinate their plans but
rather have to come up with them individually. Their poli-
cies can differ substantially, as agents often have different
knowledge about the current states, applicable actions and
action outcomes. To deal with agents having differing poli-
cies, we will define executions for policy profiles. A policy
profile for a planning task Π is a family of policies (πi)i∈A
where each πi is a policy for Π. We assume actions to be in-
stantaneous and executed asynchronously. This leads to the
following definition of executions:

An execution of a policy profile (πi)i∈A is a maximal (fi-
nite or infinite) sequence of alternating global states and ac-
tions (s0, a1, s1, ...), such that for all m ≥ 0,

(1) am+1 ∈ πi(sm) where i = ω(am+1), and

(2) sm+1 ∈ Globals(sm ⊗ am+1).

Note that there are two different sources of nondeterminism:
the nondeterminism resulting from the possibility of multi-
ple policies prescribing actions for their respective agents (in
condition 1) and the nondeterminism from nondeterministic
action outcomes (in condition 2).

If all agents have one strong policy in common which all
of them follow, then at execution time, the goal is guaranteed
to be eventually reached. If, however, each agent acts on
its individual strong policy, then the incompatibility of the
individual policies may prevent the agents from reaching the
goal, even though each individual policy is strong.

Bolander et al. (2018) have studied this in detail. They
looked at different types of planning agents, which they de-
fined as pairs (i, T ), where i ∈ A is an agent name and T
is a mapping from planning tasks to policies such that T (Π)
must be an i-strong policy for Π, whenever such a policy ex-
ists. The question they investigated was whether we can im-
pose restrictions on a groups of agents (i, Ti)i∈A so that all
executions generated by this groups can be guaranteed to be
successful. To simplify things, Bolander et al. (2018) have
only looked at cases where all agents find maximal strong
policies in the initial states of the planning task. These poli-
cies must be defined on all states (1) which are reachable
from the initial state by arbitrary sequences of actions and
(2) from which a strong policy exists. If all agents act with
respect to such plans, re-planning is unnecessary and does
not have to be considered.

A positive result was obtained in the general case for
avoiding deadlocks (i.e., executions which end in a non-goal
state where agents are waiting for each other to act). This
was achieved by requiring planning agents to be eager and
prefer own actions over other agents’ actions in their plans
whenever possible.

Concerning infinite executions, they have shown that
there exists no type of planning agent that can prevent situa-
tions similar to the lever example. However, in cases where
all agents have uniform knowledge, both deadlocks and in-
finite executions can be avoided if all agents are optimally
eager, meaning if the planning agents only generate policies
which are subjectively optimal (which means that these poli-
cies must have minimal perspective-sensitive costs), and that
they prefer own actions over other agents’ actions whenever
possible without increasing the costs.

Let π be a strong policy for a planning task Π. The
perspective-sensitive cost (or simply cost) of π from a state
s ∈ Dom(π), denoted κπ(s) is defined as:

κπ(s) =

{
0 if there exists no a ∈ π(s)

1+maxa∈π(s),s′∈Globals(sω(a)⊗a) κπ(s′) else.

The positive results that we get for our token-based ap-
proach will be based on the assumption that the planning
agents act with respect to subjectively optimal policies.

4 Planning with Tokens
In the example from the introduction, the problem is that
both agents want to pull the lever to the different goal con-
figurations they know about, resulting in infinite executions.
This problem can be eliminated by introducing a token such
that only the agent that possesses the token is allowed to act.
The goal of this tokenization is that only one agent gets to
make a move at any time. Once the agent is done with their
own actions, they can pass on the token to the next agent.

There are different ways to implement such a token. First,
we have to add actions with which agents can pass the token
to the next agent. Furthermore, we have to define how the
first agent obtains the token. The way we decided to im-
plement this is via an action with which any agent can take
the token initially. Note that there are other possibilities.
For example, we could initially assign the token randomly
to one of the agents. The disadvantage with this approach
is that there are planning tasks where only some but not all
of the agents find a plan from their local perspectives. In
these cases, assigning the token randomly would lead to an
unsolvable task. We can also leave the burden of designating
the first agent to act to the modeler of the planning task. But
then again, to be sure to not make a solvable planning task
unsolvable, the modeler would have to already know which
of the agents can find a plan and which of the agents cannot.

4.1 Tokenization of Planning Tasks
We will now formally describe a function that tokenizes any
given planning task. The idea is that we introduce additional
predicates ti for all agents i ∈ A with the intuitive mean-
ing of “agent i possesses the token”. We can then use these
propositions in the preconditions of our tokenized actions.
We first define the tokenization of epistemic states.
Definition 1. Let s = (〈W, (∼i)i∈A, V 〉 ,Wd) be an
epistemic state with proposition set P . Then the tok-
enization of state s is a new epistemic state tok(s) =
(〈W, (∼i)i∈A, V ′〉 ,Wd), which has the proposition set P ∪
{ti | i ∈ A} and where V ′ = V ∪ {ti 7→ ∅ | i ∈ A}.

Furthermore, for any agent i ∈ A, we define the i-
tokenization tok i(s) of state s analogously, but with V ′ =
V ∪ {ti 7→W} ∪ {tj 7→ ∅ | j ∈ A, j 6= i}.

This means in tok(s) no agent has the token yet and in
tok i(s), the token is owned by agent i. Token ownership is
always common knowledge between the agents.

We can now define the tokenization of epistemic actions.
Definition 2. Let a = (〈E, (∼i)i∈A, pre, eff〉 , Ed) be
an epistemic action and i ∈ A be an agent. Then
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the i-tokenization of action a is a new epistemic action
tok i(a) = (〈E, (∼i)i∈A, pre′, eff〉 , Ed) with new precon-
ditions pre′(e) = ti ∧ pre(e) for all e ∈ E.

Since tokenized actions use the token propositions, they
can only be applied to tokenized states and their successors.
We can finally define the tokenization of planning tasks.

Definition 3. Let Π = 〈s0, A, ω, γ〉 be a planning task. We
define the tokenization of task Π as tok(Π) = 〈s′0, A′, ω′, γ〉
as follows:

• s′0 = tok(s0) where tok(s0) is the tokenization of s0,

• A′ = {tokω(a)(a) | a ∈ A} ∪ {takeToki | i ∈ A} ∪
{giveTokij | i, j ∈ A, i 6= j}, where for all i 6= j ∈ A
– takeToki is an action consisting of a single event with

precondition
∧
k∈A ¬tk and effect ti,

– giveTokij is an action consisting of a single event with
precondition ti and effect ¬ti ∧ tj , and

• ω′(a′) =


ω(a) if a′ = tok(a) for some a ∈ A
i if a′ = takeToki for some i ∈ A
i if a′ = giveTokij for some i, j ∈ A.

Note that the tokenization of a planning task with propo-
sition set P will have the proposition set P ∪ {ti | i ∈ A}.
When talking about tokenized planning tasks, we will from
now on use Sgl

tok to denote the set of states that we get by
tokenizing all the states in Sgl, i.e., Sgl

tok = {tok(s) | s ∈
Sgl} ∪ {tok i(s) | s ∈ Sgl, i ∈ A}. Furthermore, we will
use the notation tok(A) = A′ for the set A′ of all tokenized
actions from the action set, as defined above.

While we assume unit action costs in Π, it is not immedi-
ately obvious which costs we should assign to giveTok ac-
tions. Assigning them unit costs as well may be the most
obvious option, but comes at the risk of introducing an un-
warranted bias towards few token passings at the expense
of overly costly subplans consisting of “proper” (non-token-
passing) actions. On the other hand, assigning them costs
of zero makes token passing free and preserves optimality.
Unfortunately, with zero-cost token passings, our main theo-
rem (Theorem 1) that states that introducing tokens prevents
infinite executions, becomes invalid, since then, there can
be maximal subjectively optimal i-strong policies that still
lead to infinite executions, more specifically, infinite rounds
of token passing. As a compromise between zero costs and
unit costs, we may also assign costs of a sufficiently small
ε > 0 to all giveTok actions. In the following, we will not
study the question of those action costs further, but rather
assume that all actions have unit costs.

4.2 No More Infinite Executions
Given this formalization, we can now show that we can pre-
vent the existence of infinite executions by transforming the
planning task into a tokenized planning task and requiring
the agents to use subjectively optimal policies.

Theorem 1. Let Π be a tokenized planning task and let
(πi)i∈A be a profile of maximal subjectively optimal i-strong
policies for Π. Then all executions of (πi)i∈A are finite.

Proof sketch. For the case where the initial state is already
a goal state and no agent takes the token, we do not have to
prove anything. For the other case, let us assume that agent
j has the token in some given state s with costs κπj

(s) = c.
We can distinguish the following cases:

• If c = 0, then j will not perform any more action and the
execution is finished.

• If c > 0 and πj(s) 6∈ {giveTokjk | k ∈ A} then j will still
have the token in each of the subjective successor states
s′ ∈ Globals(sj ⊗ πj(s)) of s. By the definition of sub-
jective costs, we have κπj

(s′) ≤ c− 1.

• If c > 0 and πj(s) = giveTokjk for some agent k ∈ A
then agent k will have the token in each of the subjective
successor states s′ ∈ Globals(sj ⊗ πj(s)) of s. By the
definition of subjective costs we have κπj

(s′) ≤ c − 1.
Since k plans optimally, κπj

(s′) must be an overestimate
of κπk

(s′) and we thus have κπk
(s′) ≤ κπj

(s′) ≤ c− 1.

Since the value of c decreases by at least 1 after each action
and can never fall below 0, any execution must eventually
stop.

Example 10. It is easy to see how the tokenization works
with our lever example: Initially, both agents want to take
the token. After one of the agents has obtained the token
(which is decided nondeterministically), the agent moves the
lever all the way to its goal position. The token remains with
that agent and the execution is finished.

4.3 Policy Existence for Tokenized Tasks
Whereas tokenization makes sure that infinite executions
disappear, unfortunately, it does not preserve all i-strong
policies from the original task. An issue arises in scenarios
such as the following.
Example 11. Assume that agent 1 initially holds an object
and knows that either agent 2 or agent 3 desires that object,
but does not know who. Without tokens, agent 1 can place
the object on the table and expect the agent desiring the ob-
ject to pick it up. With tokens, agent 1 can still place the
object on the table, but then has to pass the token to the cor-
rect agent. Without knowing who that is, the policy cannot
be tokenized in a straight forward way. Assuming that one
of the agents does not even know that the other agent desires
the object, giving the token to this agent would even lead to
a dead-end state. In this case, while there exists a 1-strong
policy for the original task, there is no 1-strong policy for
the tokenized version of the task.

The underlying problem can be characterized by a prop-
erty of agent 1’s policy π1: The state s in which agent 1
puts the object on the table has a global successor state s′
in which one of the other agents must act, but which is in-
distinguishable for agent 1 to another state s′′ in which the
third agent must act. Formally, we have π1(s′) = {pickUp}
and π1(s′′) = {pickUp′} with ω(pickUp) 6= ω(pickUp′).

Intuitively, to avoid this problem, we need to require that
after each action of an agent i leading to some non-terminal
state s′, the agent i can identify a unique agent next(i, s′)
which can act next. In the tokenized version of a policy, the
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first agent would pass the token to exactly this agent or, in
the case where next(i, s′) = i, keep it.

Definition 4. We say a policy π : Sgl ↪→ P(A) satisfies
the knows-the-next-agent property (KNA) if there exists a
function next : A× Sgl ↪→ A, which we call the next agent
function, with the following property: For each state s ∈
Sgl, action a ∈ π(s) owned by agent i = ω(a), non-terminal
successor state s′ ∈ Globals(s ⊗ a), i.e. for which π(s′)
is defined and nonempty, and all states s′′ ∈ Globals(s′i)
which are indistinguishable to s′ for i, there is an action a′ ∈
π(s′′) such that ω(a′) = next(i, s′).

Note that for some policies there is more than one next
agent function. Given a finite policy, it is easy to either con-
struct a next agent function or to prove that no such function
exists. This can be done by successively looking at each
triple (s, a, s′) ∈ Sgl × A × Sgl such that a ∈ π(s) and
s′ ∈ Globals(s ⊗ a). If there is an agent i ∈ A who owns
for all states s′′ ∈ Globals(s′ω(a)) an action a′ ∈ π(s′′), we
can assign it to next(ω(a), s′). If there is no such agent, we
know that there is no next action function and that the policy
thus does not satisfy the KNA property. However, if there is
always such an agent and thus the KNA property is satisfied,
this means that the acting agents will be able to identify the
agents to which the token can be passed next from their own
perspectives and without the need of external coordination.

4.4 Tokenization of Policies
We can now tokenize policies which satisfy the KNA prop-
erty in the obvious way: before each regular action, we add
a token-passing action to the owner of the next action if nec-
essary.

Definition 5. Let π : Sgl ↪→ P(A) be a policy that satisfies
the KNA property and let next be a next agent function for
π. Then we define the tokenization of the policy π with next

as toknext (π) : Sgl
tok ↪→ P(tok(A)), where

(1) For all states s′ = tok(s) ∈ Sgl
tok, i.e., in which no agent

has the token, we have toknext (π)(s′) = {takeTokω(a) |
a ∈ π(s)}.

(2) For all states s′ = tok i(s), i.e., such that some agent i has
the token, in the case where next(i, s′) = j 6= i, we have
toknext (π)(s′) = {giveTokij}.

(3) For all states s′ = tok i(s), i.e., such that some agent i
has the token, in the case where next(i, s′) = i, we have
toknext (π)(s′) = {tok(a) | a ∈ π(s), ω(a) = i}.
We are now ready to prove that, under the assumption

of the KNA property, tokenization does indeed preserve i-
strong policies.

Theorem 2. Let π be a strong policy for a planning task Π
which satisfies the KNA property and let next be a next agent
function for π. Then the tokenized policy π′ = toknext (π)
is also a strong policy for the tokenized planning task Π′ =
tok(Π).

Proof sketch. We first have to show that the policy proper-
ties are satisfied for π′. For the token taking and passing

actions from the first two cases of Definition 5, the applica-
bility condition is trivially satisfied: The token can be taken
because it is still on the table, and it can be passed along be-
cause it is possessed by the correct agent. For the third case,
the applicability condition is also satisfied, since all actions
that are assigned to the state belong to the agent that pos-
sesses the token. Uniformity is slightly more complicated:
In the first case, uniformity follows directly from the unifor-
mity of the original policy. In the second case, uniformity
follows from our definition of next agent functions which
guarantees that next(i, s′) = next(i, s′′) for all states s′′
which are indistinguishable to s′ for agent i. Finally, in the
third case, uniformity follows for the same reason, together
with the fact that all actions that were assigned to each equiv-
alence class of indistinguishable states in the original policy
are now again assigned to the corresponding states in the
tokenized policy.

We can now prove that the policy is strong. We first have
to show that the initial state is again either already a goal
state or that it is contained in the domain of the policy. This
follows directly from strength of the original policy: Either
the initial state of Π is a goal state, in which case the initial
state of Π′ will be a goal state for Π′ as well (since the tokens
cannot be part of the goal formula). Or otherwise, if the
initial state of Π is contained in π, its tokenized version,
which is the initial state for Π′ will also be contained in π′.

We then have to show that each execution of π′ is suc-
cessful. We first have to note that for each execution of π′
in Π′, there is a corresponding execution of π ∈ Π using
the untokenized actions and omitting the token taking and
passing actions. Note that we cannot have any dead ends in
π′, because there are no dead ends in π and because our to-
kenization ensures that whenever there are transitions from
one state to another in π, at least one of these transitions
must have a corresponding transition in π′ (which might in-
clude a token passing action before the actual action). Since
any execution of π ends in a goal state, also any execution
of π′ must end in a goal state.

5 Tokenization and Re-Planning
Note that in our analysis, so far we have always assumed
that all agents act with respect to maximal strong policies
which they form in the initial state of the planning task. In
practice, this is a big limitation.

First of all, finding maximally strong policies can be very
expensive since the state space can be huge and maximally
strong policies must be defined for all reachable states from
which a strong policy exists. Even in decidable fragments
of DEL planning it stands to reason that finding maximally
strong plans can be much more difficult than finding opti-
mal plans. Also, we cannot deal with situations yet where
only one of the agents has an i-strong policy from the start,
and where the other agents will find their plans and join tak-
ing part in the execution only after a few actions of agent i,
which is one of the main advantages of i-strong policies.

An alternative to using maximal strong policies is to em-
ploy a re-planning regime. This approach has been taken by
Nebel et al. (2019) in the specialized setting of multi-agent
path finding with destination uncertainty, which has been
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Figure 2: Two agents, a ball and a roof.

originally formalized as DEL planning task (Bolander et al.
2018). Nebel et al. showed that even in this restricted class
of implicit-coordination problems, and using a re-planning
regime, optimally eager agents can still produce infinite ex-
ecutions. In the following, we formalize re-planning execu-
tions for the general case and analyze whether tokenization
helps to prevent infinite executions.
Definition 6. A re-planning execution of a group of
planning agents (i, Ti)i∈A is a maximal (finite or in-
finite) sequence of alternating global states and actions
(s0, a1, s1, . . .), such that for all m ≥ 0,

(1) am+1 ∈ Ti(Π|sm)(sm) where i = ω(am+1), and
(2) sm+1 ∈ Globals(sm ⊗ am+1),

where Π|sm is the same planning task as Π, but where the
initial state has been replaced by sm. We call such an execu-
tion successful if it is a finite execution (s0, a1, s1, . . . , sn)
such that sn |= γ.

Unfortunately, Theorem 1 can not be transferred directly
to re-planning agents. Consider the following counter-
example, as depicted in Figure 2.
Example 12. There are two agents standing at opposing
sides of a building. Since the building is between them, they
cannot see each other. The goal of the planning task is that a
football, which is initially on the side of the left agent, ends
up on top of the building. The agents can observe the ball
only if it is on their respective side of the building. In our
depiction, an agent that has a question mark on the top of its
head is unsure whether the ball is already on the roof or with
the other agent. Both agents have an action to kick the ball.
However, the left agent cannot aim as accurately as the right
agent. If he kicks the ball, it might either land on the roof or
on the side of the other agent. The right agent has sufficient
aim, so after she kicks the ball, she will be certain that the
ball is on the rooftop. The left agent will not know when this
happens, since he cannot see the shot.

Figure 2 shows a policy that is i-strong for both agents.
Interestingly, it contains a goal state in which both agents
do not know that the goal is satisfied. Since the figure is
also a depiction of the entire state space of the planning task
(and since in the goal states, no agent can act), it is clear that

re-planning agents who act with respect to i-strong policies
will always generate successful executions.

However, in the tokenization of the planning task, the fact
that the agents now do re-planning leads to an infinite ex-
ecution in the case where the imprecise kicking action of
the left agent already succeeds landing the ball on the roof.
This is because the agent must pass the token to the agent
on the right to cover for the contingency where the ball went
over the roof. The agent on the right must then re-plan and
cover for the contingency where the ball is still with the left
agent and pass the token directly back, which leads to the
same state as before. Thus the agents will effectively pass
the token back and forth.

The reason for the infinite execution is that in the end,
none of the agents knows that the goal has been reached, and
both of the agents consider it possible that the other agent
still has some work to do. If we allowed the agents to do
some kind of forward induction, i.e., reasoning about the
motive behind the other agent’s action, they could maybe
infer from the fact that the token has been passed to them that
the ball must already be on the roof. However, it is unclear
how a reasonable solution concept for implicit coordination
with forward induction would look like and this is a major
topic for future research.

A more direct way to prevent such situations and which
works with our existing notion of strong policies is to ensure
that each policy is stable, in the sense that in terminal states,
all agents who have applicable actions know that the goal
has already been reached.
Definition 7. We say that a policy π : S ↪→ P(A) is stable
for a goal γ, if for all states s ∈ S, actions a ∈ π(s) and
successor states s′ ∈ Globals(s ⊗ a) for which there is no
action a′ ∈ π(s′) (i.e., terminal states), we have s′ |= Kiγ
for all agents i who have actions that are applicable in s′i.

Although this approach seems to be very restrictive in
general, it makes a lot of sense for tokenized planning tasks
because in any given state of an execution, with the excep-
tion of the initial state, there is only one agent that has ap-
plicable actions anyway. We can now verify that there are
no infinite executions for tokenized planning tasks, given all
agents are optimally eager and produce only stable plans.
Theorem 3. Given a tokenized planning task tok(Π) with
goal γ and a group (i, Ti)i∈A of optimally eager planning
agents, such that for arbitrary states s ∈ Sgl

tok, the agents
produce only policies Ti(tok(Π)|s) which are stable for γ.
Then all re-planning executions of (i, Ti)i∈A are finite.

Proof sketch. The proof works analogously to the proof of
Theorem 1, with the difference that agents can have a differ-
ent policy for each state. The first two cases are identical: If
the agent who has the token finds a policy with cost 0, the
execution is finished. And if the agent who has the token has
an action that is not a token passing action, then in the suc-
cessor state he will have the token again and be guaranteed
to find a policy where the cost decreases by at least 1.

The difference is in the third case where the token is
passed from an agent j to another agent k. Here, the proof
of Theorem 1 relies on the assumption that if agent k wants
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to apply an action after obtaining the token, then this ac-
tion must also be part of a policy that is subjectively optimal
from the initial state. For example, in the rooftop example
with tokens, there is no policy starting from the initial state
such that if the ball lands on the roof immediately and the
token is passed to the right agent, this agent will try to give
the token back (because this would create a cycle in the pol-
icy). Instead, the execution would stop with the agent not
knowing that the goal has been reached. With re-planning
and without the stability property, the right agent would find
a new plan in which the token is given back and then, if the
goal has already been reached, the left agent does nothing,
or otherwise the policy proceeds as in Figure 2. However, in
the execution, after the token has been given back, the left
agent would also re-plan and pass the token straight back.

We will now look at what happens with policies satisfying
our stability property. As before, we assume that the token is
passed from agent j to k, leading from a state s to a state s′
in which only agent k has applicable actions. We distinguish
between the following cases:

• If πj = Tj(tok(Π)|s) assigns some action to state s′, this
action must be owned by agent k and it is thus clear that
πj must also be a k-strong policy for s′. Since agent k
plans optimally, π′k = Tk(tok(Π)|s′) will be a policy with
κπ′

k
(s′) ≤ κπj

(s′) ≤ κπj
(s)− 1.

• If πj assigns no action a′ ∈ πj(s
′) to s′, then because

of the stability condition (since at least the token passing
actions are applicable), agent k must know that the goal
is satisfied in s′ and thus π′k = Tk(tok(Π)|s′) will be a
policy with κπ′

k
(s′) = 0.

Since, as before, the cost of the policy belonging to the agent
who acts in each state of the execution decreases in each step
by at least 1 and can never fall below 0, any execution must
eventually stop.

Instead of defining a new agent type that also requires
generated policies to be stable, we can modify the planning
tasks to enforce that each strong policy for the planning task
must be stable. This is especially easy if the planning task is
already tokenized: If the propositions ti denote that an agent
i has the token, we can simply change the goal formula from
γ to γ′ = γ ∧

∧
i∈A(ti → Kiγ). Thus, in each new goal

state, an agent who has the token must know that γ is sat-
isfied and, by introspection, also that γ′ itself is satisfied.
Therefore, any strong policy trivially satisfies the stability
condition, and thus agents never have reason to pass on the
token to another agent in goal states.
Example 13. Imagine that in our football example, the left
agent has an additional action using which also he can pass
the ball to the right agent with certainty, e.g., by throwing the
ball instead of kicking it. Then, if we encode our stability
condition into the goal formula, and given both agents are
optimally eager, a successful execution is guaranteed. The
left agent will throw the ball to the right agent who will then
kick it onto the rooftop. Without the stability condition, the
left agent might just as well decide to kick the ball, which
might result in both agents passing the tokens back and forth,
as seen previously.

6 Conclusion
We have looked at how the tokenization of epistemic plan-
ning tasks can be used to mitigate the problem of infinite
executions. We have shown that in the case of agents acting
with respect to maximally strong policies, tokenization suc-
cessfully prevents infinite executions. However, there are
planning tasks for which, despite the existence of a strong
policy, there is no strong policy for the tokenized task. The
strong policies of the original task which can be tokenized
are characterized by the knows-the-next-agent property.

So far, we have considered only a tokenization in which
the token is passed directly from one agent to another agent.
This is a big restriction since we can easily construct plan-
ning tasks where the first agent to act knows that one of the
other agents can finish the plan, but not which of the agents.
Even if for this task infinite executions are not possible, the
fact that no policy satisfies the KNA property implies that
there are no strong policies for the tokenization. A possible
remedy could be to allow the agents to pass the token to mul-
tiple agents at once, one of which then has to decide to take
the next action and continue passing the token. However,
without additional constraints (e.g., on the subsets of agents
that the token can be passed to), using such a tokenization
we can easily end up with infinite executions again. This is
because after each action the token can be passed back to
all of the agents, and thus each strong policy of the original
task also corresponds to a strong policy for the tokenization.
Thus, if we can get infinite executions for the original task,
we can also get infinite executions for this kind of tokeniza-
tion. Note that the solution policies for most of the tasks con-
sidered in literature, including multi-agent path finding with
destination uncertainty, satisfy the KNA property meaning
that the simple tokenization from this paper is sufficient to
solve these tasks while avoiding infinite executions.

Importantly, if there is a policy for the original planning
task that can be tokenized, it can be found by directly by
planning for the tokenized task, which is not a more com-
plex problem than planning for the original task. This is
because the tokenization increases the size of the input task
only linearly. Note that while in the general case the strong
policy existence problem is undecidable, there exist tractable
fragments (Engesser and Miller 2020).

We have furthermore shown that for re-planning agents,
tokenization alone is not sufficient to prevent infinite execu-
tions. However, we can employ an additional stability con-
dition that can be encoded into the goal formula.

For future work, we plan to investigate tokenized plan-
ning tasks in the context of forward induction. This would
mean allowing the agents to infer knowledge by reasoning
about the motive of other agents’ actions. For example, an
agent could pass the token to another agent to signal that
that agent has an action available which progresses towards
the goal, even if the agent does not know that yet. How-
ever, forward induction has not been formalized in the con-
text of epistemic planning for implicit coordination so far.
Supporting such reasoning would arguably require a solu-
tion concept that goes beyond what is possible with strong
policies.
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Abstract

Communication in Ad Hoc Teamwork (CAT) is a research
area that investigates how communication can be leveraged
by an agent that plans in a distributed, multi-agent collabora-
tive environment, even if that agent does not have knowledge
about its teammates or their plans a priori. This paper reports
our progress in identifying three factors that can impact the
complexity of CAT – environment, teammates, and commu-
nication protocol. Following the identification of these com-
ponents, this paper investigates three extensions from exist-
ing work that affect each of these factors respectively – richer
environments, complex teammate representations, and com-
plex communication protocols. We present new algorithms to
compute when to query under these new configurations, as
well as preliminary results of their performance.

Introduction
Autonomous agents are becoming increasingly capable of
solving complex tasks, but encounter many challenges when
required to solve such tasks as a team. For example, service
robots have been deployed to assist medical teams in the
recent pandemic outbreak. Such robots’ coordination strat-
egy cannot be learned or decided a priori, as it interacts
with previously unmet teammates (Cakmak and Thomaz
2012). This motivation is the basis for ad hoc teamwork,
which is defined as collaborating with teammates without
pre-coordination (Stone et al. 2010; Albrecht and Stone
2018). This terminology reflects that the collaboration is ad
hoc – the ways in which the agents learn, act, and interact
may be quite principled. Our previous work on CAT identi-
fied a specific variant of CAT, namely the Sequential One-
shot MultiAgent Limited Inquiry CAT scenario, or SOMALI
CAT (Mirsky et al. 2020). In SOMALI CAT, the agents exe-
cute sequential plans and only the ad hoc agent can inquire
about a teammate’s goal. SOMALI CAT was defined to be
a broadly representative class of CAT problems. In such a
SOMALI scenario, the robot can fetch different tools for a
physician in a hospital. The physician would normally pre-
fer to avoid the additional cognitive load of communicat-
ing with the robot, but will answer an occasional question

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

from it so that the robot can be a better collaborator. The re-
sults from this work were evaluated on a simulated test-bed,
namely the tool fetching domain. The algorithm presented
in that work was a means to decide when to query in such a
SOMALI scenario. This paper reports our progress investi-
gating the different factors that can affect the complexity of a
SOMALI scenario: environment, teammates, and communi-
cation protocol. An additional contribution is a set of heuris-
tic algorithms for choosing when to query, that are shown to
outperform previous work in these complex configurations.

Background
Communicating agents has been a fertile research area in
the context of distributed multiagent systems (Singh 1998;
Cohen, Levesque, and Smith 1997; Decker 1987). Gold-
man and Zilberstein (2004) formalized the problem of a de-
centralized POMDP with communication (DEC-POMDP-
com). Communication in Ad-Hoc Teamwork (CAT) is a
close problem that shares some similar assumptions: all
teammates strive to be collaborative and the agents have
a predefined communication protocol available. However,
DEC-POMDP-com uses a single model that is collabora-
tively controlled by multiple agents, whereas CAT is set
from the perspective of one agent that has no additional
knowledge about its teammates’ policies and that it cannot
change the properties of these teammates (Stone et al. 2010).

Barrett et al. (2014) considered a scenario in which either
teammates are assumed to share a common communication
protocol, or else this assumption can be quickly tested on
the fly (e.g. by probing). Their work was situated in a very
restrictive multi-agent setting, namely a multi-arm bandit,
where each task was a single choice of which arm to pull. A
different type of CAT scenarios refers to tasks where a sin-
gle agent reasons about the sequential plans of other agents,
and can gain information by querying its teammates or by
observing their actions (Mirsky et al. 2020). This Sequen-
tial One-shot Multi-Agent Limited Inquiry CAT scenario, or
SOMALI CAT, was inspired by the use case of a service
robot that is stationed in a hospital, who mainly have to re-
trieve supplies for physicians or nurses, and has two main
goals to balance: understanding the task-specific goals of its
human teammates, and understanding when it is appropri-
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Figure 1: Example of the tool fetching domain. W , F , and T
are the locations of the worker, fetcher, and toolbox respec-
tively. The locations of the workstations are represented by
the numbered squares.

ate to ask questions over acting autonomously. In such SO-
MALI CAT scenarios, we have additional assumptions: the
task performed requires a sequence of actions; it is also an
episodic, one-shot task; the environment is static, determin-
istic, and fully observable; the teammate is assumed to have
perfect knowledge about the environment; the teammate is
assumed to plan optimally, given that it is unaware of the ad
hoc agent’s plans or costs; and there is one communication
channel, where the ad hoc agent can query as an action, and
if it does, the teammate will forgo its action to reply truth-
fully (the communication channel is noiseless).

The Tool Fetching Domain Our previous work in SO-
MALI CAT introduced an experimental domain known as
the tool fetching domain. This domain consists of an ad
hoc agent, the fetcher, attempting to meet a teammate, the
worker, at some workstation with a tool. The worker needs a
specific tool depending on which station is its goal, and the
worker’s goal is unknown before hand to the fetcher. It is
the job of the fetcher to deduce the goal of the worker based
on its actions, and to bring the correct tool to the correct
workstation. At each timestep, the agents can execute one
action each. Additionally, the fetcher can query the worker
with questions of the form “Is your goal one of the stations
g1, g2...gN?”, where g1, . . . , gN ⊆ G is a subset of all work-
stations. All queries in the original setup are assumed to
have a cost identical to moving one step, regardless of the
content of the query. Figure 1 shows an example of this do-
main where the fetcher is following the path to the toolbox
while the worker is following one of the paths to an unknown
workstation. In this paper, the domain was implemented as a
custom OpenAI Gym environment (Brockman et al. 2016).

When to Query To reason about when to act in the envi-
ronment and when to query, three different reasoning zones
were defined for each query that the ad-hoc agent can ask to
disambiguate a subset of goals (G′ ⊂ G) from (G \G′):

Zone of Branching (ZB) for a set of goals G′ ⊆ G is the
set of timesteps from when the ad hoc agent (the fetcher)

2,3

Figure 2: Example of a domain with multiple toolboxes. T1

houses tool 1 while T2,3 houses tools 2 and 3.

is required to commit to a specific goal and until the end of
the episode, which means the timesteps in which it might
take a different action from the one it would have taken if
it had perfect knowledge about the teammate’s true goal.

Zone of Information (ZI ) for a set of goals G′ ⊆ G is the
set of timesteps from the beginning of the plan and until
there is no longer any ambiguity in the domain between
goals in G′ and G \G′.

Zone of Querying (ZQ) for a subset of goals G′ ⊆ G is
the intersection of these two sets of timesteps, where there
may be a positive value in querying instead of acting.

Given these zones for each subset of goals G′, we can iden-
tify the Critical Querying Point (CQP) as the first timestep
inside ZQ(G

′), and is the first timestep in which the ad hoc
agent should consider whether to query “Is your goal one
of the stations in G′?”. If ZQ(G

′) is empty, then there is no
time in which this query can be useful and CQP (G′) =
−1. In Figure 1, some of the critical querying points are
CQP ({1}) = CQP ({2}) = 6, as it takes the fetcher 5
timesteps to reach the toolbox and only then it enters ZB for
goals 1 and 2.Notice that CQP ({1, 3}) = 6 as well, as in
this case G′ = {1, 3} and G \ G′ = {2}, which means that
there is still a benefit from disambiguating a group of goals
that contains goal 1 and a group of goals that contains goal
2. CQP ({3}) = −1, as by the time the fetcher reaches the
toolbox, the worker has already reached or passed station 3.

Generalizing SOMALI CAT
While previous work successfully demonstrated that each
set of possible queries had a unique optimal time to ask,
namely the CQP, it used a naive approach of choosing half
the relevant goals at random for deciding the content of a
query when multiple queries share the same CQP. Such an
approach also misses the potential in more complicated sce-
narios, such as when the worker chooses its goal with a non-
uniform probability. or when different queries cost different
amounts based on their content. In this section we modify
some of the assumptions from previous work: having multi-
ple tool stations instead of just one (hence having multiple
zones of branching); having a non-uniform distribution over
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the possible goals the worker might reach; and having dif-
ferent query cost models rather than a unit cost per query.

Multiple Zones of Branching In previous work, domain
setups only contained one toolbox that housed all the tools.
This meant that effectively all queries had the same CQP re-
gardless of their content, so an efficient strategy was to query
about half of the goals randomly at the CQP. However, when
there is more than one tool location present, this strategy no
longer holds. Figure 2 shows an example when this strategy
falls short. In this example, the tool for station 1 is in the top
toolbox (T1) and the tools for goals 2 and 3 are in the bot-
tom toolbox (T2, T3). The first point in time when the fetcher
might want to query is after it arrives at the toolbox T1. If
it were to query about half the goals randomly, it may ask
“Is your goal station 1?” This action is effectively a wasted
query, since it does not add new information, which means
that the fetcher cannot act upon its current knowledge.

Non-Uniform Goal Distribution Another assumption
made in previous work was that the worker is always as-
signed a goal according to a uniform probability distribu-
tion. This assumption may not hold in practice. For in-
stance, if a human were to take the part of the worker, they
may be more likely to choose goals that are closer to them.
Knowledge of this distribution may allow the fetcher to con-
struct more informative queries. For instance, if there are
three goals in a domain, and the worker goal distribution is
g1 = 0.98, g2 = 0.01, g3 = 0.01 then it is likely better to
query about {g1} or {g2, g3} than about {g2} or {g3} (the
fetcher is more likely to learn the worker’s true goal with the
former queries than with the latter ones).

Query Cost An assumption that was used in previous
work is that the cost of querying is uniform, relatively small,
and is not affected by the content of the query or its tim-
ing. However, it is very likely that a different cost model
would result in different performance. If the cost of a query
is larger than the value of the information gained, then there
will be no benefit from asking such a query. We investigate
how effective various query strategies are with different cost
models. We consider two variables for a cost model in par-
ticular: base cost (bc), or the initial cost of asking any query,
and station cost (sc), or the additional cost of including an-
other station in a query. The total cost of asking a query q
that asks “Is your goal one of the stations g1, g2, ...gN?” is
bc+sc∗N . Importantly, in such a cost model, querying about
many goals is more costly than querying about just one goal.
This means that in the first running example, querying about
{g2, g3} or {g1} are no longer equal in their potential bene-
fit, and the latter, smaller query becomes preferable.

Query Algorithms
We present a basic objective for determining what to query
without any of the new assumptions presented earlier in this
section. Previous work would query about half the relevant
goals to try and maximize information gain. However rea-
soning more thoroughly regarding which goals to ask about

can give even better performance. Consider the pairs of goals
GB = {(gi, gj)|t ∈ ZB(gi, gj)} where t is the current time
and gi, gj ∈ GB , a set of all N possible goals that might
still be the true goal of the worker. We can construct a bi-
nary vector ~x of length N such that if xi is the i-th value in
that vector, then goal gi is included in the query if and only
if xi = 1. A query that asks about a subset of goals G′ ⊆ G
will disambiguate between the sets G′ and G\G′. Therefore,
to increase the information gained from the query, we want
to split the pairs of goals (gi, gj) as evenly as possible be-
tween G′ and G \G′. We write the following maximization
goal

max
∑

(gi,gj)∈GB

(xi ⊕ xj) (1)

The term in the objective is 1 only when one x is 0 and
the other is 1. This objective ensures that the query disam-
biguates between as many of the pairs of goals as possi-
ble. Consider the example above when the fetcher arrives
on toolbox T1. This approach is guaranteed to now ask ei-
ther “Is your goal in {g1}?” or “Is your goal in {g2, g3}?”,
both of which are guaranteed to allow the fetcher to act in
the next timestep regardless of the worker’s answer.

While the above can easily handle multiple tool locations,
it can fail under circumstances where there’s a non-uniform
probability distribution over the worker’s possible goals. To
reason about such circumstances, we modify the integer pro-
gram’s objective from the previous section to weigh the
goals by the ad-hoc agent’s current belief state:

max
∑

(gi,gj)∈GB

(P (gi) + P (gj)) ∗ (xi ⊕ xj) (2)

where P (gi) refers to the probability that the worker’s goal
is gi. Intuitively, this new equation will prioritize goals that
are more likely. If the worker’s goal has the same probability
to be either gi or gj , than it is most informative to disam-
biguate between the two. On the other hand, if one goal has
a probability of 0.99, as in the example in section , it would
be advantageous just to query about that one goal. Incorpo-
rating the probabilities of goals in the objective as shown
above results in the method prioritizing disambiguating this
higher probability goal from others.

Finally, a complete model that is able to reason about all
of the extensions presented in the previous section is still
required to incorporate different query cost models. Since
we want to minimize the needed query cost as part of our
objective within the integer program, we add the negative
cost of the query to our objective. Consequently, the final
integer program objective becomes

max
∑

(gi,gj)∈GB

(xi⊕xj)∗(P (gi)+P (gj))−
∑
i

(xi∗sc) (3)

where sc is the cost of including a goal in a query. This ob-
jective now simultaneously attempts to maximize the prob-
ability that the ad hoc agent will be able to act in the next
timestep and minimize the cost of the query. All objectives
shown above were solved with the Coin-Or Integer Program
Solver using PuLP as the front end (Forrest et al. 2018;
Mitchell, Consulting, and Dunning 2011).

22



Table 1: The different algorithms used in the experiments.

Never Query Never Queries but waits
until it knows an action is optimal

Random Query Randomly asks about half the remaining
potential goals when in a ZQ

Max Binary Policy Optimizes the query according to
Equation 1 when in a ZQ

Goal Prob Policy Optimizes the query according to
Equation 2 when in a ZQ

Weighted Cost Policy Optimizes the query according to
Equation 3 when in a ZQ

Results
We hypothesized that our new methods should be able to
significantly outperform the previous approach regardless of
the cost model used or the worker’s probability of choos-
ing goals. The experiments compare 5 different query algo-
rithms, as presented in Table 1. Additionally, if the fetcher is
going to query in a given timestep, it may be advantageous
to query about goals that are not critical for acting. That is,
goals g such that (g, g′) 6∈ GB∀g′ ∈ G. While it is possible
to modify the objective to consider these goals, the size of
the integer program quickly increases beyond what is rea-
sonably tractable. Therefore, as a heuristic, we include half
of these stations in the query in order to increase informa-
tion gain. Each of the following experiments has a grid size
of 50× 50 with 100 stations located randomly. Each station
has a required tool that is in one of five random toolbox lo-
cations. We assume the cost of all non-querying actions is
1. All results are averaged over 100 random instances where
each instance consists of a station and tool locations, the ini-
tial fetcher and worker positions and a specific workstation
assigned as the worker’s goal.
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Figure 3: Marginal cost of the fetcher’s plan execution given
a varying cost per station in a query, under uniform distribu-
tion of goals for the worker.

Figure 3 shows the marginal plan execution costs over the
optimal plan, assuming an oracle that lets the fetcher know
what’s the worker’s true goal. The x-axis shows different ad-
ditional cost per workstation (sc) in a query, given an initial
query cost (bc) of 0.5. The probability of a worker being as-
signed a goal is uniform across all 100 goals. As shown,
all query methods decrease in performance as the cost per
station increases, however Weighted Cost Policy decreases
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Figure 4: Marginal cost of the fetcher’s plan execution when
the probability of a worker being assigned to a goal is a soft-
max of the worker’s negative (top) and positive (bottom) dis-
tances to a goal.

at a much lower rate compared to other methods and never
performs significantly worse than the Never Query method.

Figure 4 show marginal costs with various additional cost
per workstation in a query, but with a non-uniform worker
goal distribution. The probability of a worker being as-
signed a goal as the softmax of the negative and of the pos-
itive worker’s distances to goals respectively. Intuitively, it
respectively defines workers that are most likely to prefer
workstations that are closer or farther from their initial lo-
cation. These graphs present similar results, with the pri-
mary difference being the relative performance of the Never
Query Strategy. In Figure 4 (top), the worker is much more
likely to move to a close workstation, which reduces the
maximum time before the fetcher knows the worker’s goal.
Similarly in Figure 4 (bottom), the worker is more likely to
move to a distant station, increasing this maximum time for
the fetcher to know its goal, which causes the Never Query
strategy to perform better or worse respectively.

Conclusion

We presented several extensions to SOMALI CAT and
several novel algorithms for determining what and when
to query, and demonstrated their performance in the Tool
Fetching Domain. Our new algorithms were able to outper-
form previous techniques in multiple scenarios. For future
work we plan to further generalize our query algorithms to
perform well in any SOMALI CAT domain, regardless of the
query cost model, probability over goals, or other domain-
specific details.
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Abstract

In collaborative privacy preserving planning (CPPP), agents
can plan together by revealing private dependencies between
their public actions to other agents. Perhaps one of the best
methods for computing plans under privacy constraints uses
a projection of the complete problem that captures these pri-
vate dependencies. In this paper we investigate the partial
disclosure of such private dependencies. We create a pro-
jection where agents publish only a part of their dependen-
cies, and attempt to create a complete plan using these de-
pendencies only. We investigate different strategies for de-
ciding which dependencies to publish, and how they affect
both the coverage and the privacy leakage of the solutions.
Experiments over standard CPPP domains show that the pro-
posed dependency-sharing strategies enable creating an effec-
tive projection without sharing all private dependencies.

1 Introduction
Designing autonomous agents that act collaboratively is an
important goal. A fundamental requirement of such collabo-
ration is to plan for multiple agents acting to achieve a com-
mon set of goals. Collaborative Privacy-Preserving Plan-
ning (CPPP) is a multi-agent planning task in which agents
need to achieve a common set of goals without revealing
certain private information (Brafman and Domshlak 2008).
In particular, in CPPP an individual agent may have a set
of private facts and actions that it does not share with the
other agents. CPPP has important motivating examples, such
as planning for organizations that outsource some of their
tasks.

There are two common approaches to CPPP: single search
and two-level search. Single search solvers operate by run-
ning a joint forward search (Nissim and Brafman 2014;
Štolba and Komenda 2017) where agents that apply public
actions send the resulting state to other agents that continue
the forward search. Two-level search solvers operate by cre-
ating a public plan that is shared by all agents, and then have
each agent extend it locally with private actions. In either
case, the agent publish dependencies between the public ac-
tions. For example, in a solver from the first approach, an
agent i that receives a state s from another agent j that ap-
plied a public action a1, also receives from j an index for its

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

own private facts. Later, when i continues the search from s
and executes another public action a2, it returns the state to
j with the same index. Thus, j learns that applying a1 may
have helped i in making a2 possible. We call this a private
dependency between the actions.

Maliah, Shani, and Stern (2016a) take this idea further,
and compute and publish a set of such private dependencies
in the form of artificial facts. This allows the agents to jointly
create and publish a projection of the problem that contains
all the public facts, public actions, and published artificial
facts that capture private dependencies. Such a projection
can be used to construct heuristics for single search CPPP
algorithms such as MAFS. In two-level search solvers, this
projection can be used to generate the public plan, defining
the public plan to be a solution to the problem defined by the
projection.

In many cases, however, the agents can construct a plan
requiring only a small portion of the private dependencies.
In such cases, it may be preferable to reveal only a part of the
dependencies, intuitively reducing the amount of disclosed
private information. In this paper we focus on the settings
where agents publish only a limited number of such depen-
dencies. We suggest 4 different methods for deciding which
dependencies should be published first, in order to construct
a plan with as little disclosed dependencies as possible.

We provide experiments on standard benchmarks from
the CPPP literature, showing that our methods, in many do-
mains, publish as little private dependencies as possible in
order to reach a plan. We also analyze the privacy leakage of
our methods (Štolba, Tožička, and Komenda 2018), show-
ing that, as one would intuitively expect, publishing more
dependencies leaks more private information.

2 Background
A MA-STRIPS problem (Brafman and Domshlak 2013) is
represented by a tuple 〈P, {Ai}ki=1, I, G〉 where: k is the
number of agents, P is a finite set of primitive propositions
(facts), Ai is the set of actions agent i can perform, I is the
start state, and G is the goal condition.

Each action a = 〈pre(a), eff (a)〉 is defined by its pre-
conditions (pre(a)), and effects (eff (a)). Preconditions and
effects are conjunctions of primitive propositions and liter-
als, respectively. A state is a truth assignment over P . G is
a conjunction of facts. a(s) denotes the result of applying
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Figure 1: The rovers domain, where two rovers, r1 and r2 can ac-
cess two base stations b1 and b2, collaborating to take measure-
ments of a rock.

action a to state s. A plan π = (a1, . . . , ak) is a solution to
a planning task iff G ⊆ ak(. . . (a1(I) . . .).

Privacy-preserving MA-STRIPS extends MA-STRIPS by
defining sets of variables and actions as private, known only
to a single agent. privatei(P ) and privatei(Ai) denote the
variables and actions, respectively, that are private to agent
i. public(P ) is the set of public facts in P . publici(Ai), the
complement of privatei(Ai) w.r.t. Ai, is the set of public
actions of agent i. Some preconditions and effects of public
actions may be private, and the action obtained by removing
these private elements is called its public projection, and it
is known to other agents. When a public action is executed,
all agents are aware of the execution, and view the public ef-
fects of the action. The goals can be public, but can also be
private to a single agent. An agent is aware only of its local
view of the problem, that is, its private actions and facts, its
public actions, the public facts, and the public projection of
the actions of all other agents. That is, for public actions of
other agents, the agent’s local view contains only the public
preconditions and effects of these actions.

In the Rovers example in Figure 1, 2 Mars Rovers collab-
orate to explore rocks on the surface of Mars. The Rovers
need to perform some sensor measurements on rocks, and,
due to limited carriage capacity, can only carry 2 sensors at
a time. Unused sensors are stored in base stations, and can
be taken and returned to the base stations as needed.

The public facts in this problem are the sensors located
in bases, and the current condition of the target rock. The
public actions are taking and returning sensors to the base
stations, putting collected rock samples at the base stations,
and performing various examination actions on rocks, such
as taking an image, mining a mineral, or collecting a sample.
The sensors held by a rover and its position are private, and
the private actions are movement actions.

3 Algorithmic Approaches
There are two major approaches to planning in CPPP
(Torreño et al. 2017). The first approach begins by com-
puting a public plan, which is known as a coordination
scheme (Nissim, Brafman, and Domshlak 2010; Brafman
and Domshlak 2013; Torreno, Onaindia, and Sapena 2014).
Then, the agents independently extend the public plan into
a complete plan by adding private actions. In this extension
each agent attempts to achieve the preconditions of its own

public actions in the public plan.
For example, in the DPP planner (Maliah, Shani, and

Stern 2016b) the agents compute together a single agent pro-
jection of the CPPP problem that captures the dependencies
between public actions. That is, which public actions facili-
tate the execution of other public actions of that agent. In our
running example, such a dependency exists, e.g., for agent 1
between picking up a camera at base b1 and taking a photo
of the rock. These dependencies are computed using lim-
ited regression from the precondition of a public action to
the effects of other public actions. Given this projection, one
can compute a public plan using a standard classical plan-
ner. The projection is incomplete, and it is hence possible
that the generated public plan cannot be extended to a com-
plete plan, in which case DPP fails.

An alternative approach to computing a high level scheme
is to compute a complete plan directly. This can be done
by each agent running a distributed forward search algo-
rithm over its own action space, informing other agents of
advancements in the search process.

The first algorithm in this family is MAFS (Nissim and
Brafman 2014) — a distributed algorithm in which every
agent runs a best-first forward search to reach the goal. Each
agent maintains an open list of states, and in every iteration
each agent chooses a state in the open list to expand, gener-
ating all its children and adding them to the open list (avoid-
ing duplicates). Whenever an agent expands a state that was
generated by applying a public action, it also broadcasts this
state to all other agents. An agent that receives a state adds it
to the open list. For example, in Figure 1, when agent 1 puts
down the camera at base b2, it broadcasts this state to all
other agents. Agent 2 can now use this state to pick up the
camera and take a photo of the rock. To preserve privacy,
the private part of a state is obfuscated when broadcasting it,
e.g., by replacing the private facts with some index, such that
only the broadcasting agent knows how to map this index to
the corresponding private facts. Once the goal is reached, the
agent achieving the goal informs all others, and the search
process stops. MAFS can be extended in several ways.

Štolba and Komenda extended MAFS by applying two dif-
ferent open lists, one ordered by a local heuristic and the
other by a global heuristic. Maliah et al. Maliah, Shani, and
Brafman (2016) compute macros — sequences of private
actions bounded by public actions — to expedite the local
search process of the agent. For example, in Figure 1, once
agent 1 has found the sequence of actions allowing it to get
from base b1 with the camera to the rock, it can save this
sequence as a macro, allowing agent 1 to apply this macro
in all future explored states where he wants to get from b1 to
the rock, expediting the search process.

4 Partial Disclosure of Private Dependencies
We now present the main contribution of this paper — reduc-
ing the amount of disclosed private dependencies and hence,
the amount of disclosed information. In this paper, we dis-
cuss this in the context of the DP Projection method, which
can be used either in a dedicated planner called the DP Plan-
ner or as a heuristic for MAFS-based solvers (Maliah, Shani,
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Figure 2: Local perspective of agent 1 private dependencies in the Rovers domain.

and Stern 2016a). We focus on the former application of the
DP projection and only briefly discuss possible extensions
to MAFS-based solvers.

For completeness and ease of exposition, we now describe
a brief and slightly modified version of the DP projection.
We say that a public action a facilitates the achievement of
a private fact f , if (1) f is an effect of a, or (2) there exists a
sequence of private actions a1, ..., ak such that: f is an effect
of ak, each ai takes as precondition an effect of some aj s.t.
j < i, and a1 takes as precondition an effect of a.

Definition 1 (Private Dependency). An action a is said to
have a private dependency if it has a private fact f as a
precondition such that one of the following hold: (1) there
is another public action a′ that facilitates achieving f , (2) f
is either true in the start state or can be achieved from it by
only applying private actions.

For example, in the rovers domain the action take-
image(rover1, rock1) has a private dependency because it
has a private precondition holding(rover1, camera1) that
the public action take(rover1, camera1, base1) facilitates
to achieve.

The agent jointly create a projection of the public prob-
lem, containing all the public facts, and a projected version
of the public actions. For each public action ai that requires
a private precondition fj , we create an artificial public fact
f ij . The projected public version of a requires f ij as precon-
dition. For each action a′ of the agent that facilitates the
achievement of the private fj , the agent publishes f ij as an
effect of a′, thus publishing the private dependency of a on
a′, although the way that fj is achieved remains obscured.

For a public action a1 of an agent i we introduce a pub-
lic artificial fact fa1

into the projection, signifying that a1
was executed. If a1 facilitates the achievement of a private
precondition of an action a2 of agent i, then the projected a2
will have fa1

as precondition. Hence, the artificial predicates
fa capture the private dependencies between public actions.

The DP projection described by Maliah, Shani, and
Stern (2016a) is created by having all agents compute and
publish all their private dependencies. In this work, we limit
to k the number of private dependencies of each agent is al-
lowed to publish, where k is a parameter. Technically, each
agent publishes all the artificial preconditions of all pub-
lic actions, as well as k artificial effects of public actions.
All public preconditions are published to avoid an over opti-
mistic projection, where agents believe that they can execute
public actions with no previous requirements.

4.1 Theoretical Analysis
Before describing several heuristics for choosing which k
private dependencies to share, we explore the theoretical im-
plications of limiting the number of private dependencies
that are being shared.

LetA andB be two DP projections. We denote byA ⊆ B
iff the set of private dependencies shared by A is a subset of
the set of private dependencies shared by B. Let plans(X)
be the set of all plans that can be generated by a DP projec-
tion X . Let Psolve(X) be the probability that a public plan
chosen randomly from plans(X) can be extended to a full
plan (i.e., include also the private actions of the agents).
Theorem 1. Given two DP projections A and B of the
same problem, such that A ⊆ B, then: (1) plans(A) ⊆
plans(B), and (2) Psolve(A) ≥ Psolve(B).

Proof outline: Sharing a private dependency reveals that
an additional artificial facts is achieved by some known pub-
lic action. Artificial facts are only used as preconditions
for some public actions. Thus, revealing private dependen-
cies only facilitates performing additional actions, and thus
more plans. The second part of Theorem 1 can be deduced
from the fact that each link in the high level plan has a
certain probability for extendability, and when increasing
the amount of dependencies, you increase the links amount,
bringing the probability to be lower than it was without that
link.
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(a) Elevators, max dependencies = 6240 (b) Logistics, max dependencies = 150 (c) Rovers, max dependencies = 700

(d) Blocksworld, max dependencies =
1224 (e) Depot, max dependencies = 4320 (f) Zenotravel, max dependencies = 1560

(g) Driverlog, max dependencies = 5800 (h) Legend.

Figure 3: Number of solved problems for each amount of published dependencies. Graphs truncated after all methods solve all problems. The
maximal number of private dependencies in a problem in the chosen domain is shown for each domain

4.2 Ranking Published Dependencies
Above we discussed the implications of sharing k private
dependencies, but we did not specify how to choose which
k private dependencies to share. We now close this gap and
suggest 4 different methods for selecting which dependen-
cies to publish first. To better illustrate our methods, Figure 2
shows the local perspective of the private dependencies of
agent 1 in the Rovers domain. Black nodes in the first and
third column represent public actions, purple nodes in the
fourth column represent public facts, and blue nodes in the
second column denote artificial facts that capture private de-
pendencies between public actions. The public actions on
the first column generate the artificial facts while the public
actions on the third column require them as preconditions,
and generate the public facts. For ease of exposition, we la-
bel the artificial facts by the intuitive link that they represent,
although in reality, of course, the artificial facts have no such
meaningful names.

We take an iterative approach — all agents publish one
artificial effect of one public action at each iteration. If the
public projection cannot be solved, all agents publish a sec-
ond artificial effect of a public action, and so forth. Hence,
at each iteration an agent must decide on the next artificial
effect to publish, given the effects it has published thus far.

Our first method, which we denote m1, publishes artifi-
cial effects that are used as preconditions in as many pub-
lic actions as possible. In the example in Figure 2, we can

publish either the effect of take(rover1, camera1, base1),
or the effect of take(rover1, camera1, base2), represent-
ing taking the camera from either base, as it supplies a
precondition for 3 public actions (taking an image, min-
ing a mineral, and collecting a stone sample). Let us as-
sume that the effect of take(rover1, camera1, base1) was
published first. To avoid that in the next round the effect of
take(rover1, camera1, base2) will be chosen, providing the
same preconditions, we subtract from the number of precon-
ditions the amount of times this artificial effect was already
published. Hence, at the next step, all unpublished effects
have the same ranking.

The second method, which we denote m2, publishes an
effect that enables the achievement of as many public facts
as possible. An effect enables the achievement of a public
fact f if it is a precondition to an action that achieves f .
In our illustration, this is when there is a path from a blue
private fact to a purple public fact via a black node. Again,
we subtract the number of times that an artificial fact was
published as an effect to avoid repeatedly choosing the same
effect. Hence, if we again select at the first iteration the effect
of take(rover1, camera1, base1), at the second iteration we
will select another artificial fact.

The third method, denoted m3, attempts to maximize the
amount of public actions that can be executed. That is, in-
stead of publishing the artificial fact that provides a pre-
condition for as many actions, we publish the artificial fact
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Domain Method Min. cost Max. cost Min. dep. cost Max. dep. cost Improvement
m1 47.70 95.90 75.00 48.10 34.92%
m2 47.70 95.50 73.70 48.10 33.49%
m3 43.50 101.00 74.90 43.90 37.69%Blocksworld

m4 43.50 101.00 74.80 43.90 37.52%
m1 48.89 65.00 61.37 48.89 16.97%
m2 48.89 64.63 61.37 48.89 16.97%
m3 45.06 50.28 49.94 45.06 8.87%Depot

m4 45.06 50.28 49.94 45.06 8.87%
m1 37.58 67.32 63.63 38.63 28.12%
m2 37.11 67.37 63.63 38.63 28.43%
m3 38.00 67.05 63.32 38.63 27.37%Driverlog

m4 38.00 67.11 63.32 38.63 27.37%
m1 65.15 87.10 68.00 80.60 4.60%
m2 65.05 88.05 70.55 80.60 8.23%
m3 64.60 84.45 68.85 80.60 8.37%Elevators

m4 65.15 84.10 68.75 80.60 5.87%
m1 59.65 66.10 65.45 60.25 8.52%
m2 59.65 66.10 65.45 60.25 8.52%
m3 59.75 66.20 65.45 60.25 8.47%Logistics

m4 59.75 66.20 65.45 60.25 8.47%
m1 72.85 80.10 78.35 75.30 6.59%
m2 72.60 77.40 75.20 75.30 3.58%
m3 72.90 77.75 75.85 75.30 3.76%Rovers

m4 73.10 77.70 75.80 75.30 3.36%
m1 68.25 73.20 69.90 71.20 2.97%
m2 68.25 73.20 69.90 71.20 2.97%
m3 68.00 73.45 69.90 71.20 2.73%Zenotravel

m4 68.00 73.45 69.90 71.20 2.73%
m1 57.15 76.39 68.81 60.43 14.67%
m2 57.04 76.04 68.54 60.43 14.60%
m3 55.97 74.31 66.89 59.28 13.89%Average

m4 56.08 74.26 66.85 59.28 13.46%

Table 1: Averaged cost over all of the problems for each domain. The data in the “Improvement” column is the percentage of the minimal
cost out of the first solved cost.

that enables as many public actions as possible. Here, in
the first iteration, publishing the effect of taking the cam-
era from either base, or the effect of clearing the stor-
age on the rover, both enable immediately one public ac-
tion (taking an image, and picking a sample into the stor-
age bin, respectively). Assuming that we first select, again,
take(rover1, camera1, base1), at the next iteration, taking
the mineral detector from either base station or clearing the
storage, both enable one additional action, and are hence
tied.

In this method we also need to balance between enabling
new public actions that have not been available given the
already published effects, and enabling new ways to apply
already possible actions, that may result in better plans. As
such, for each action a that is enabled by the published ef-
fect, we discount its score by 1

ca+1 where ca is the number
of times that a was enabled by previously published facts.
Hence, at the first time that an action is enabled, it provides
a score of 1, at the second time, a score of 1

2 , and so forth.

The last method, denoted m4, is similar to m3, but fo-

cuses not on the public actions, but on the public effects.
That is, we publish an effect that enables achieving as many
public facts as possible. Again, we discount the score of a
public fact by 1

cf+1 where cf is the number of times that
public fact f was enabled by previously published facts. In
this method, again taking the camera and clearing the stor-
age are tied in the first iteration. In the second iteration, how-
ever, if we again select take(rover1, camera1, base1) first,
taking the mineral detector has a better score, because it en-
ables the mineral drilling action, that has 2 public effects,
one of which was already obtained, and hence a score of 1 1

2 .

5 Empirical Analysis
We now evaluate our methods using benchmarks from
the CPPP literature (Štolba, Komenda, and Kovacs 2015).
For each problem in each benchmark domain, we ran the
projection-based solver (Maliah, Shani, and Stern 2016a)
with a growing number of revealed dependencies.

Figure 3 shows the number of problems that were solved
on each domain given the number of revealed dependencies
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(a) Zenotravel. Blue line represents all methods.

(b) Logistics. Blue line represents all methods.

(c) Blocksworld.

(d) Legend.

Figure 4: Privacy leakage in the various domains. Problems on the
x-axis are sorted by increasing leakage.

by each agent. For each problem, we also computed a “Gold
Standard” value, which is the number of private dependen-
cies used by the plan that was generated when all depen-
dencies are known. The gold standard serves as a baseline
for comparison, indicating how many private dependencies
are sufficient to find a solution.1 In all domains, methodm3,
which prioritize enabling additional public actions, performs
the best. The rest of the methods vary in their performance.
For example, on Rovers and Blocksworld, m4, that priori-
tizes achieving additional public facts, performs the same as
m3 and better than the other methods, but on Elevators m4

performs the worst. On Elevators, arguably the domain with
the highest amount of required collaboration, differences be-
tween methods are most pronounced.

An interesting phenomena occurs, e.g., in Blocksworld,
where some problems are solved when not all dependencies
are available, but cannot be solved when more dependen-
cies are published. This is because the projection method
may produce a public plan that cannot be extended into

1This does not mean, however, that it is not possible to find a
solution if fewer private dependencies are revealed.

a complete plans. Our methods were often able to pub-
lish dependencies that resulted in plans that could be ex-
tended. Later, additional dependencies confused the planner
to choose plans that could not be extended. Zenotravel and
Logistics are the easiest domains in the sense that all meth-
ods managed to obtain solutions for all problems after shar-
ing only a small number of dependencies (note the scale in
the x axis of the Logistics results). Most problems in the
Driverlog domain were also easy in this sense, except for a
few difficult problems which required more dependencies.
On Depot, on the other hand, all methods perform much
worse than the gold standard, leaving much room for im-
provement.

Next, consider the cost of the generated public plan. Ta-
ble 1 shows for each domain the results of the following
averaged factors: (1) Min. cost, (2) Max. cost, (3) Min. dep.
cost – the solution cost for a projection with the least amount
of dependencies revealed, and (4) Max. dep. cost – the so-
lution cost for a projection with the maximal amount of
dependencies revealed. In addition, the column “Improve-
ment” shows the percentage of the minimal cost out of the
first solved cost (First solved cost−Minimal cost

F irst solved cost ∗ 100%). We
can see that on average (marked with green color at Table 1),
the improvement is only about 14% for the different meth-
ods, which means that the first time the problem was solved
gave us a pretty good solution (only 14% worse than the best
solution that was found when we revealed more dependen-
cies). However, the impact of sharing private dependencies
on solution cost varies significantly per domain. For exam-
ple, in Blocksworld the improvement is almost 40% while
for Zenotravel it is always less than 3%. Also, note that in
most cases there was almost no difference between the dif-
ferent heuristics (m1-4) in terms of solution cost.

Different methods require a different amount of published
dependencies to solve the problem. While it is intuitive that
revealing less dependencies preserves more privacy, this is
not necessarily so. To measure the amount of privacy pre-
served by each algorithm, we use the privacy leakage tool2

(Štolba, Tožička, and Komenda 2018) for measuring the
amount of private information that is leaked by each method.
Figure 4 shows the privacy leakage in 3 domains. For each
problem in each domain, we take the first time that it was
solved by each method, and generate the input for the pri-
vacy leakage tool. We measure the privacy leakage ratio
from the perspective of agent 1 in each problem. The “Gold
Standard” series’s privacy leakage is calculated as if we only
revealed those dependencies.

In Zenotravel and Logistics all methods publish the same
number of dependencies before reaching the goal, although
not necessarily the same dependencies. In these domains,
the privacy leakage was identical for all methods, except for
the gold standard, and is hence represented by a single line.
In Blocksworld, however, the privacy leakage ratio of the
different methods was not the same. As can be seen, there
is a direct correlation between the amount of published de-
pendencies required for computing a plan (Figure 3d), and
the amount of leaked privacy (Figure 4c). This further sup-

2http://github.com/stolba/privacy-analysis
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ports our intuition that publishing less dependencies results
in higher privacy. However, analysis of privacy leakage in
CPPP is an ongoing research topic and it is difficult at this
stage to draw general conclusions.

6 Conclusion and Future Work
In this work we suggest methods for publishing only a
part of the private dependencies between public actions of
agents, in order to reduce the amount of privacy leakage.
We focus on the projection method that uses all private de-
pendencies to compute a public plan, showing that in many
cases a public plan can be computed with only a small por-
tion of the dependencies, and that our heuristic methods
rapidly find a good subset to share. We provide experiments
over standard benchmark domains, comparing the coverage
of our methods, as well as the amount of leaked privacy.

In the future we will expand our methods to MAFS, where
an agent may publish only some public states that it reaches,
and to other privacy preserving planning techniques as well.
Another thing that we shall do in the future is finding the
optimal set of dependencies that need to be revealed in order
to solve each problem. This shall replace the gold standard
that we have used now and will help us find better methods
that will outperform the methods that were described in this
paper. Future work will also include an analysis of the pri-
vacy leakage in the context of using the shared dependencies
in the MAFS planner. Finally, it is also worthwhile to assign
importance values to different dependencies, where each de-
pendency has an intrinsic value that needs to be considered.
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Abstract

Privacy in multi-agent planning is an important and well-
discussed problem. But it is difficult to prove whether an al-
gorithm allows the deduction of private values. We introduce
a framework that allows us to prove whether the messages
transmitted during a Multi-Agent planning instance maintain
strong privacy of the problem. It can be verified for an algo-
rithm in general or for a specific execution of the algorithm on
a planning task. We then use the framework to show that an
A∗-based secure-MAFS algorithm is in general not strongly
privacy preserving.

Introduction
With the commercialization of automated machines and in-
creasingly flexible and automated industry as well as the in-
crease in computing power, the demand for algorithms that
allow cooperative planning is high. But especially in the in-
dustry, where business secrets can be the foundation of suc-
cess and their disclosure might mean the loss of many jobs,
any cooperation can only be secure with tight guarantees for
the privacy of their assets.

Several concepts of privacy exist and are used, depending
on the degree of privacy that is necessary in the adopted do-
main. On the lower end of this range stands the notion of
weak privacy, which is satisfied if an algorithm doesn’t ex-
plicitly communicate private values to partners. While this is
easy to verify, it doesn’t account for the fact, that the trans-
mitted information might still be used to deduce private in-
formation. On the other end, strong privacy requires that no
agent can deduce the value or even the existence of another
agent’s private variables (Brafman 2015). While this defini-
tion is very strong, it is unclear how to verify whether an
algorithm actually upholds it.

With the definition of PST-indistinguishability (Beimel
and Brafman 2018), a verifyable lower bound for strong
privacy was proposed. It states that all messages sent by
an agent as well as their order must be uniquely defined
by the public search tree. Other privacy definitions demand
that the identity of the other agents is not revealed (Faltings,

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Léauté, and Petcu 2008) or that agents can’t construct an up-
per bound on the number of objects of a type (Maliah, Shani,
and Stern 2018).

We propose a framework that allows us to verify whether
an execution of a multi-agent planning algorithm on a spe-
cific problem leaks private information. We then abstract
from the specific problem and use the same framework to
prove whether any exectution of a planning algorithm can
leak private information. To further visualize this, we apply
it to an A∗-based secure-MAFS algorithm and show that it
leaks private information.

Multi-Agent Planning
A multi-agent planning problem (Brafman and Domshlak
2008) is defined as a 4-tupel Π = (P, {Ai}Ni=1, I, G) where
P is a set of propositions, Ai is a set of actions of an agent
i, I the initial state and G a set of goal states. A part of the
propositions P pub ⊆ P are shared among all agents. Other
propositions P priv,i are private to a single agent i. The ex-
istence of a private variable is only known to the respective
agent and their value can only be affected by this agent’s
actions.

A global state s is defined as a valuation of all proposi-
tions p ∈ P . A state si of agent i is a valuation of all propo-
sitions P i = P pub ∪ P priv,i that affect this agent, that is
all public propositions and those private to agent i. A public
state spub only contains the valuations of the public vari-
ables. As a consequence, each public state describes a set of
global states that differ in the private states of the individual
agents.

We call an action public if the effect contains public vari-
ables. If the effect only contains private variables, the action
is private. From each private action, we can generate a pub-
lic projection apub, by stripping its precondition and effect
of all private propositions.

During the execution of a planning algorithmX , the plan-
ner generates a Planning Tree PTX(Π). The planning tree
is a directed graph which represents the paths and states
that the algorithm expanded during the search. Each node
of the graph corresponds to an expanded state; every edge
represents the occurence of an action. Since an algorithm
might expand states several times during its execution, sev-
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eral nodes can refer to the same state.
We define a planning tree as a 6-tupel PT =
(N,E, i, V,D, d) where
• N = {n1, . . . n|N |} is a set of nodes.
• E = {e1, . . . e|E|} is a set of directed labeled edges. Each

edge ek = (npre, npost, lab) consists of a predecessor
node npre, a successor node npost and a label lab cor-
responding to the action labels of Π.

• i : N → [0, |N |−1] is the indexing function that assigns
a unique index to each node.

• V : N → 2P is the valuation function that assigns a
valuation over the propositions in Π to each node.

• D is a set of additional descriptions that may apply to a
state. For our purposes, it models additional information
that is transmitted during the application of a Multi-Agent
Planning algorithm. This might for example be the path
cost g(s) or the heuristic function h(s).

• d : N → D is the description function assigns the addi-
tional information to a node.
The planning tree is generated iteratively. At first, the

planning tree only consists of the initial state. In each step,
an new state is added to the tree by application of an action
to one of the currently expanded states. The index of the
nodes represents the order in which they were added to the
planning tree. The initial state always carries the index 0.

We use an additional structure that we call the Transmit-
ted Tree T. It models the content of all messages transmitted
between two agents. The transmitted tree has the same struc-
ture as the planning tree, with T = (NT , ET , iT , V,D, d)
and

NT ⊆ N
ET ⊆ T

The subsets NT and ET refer to the nodes and edges that
were transmitted as messages by the algorithm. The index-
ing function iT denotes the order in which the messages
were received. Since not necessarily all expanded nodes are
transmitted, the indices can vary from those of the planning
tree.

In a purely public problem, if all expanded states and ap-
plied actions are transmitted, the transmitted tree is identical
to the planning tree.

Strong Privacy
Brafman defined strong privacy as follows (Brafman 2015):
“A variable or a specific value of a variable is strongly pri-
vate if the other agents cannot deduce its existence from the
information available to them.”
Following this definition, it is not only the value of a private
variable or its function whithin the problem that must stay
unknown to the observer; even the fact that a private variable
exists and has any effect on the execution of the algorithm
must be obscured. In epistemic terms, we can rephrase this
definition:

Definition 1 A variable is strongly private if an observer
can’t distinguish between a world where this variable exists
and affects the execution of the algorithm, and one where it

doesn’t exist.

Initially, this may seem like a paradox - if the variable can’t
have a visible effect, what would be the point in using it?
However, the definition doesn’t say that the worlds are iden-
tical, but only that an observing agent can’t tell which world
it is in.

To illustrate this difference, consider three friends play-
ing a card game. They play a single round, which player A
wins. What the other players don’t know is that player A is
a skilled cheater. In a fair game, the chances of A winning
would have been 1

3 ; since they cheated, it is 1. Hence the out-
come of the game differs from one where A plays fair. But
from the perspective of B and C, the fact that they lost is in
line with the assumption that the game was fair. So the other
agents can’t distinguish between a world where A cheated
and one where they didn’t.

The epistemic formulation implies another important
property of strong privacy. The privacy of a value doesn’t
only depend on the algorithm but also on the observer. What
is indistinguishable for one observer might be distinguish-
able for another.

For this, imagine that the card game from above is played
with a non-standard deck of cards. Before the game, B
looked through the cards and found out that two cards of
each kind exist; player C didn’t. Now A - still a cheater - has
additional cards up their sleeve. They play out the third card
of a kind, which is not supposed to exist. B’s knowledge al-
lows them to deduce that A cheated. From the perspective
of C on the other hand the game still appears to be fair. So
regarding C, the private property that A cheats is preserved;
regarding B it isn’t.

This shows that in order to discuss privacy in a multi-
agent planning setting, we need to model the knowledge of
an agent. In a general case it can be assumed that every agent
knows what algorithm the others use and how that algorithm
works. So we need a way to transform a planning algorithm
into a knowledge model that we can check for consistency.
Only then we can decide whether the execution of the algo-
rithm and the exchanged messages are in accordance with
the assumption that no private variables exist.

For simplicity, we regard the case of two agents: a sender
S and a receiver R. The sending agent expands its private
search tree and sends messages toR whenever the algorithm
requires it. R acts as an honest, but curious agent, meaning
that they apply the algorithm in the predefined manner, but
try to deduce the private variables of S from the messages it
receives.

We assume that the deduction occurs after the planning
algorithm is complete, so that all messages are sent and the
knowledge of R is static. R has the following knowledge, as
illustrated in Figure 1:
• a set of actions

Apub
S : {(apub,prepub

a ,postpub
a }

that represents the public projections of the actions of S
• The transmitted tree TS which models the messages ex-

changed between the agents. It contains the state descrip-
tions and actions that were transmitted as part of the mes-
sages and are therefore known to be part of the planning
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Figure 1: Schematic depiction of the deduction process.

tree.

• The algorithm model MS which models the behavior of
S’s algorithm.

Specifically, the knowledge model contains no private vari-
ables of S. If R can construct a planning tree which is a
possible product of the algorithm model and yields the mes-
sages that make up the transmitted tree, then S’s privacy is
preserved. However, if such a planning tree doesn’t exist,
R’s knowledge isn’t consistent with the actual execution of
the algorithm. If we have a high trust in the algorithm model,
the only possible reason for this inconsistency is that some
private variable existed during the actual execution.

Definition 2 We call the execution of a multi-agent planning
algorithm on a planning problem Π publicly self-sufficient,
if a planning tree exists, which doesn’t contradict the agent’s
algorithm model model or the transmitted tree and contains
only public variables.

Equivalently we could say that a problem is publicly self-
sufficient if the transmitted messages and the algorithm
model are consistent with the assumption that no private
variables exist.

Planning Logic

In order to prove whether tranmitted tree and algorihtm
model are consistent, we need to represent both within a
common framework, wich we call the Planning Logic. The
planning logic is a set of propositions and logic rules that are
able to model the execution of a multi-agent planning algo-
rithm. It it based on the concept of planning as satisfiability
(Kautz and Selman 1992). Since the valuations of the base
propositions of the planning problem change from state to
state, the logic needs a distinct set of base propositions for
each state. Additionally, we need to model the actions with
precondition and effect.

Definition 3 Let Π be a multi-agent planning problem and
ns the number of states we want to consider. We call LΠ the
planning logic induced by Π over the set of propositional

atoms

PLΠ
= {

psk ∀ p ∈ P ; k = 1, . . . , ns

ask,sj∀ a ∈ AS ; k, j = 1, . . . , ns

}

(1)

For a planning problem with |P | = np propositions and
|AS | = na actions and ns reachable states, this yields a
planning logic with |PLΠ | = np · ns + na · n2

s propositional
atoms.

Each state sk in Π is defined by the valuation of the propo-
sitions P . We define each state in LΠ using a set of proposi-
tions psk , with p ∈ P and k = 1, . . . , ns. A positive literal
psk means equivalently that the proposition p evaluates as
true in state sk.

An action a ∈ AS is defined with a set of propositions
ask,sj and two functions prea(sk) and applya(sk, sj). The
literal ask,sj denotes whether the action a was used in the
transition from predecessor state sk to successor state sj .
The function prea(sk) returns the precondition of a in the
propositions psk of the provided predecessor state. Simi-
larly, the function applya(sk, sj) returns the postcondition
of a in the propositions psj of the successor state and adds
an additional term psj ↔ psk for each base proposition p
not mentioned in the postcondition of a.

During or after the execution of an algorithm, the gener-
ated planning tree can be represented as a valuation of all
propositions of the planning logic. Let X be a planning al-
gorithm and Π a planning problem. We callL(·) the function
that transfers a planning tree or a transmitted tree into a logic
formular based on the planning logic.

Algorithm Models
In order to argue if the transmitted tree is compatible with
the applied algorithm, we need a way to model the algorithm
in the terms of the planning logic. To do this, we construct a
set of axioms that define what planning trees this algorithm
might produce.

Some axioms model properties that are common to all
planning algorithms, for example that each node in the plan-
ning tree must be connected. Others may represent proper-
ties which are unique to the algorithm. An algorithm that
searches the planning domain as a breadth-first search for
example would need an axiom that defines that all reachable
states are part of the planning tree.

In order to use the axioms we need to prove that they ac-
tually form a valid representation of the algorithm.

Definition 4 LetX be a multi-agent planning algorithm and
AX a set of axioms. AX is a sound axiomisation of X iff for
any planning problem Π

∀PT ∈ PTX(Π) : L(PT ) � AX , (2)

where PTX(Π) is the set of all planning trees the algorithm
might generate from X on the problem Π.

This means that all planning trees generated from Π with X
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are consistent with the axioms in AX . For a fully determin-
istic algorithm, PTX(Π) contains only one entry. In a ran-
domized algorithm, a repeated application of an algorithm
X on a problem Π can lead to different planning trees. In
that case, PTX(Π) contains all possible planning trees that
can be created that way.

The definition above guarantees that a set of axioms de-
scribes the algorithm. But it allows different axiomisations
of the same algorithm. In fact, an empty set of axioms would
be a sound axiomisation of any planning algorithm. This
can be used to depict different levels of knowledge that an
agent has. But in general, one would assume that an op-
posing agent has perfect knowledge about the applied algo-
rithm. Accordingly, the knowledge model has to be a com-
plete model of the applied algorithm.

Definition 5 Let X be a multi-agent planning algorithm
and AX an axiomisation of this algorithm. Furthermore, let
Π be a planning problem, and PTX(Π) the set of all plan-
ning trees that the algorithm might generate from X .
The axiomisation AX of X is complete iff for any planning
problem Π

∀PTΠ ∈ PTX(Π) : L(PTΠ) � AX and

∀PT ′Π /∈ PTX(Π) : L(PT ′Π) 2 AX

with PL(PT ′Π) = PL(PTΠ)

(3)

where PT ′Π is another planning tree based on the problem
Π.

In other words, it is impossible to construct a planning tree
PT ′Π based on Π that fulfills the axiomsAX , but differs from
those generated by X . This means that the axiomisation is a
perfect representation of the planning algorithm. For a deter-
ministic algorithm, a complete axiomisation is compatible
with exactly one planning tree: the one that is generated by
the planning algorithm on the public problem. For a random-
ized algorithm, the axioms are compatible with all planning
trees in PTX(Π).

Proving Public Self-Sufficiency
In Definition 2 we defined public self-sufficiency for one ex-
ecution of an algorithm on a specific problem. In order to
analyse whether an algorithm is publicly self-sufficent, we
have to prove whether there are situations in which the algo-
rithm can lead to a privacy leak.

Definition 6 An algorithm X is publicly self-sufficient iff
for any problem Π and any Execution E of the algorithm on
Π

L(TE
X(Π)) � AX (4)

where AX is a complete axiomisation of X and TE
X(Π)

the transmitted tree generated during the execution E of the
algorithm on problem Π.

Secure-MAFS
In the following, we will apply the discussed framework to
an A∗-based secure-MAFS algorithm (Brafman 2015). We
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Figure 2: Possible search tree of a MAFS problem. The
states are designated by their (g(s), h(s)) values. Note that
s4 is expanded twice with different paths costs. s7 is a goal
state.

will first construct an axiomisation of the A∗ algorithm and
show that it is complete. Then, we will show that the algo-
rithm is not publicly self-sufficient.

Axiomisation
The A∗ algorithm doesn’t expand the whole search tree. In-
stead, the algorithm keeps a list which contains all states
that are whithin one action from an already expanded state.
In every step it always expands the state sk with the low-
est expected path cost f(sk) from the list. If two states have
the same expected path cost, a tie-breaking mechanism is
applied. For our analysis we assume that the expected path
cost function is chosen in a way that doesn’t allow ties. This
can be achieved by incorporating the tie-breaking mecha-
nism into an expanded expected path cost function f̂(·).

We introduced a set of descriptors D to model the ad-
ditional information transmitted during the execution of a
MAP algorithm. In the case of secure-MAFS, this would be
the codomains Dg and Dh of the path cost function and the
heuristic function.

g : S → Dg

h : S → Dh

D := Dg × Dh

(5)

Since secure-MAFS is an informed search algorithm, and
since we want to assume full knowledge of the observer, we
have to assume that the functions g(·) and h(·) are known to
the observer.

An axiomisation AA∗ of the A∗ algorithm can be defined
as follows:

1. Action definition An action a can only be applied in a
state s if the action’s precondition is satisfied in s. Sim-
ilarly, the valuation of the successor state s′ must satisfy
the postcondition of a. All propositions not mentioned in
the postconditions must stay unchanged between s and s′.

as,s′ → prea(s) ∧ applya(s, s′) (6)

The functions prea(s) and applya(s, s′) are as defined
earlier. This axiom follows directly definition of an action
and therefore has to apply to all possible planning trees
and planning algorithms.

2. Reachability Every state except for the initial state is
added to the open list as successor of a previously ex-
panded state. As a consequence, the first time a state is
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expanded, its predecessor state must have a lower index.

∀sk with k > 1 ∃a, sj with j < k : asj ,sk (7)

Since the initial state is the state with the smallest in-
dex, and the only one that doesn’t need a predecessor with
smaller index, this axiom impies that all states are reach-
able from the initial state s1.

3. Singleton States A state is only reexpanded if a shorter
path to it is found. So if two states have increasing ex-
pected path costs f , they have to differ in at least one
proposition.

∀sj , sk, j < k with f(sj) < f(sk) :

∃p : (psk ∧ ¬psj ) ∨ (¬psk ∧ psj )
(8)

4. No Backward Edges Before a state sk is expanded, it has
to be added to the open list. This only happens if an action
from a previously expanded state leads to sk. So its pre-
decessor must have been expanded before and thus have
a lower index. As we defined above, all nodes in the plan-
ning tree are expansions of a state.

∀sk, sj , k ≤ j : ¬asj ,sk (9)

5. Expansion Order Before a state sk is expanded, a num-
ber of possible states is considered reachable (in the
open list). They can be seen as the successor states of all
currently applicable actions. Out of these states, sk must
have the lowest f -value.

∀sk, sj , with j < k :

∀a with prea(sj) and f(applya(sj)) < f(sk) :

∃sl with l < k : asj ,sl

(10)

The formular reads as follows: all states reachable from
sj whose expected path cost is lower than that of sk must
be expanded before sk.

6. Shortest Path If two actions are both applicable in differ-
ent states, and both would expand a new state with identi-
cal valuations, only the one with the lower expected path
cost is applied.

∀sj , sk, sl with j, k < l and

aA, aB with preaA(sj) ∧ preaB (sk) and
applyaA(sj) = applyaB (sk) = V (sl) and

f
(
applyaA(sj)

)
< f

(
applyaB (sk)

)
:

¬aBsk,sl

(11)

This also implies that each node has only one predecessor
with lower index. In combination with axiom 4, which
excludes any predecessor with higher index, each node
can only have exactly one preceding action.

7. Path Cost and Heuristic Value The transmitted path- and
heuristic cost gs, hs that are transmitted in the messages
must align with the values computed by the observer.

∀sk : h(sk) = hsk , g(sk) = gsk (12)

While the last axiom may seem obvious, it illustrates an im-
portant rule concerning the properties of a privacy preserv-
ing algorithm: A MAP algorithm can only preserve privacy
if the functions g(·) and h(·) only depend on public vari-
ables.

We won’t formally prove that the axiomisation is sound
according to definition 4. In the following, we will assume
that definition 4 holds and based on this assumption prove
that AA∗ is a complete axiomisation according to definition
5.

Consider the set PTax(Π) of all planning trees based on
problem Π which satisfy the axioms AA∗ . We assume that
the axiomisation AA∗ is sound, so PTax(Π) must contain
PTA∗(Π). Since secure-MAFS is a deterministic algorithm,
the set PTA∗(Π) contains only one entry PTΠ.

PTA∗(Π) = {PTΠ} ⊆ PTax(Π)

If we can prove that PTax(Π) is also singular, so the
axiomisation is only consistent with exactly one planning
tree PTΠ for any problem Π, then PTA∗(Π) = PTax(Π)
and the axiomisation is complete. We will prove this by
induction over the nodes of the planning tree.

Lemma 1: Uniqueness
A planning tree PTΠ that fulfills the axiomisation AA∗ is
uniquely defined.
Induction start: s1

The valuation of the initial state s1 is defined by the problem
Π.
Induction hypothesis:
The partial tree PT k−1

Π defined by the states s1, . . . , sk−1

and all applied actions between them is uniquely defined.
Induction step: sk
Let Spre

k = {s1, . . . , sk−1} be the set of all states in PT k−1
Π .

Per induction hypothesis, all those states and their valuations
are uniquely defined.

Axiom 2 defines that sk must be the successor of another
state sj via an action ask . Due to axiom 4, the preceding
state must have a lower index, so we know that sj ∈ Spre

k .
Consequently, sk must be reachable from a state in Spre

k by
application of one action. We call Spot

k = s̄1, . . . , s̄n the
set of potential states reachable from Spre

k in this manner.
We sort the potential states by f -value, with f(s̄1) < · · · <
f(s̄n). This is possible because we defined f(·) to be an
injective function by including the tie-breaking function in
it.

Consider a state s̄i ∈ Spre
k as candidate for sk. Axiom 5

demands that all reachable states with lower f -value - in this
case the states s̄1, . . . , s̄i−1 - have a lower index. All states
with an index lower than k are in the set Spre

k . It follows that
{s̄1, . . . , s̄i−1} ⊆ Spre

k .
All states in Spre

k are already part of the partial plan-
ning tree PT k−1

Π . Consequently, sk must be the first entry
among Spot

k (as sorted by f -value) that is not already part
of PT k−1

Π . This uniquely defines both sk and its preceding
action ask .

Axiom 6 implies that each state has only one preceding
action. Therefore the new partial tree PT k

Π generated by

36



āb̄ē
s0

ab̄ē s1 ab̄e s5

ābēc̄d̄
s2

cd̄ s3

c̄d s4

ābe
cd̄ s6

c̄d s7
spub2 spub6

Figure 3: Public and private search tree as processed by
secure-MAFS. The propositions a, b and e are public, c and
d are private.

adding sk and ask to PT k−1
Π doesn’t allow the addition of

any further actions between the states. Therefore, all states
and actions of PT k

Π are uniquely defined. �
It follows from the lemma that PTA∗(Π) = PTax(Π).

Therefore, AA∗ is a complete axiomisation of the A∗ algo-
rithm.

Public Self-Sufficiency
The secure-MAFS algorithm only sends valuations of states
in the messages, not which actions were used to get to these
states. So at the end of the execution, the transmitted graph
consists of an unconnected set of states.

Secure-MAFS is an extension of MAFS that was devel-
oped to give better privacy guarantees. Instead of just keep-
ing a list of open states it maintains a list of the public pro-
jections of these states. Each of these open public states has
two lists attached: a list of open private states that have this
same public projection and a list of public states s′ which
are successors of any state in the first list. Figure 3 illus-
trates this: The private states s3, s4, s5 and s7, s8 are merged
to two single public states t1 and t2. As t2 is the successor
of t1, the open list of this problem would look as follows:

public states: āb̄ē ab̄ē ābē ab̄e ābe

private states: c̄d̄ c̄d̄ c̄d̄
cd̄
c̄d

c̄d̄ cd̄
c̄d

successors: ab̄ē
ābē

ab̄e ābe - -

Instead of broadcasting every state to the other agents, the
secure-MAFS algorithm adds new private states to the list
and only sends a new message when a new public state is
added to the open list.

As discussed earlier, an informed search algorithm can
only be privacy preserving if the path cost g(·) and the
heuristic h(·) only depend on public properties; therefore we
will assume this for this analysis.

To prove or disprove strong privacy, we will go through
the axioms and show whether they can stand in conflict to the
transmitted graph. In order to keep the clarity of the prove,
we will only consider the interactions of each axiom with the
previous axioms. We call sk a global state with public and
private propositions, spriv

k a purely private state that is not
transmitted during the application of MAFS and s.k the pub-

lic projection of sk. Equivalently, a. is the public projection
of an action a that is transmitted to the other agents.

1. Action Definition

a.s.j ,s.k → prea.(s.) ∧ applya.(s.k, s
.
j )

Since the transmitted graph initially contains no actions,
this axiom cannot stand in contrast do it.

2. Reachability

∀s.k with k > 1 ∃a., s.j with j < k : a.s.j ,s.k (13)

Every state except the initial state has to be the successor
of another state with lower index. In combination with ax-
iom 1 this means that the public projection s.k of a state sk
needs a public predecessor s.j , j < k and a public action
a. such that pre.a(s.j ) and applya.(s.j , s

.
k) are true.

The last action that leads to a transmitted state is always
a public action. So the public projection of the postcondi-
tions of that action are satisfied in sk.

∀sk ∃a : posta.(s.k)

Before every public action can come an arbitrary number
of private actions. By definition, a private action only has
private variables in its effect. Accordingly, between two
transmitted states sj and sk are a number of untransmitted
private states (s̄priv

1 , . . . , s̄priv
n ) which all have the same

public projection as the public predecessor sj . Since the
public projection of the public predecessor is the same as
the projection of the actual predecessor s.j = s̄priv.

n , and
the public projection of the precondition pre.a is applica-
ble in s̄priv

n , it must also be applicable in sj .

∀sk ∃a, sj : prea.(s.j ) ∧ posta.(s.k)

Since the only thing that affects the public projection of
the states between sj and sk is the public action a, we
can conlude that all public propositions not mentioned in
posta. stay the same.

∀sk ∃a, sj : prea.(s.j ) ∧ applya.(s.j , s
.
k)

In conclusion, the single root state axiom is also satisfied
in any execution of secure-MAFS.

3. Singleton States

∀sk, sj with k < j, f(sk) ≤ f(sj) :

∃p ∈ P pub : (psk ∧ ¬psj ) ∨ (¬psk ∧ psj )

Whenever secure-MAFS extends a state, it checks
whether that another state with the same public projection
was already transmitted. If so, the state is not transmitted
to the other agents. This guarantees that no public state
is transmitted twice and therefore that this axiom always
holds.

4. No Backward Actions

∀sk, sj , k ≤ j : ¬asj ,sk (14)

All actions implied by axiom 2 lead from a previously
expanded state to one that is expanded later on. Therefore,
this axiom is always satisfied.
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Figure 4: Left: global states; right: public projection of the
same states. In the public projection, the state (ab̄) appears
to be reachable, while in fact it is not.

5. Expansion Order

∀ public sj , sk, with j < k :

∀a with prea.(s.j ) and f(applya.(sj)) < f(sk) :

∃ public sl with l < k : asj ,sl

(15)

Consider a situation as shown in figure 4. While s.3 ap-
pears to be reachable in the public projection of the prob-
lem, it is in fact not because the private variable c prohibits
it.
If f(s3) < f(s2), the axiom requires s.3 to be expanded
before s.2. But since s3 can’t be expanded, this situation
leads to a violation of axiom 5.

6. Shortest Path

∀sj , sk, sl with j, k < l and

aA, aB with preaA.(s.j ) ∧ preaB.(s.k) and

applyaA.(s.j ) = applyaB.(s.k) = V (s.l ) and

f
(
applyaA.(s.j )

)
< f

(
applyaB.(s.k)

)
:

¬aBsk,sl

(16)

The same reasoning as for axiom 5 applies. If the public
projection aA. is applicable, but the actual action aA is
not, then aBsk,sl is the only path that connects sl to the
rest of the planning tree. Consequently, axiom 6 is not
guaranteed to hold.

7. Path Cost and Heuristic Value

∀sk : h
(
V (sk)

)
= hsk , g

(
V (sk)

)
= gsk (17)

Since we assumed that the path cost and heuristic value
depend only on public propositions, this is by construction
always fulfilled.

Axiom 5 and 6 aren’t guaranteed to hold. This means that
secure-MAFS is not a public self-sufficient algorithm.

Logistics Example
We will illustrate this with an example from the logistics do-
main. A truck needs to deliver two packages a and b from
their respective locations A and B to a third location X. The
problem has the following public propositions
A : truck is at location A
B : truck is at location B
X : truck is at location X
a : package a is loaded in the truck

A X

B

a

b

aA

daX

abB

dabB

dadbX

Figure 5: Logistics example. Left: the different locations and
paths; right: public search tree.

b : packabge b is loaded in the truck
da : package a is delivered
db : package b is delivered
Figure 5 shows the paths between the locations and the cor-
responding public search tree of the truck. To keep the ex-
ample readable we omit negative propositions in all state de-
scriptions. The truck has the following public actions:
drive(L1, L2) : 〈L1 | L̄1L2〉
pick up(L, p) : 〈Lp̄d̄p | p〉
deliver(p) : 〈Xp | p̄dp〉

The placeholders L1, L2, L ∈ {A, B} describe locations and
p ∈ {a, b} describes a package. The planning logic LΠ. of
the public problem Π. consists of the propositions

PLΠ. = {
Ask , Bsk , Xsk , ask , bsk , d

a
sk
, dbsk ,

drL1L2
sjsk

, pLp
sjsk

, dpsjsk ,

k, j = 1, . . . , |S|; p = a, b; L,L1, L2 = A,B,X}

(18)

The public search tree as shown in figure 5 can be tran-
scribed as the following logic formular

as1As1 · das2
Xs2 · as3bs3Bs3 · das4

bs4Bs4 · das5
dbs5

Xs5

(19)
again we omit all negative propositions for better readabil-

ity.
The amount of fuel in the tank of the truck is considered

private and has the following possible states:
tf : tank is full
th : tank is half full
te : tank is empty
As it happens, driving between locations A and B uses up a
full tank, while between A and X or B and X only uses half
a tank. The truck can only refuel at location X. The private
actions of the truck are as follows:
drive l(L1, L2) : 〈L1tf | L̄1L2te〉
drive s(L1, L2) : 〈L1t̄e | L̄1L2(tf . th)(th . te)〉
refuel : 〈X | tf〉

The action drive l denotes the long road between A and B,
drive s denotes the short road from or to location X.

We apply the secure-MAFS algorithm to this problem. We
define the path cost function g(s) as the number of drive
actions necessary to reach a state. As heuristic function h(s)
we use the optimal heuristic h∗. The initial state of the truck
is (Aath): The truck is at location A with only package a and
a half empty tank.

Figure 5 shows two different paths to the goal state. The
upper path via state (daX) has a path cost of 3, the lower path
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via the state (abB) a cost of 2. Since we assume a perfect
heuristic h∗, those are also the f -values of the mentioned
public states. Expanding the cheaper, lower path would re-
quire the agent to first expand the action drive l(A, B). Be-
cause the agent has only half a tank of gas, this action is
not applicable in the initial state. The agent can only expand
the more expensive upper path and transmit the correspond-
ing message (daX). This violates axiom 5, because the state
(abB) has a lower f -value. This allows the observer to de-
duce that some private variable must exist that doesn’t allow
the expansion of the lower path.

Conclusions
Optimality vs. Privacy
The problem of secure-MAFS we presented is a general one:
If an observer has perfect knowledge of the applied algo-
rithm, it can generate the public search tree of the sender
and find the optimal path in it. If an action in that path is
not applicable because of a private variable, the transmitted
optimal path differs from the expected one. This allows the
observer to deduce that private variables exist and affect the
execution of the algorithm.

It was shown before that a multi-agent planning algorithm
can’t simultaneously be strongly private, optimal and ef-
ficient (Tožička, Štolba, and Komenda 2017). We can use
this knowledge and trade in some optimality or efficiency
for improved privacy. A private, but non-optimal variant of
secure-MAFS would expand the search tree using a random
walk. Instead of expanding the node with the lowest f -value,
it would choose a random node from the open list. The
axiomisation ArMAFS would consist of axioms 1-4 and 7
from above; the axioms Expansion Order and Shortest Path
would become obsolete. The axioms of rMAFS describe a
set of plannig trees, all of which could be generated by the
algorithm. The observer can’t distinguish whether an action
is omitted because it isn’t applicable or just because a differ-
ent action was randomly chosen.

Comparison to β-indistinguishability
We will compare our privacy definition to PST-
indistinguishability (Beimel and Brafman 2018). PST-
indistinguishability claims that the messages R receives
during the application of a MAP algorithm are uniquely
defined by the public search tree of the problem and the
initial state of R.
In a more general setting, β-indistinguishability considers
not the public search tree but the output of a leakage func-
tion β(Π). The exact definition of β-indistinguishability as
given in (Beimel and Brafman 2018) is as follows:

Definition 7 Let β : {0, 1}∗ → {0, 1}∗ be a (leak-
age) function. We say that a deterministic algorithm
is β-indistinguishable if there exists a simulator Sim
such that for every set T of agents and for every input
x = (x1, ..., xn) the view of T is the same as the output
of the simulator that is given (xi)i∈T and β(x), i.e.,
Sim(T, (xi)i∈T , β(x)) = viewT (x).

Instead of working with the public search tree, we define
a different construction that we will call the transmitted
graph. The transmitted graph consists of the states and
actions that are transmitted by the algorithm. Since a privacy
preserving algorithm only transmits the public projections
of actions and states, the transmitted graph consists of a
subset of the states and actions in the public search tree.
We call an algorithm public self-sufficient if the transmitted
graph is consistent with the model a foreign agent has of the
algorithm.

If a receiving agentR has perfect knowledge of the sender
i.e. if the model MS is an exact representation of the ap-
plied algorithm including possible heuristics, we can regard
the model as a simulator Sim from definition 7. The leakage
function β is then only given by the transmitted messages.
An unsatisfiable model and transmitted graph is then equiva-
lent with the simulator being inconsistent with the transmit-
ted messages.

Further Work
Further work is needed to evaluate the implications of pub-
lic self-sufficiency. New algorithms are needed that comply
to the stricter rules of public self-sufficiency. One interest-
ing approach might be to check before transmitting a mes-
sage, whether this message might compromise privacy and
to adjust it accordingly or expand a different path. Another
promising path is that of randomized algorithms. Especially
in a larger problem, they might be vunerable to a stochastic
approach. It is also important dicuss further, when we want
to trade optimality for privacy, and in what domains more
relaxed concepts of privacy are sufficent.
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Abstract

We describe Dec-RAE-UPOM, a system for decentralized
multi-agent acting and planning in environments that are par-
tially observable, nondeterministic, and dynamically chang-
ing. Dec-RAE-UPOM includes an acting component, Dec-
RAE, and a planning component, UPOM. The acting com-
ponent is similar to the RAE acting engine (Ghallab, Nau,
and Traverso 2016), but incorporates changes that enable it
to be used by autonomous agents working independently in
a collaborative setting. Each agent runs a local copy of Dec-
RAE and has its own set of hierarchical operational models
that specify various ways to accomplish its designated tasks.
Agents can communicate with each other to exchange infor-
mation about their states, tasks, goals and plans in order to
cooperatively succeed in missions. Communication is not al-
ways guaranteed or free, and agents need to reason about
strategies to achieve optimal success and efficiency in mis-
sions under various constraints and with possibility of fail-
ures. To choose among alternative ways to accomplish tasks,
our current implementation of Dec-RAE uses the UPOM plan-
ner (Patra et al. 2020). We also describe our work-in-progress
on a new planner, D-UPOM, that incorporates some enhance-
ments for planning in multi-agent environments.

Introduction
Recent work on the integration of acting and planning (Ghal-
lab, Nau, and Traverso 2014; 2016) has advocated a hierar-
chical organization of an actor’s deliberation functions, with
online planning continually throughout the acting process.
This view has led to the development of the RAE acting al-
gorithm (Ghallab, Nau, and Traverso 2016), and to the de-
velopment of three successively better planning-and-acting
systems that use RAE as their acting component: APE (Pa-
tra et al. 2019b), RAE/RAEplan (Patra et al. 2019a), and
RAE/UPOM (Patra et al. 2020).

To predict an action’s outcome, most AI planning systems
use an abstract descriptive model (e.g., a PDDL action defi-
nition). To perform an action, an acting system uses an oper-
ational model of the action – a piece of code telling the actor
what to do. In systems that do both planning and acting, a
key problem is the need for consistency between what the

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

descriptive model predicts, and what the operational model
says to do. The APE, RAE/RAEplan, and RAE/UPOM sys-
tems circumvent this problem by having each system’s plan-
ner use the same operational model that RAE (the actor)
uses. To predict the action’s outcome, the planner runs the
operational model in a simulated environment. This enables
APE, RAE/RAEplan, and RAE/UPOM to operate effectively
in environments that are partially observable, nondetermin-
istic, and dynamically changing due to exogenous events.

A key limitation of the above work is that it is single-agent
planning and acting. Although several of the above papers
use test domains involving multiple robots, in each case the
planning and acting is done by a single centralized system.
In the current paper we describe our work on extending the
approach to accommodate multiple agents that do their plan-
ning and acting in a decentralized fashion. Our contributions
are as follows:

• We introduce Dec-RAE-UPOM, a decentralized multi-
agent acting-and-planning engine that uses operational
models like the ones used in RAE. It consists of two com-
ponents, Dec-RAE and UPOM:

– Dec-RAE, the acting component, is a generalization of
RAE. Multiple agents can run Dec-RAE concurrently
in a decentralized fashion, and can use it to perform
actions and to communicate with each other.

– UPOM, the planning component, is the same planner
used in the RAE/UPOM system. UPOM uses a Monte-
Carlo rollout technique based on the well-known UCT
algorithm (Kocsis and Szepesvári 2006).

• We present experimental evaluations of Dec-RAE-UPOM
in robot foraging problems. The results show that addi-
tional Monte-Carlo rollouts in the planning component
improve the performance of the acting component in both
single-agent and multi-agent settings. We also observe
that communication enables coordination between agents
thereby improves the performance of multi-agent forag-
ing to a large extent.

• We describe our ongoing work on a decentralized version
of UPOM, D-UPOM. UPOM in Dec-RAE does not support
inter-agent plan coordination. But in D-UPOM, if an agent
i needs to outsource a task τ to some other agent, i can ask
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the other agents to predict how well they can accomplish
τ , and outsource τ to the agent that can do the best job.

The rest of this paper is organized into sections on each of
the following topics: (1) related work, (2) our formalism, (3)
Dec-RAE-UPOM, (4) our experimental results, (5) our ongo-
ing work on D-UPOM, and (6) limitations and opportunities
for future work.

Related work
Hierarchically organized deliberation techniques such as
HTN planning (Nau et al. 1999) and refinement acting
(Ghallab, Nau, and Traverso 2016) are well-established in
the AI planning literature. They have substantial advantages
in working out interactions in more abstract plan spaces,
thereby pruning away large portions of the more detailed
search spaces (Durfee 2001).

Some AI planning researchers have been advocating a
change in focus to a combination of planning and acting
that incorporates 1) hierarchically organized deliberation, in
which each action in a plan may be a task that may need fur-
ther refinement and planning; and 2) continual planning and
deliberation, in which the actor monitors, refines, extends,
updates, changes and repairs its plans throughout the acting
process, using both descriptive and operational models of
actions (Ghallab, Nau, and Traverso 2016).

To predict an action’s outcome, most AI planning sys-
tems use an abstract descriptive model (e.g., a precondition-
and-effects model). To perform an action, an acting system
must use a more-detailed operational model that tells what
to do. In the RAE acting system (Ghallab, Nau, and Traverso
2016), these operational models are collections of refine-
ment methods. A refinement method for a task t specifies
how to perform t, i.e., it gives a procedure for accomplish-
ing t by performing subtasks, commands and state variable
assignments. The procedure may include any of the usual
programming constructs: if-then-else, loops, etc. It recur-
sively refines abstract activities into less abstract activities,
ultimately producing commands to the execution platform.
When several method instances are available for a task, RAE
is capable of trying alternative methods in nondeterministic
choices or making the choice using some heuristics.

Monte Carlo tree search (MCTS) is a promising approach
for online planning because it efficiently searches over long
planning horizons and is anytime (Browne et al. 2012). In
treating the choice of child node to expand in the MCT as
a multiarmed bandit problem, the UCT algorithm balances
the tradeoff between exploration and exploitation, in order to
find a near-optimal plan. The UCT-like UPOM planner (Pa-
tra et al. 2020) performs MCTS over a space of refinement
trees generated using RAE’s refinement methods, in order to
find a near-optimal method for RAE to use for refining one
of its tasks. RAE and UPOM thus constitute an integrated re-
finement acting-and-planning system in which both acting
and planning use RAE’s operational models.

Distributed problem solving is applied to a subfield of dis-
tributed artificial intelligence or multiagent systems that em-
phasizes on getting agents to work together well to solve
problems that require collective effort (Durfee 2001). In

Multi-Agent Planning, the planning process is either cen-
tralised (e.g., a master agent produces distributed plans for
multiple slave agents to act upon), or decentralized (i.e.,
the planning process involves multiple agents) (Cardoso and
Bordini 2017). Hierarchical deliberation has substantial ad-
vantages in working out interactions in more abstract plan
spaces, thereby pruning away large portions of the more de-
tailed search spaces (Durfee 2001).

The main steps of distributed hierarchical planning have
been summarized in various work (Weerdt and Clement
2009; Cardoso and Bordini 2017; Durfee 2001): 1) global
task (goal) refinement, decomposition of the global task into
subtasks; 2) task allocation, use of task-sharing protocols to
allocate tasks (goals); 3) coordination during planning, co-
operative planning mechanisms that generates a globally op-
timal solution for the problem; 4) coordination during plan
execution, mechanisms that carry out the solution, prevent
conflicts, repair the plan and replan.

Dix et al. (2003) describe a formalism to integrate the
HTN planning system SHOP (Nau et al. 1999) with the
IMPACT multi-agent environment. While the formalism is
a multi-agent system, the planning is carried out in a cen-
tralized fashion by a single agent, A-SHOP. HTN planning
has been used for coordination in robot soccer (Obst and
Boedecker 2006), where low-level primitive tasks are per-
formed differently by agents depending on their roles in the
team task, high-level tasks are expanded to subtasks in a
centralized planner. Clement, Durfee, and Barrett (2007) de-
veloped an algorithm for hierarchical refinement planning
and centralized plan co-ordination for actions with tempo-
ral extent. Summary information is derived from each high-
level task in a plan hierarchy about all of its potential needs
and effects under all of its potential refinements, then ex-
changed among agents. Coordination at abstract levels al-
lows each agent to retain some local flexibility to refine its
high-level task without jeopardizing coordination or trigger-
ing new rounds of renegotiation.

Among studies in decentralized hierarchical planning,
market-based task-allocation has been applied to complex
tasks that can be hierarchically decomposed (Zlot and Stentz
2006). A multi-agent model for plan synthesis that produces
a global shared plan is based on unified HTN and POP ap-
proaches (Pellier and Fiorino 2007), where agents exchange
proposals and counter-proposal to refine flaws. Planner9
(Magnenat, Voelkle, and Mondada 2009) is a HTN planner
that considers different robots as computer clusters and dis-
tributes the planning of any task to any robot, thus takes ad-
vantage of all the available computational power using sim-
ple synchronization.

Our approach shares some similarities with reinforce-
ment learning (RL) (Kaelbling, Littman, and Moore 1996;
Sutton and Barto 1998; Geffner and Bonet 2013; Leonetti,
Iocchi, and Stone 2016; Garnelo, Arulkumaran, and Shana-
han 2016), since MCTS is also a typical technique in RL to
increase sample efficiency. In Model-based RL, the model
(e.g., system dynamics) is learned from real experience and
gives rise to simulated experience. While in our work, the
model which we use to construct the simulator, is given.

Decentralized partially-observable Markov decision pro-
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cess (Dec-POMDP) is a framework for a team of collabo-
rative agents to maximize a global reward based on local
information. Each agent’s individual policy maps from its
action and observation histories to actions (Oliehoek 2012).
Unfortunately, optimally solving Dec-POMDPs is NEXP-
complete (Bernstein, Zilberstein, and Immerman 2013). In
single-agent (i.e., MDP) domains, the options framework
(Sutton, Precup, and Singh 1999) uses higher-level, tem-
porally extended macro-actions (or options) to represent
and solve problems, resulting in significant improvement in
the performance. Amato et al. extend the framework to the
multi-agent case by introducing a Dec-POMDP formulation
with macro-actions modeled as options. It is an offline plan-
ner that generates a policy to select the best option on each
state, while our approach is an planning and acting engine
that selects the best refinement method for each task online.

To our knowledge, there is no prior work on decentral-
ized refinement acting and (hierarchical) planning that uses
operational models.

Formalism
Here we formalize a decentralized multi-
agent refinement planning and acting domain
with operational models as a tuple Σ =
(S, I, T , {Ωi}, {Oi}, {Bi}, {Ci}, {Pi}, {Di}, {Ri}, {Mi}),
where
• S is a set of world states the agents may be in, where we

represent each state s using a state variable formulation
similar to the one in Ghallab, Nau, and Traverso (2016).

• I is a finite set of agents,
• T is a finite set of tasks and events the agents may have

to deal with, where each task τ ∈ T has 0 or more than 0
relevant methods in {Mi},

• Ωi is a finite set of observations for each agent i,
• Oi is a set of observation probability functions for each

agent, i, Ω× Ci × S → [0, 1],
• Bi is a set of belief states that agent i ∈ I may have,
• Ci is a finite set of primitive actions (commands) that can

be carried out by the actuators and sensors on agent i’s
execution platform,

• Pi is a set of state transition probabilities, S × Ci × S →
[0, 1],

• Di is a set of time durations, S × Ci × S → R,
• Ri is a finite set of reward (or cost) functions that are

associated with entering some states, i.e., S → R,
• Mi is the set of refinement methods, each of which spec-

ifies how agent i would perform a task or respond to a
event τ ∈ T .
A refinement method is composed of 4 elements, where

1) head specifies the name and parameters of the method,
where the number of parameters could be arbitrary greater
than that in the task which it is related to, 3) agent is the
agent subject that owns (or is responsible for) the method,
3) tasks indicates the task that the method is capable of re-
fining, 3) body gives a procedure to accomplish a the task by

performing subtasks, commands and state variable assign-
ments, where the procedure may include any programming
constructs (e.g., if-then-else, loops, etc.). We get a refine-
ment method instance by assigning values to the free pa-
rameters of a method.

A refinement tree (Patra et al. 2020) is composed of 3
types of nodes: 1) a disjunction node is a task followed by its
applicable method instances; 2) a sequence node is a method
instancem followed by all the steps; and 3) a sampling node
for an action a has the possible nondeterministic outcomes
of a as its children.

Refinement planning under this formalism is essentially a
tree search procedure over the space of refinement trees in
order to find a near-optimal method to use for refining a task
under the context at hand.

Let us illustrate this formalism by an example, where sev-
eral robots (drones and roombas) forage for some target ob-
jects (e.g., dirt) in a initially known terrain. This domain in-
cludes but is not limited to

• a set of states S that gives the positions of agents and dirt

• a set of agents I = {d1, r1, r2}, where d1 is a drone, r1
and r2 are roombas,

• a set of refinement methods Mr1 ⊇ {m1-cleanSet(s),
m2-cleanSet(s), m1-clean(s), m1-broadcastGoal(g)} for
agent r1,

• a set of refinement methods Mr2 ⊇ {m3-cleanSet(s, l),
m2-clean(s)} for agent r2,

• a set of refinement methods Md1 ⊇ {m1-search(a),
m1-planTrajectory(a), m1-flyTo(l)} for agent d1,

• a set of commands Cd1 ⊇ {observe(l)} for agent d1,

• a set of tasks T ⊇ {search(a), cleanSet(s), clean(l),
planTrajectory(a), flyTo(l)}.

m1-search(a)
agent: d1

task: search(a)
body: trajectory← do task planTrajectory(a)

for l in trajectory:
do task flyTo(l)
execute command observe(l)
if l has dirt:

outsource task clean(l) to agent i ∈{r1, r2}

m1-search(a) is a method for the drone d1 to search area
a along a trajectory, perform the command observe(l) to
check if an intermediate location l is dirty before outsourc-
ing a task to a roomba i to clean up the location. Suppose
roomba r1 has one method for the task clean(l), roomba r1
has two method for the task clean(l), there would be 3 ap-
plicable method instances in total to the task that is being
outsourced, as either r1 or r2 could be assigned to i.
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m1-cleanSet(s)
agent: r1

task: cleanSet(s)
body: if s is ∅:

return
l← closest l ∈ s
do task broadcastGoal(l)
do task clean(l)
s← s \ l
do task cleanSet(s)

m2-cleanSet(s)
agent: r1

task: cleanSet(s)
body: if s is ∅:

return
l← random l ∈ s
do task clean(l)
s← s \ l
do task cleanSet(s)

Task cleanSet(s) requires a set of locations s to be
cleaned. Agent r1 has two methods that can refine the task,
m1-cleanSet(s) and m2-cleanSet(s). m1-cleanSet(s) is a
greedy method for roomba r1 to clean the location set s,
where roomba r1 cleans the closest location in s recursively.
m2-cleanSet(s) makes random choice of the first location to
clean and cleans the rest of the set recursively.

m3-cleanSet(s, l):
agent: r2

task: cleanSet(s)
body: if s is ∅:

return
do task clean(l)
s← s \ l
do task cleanSet(s)

Agent r2 also has a simplemethod m3-cleanSet(s, l) that
refine task cleanSet(s), where l indicates the first location to
clean. l’s value is automatically assigned with some prede-
fined rules (e.g, l ∈ s). In that case, the number of applicable
method instances to task cleanSet(s) for agent r2 is |s|.

Dec-RAE-UPOM
RAE (Ghallab, Nau, and Traverso 2016) is a refinement
acting engine that uses a collection of hierarchical refine-
ment methods with operational model to generate and tra-
verse a refinement tree. UPOM (Patra et al. 2020) is a UCT-
like Monte-Carlo tree search simulation procedure over the
space of refinement trees in order to find a near-optimal
method in RAE to accomplish the task under the context at
hand. A decentralized version of RAE using UPOM, Dec-
RAE-UPOM is a decentralized multi-agent planning and act-
ing engine with UCT-like planning procedure using opera-
tional models that enables heterogeneous robots to cooper-
atively operate in a partially-observable, non-deterministic
and dynamic environment with exogenous events and con-
current tasks. As is shown in Figure 1, each agent has its
own RAE, UPOM, domain knowledge, execution platform,
and internal state information.

Belief, desire and intention (Rao and Georgeff 2000) rep-
resents the information, motivational, and deliberative states
of the agent. Respectively, we specify 4 types of commu-
nication messages that one agent can send to another: 1)
state, the state information obtained from the agent’s sen-
sors, i.e., its belief state set about the world which is stored
in a predefined data structure; 2) goal, a desire that has been
adopted for active pursuit by the agent; 3) task, a desire that
the agent needs other agents to accomplish (e.g. a subtask τ
in agent A’s method that needs to be accomplished by agent
B); 4) plan, the refinement tree or the estimated reward λ of
its root node that is associated with the process of refining a
task (plan communication is not yet supported and UPOM
does not require communication).

Agent are built with both actuators and sensors to send
and receive communication signals. Commands are given to
agents to sense the communication network, send messages,
or read messages. Received messages are buffered in mem-
ory waiting for the agent to read. We acknowledge the fact
that communication is neither free, nor guaranteed to suc-
ceed. Therefore, each communication command is associ-
ated with a cost and a probability of success just like any
other commands.

Dec-RAE agents, without using any planner, are able to
reactively coordinate their actions through state, goal and
task communication. With UPOM, each agent i can plan for
the selection of method instances fromMi to resolve a tasks
locally.

Experimental Evaluation
Multi-agent Foraging is one of the canonical testbeds for
cooperative multi-agent systems, in which a collection of
robots has to search and transport objects to specific loca-
tions (Zedadra et al. 2017). We developed a Vacuum World
Simulator (Figure 2) where multiple roomba agents coop-
eratively clean up a finite amount of dirt objects scattered
randomly within an n × n grid. Each dirt object is associ-
ated with a value. Each roomba agent has limited amount of
time budget to carry out durative actions including moving
forward, turning left, turning right, picking up a dirt right
beneath it, and communicating with other agents. As a pre-
liminary experiment, actions and observations are determin-
istic, communication between agents is free and guaranteed.
The objective is for the roomba team to maximize the score
(i.e., the total value from collecting dirt objects) within the
limit of its time budget.

We tested and compared the performance of roomba
agents with several different types of decision strategies
(Figure 3 & 4) denoted by following remarks: 1) Greedy,
which means the agent has a greedy method, i.e., m1-
cleanSet(s), that repeatedly pursues the nearest target; 2)
Simple, which means the agent has a simple method, i.e.,
m1-cleanSet(s, l), to pursue a list of targets; 3) UPOM ,
which indicates that the agent has the same methods as a
simple agent, but uses UPOM to plan for the choice of
the method instances; 4) n, the number of UCT rollouts
that is configured in a UPOM agent; 4) Comm, which in-
dicates that goal communication is enabled by doing task
broadcastGoal(g), where the agent broadcasts information
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Figure 1: The system architecture of Dec-RAE-UPOM.

Figure 2: The Vacuum World Simulator.

about the target that it is actively pursuing. Within each ex-
periment, all agents (if there are more than one agent) use
the same strategy.

The single-agent experiments (Figure 3) show that a
UPOM agent performs much better than a simple agent,
since a reactive simple agent would clean the set of lo-
cations in an arbitrary sequence, while the UPOM agent
tries to plan for the optimal sequence. The performance of
a UPOM agent further improves as the number of UCT
rollouts increases, which surpasses a greedy agent’s per-
formance with 50 rollouts. In multi-agent experiments (Fig-

Figure 3: For each experiment, we deploy 1 roomba agent
along with 16 Dirt objects to a 7 × 7 grid. Each roomba
agent type’s average score is obtained from solving 50 ran-
domly generated problems.

ure 4), with goal communication enabled, agents would be
aware of each other’s goals, thus, are able to adjust their
own goals accordingly to avoid duplication of efforts. We
observe a 48.5% improvement in the greedy agent team’s
performance with goal communication, compared to the per-
formance without any communication. The UPOM agent
team with comm performs slightly better than a greedy
agent team with comm, which is consistent to the result
from the single-agent experiments.
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Figure 4: For each experiment, we deploy 4 roomba agents
along with 16 Dirt objects to a 10 × 10 grid. Each roomba
team’s average score is obtained from solving 20 randomly
generated problems.

D-UPOM
Each of the agents with Dec-RAE-UPOM has independent
domain knowledge, execution platform, and state informa-
tion. if an agent i needs to outsource a task τ to some other
agent, without plan communication, agent i has no idea how
well they can accomplish τ . Therefore, agent i is only able
to outsource the task to an agent that is selected randomly
or based on agent i’s subjective heuristics. In order to gen-
erate more optimal plans, agents need to coordinate with
each other in the planning process and communicate their
local plans with each other. Here we describe our work-in-
progress on a decentralized version of UPOM, D-UPOM (Al-
gorithm 1) that addresses the above issue. In D-UPOM, if an
agent i needs to outsource a task τ to some other agent, i can
ask other agents to predict how well they can accomplish τ ,
and outsource τ to the agent that can do the best job.

Firstly, we let γ(s, c) be the set of states that may
be reached after performing command c in state s.
Applicable(b, τ) is the set of method instances applicable
to τ in belief state b. The current context for an incom-
ing external task τ is represented via a refinement stack σ
which keeps track of how much further RAE has progressed
in refining τ . next(σ, s) is the refinement stack resulting
by performing m[i] in state s, where (τ,m, i) = top(σ).
Abstraction(b) is the abstracted belief state that is used in
D-UPOM’s simulated environment. Responsible(m) is the
agent subject that is responsible for executing method m.
R(s) is the reward obtained from entering state s.

When an agent has to perform the task τ in a belief state
b and a stack σ, it calls Select-Method (b, τ, σ, dmax, nro)

Select-Method(b, τ, σ, dmax, nro):
1 m̃← argmaxm∈Applicable(b,τ)h(τ,m, b)

d← 0
2 repeat

d← d+ 1
3 b′ ← Abstraction(b)

for nro times do
D-UPOM (b′, push((τ, nil, nil), σ), d)

m̃← argmaxm∈MQs,σ(m)
until d = dmax or searching time is over
return m̃

D-UPOM(s, σ, d):
if σ = 〈〉 then return 0
(τ,m, i)← top(σ)

4 if d = 0 then return h(τ,m, s)
if m = nil or m[i] is a task τ ′ then

if m = nil then τ ′ ← τ # for the first task
if Ns,σ(τ ′) is not initialized yet then

5 M ′ ← Applicable(s, τ ′)
if M ′ = 0 then return 0
Ns,σ(τ ′)← 0
for m′ ∈M ′ do

Ns,σ(m′)← 0
Qs,σ(m′)← 0

Untriedm ← {m′ ∈M ′|Ns,σ(m′) = 0}
if Untriedm 6= ∅ then

mc ← random selection from Untriedm
else mc ← argmaxm∈M ′φ(m, τ ′)
σ′ ← push((τ ′,mc, 1), next(σ, s))
a← Responsible(mc)
if a is self then λ← D-UPOM(s, σ′, d− 1)

6 else λ← Request-Plan(a, s, σ′, d− 1)

7 Qs,σ(mc)← Ns,σ(mc)×Qs,σ(mc)+λ
1+Ns,σ(mc)

Ns,σ(mc)← Ns,σ(mc) + 1
return λ

if m[i] is an assignment then
s′ ← state s updated according to m[i]
return D-UPOM(s′, next(σ, s′), d)

if m[i] is a command c then
s′ ← Sample(s, c)
return R(s′) + D-UPOM(s′, next(σ, s′), d− 1)

Algorithm 1: D-UPOM and Select-Method.

(Algorithm 1) with two control parameters: nro, the num-
ber of rollouts, and dmax, the maximum rollout length (total
number of sub-tasks and actions in a rollout). Select-Method
performs an anytime progressive deepening loop calling D-
UPOM nro times in a simulated environment based on the
belief state b, until the rollout length reaches dmax or the
search is interrupted. The selected method instance m̃ is ini-
tialized according to a heuristic h (line 1).

Just like UPOM, D-UPOM performs one UCT rollout re-
cursively down the refinement tree until depth d is reached
for stack σ. During the recursion, if another agent a is re-
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sponsible for executing methodmc, one needs to request the
agent to plan for mc by calling Request-Plan(a, s, σ′, d−1)
(line 6). Agent a is supposed to receive the request, use its
own D-UPOM to perform one UCT rollout further down the
refinement tree recursively, and send back the resulting esti-
mated total reward λ from executing mc. Request-Plan will
return 0 if it times out.

D-UPOM naturally supports market-based task allocation:
when the task τ ′ is potentially outsourced to different agents
who are capable of accomplishing it, each agent plans for
τ ′ using its methods and return the corresponding estimated
rewards, the agent who has a method that obtains the highest
reward will be chosen to accomplish τ ′.

As a work-in-progress, D-UPOM has not yet been pro-
grammed or tested. We will further develop its theory, pro-
gram and experiments in our future work.

Discussion
In this paper we have described Dec-RAE-UPOM, a system
for decentralized multi-agent refinement planning and act-
ing that uses operational models similar to the ones used
in the RAE and RAE/UPOM systems. In our evaluations of
Dec-RAE-UPOM’s performance in robot foraging problems
using the Vacuum World Simulator, the results show that the
system’s performance is improved by performing additional
Monte-Carlo rollouts in UPOM, and that communication be-
tween agents also improves the performance. We have also
described our work-in-progress on the D-UPOM planner, a
decentralized version of UPOM that is expected to generate
more optimal plans by exploiting plan information obtained
from other agents.

Multi-agent systems are usually affected by the combina-
torial explosion of the state space due to increased amount
of agents. A decentralized planner avoids this problem by
making each agent plan locally and communicate their plans
with each other in order to cooperate. However, functional-
ities such as action synchronization and conflict resolution
between decentralized agents are not currently supported by
our system.

The plan communication in D-UPOM only delivers min-
imum information, i.e., the total reward obtained from sam-
pling the method. In a similar planner, D-UCB in decen-
tralized Monte Carlo Tree search (Dec-MCTS) (Best et al.
2018), agents exchange more explicit plan information back
and forth so the planner in each agent is able to sample all
the other agents’ actions according to their plans. D-UPOM
has the same potential in exchanging more plan information
such as a explicit refinement tree and its associatedQ values,
which might help with plan merging, conflict resolution and
action synchronization. Our formalism represents action du-
rations, and we intend to reason about plan merging, conflict
resolution and action synchronization as a temporal planning
and scheduling problem in our future work.

In our experiments, communication commands have 0
cost (reward) and are guaranteed to succeed. We have not
done enough investigations in cases where communication
is not always guaranteed or free, and agents might need
to proactively search for communication signals (e.g., by
going to a high ground where there is higher chance to

re-establish communication with others). A broader ques-
tion that automotive agents needs to decide is who, when,
how and what to communicate (Balch and Arkin 1970;
Wei, Hindriks, and Jonker 2014). As an example, Dec-
MCTS reasons about the value of communication messages
to decide when and to whom each robot should communi-
cate in order to minimize the communication cost. We hope
our work could be developed to be more resilient and intel-
ligent in terms of communication.

Since UPOM has been integrated with neural networks
that learn to choose methods and approximate heuristics, we
are also interested in extending learning to our future work.
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Abstract

We consider the problem of cooperative multi-agent plan-
ning (MAP) in a deterministic environment, with a com-
pletely observable state. Most tractable algorithms for MAP
problems assume sparse interactions among agents and ex-
ploitable problem structure. We consider a specific model for
representing interactions among agents using soft coopera-
tion constraints (SCC), which enables a compact representa-
tion of symmetric dependencies. We present a two-step plan-
ning algorithm that breaks down a multi-agent problem with
K agents, to multiple instances of independent single-agent
problems, such that the aggregation of the single-agent plans
is optimal for the group. We propose an efficient algorithm
for computing the single-agent optimal plan under a given set
of soft constraints, denoted as the response function. We then
utilize a well-known graphical model for efficient min-sum
optimization in order to find the optimal aggregation of the
single agent response functions. The proposed planning al-
gorithm is complete, optimal, and effective when interactions
among the agents are sparse. We further indicate some useful
extensions to the basic SCC formulation presented here.

1 Introduction
The problem of cooperative multi-agent planning (MAP) is
motivated by many real-world applications in a variety of
domains, such as military, logistics, and search-and-rescue.
In these problems, agents must coordinate their decisions to
maximize their (joint) team value. When the state of the en-
vironment and all agents is fully-observable by each agent,
the planning problem can be formalized as a multi-agent
Markov decision process (MMDP, Boutilier 1996). How-
ever, these models suffer from exponential increase in the
size of the state and action spaces in the number of agents,
which makes them computationally intractable in general.
Specific structural assumptions are therefore required for an
optimal solution to be feasible.

An important class of problems concerns high-level plan-
ning problems, where agents are essentially independent ex-
cept for a prescribed set of possible interactions that can
facilitate the plan execution. These types of problems are

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

typically characterized by loose coupling and sparse inter-
actions between agents, and some models exploit this fact to
develop efficient algorithms. The complexity of such algo-
rithms is often described by means of the problem coupling
level. For instance, (Nissim, Brafman, and Domshlak 2010)
propose a fully distributed planning algorithm, based on the
MA-STRIPS (Brafman and Domshlak 2008) model, and
(Melo and Veloso 2011) propose approximate algorithms
based on the decentralized sparse-interaction MDPs model.

Another common approach is to exploit the problem
structure by using a compact representation with factored
models. An example of such a representation is the coordi-
nation graph (Guestrin, Koller, and Parr 2002), also referred
to as interaction graph (Nair et al. 2005) or collaborative
graphical games (Oliehoek, Whiteson, and Spaan 2012),
which is solved using a graph-based optimization method,
such as variable elimination (VE) (Guestrin, Koller, and Parr
2002; Larrosa and Dechter 2003), or by distributed methods
as investigated in the field of distributed constraint optimiza-
tion problem (DCOPs, Fioretto, Pontelli, and Yeoh 2018).

It is also possible to exploit locality of interactions
(Oliehoek et al. 2008; Melo and Veloso 2011) and reward
structure in transition-independent models, both centralized
(Scharpff et al. 2016) and decentralized (Becker et al. 2004).
More specifically, in (Scharpff et al. 2016) reward dependen-
cies are represented using conditional return graphs (CRGs)
which are solved by a branch-and-bound policy search al-
gorithm. In (Becker et al. 2004) a general formulation is
suggested to represent the reward structure, using the no-
tion of events. A coverage set algorithm is presented to find
optimal policies. Scalability can often be improved even
on more complex models, such as Network Distributed Par-
tially Observable MDP (ND-POMDP), by leveraging sparse
and structured interactions among agents. For example, the
CBDP (Kumar and Zilberstein 2009) algorithm is exponen-
tial only in the width of agents interaction graph.

In this paper, we focus on the multi-agent planning prob-
lem in a deterministic environment, where interactions be-
tween agents are symmetric and sparse. Possible interac-
tions are captured using a notion of soft cooperation con-
straints (SCC), where agents can affect the cost function by
jointly satisfying prescribed constraints in state and time.
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This formulation is akin to the event-based formulation of
(Becker et al. 2004), although less general to allow more
specific and explicit computation schemes for each agent.

Based on the SCC model, we present a complete and op-
timal two-step planning algorithm, effective mostly in cases
where interactions among agents are sparse. It is a dynamic
programming (DP)-based algorithm, that decouples a multi-
agent problem withK agents toK independent single-agent
problems, such that the aggregation of the single-agent plans
is optimal for the group. More specifically, in the first step
we independently compute each agent’s response function,
which is its optimal plan with respect to all possible assign-
ments of the timing variables of its associated constraints.
We present an explicit algorithm for computing the response
function, and provide a detailed complexity analysis. The
second step is a centralized global plan merging, in which
an optimal assignment to the timing variables is found under
the minimum-sum objective. A factor graph, which captures
dependencies among cooperative agents and exploits the in-
ternal structure of the problem, is applied to the problem
with a variable elimination algorithm for efficient min-sum
optimization.

Complexity analysis shows that the proposed algorithm is
linear in the number of agents, polynomial in the span of the
time horizon, and depends exponentially only on the number
of interactions among agents.

We present a simulation implementing our proposed al-
gorithm on a specific multi-agent planning problem. Our
simulations show that the algorithm is efficient for this par-
ticular multi-agent setup and scales well in the number of
agents compared to a standard solution.

We finally outline possible extensions to our model, to
represent more complex cooperation constraints. For details
of these extensions we refer (Revach 2018).

The remainder of the paper is organized as follows. In
section 2 we present the model used and the formulation of
SCC. Section 3 presents a detailed description and imple-
mentation of our algorithm, followed by a complexity anal-
ysis. In section 4 we present experimental results for our al-
gorithm. In section 5 we present an extension to our model
to include asymmetric interactions between agents. Section
6 concludes the paper and suggests directions for extensions
and future research.

2 Model
We consider the finite horizon multi-agent determin-
istic planning problem. Our starting point is an
MMDP with a factored state space, defined by a tuple
〈T ,G,S,A,H, C, σI , σ∗〉, where
• T = {0, ..., T} is the time domain of length T .
• G = {g1,g2, ...,gK} is a set of K agents.
• S = S1 × ... × SK is a finite state space, factored across

agents, where Sk is the state space of agent gk.
• A = A1 × ... × AK is a joint action space, similarly

factored across agents.
• H : S ×A → S is a deterministic transition function.
• C : S ×A → R ∪ {∞} is a real-valued cost function.

• σI ∈ S is the initial state ~s0, and σ∗ ∈ S the goal state.
Our objective is to find an optimal group policy ~π∗ such

that J~π is minimal, i.e., ~π∗ ∈ arg min~π∈ΠK J~π , where
~π = (π1, ..., πK) is the joint policy, J~π is the aggregate cu-
mulative cost defined by

J~π =

T−1∑
t=0

C (~st,~at) (1)

if ~sT = σ∗, and J~π = ∞ otherwise. Here ~at =
(at,1, at,2, ..., at,K) ∈ A is the joint action at time t, such
that at,k = πk (st, t).

We next describe the sparse interactions structure. We
first assume transition and cost independence across agents,
namely

H (~s,~a) = (H1 (s1, a1) , . . . ,HK (sK , aK)) (2)

and

C (~s,~a) =

K∑
k=1

Ck (sk, ak) (3)

Coupling between agents is introduced via a set Ψ =
{ψ1, ..., ψL} of soft cooperation constraints. Each con-
straint ψ` defines a single opportunity for cooperative in-
teraction between agents. In particular, a constraint ψ`,
` ∈ {1, ..., L}, is specified by the following tuple:

ψ` =
〈
G`,Σ`, C−` , T`

〉
(4)

where
• G` = {gk, k ∈ K`}, with K` = (k`,1, . . . , k`,n(`)), is

the set of n(`) agents interacting in constraint ψ`.
• Σ` = {σ`,k, k ∈ K`}, with σ`,k ∈ Sk, is a set of local in-

teraction states. Namely, for the constraint to hold, agent
k is required to be in state σ`,k at some prescribed time.

• C−` is a (reduced) immediate cost for the group for in-
teraction, applicable when the constraint is satisfied (see
equation 5).

• T` is the constraint time domain; i.e., it is a subset of time
instances at which the interaction may take place: T` ⊆
{0, 1, ..., T − 1} ∪ T∅. Here T∅ is a special notation for
the null assignment, where the constraint is not satisfied,
i.e., there is no interaction.
Note that the SCC formulation can be extended to repre-

sent more general constraints. For instance, a constraint can
have a set of time domains, one for each agent, such that
each agent interacts at a different time. Moreover, a con-
straint can have a subset of interaction states (instead of a
single state). While the ideas are similar, for concreteness
and brevity we leave these extensions to future work.

2.1 Interaction-Dependent Cost
Agents are coupled only via the constraint set Ψ. Therefore,
the group cost depends on the constraints satisfied, where
each satisfied constraint ψ` represents an interaction which
applies the group a reduced cost C−` . We now describe the
structure of the group cost under this formulation.
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Let τ` ∈ T` be an interaction timing variable that defines
the timing of the interaction under constraint ψ`. For a given
assignment to the timing variable τ`, we define an indicator
function that is true if all interacting agents in G` satisfy
constraint ψ`:

ψ̂` (τ`;~π) = I{τ` 6=T∅}
∏
k∈K`

I{sτ`,k=σ`,k} (5)

where IA is the 0/1 indicator of eventA. Namely, constraint
ψ` is satisfied given τ` = τ if τ 6= T∅ and all interacting
agents in ψ` arrive at their interaction state at time τ .

Furthermore, ~τ is the interaction vector, and D is its do-
main, i.e., the cross space of all constraint time domains:

~τ = (τ1, τ2, ..., τL) ∈ T1 × T2 × ...× TL , D (6)

~τk is the timing vector of all constraints involving agent gk
(with domain Dk).

Under this new formulation, given an initial state σI ∈ S,
a goal state σ∗ ∈ S, and a constraint set Ψ, our objective is
to find the optimal group policy where J~π in equation 1 is
now

J~π (~τ) =

T−1∑
t=0

K∑
k=1

C0,k (st,k, at,k) +

L∑
`=1

ψ̂` (τ`;~π) C−` (7)

where C0,k is the single-agent independent immediate cost
with no consideration of interactions. Namely, it is the sum
of all agents’ independent immediate cost plus the sum of
the reduced costs of all satisfied constraints.

Note that now the multi-agent optimal policy ~π is a para-
metric policy with respect to timing variables, and the aggre-
gate cumulative cost J~π is a function of the timing variables.
Effectively, there may be a different optimal policy for each
assignment of timing variables. Furthermore, J∗k (~τk) is the
optimal response function (i.e., the optimal cumulative cost)
for agent gk given an assignment of the timing vector ~τ .

Our objective is to minimize the multi-agent cumulative
cost under L interaction constraints:

J∗ = min
~τ∈D

min
~π∈ΠK

{
J~π (~τ)

}
(8)

where J~π (~τ), defined by equation 7, is decomposable, and
where each single agent cost function depends only on the
single agent policy. Therefore, we may switch the order of
summation to compute independently for each agent:

J~π (~τ) =

K∑
k=1

T−1∑
t=0

C0,k (st,k, at,k) +

L∑
`=1

ψ̂` (τ`;~π) C−` (9)

provided that ~sT = σ∗ and J~π (~τ) =∞ otherwise.
We can then minimize each single agent cost indepen-

dently for any given assignment of the timing vector ~τ ∈ D
(and specifically ~τk for each agent gk). After the optimal
single agent response functions are found, we need to find
the optimal assignment for the timing variables. Let us ob-
serve that the multi-agent problem decomposition results in
a min-sum optimization problem:

~τ∗ ∈ arg min
~τ∈D

K∑
k=1

J∗k (~τk) (10)

that is, the sum of optimal response functions. We can use
this structure to our advantage by applying an efficient opti-
mization algorithm.

3 DIPLOMA - Distributed Planning and
Optimization Algorithm for Multiple

Agents
In this section we present the DIstributed PLanning and
Optimization algorithm for Multiple Agents (DIPLOMA),
which addresses the previous multi-agent interaction model
and optimizes cost and policy. Using this model, we are
able to decompose a global multi-agent planning problem
into a two-step problem. First, K distributed independent
single-agent planning problems are solved. Second, we op-
timize the global solution with respect to the cooperation
constraints by selecting a plan for each agent.

We now describe the steps of our proposed algorithm, pre-
sented in algorithm 1:

1. Response Function Computation
For every agent gk ∈ G, compute the single agent re-
sponse function independently,

∀~τk ∈ Dk , J∗k (~τk) = min
πk∈Πk

Jπkk (~τk) (11)

It may be computed using various dynamic programming
algorithms, and more specifically using the algorithms de-
scribed next, in detail. This step can be parallelized over
agents.

2. Plan Merging
Compute the optimal total multi-agent cost by minimiz-
ing the sum single agent response with respect to the con-
straint variables. More specifically:

J∗ = min
~τ∈D

K∑
k=1

J∗k (~τk) (12)

The minimization process can be carried out efficiently
using factor graph modeling and a variable elimination
algorithm, as described below. Let ~τ∗ denote the optimal
assignment of the constraint variables.

3. Policy Backtracking

(a) For every agent gk ∈ G, backtrack the single agent
optimal policy independently:

π∗k ∈ arg min
πk∈Πk

Jπkk (~τ∗k ) (13)

(b) The global optimal multi-agent policy is then given by

~π∗ = {π∗1 , π∗2 , ..., π∗k, ..., π∗K} (14)
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Algorithm 1 DIPLOMA
1: returns ~π∗, the optimal group policy
2: inputs: MMDP, Ψ
3: for all gk ∈ G do . response function computation
4: for all ~τk ∈ Dk do
5: J∗k (~τk) = minπk∈Πk J

πk
k (~τk)

6: J∗ = min~τ∈D
∑K
k=1 J

∗
k (~τk) . plan merging

7: ~τ∗ ∈ arg min~τ∈D
∑K
k=1 J

∗
k (~τk)

8: for all gk ∈ G do
9: π∗k ∈ arg minπk∈Πk

Jπkk (~τ∗k )

10: ~π∗ = {π∗1 , π∗2 , ..., π∗k, ..., π∗K}
11: return ~π∗

3.1 Response Function Computation
The main step of our proposed algorithm is computing the
single agent response function with respect to constraint tim-
ing variables. We now describe algorithms to compute J∗k
efficiently for each agent. Before describing the algorithms
in detail, we present a few basic definitions and notations:

• The algorithms presented are from a single agent perspec-
tive; therefore, we omit the index k from the notation
wherever possible.

• V∗ (σ, σ∗, τ), the cost-to-state, is the optimal cumulative
cost from state σ at time t = τ to the target state σ∗ in
T − τ time steps.

• J ∗ (σI , σ, τ), the cost-from-state, is the optimal cumula-
tive cost from initial state σI at time t = 0 to state σ in τ
time steps, and J∗ = J ∗ (σI , σ∗, T ).

• More generally, V∗♦ (sI , sg, τI , τg) is the optimal cumula-
tive cost from state sI at time t = τI to state sg at time
t = τg in τg − τI time steps.

We start with the following computation in algorithm 2
of the cost-to-state and cost-from-state. The result is re-
quired only for intermediate states in the agent’s constraint
set. A natural implementation by Dynamic Programming
(DP) computes these costs via a single pass for all states and
times.

Algorithm 2 Costs to and from states
1: for all τ ∈ {1, .., T} and σ ∈ {σ`} do
2: Compute J ∗ (σI , σ, τ) iteratively using DP.
3: for all τ ∈ {T − 1, .., 0} σ ∈ {σ`} do
4: Compute V∗ (σ, σ∗, τ) iteratively using DP.
5: Cache all results for later use.

The single agent response function is the optimal cumula-
tive cost with respect to the timing variables, i.e., the optimal
plan from the initial state to the goal state, while satisfying
the constraints in times specified by the timing variables. To
simplify the presentation, we start by showing how to com-
pute the single-agent response function with a single inter-
action (i.e., a single constraint), and then follow with the
general case of L interactions.

Let τ` be a single timing variable (i.e., L = ` = 1), and
J∗σ (τ`) the optimal cumulative cost from initial state σI to
goal state σ∗ in T time steps, via the intermediate state σ`;
i.e., sτ` = σ`. For a given assignment of τ`, we can compute
the response function in this simple case as:

J∗σ (τ) =

{
J∗, τ = T∅
J ∗ (σI , σ`, τ) + V∗ (σ`, σ∗, τ) , otherwise

(15)
Namely, it is computed by two parts: planning from the ini-
tial state σI in time t = 0 to the constraint state σ` in time
t = τ`, and from the latter to the goal state at T (i.e., for
T − τ time steps). If τ` = T∅, the constraint is not imposed.
Hence, J∗σ (τ`) = J∗, i.e., the optimal cost with no consid-
eration of interactions.

The generalization for L = Lk constraints (the number of
constraints agent k is involved in) follows the same idea. We
need to compute the response function J∗σ1,...,σL (τ1, ..., τL)
for every assignment of L timing variables. We present an
incremental scheme that efficiently avoids repeated compu-
tation of given segments:

1. Pre-compute the state-to-state cost functions by dynamic
programming, and cache the results for later use:

1.1. Apply algorithm 2.
1.2. Pre-compute V∗♦ using algorithm 3.

2. Build the response function from the bottom up using the
previously cached values that were pre-computed in the
previous step, using algorithms 4 and 5. For simplicity
we use the following concise notation, for 1 ≤ ` ≤ L:

J∗ {`} , J∗σ1,...,σ`
(τ1, ..., τ`) (16)

In algorithm 5 we show how to compute J∗ {`+ 1}
for all assignments to τ`+1, given J∗ {`} for a spe-
cific assignment to τ1, . . . , τ`. The idea is es-
sentially to replace V∗♦ (σ`1 , σ`2 , τ`1 , τ`2) by the sum
V∗♦ (σ`1 , σ`+1, τ`1 , τ`+1)+V∗♦ (σ`+1, σ`2 , τ`+1, τ`2) when
constraint `+ 1 is added with timing assignment τ`+1 be-
tween existing τ`1 and τ`2 .

Algorithm 3 Multiple constraint response - step 1.2
1: for all σi, σj ∈ {σ1, σ2, ..., σL} do
2: for all τi ∈ Ti do
3: for all τj ∈ Tj , τj > τi do
4: Compute V∗♦ (σi, σj , τi, τj)
5: Cache the results for later use.

Algorithm 4 Multiple constraint response - step 2
1: for all ` ∈ {1, 2, ..., L− 1} do
2: for all τ1, τ2, ..., τ` do
3: For a given assignment to τ1, τ2, ..., τ`
4: Such that τi1 ≤ τi2 ≤ ... ≤ τi`
5: Compute J∗ {`+ 1} from J∗ {`} for all τ`+1 ∈
T`+1, using Algorithm 5
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Algorithm 5 Multiple constraint response - inner algorithm
1: Assume τi1 ≤ τi2 ≤ ... ≤ τi`
2: p = 1 . Initialize pivot index
3: b = 1 . Set baseline flag
4: for all τ`+1 ∈ {0, 1, ..., T − 1} do
5: if p = 1 then
6: if b = 1 then
7: J∗base = J∗{`} − J ∗ (σI , σi1 , τi1) . Initialize a baseline value for J∗{`+ 1}
8: b = 0 . Reset baseline flag
9: if τ`+1 < τi1 then

10: J∗{`+ 1} = J∗base + J ∗ (σI , σ`+1, τ`+1) + V∗♦ (σ`+1, σi1 , τ`+1, τi1)
11: else . τ`+1 = τi1
12: J∗{`+ 1} =∞ . There is no valid plan that meets the constraints
13: p = 2 . Increment pivot index
14: b = 1 . Set baseline flag
15: else if 1 < p ≤ ` then
16: if b = 1 then
17: J∗base = J∗{`} − V∗♦

(
σip−1

, σip , τip−1
, τip

)
18: b = 0 . Reset baseline flag
19: if τ`+1 < τip then
20: J∗{`+ 1} = J∗base + V∗♦

(
σip−1 , σ`+1, τip−1 , τ`+1

)
+ V∗♦

(
σ`+1, σip , τ`+1, τip

)
21: else . τ`+1 = τip
22: J∗{`+ 1} =∞ . There is no valid plan that meets the constraints
23: p = p+ 1 . Increment pivot index
24: b = 1 . Set baseline flag
25: else . p > `
26: if b = 1 then
27: J∗base = J∗{`} − V∗ (σi` , σ∗, τi`) . Initialize a baseline value for J∗{`+ 1}
28: b = 0 . Reset baseline flag
29: J∗{`+ 1} = J∗base + V∗♦ (σi` , σ`+1, τi` , τ`+1) + V∗

(
σi`+1

, σ∗, τi`+1

)
30: J∗{`+ 1} (T∅) = J∗{`} . τ`+1 is equal to the null assignment, namely no constraint

3.2 Plan Merging
The plan merging step of our proposed algorithm re-
quires finding an optimal assignment to the timing vari-
ables while optimizing the global cost function J∗ (~τ). This
is a weighted constraint satisfaction programming problem,
which is NP-hard in the general case (Larrosa and Dechter
2003). In the special case of the min-sum objective (equa-
tion 12), we can reduce optimization complexity by using
models that consider the internal structure of the depen-
dency among agents. A graphical model, called factor graph
(Loeliger 2004), describes the interaction among agents, and
captures agent dependency or independency, therefore lead-
ing to more efficient optimization algorithms.

A factor graph contains variable nodes representing con-
straint variables (the timing variables), and factor nodes rep-
resenting single-agent cost functions J∗k (~τk). Edges connect
a cost function to all the variables associated with the con-
straints involved in that cost function. Figure 1 illustrates
how the min-sum optimization problem is represented using
a factor graph. In this example, we have three cooperation
constraints, where G1 = {g1,g2,g3} ,G2 = {g1,g3}, and
G3 = {g3,g4}.

On the factor graph we apply a variable elimination (VE)
algorithm, which is used mainly for exact inference (Koller

and Friedman 2009). VE exploits the internal structure of
the problem and reduces computations (Larrosa and Dechter
2003).

The factor graph structure and the VE elimination order-
ing have a major effect on the complexity and efficiency of
the algorithm, which is out of the scope of this work (see
Koller and Friedman 2009). However, in the next section
we present several representative cases. The scheme for ap-
plying VE to solve the optimization problem is described in
(Revach 2018).

Figure 1: Factor graph example
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3.3 Complexity Analysis
In this section we present an overall complexity analysis
of our proposed algorithm. We first present the complex-
ity of the response function computation, followed by an
overall analysis of a few representative cases, and estab-
lish an upper bound on the complexity of planning prob-
lems. The complexity result is formulated in terms of the
overhead of planning for a multi-agent system as a func-
tion of planning for each single agent in isolation, when
considering the same problem structure. More specifically,
we denote T (V∗, T ) and T (J ∗, T ) as the time complex-
ity of computing a single-agent cost-to-state and cost-from-
state, respectively, over the time horizon T , and assume
T (V∗, T ) = T (J ∗, T ).

For the response function computation, the first step of
pre-computation (algorithms 2 and 3) is of the order of
L2 ·

∑
τ`∈T` T (V∗, τ`) ≤ L2 · T2 · T (V∗, T ), where L is

the number of constraints in which the agent is involved.
We can use an efficient algorithm for computing a single
agent cost-to-state from every initial state to a fixed and
specific goal state (e.g., using dynamic programming) and
denote its time complexity as T (V∗B, T ). In that case, we
may reduce the time complexity by a factor of L, compared
to single agent planning, i.e., L · T2 · T (V∗B, T ). The time
complexity of the second step (algorithm 4) is dominated by
O
(
TL
)
. Therefore, the overall complexity for computing

the response function is

L · T
2
·T (V∗B, T ) +O

(
TL
)

(17)

In the case of a single constraint, this reduces to 2 ·
T (V∗, T ) +O (T ) (equation 15).

The complexity of the plan merging step, and more specif-
ically the VE algorithm, depends on the scope size of each
factor; that is, the number of variables to which each fac-
tor is connected. The total complexity has an exponen-
tial dependency in the scope size of the factors and it is
of the order of O ((K + L) · dm) where m is the maximal
scope size of factors and d is the maximal number of val-
ues of each variable. For a detailed complexity analysis
of the VE algorithm on a factor graph, see (Revach 2018;
Koller and Friedman 2009).

We now present an analysis of the overall time complex-
ity for several representative cases. We start with a very
sparse case, where there are 2 · L agents, each of which is
involved in only one cooperation constraint, i.e., K = 2 · L.
The response function computation time complexity is dom-
inated by 2 ·T (V∗, T ) +O (T ) and is linear in the span of
the time horizon. Each timing variable does not depend on
any of the other variables. The time complexity of elim-
inating a single variable is dominated by O (T ); i.e., it is
also linear in the span of the time horizon. The overall
complexity is K · [2 ·T (V∗, T ) +O (T )] + L · O (T ) =
2·K · T (V∗, T ) + 3

2 · K · O (T ). Because of the inherent
decoupling in this case, this is equal to solving L = K

2 in-
dependent problems.

In a dense case we consider two agents with L ≥ 2 co-
operation constraints between them (i.e., each agent is in-
volved in L constraints). The time complexity of the re-

sponse function computation is exponential in L. As all
the timing variables belong to the same factors, they are
therefore dependent. The time complexity of the plan merg-
ing is also exponential in L, but it is not the dominat-
ing part. The overall complexity is dominated by 2 · L ·(
T
2 ·T (V∗B, T ) +O

(
TL
))

.
We now consider an hierarchical case, where each con-

straint involves two agents and the factor graph is a bal-
anced N -tree with depth M . There are NM agents (factors)
that are represented as leaf nodes in the tree, and K − NM

agents that are not represented as leaf nodes. Here, K is
equal to K =

∑M
m=0N

m; therefore, the total number of
cooperation constraints is equal to L = K − 1. Each of the
leaf agents is involved in only one cooperation constraint;
therefore, the complexity of computing their response func-
tion is just linear: NM · (2 ·T (V∗, T ) +O (T )). An agent
that is not a leaf node in the tree is involved in N + 1 co-
operation constraints. Therefore, the complexity of com-
puting their response function is

(
K −NM

)
· (N + 1) ·(

T
2 ·T (V∗B, T ) +O

(
TN+1

))
. In the case of a tree, the plan

merging is executed bottom up from the leaf nodes to the
root node. Every factor that is not a leaf generates an N + 1
cliques (see Koller and Friedman 2009) of timing variables
(i.e., all the variables on which the factor depends). There-
fore, the complexity of plan merging is dominated by the
size and number of cliques. The complexity of eliminating
a clique by a VE algorithm is dominated by O

(
TN+1

)
, and

the number of cliques is equal to CL = K − NM . Note
that the process of eliminating cliques in the same level of
the tree can be distributed and parallelized.

Finally, we define a coupling measure ρ for the system as
the maximal number of constraints in which each agent is
involved,

ρ = max
k

Lk, k = 1, . . . ,K (18)

where Lk is the number of constraints in which agent gk is
involved. An upper bound for the complexity is linear in K,
polynomial in T , and exponential only in ρ:

O
(
K · ρ ·

(
T

2
·T (V∗B, T ) + T ρ

))
(19)

4 Experiments
In this section we present the results of basic experiments
performed using DIPLOMA, in order to validate its cor-
rectness and test its time complexity. We compare the al-
gorithm’s performance against a centralized DP algorithm
solving the underlying MMDP. We use the same DP algo-
rithm for calculating J ∗ (σI , σ, τ) and V∗ (σ, σ∗, τ) in algo-
rithm 2. All simulations were performed on an Intel i7-8700
CPU @ 3.20Ghz machine with 16.0 GB RAM.

We ran our simulations on a simple grid world example
where several agents have to travel from an initial location
to a goal location in T time steps while collecting as many
boxes as possible. Each box has its own reward and asso-
ciated agent, and some boxes can be picked by two agents
together in order to gain a double reward. In order for agents
to pick a box together, they have to meet at the box location
at the same time. Agents can move up, left, or right, and
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collect the reward upon moving up from their box location.
Our goal is to find an optimal joint plan such that the group
reward is maximized. Note that in this example we use re-
ward instead of cost used in the model; however, replacing
between the two is trivial by taking negative rewards. This
problem is depicted in figure 2 for a grid of 10×10 and four
agents (K = 4). This problem is quite simple but can repre-
sent scheduling problems, box-pushing, search-and-rescue
and more.

Figure 2: A box collecting problem on a 10 × 10 grid with
four agents (K = 4), denoted by four different colors. All
agents start in the bottom row and have to arrive to the cor-
responding warehouse at the top row within T time steps.
Each agent can only pick boxes of its color. Agents can co-
operate in three different locations (L = 3), illustrated by a
two-colored box. For instance, in the box located in (0, 2),
the red agent can pick the box alone and receive a reward of
3, or it can pick it with the assistance of the blue agent and
receive a reward of 6.

We ran our simulation on a fixed grid size of 10 ×
10
(
|S| = 100K

)
, a fixed horizon of T = 20 time steps, and

different values for number of agents (K), and constraints
(L). For every value of K we generated 20 random envi-
ronments (with a random number of constraints) and mea-
sured the runtime of the centralized reference algorithm and
DIPLOMA. Figure 3 demonstrates how our proposed algo-
rithm scales in the number of agents, and depends on the
coupling measure ρ (see equation 18). We also compare the
runtime of our algorithm using the VE algorithm for the plan
merging step, compared to a brute-force (BF) optimization.
Elimination ordering for VE was determined by a simplified
min-neighbors criteria (Koller and Friedman 2009). The ref-
erence algorithm does not depend on the coupling measure
(i.e., number of constraints), but for K = 3, has a run-
time higher by two orders of magnitude than DIPLOMA.
A value of K = 4 makes it practically infeasible to run.
DIPLOMA, on the other hand, scales well in the number
of agents and depends mostly on the coupling level. Fur-
thermore, using VE optimization for the plan merging step
(compared to a brute-force optimization), reduces runtime

significantly when the coupling measure increases.

5 Extension to Asymmetric Interactions
In this paper we focus on simple symmetric interactions be-
tween agents, i.e., meeting constraints where all agents must
arrive at the same time for the group to benefit from the
interaction. Our model, however, can be extended to in-
clude asymmetric and more complex temporal constraints,
enabling a compact representation of such constraints. Fur-
thermore, it enables the development of efficient planning
algorithms that exploit the linear time complexity of solv-
ing an MDP. This can be done by applying the group in-
teraction cost C−` to a specific interacting agent, called the
affected agent, and embedding an activation function of the
form f` : T × T` → {0, 1} into the affected agent’s im-
mediate cost. The activation function defines a set of time
instances where the interaction cost is applicable.

As an example, one can consider a scenario where a fa-
cilitating agent can arrive at a certain state in time τ ∈ T =
{1, ..., 10}, which opens a 10 time steps window following
time τ , allowing the second agent to receive an additional re-
ward for each time step (within this time window) in which
it is in a related state. If we formulate this interaction using a
distinct constraint for each possible state-time pair, we need
102 = 100 constraints, and thus checking about 2100 ≈ 1030

different combinations of constraints. By formulating this
interaction with an SCC, using a step activation function,
we would have only 10 constraints. We would need to check
only 210 = 1024 ≈ 103 combinations of constraints of the
first agent, and for each one, solve a single induced MDP for
the second agent. Thus, we obtain an improvement of many
orders of magnitude in this simple case.

A detailed formulation and implementation of this exten-
sion is presented in (Revach 2018), including an efficient
asymmetric planning algorithm using a step activation func-
tion.

Another rather trivial extension to asymmetric interac-
tions is to use a different interaction timing for every inter-
acting agent in a constraint. Since we calculate the agents’
response for each τ ∈ {0, . . . , T } (see algorithm 5), we can
choose a different value of τ for each agent in the plan merg-
ing step.

6 Discussion and Future Work
In this paper, we address the problem of fully cooperative
multiple agents high-level planning problems in determin-
istic environments. We focus on problems where interac-
tions between agents are symmetric and sparse, and present
a framework for representing all interactions as soft cooper-
ation constraints (SCC). This framework enables a compact
representation of temporal constraints and can be further ex-
tended and generalized to include more types of constraints.
Considering the SCC formulation, only those agents that
are subject to the same cooperation constraint are coupled,
forming a dependency only in a specific context.

The SCC model presented is quite general and useful in
practice, and can express constraints used in realistic scenar-
ios. The main use case is coordination of high-level actions
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Figure 3: Simulation results for K = 2 (a), K = 3 (b), and K = 4 (c) on a logarithmic scale. The centralized reference
planner does not depend on the coupling measure (i.e., number of constraints in the problem), but scales poorly on the number
of agents, and for K = 4 is practically infeasible. DIPLOMA algorithm achieves an improvement of 2 orders of magnitude,
and depends on the coupling level.

among autonomous agents. Example problems are the coor-
dination of rescue or military forces, the Mars rover explo-
ration (discussed in Becker et al. 2004) or the coordinated
target tracking (discussed in Kumar and Zilberstein 2009).
We can extend several combinatorial optimization problems,
such as the vehicle routing problem (VRP) or the multi-
ple traveling salesman problem, to include potential meet-
ings between agents that provide additional rewards for the
group. An SCC can also express a conflict (or collision) con-
straint (specifically in multi-agent path finding problems) by
setting a positive or infinite interaction cost (see section 2),
and using the extended formulation presented in section 5.
In a similar way, we can also represent resource constraints,
such as ”use at most 1 of this resource at the same time”,
by adding constraints to states where the resource is used by
agents.

Using this model, we are able to describe an efficient al-
gorithm, DIPLOMA, which is both complete and optimal.
The proposed algorithm is a two-step algorithm: a dynamic
programming-based planning step and an optimization step.

In the first step, each agent plans independently and com-
putes its response function to the associated constraints with
respect to interaction timing variables. We show non-trivial
and efficient algorithms for computation, which can also be
distributed and parallelized. The time complexity per agent
strongly depends on the span of the time horizon and the
number of cooperation constraints relevant to this particular
agent.

In the second step, we use a variable elimination algo-
rithm on a factor graph to find the optimal assignment to
timing variables. The algorithm exploits the internal struc-
ture of the problem and independence among agents to effi-
ciently solve the min-sum optimization problem.

A theoretical time complexity analysis is presented, show-
ing that the overall algorithm is linear rather than exponen-
tial in the number of agents, polynomial in the span of the
time horizon, and dependent on the number of interactions
among agents.

Simulations show that the algorithm is efficient compared
to a standard solution and scales well in the number of

agents.
An immediate direction for future research is the exten-

sion to more expressive interaction constraints, as discussed
in section 5. Other possible directions for future research in-
clude generalizing the formulation of constraints by expand-
ing the state and time domains of each constraint, defining
types of agents (rather than specific agents) in a constraint,
approximate methods for computing the response functions,
and simulating a real-world large-scale MAP problem.
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Abstract

Dec-POMDPs model planning problems under uncertainty
and partial observability for a distributed team of cooperat-
ing agents planning together but executing their plans in a
distributed manner. This problem is very challenging com-
putationally (NEXP-Time Complete) and consequently, exact
methods have difficulty scaling up. In this paper we present
a heuristic approach for solving certain instances of Factored
Dec-POMDP. Our approach reduces the joint planning prob-
lem to multiple single agent POMDP planning problems.
First, we solve a centralized version of the Dec-POMDP,
which we call the team problem, where agents have a shared
belief state. Then, each agent individually plans to execute
its part of the team plan. Finally, the different solutions
are aligned to achieve synchronization. Using this approach
we are able to solve larger Dec-POMDP problems, limited
mainly by the abilities of the underlying POMDP solver.

1 Introduction
Decentralized Partially Observable Markov Decision Pro-
cesses (Dec-POMDPs) are a popular model for planning in
stochastic environments under uncertainty with partial ob-
servability by a distributed team of agents (Oliehoek and
Amato 2016). In this model, a team of agents attempts to
maximize the team’s cumulative reward where each agent
has only partial information about the state of the system
during execution. The team can plan together centrally prior
to acting, but during execution each agent is aware of its own
observations only. Communication is possible only through
explicit communication actions, if these are available.

To achieve their common goal agents must coordinate
their actions in two ways: First, as in single agent problems,
actions must be coordinated sequentially. That is, current ac-
tions must help steer the system later towards states in which
greater reward will be possible. For example, to be rewarded
for shipping a product, it must first be assembled. Second,
agents may need to coordinate their simultaneous actions
because their effects are dependent, e.g., a heavy box can
only be pushed if two agents push it simultaneously.

Our focus is on centralized off-line planning for dis-
tributed execution. That is, offline, a solver with access to the
complete model must generate a policy for each agent. An
agent’s policy specifies which action it executes as a function

of the agent’s history of actions and observations. Such poli-
cies can be represented by a policy graph where nodes are la-
beled by actions, and edges are labeled by observations. On-
line, each agent executes its own policy independently of the
other agents. The challenge is to generate policies that pro-
vide sufficient coordination, even though each agent makes
different observations at run-time. Thus, agents’ beliefs over
which states are possible are typically different.

Dec-POMDPs are notoriously hard to solve – they are
NEXP-Time hard (Bernstein, Zilberstein, and Immerman
2013), implying that only the smallest toy problems are
optimally solvable. However, many approximate methods
for solving Dec-POMDPs have been proposed, with steady
progress. Some of these methods generate solutions with
bounds on their optimality (Oliehoek et al. 2013; Seuken
and Zilberstein 2007; Oliehoek, Kooij, and Vlassis 2008),
and some are heuristic in nature (Nair et al. 2003). However,
current methods typically do not scale to state spaces with
more than a few hundreds of states.

In this paper we describe a heuristic approach for solv-
ing Dec-POMDPs that scales to much larger state spaces.
The key idea is to solve a Dec-POMDP by solving multiple
POMDPs. First, we solve the team POMDP, a POMDP in
which every observation by one agent is immediately avail-
able to the other agents. Hence, all agents have the same
belief state. The solution of the team POMDP can be repre-
sented by a policy graph — the team policy graph. It pro-
vides us with a skeleton for the solution of the Dec-POMDP,
specifying what each agent needs to provide for the team.
Naturally, this policy is not executable by the agents, be-
cause agents cannot condition their actions on the observa-
tions of other agents in the real world.

Hence, in the next stage, we let each agent solve a
POMDP in which it is rewarded for behaving following the
specification in the team policy. This leads to the generation
of a policy tree for each agent. These policy trees are often
not well synchronized. In the last step we synchronize the
policy trees by delaying the actions of agents to improve the
probability of good coordination.

We implemented our algorithm and tested it on several
configurations of a benchmark problem: Collaborative Box-
Pushing which is a variation of the Cooperative Box Pushing
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problem. We show that the algorithm manages to scale well
beyond current Dec-POMDP solvers. One of the main prop-
erties of the domain, is that agents policies are only loosely
coupled. That is, the need for actions that affect state com-
ponents that are relevant to all agent, is sparse. That spar-
sity allows for each agent to independently construct a plan
that consists mostly of its own private actions without requir-
ing it to consider the other agents’ behavior. This allows us
to achieve good decentralized policies even when achieving
the goal requires many steps, compared to planning directly
over the Dec-POMDP model.

2 Background
We now provide needed background on POMDPs, Dec-
POMDPs, their factored representation, and policies. We
also introduce the concept of private and public variables
and actions in Dec-POMDPs.

2.1 POMDPs
A POMDP is a model for single-agent sequential deci-
sion making under uncertainty and partial observability. For-
mally, it is a tuple P = 〈S,A, T,R,Ω, O, γ, h, b0〉, where:
• S is the set of states. The future is independent of the past,

given the current state.
• A is the set of actions. An action may modify the state

and/or provide information about the current state.
• T : S × A →

∏
(S) is the state transition function.

T (s, a, s′) is the probability of transitioning to s′ when
applying a in s.

• R : S × A × S → R is the immediate reward function.
R(s, a, s′) is the reward obtained after performing a in s
and reaching s′.

• Ω is the set of observations. An observation is obtained
by the agent following an action, and provides some in-
formation about the world.

• O : S × A →
∏

(Ω) is the observation function, speci-
fying the likelihood of sensing a specific observation fol-
lowing an action. O(s′, a, o) is the probability of observ-
ing o ∈ Ω when performing a and reaching s′.

• γ ∈ (0, 1) is the discount factor, quantifying the relative
importance of immediate rewards vs. future rewards.

• h is the planning horizon — the amount of actions that an
agent executes before terminating. The horizon may be
infinite.

• b0 ∈
∏

(S) is a distribution over S specifying the proba-
bility distribution over the initial state.
For ease of representation, we assume that agent actions

are either sensing actions or non-sensing actions. An agent
that applies a non-sensing action receives the observation
null-obs. In addition, we also assume that every action has
an effect that we consider as the successful outcome, while
all other effects are considered failures. We later explain how
this assumption can be omitted in the relevant parts.

Often, the state space S is structured, i.e., it consists of
assignments to some set of variablesX1, . . . Xk, and the ob-
servation space Ω is also structured, consisting of a set of

observation variables W1, . . . ,Wd. Thus, S = Dom(X1)×
· · · × Dom(Xk) and Ω = Dom(W1) × · · · × Dom(Wd).
In that case, τ , O, and R can be represented compactly
by, e.g., a dynamic Bayesian network (Boutilier, Dean, and
Hanks 1999). Formats such as RDDL (Sanner 2011) and
POMDPX (POM 2014) exploit factored representations to
specify POMDPs compactly.

Example 1. Consider a simple Box-Pushing in a 2 cell grid.
The left cell is marked by L and the right cell by R. The agent
begins in the left cell. There is a single box, that starts in the
right cell. The agent can either move, sense its current cell
or push a box from its current cell. Both move and push can
be done in any direction — left and right. The agent’s goal
is to push the box to the right cell. The state is composed of
2 variables: the location of the agent and the location of the
box. Each variable can take one of two values: L or R. The
sense action returns an observation telling whether there’s
a box in the agent’s cell, while the move and push actions
are non-sensing actions always returning null-obs. The push
action has a success probability of 0.8.

A solution to a POMDP can be formed as a policy, assign-
ing to each history of actions and observation (AO-history)
the next action to execute. Such a policy is often represented
using a policy tree or, more generally, a policy graph (also
called a finite-state controller).

A policy graph G = (V,E) is a directed simple graph,
in which each vertex is associated with an action, and each
edge is associated with an observation. For every edge v ∈
V and every observation o ∈ Ω exactly one edge emanates
from v with the label o. The graph has a single root which
acts as its entry point. EveryAO-history h can be associated
with some path from the root to some vertex v, and the action
labelling v is the action that the policy associates with h.

Finally, using a policy graph to direct the agent on the
problem produces a trace – an execution trajectory. A
trace T of length l is a sequence of quintuplets ei =
(si, ai, s

′
i, oi, ri), namely steps, that occurred during a possi-

ble policy execution where: si is a state in step i and s0 is the
initial state; ai is the action taken in step i; s′i is the result of
applying ai in si; oi is the observation received after taking
ai and reaching s′i; and is the reward received for taking the
ai in si and reaching s′i. Clearly, ∀i such that 0 ≤ i ≤ l− 1,
we have s′i = si+1.

2.2 Dec-POMDP
A Dec-POMDP models problems where there are n >
1 acting agents.. These agents are part of a team, shar-
ing the same reward, but they act in a distributed man-
ner, sensing different observations. Thus, their informa-
tion state is often different. Formally, a Dec-POMDP for
n agents is a tuple P = (S,A =

⋃n
i=1 {Ai}, T,R,Ω =⋃n

i=1 {Ωi}, O, γ, h, {Ii}
n
i=1), where:

• S, γ, h, b0 are defined as in a POMDP.

• Ai is the set of actions available to agent i. We assume
that Ai contains a special no-op action, which does not
change the state of the world, and does not provide any
informative observation. A = A1 × A2 × .. × An is the
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set of joint actions. On every step each agent i chooses
an action ai ∈ Ai to execute, and all agents execute their
actions jointly. 〈a1, ..., an〉 is known as a joint action. We
often treat the single-agent action ai as a joint-action, with
the understanding that it refers to the joint-action 〈no-
op,. . . , ai, . . . ,no-op〉

• T : S×A→
∏

(S) is the transition function. Transitions
are specified for joint actions, that is, T (s, 〈a1, ..., an〉, s′)
is the probability of transitioning from state s to state s′
when each agent i executes action ai.

• R : S × A× S → R is the reward function. Rewards are
also specified over joint actions.

• Ω = Ω1 × Ω2 × .. × Ωn is the set of joint observations.
Each Ωi contains a special null-obs observation received
when applying a non-sensing action.

• O : S × A →
∏
i=1..n(Ωi) is the obser-

vation function, specified over joint actions.
O(s′, 〈a1, ..., an〉, 〈o1, ..., on〉) is the probability that
when all agents execute 〈a1, ..., an〉 jointly and reach s′,
each agent i observes oi.

• γ is the discount factor.
• h is the horizon.
• b0 ∈

∏
(S) is a distribution over S specifying the proba-

bility that each agent begin its execution in each state. In
principle, different agents may have different initial belief
states, but we make the (common) assumption that the ini-
tial belief state is identical.

Example 2. We extend the previous example to a Dec-
POMDP by adding an agent at the right cell and a second
box that starts in the left cell. The agents are denoted by
Agent1 and Agent2 and the boxes by Box1, and Box2. Box1
must reach the left cell, and Box2 must reach the right cell.

As in the case of POMDPs, Dec-POMDPs can also be
represented in a factored manner (Oliehoek et al. 2008), al-
though most work to date uses the flat-state representation.
We add the notion of observation variables, which capture
the observation value each agent obtains following an ac-
tion. Each observation variable is denoted by ωi which takes
values in Ωi, and represents the observation of agent i.
Example 3. In our example, the state is now composed of 4
state variables: the location of each box – (XB1, XB2) – and
the location of each agent – (XA1, XA2). In addition, there
are two observation variables – (ω1, ω2).

An important element of a factored specification of Dec-
POMDPs is a compact formalism for specifying joint-
actions. If there are |A| actions in the domain, then, in prin-
ciple, there are O(|A|n) possible joint actions. Specifying
all joint actions explicitly is unrealistic for large domains.

In many problems of interest we may expect that most
actions will not interact with each other. A pair of actions
a ∈ Ai, a′ ∈ Aj is said to be non interacting, if their ef-
fects when applied jointly (in the same joint action) is the
union of their effects when applied separately. Thus, our
specification language focuses on specifying the effects of
single-agent actions and specific combinations of single-
agent actions that interact with each other, which we refer

to as collaborative actions (Bazinin and Shani 2018). For
a more detailed discussion of the compact specification of
joint-actions, see (Shekhar and Brafman 2020).

Example 4. We alter our example further by introducing a
collaborative action. To do so, we need to convert one of the
boxes to a ”heavy” box - a box that requires both agents to
push it. We will convert Box1 to such box. Both agents now
have also the option to apply a collaborative-push action in
any specified direction. If both agents apply that action to
push Box1 while in the same cell with it, the box will transit.

Finally, a solution to a Dec-POMDP is a set of policies
ρi, one for each agent. It maps action-observation sequences
of this agent to actions in Ai. As in POMDPs, these policies
can be specified using a policy graph for each agent. The
policy graph for agent i associates nodes with actions in Ai
and edges with observations in Ωi.

2.3 Public and Private Actions and Variables
We find it useful to define the concept of public and pri-
vate variables and actions. State variables can influence or
be influenced by an agent’s action. State variables that are
influenced by several agents are called public and state vari-
ables that are influenced only by a single agent are private.
The concept of private and public (or local and global) vari-
ables (Brafman and Domshlak 2006) has been used exten-
sively in work on privacy-preserving multi-agent planning
(e.g., (Nissim and Brafman 2014; Maliah, Brafman, and
Shani 2017)) and, more recently, in work on solving qual-
itative variants of Dec-POMDPs (Brafman, Shani, and Zil-
berstein 2013; Shekhar, Brafman, and Shani 2019).

We now explain how we extend these concepts to factored
Dec-POMDPs. These definitions are based on the notions of
preconditions and effects, as used in classical planning. Let
a ∈ Ai be a non-sensing action of agent i. We identify a
with the joint action (no-op, . . . , a, . . . , no-op). We say that
a state variable Xi is an effect of a if there is some state s
for which there is a positive probability that the value Xi

changes following a. We denote the effects of a by eff (a).
We say that state variable Xi is an influencer of a if a

behaves differently for different values of Xi. That is, if
there are two states s1, s2 that differ only in the value of
Xi such that R(s1, a, s

′) 6= R(s2, a, s
′), or T (s1, a, s

′) 6=
T (s2, a, s

′) for some state s′, or O(s1, a, o) 6= O(s2, a, o)
for some observation o. We denote influencers of a by
inf(a). We refer to the union of the influencers and effects
of a as the relevant variables of a, denoted rel(a).

If a is a sensing action, we define inf(a) similarly, i.e.,
Xi ∈ inf(a) if there are two states s1, s2 that differ only in
the value of Xi such that the distribution over the values of
the observation variable of the agent performing a at s1 and
at s2 are different.

For collaborative actions, the definitions remain the same
except that now we identify a with the the joint-action that
is composed of the actions of the collaborating agents, and
no-ops for the rest.

We say that a variable Xi is relevant to agent j, if Xi is
relevant to some some a ∈ Aj . Finally, Xi is public if it is
relevant to more than one agent, and it is private otherwise.
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Example 5. In our running example,XB1 andXB2 are both
public variables, as they are relevant of both agents’ push ac-
tions. XA1, XA2 are private variables of agent 1 and agent 2
respectively, as they are the relevant only to each respective
agent’s move action. The same holds for ω1 and ω2 with re-
spect to the sense actions. Furthermore, the move and sense
actions are private actions, while the push actions are public.

3 FDMAP - Factorized Distributed MAP
Given the input factored Dec-POMDP problem P , we first
generate the team POMDP Pteam. We solve Pteam using
an off-the-shelf POMDP solver – we used SARSOP (Kurni-
awati, Hsu, and Lee 2008) – and output the team policy.

Next, we then use the team policy to produce traces,
which are simulations of the team policy over the team prob-
lem. Using the traces, we project the team problem with re-
spect to each agent, as follows: First, for each agent, we ex-
tract from the traces a set of public actions and the context in
which they were applied, which we call a contexted actions.
The context captures the conditions under which the action
achieves the same effects as in the trace. Then, we associate
a reward with each contexted action. The reward associated
with the contexted action is designed so that agents will be
rewarded for acting in a manner similar to their behavior in
the team solution.

Using these contexted actions and their rewards, together
with the factored Dec-POMDP, we generate one single-
agent problem for each agent. The dynamics of each single-
agent problem is similar to that of the Dec-POMDP, except
that some variables are projected away.

Finally, we process the single-agent policies and align
them to try and ensure that actions are properly synchro-
nized when they are executed in a decentralized manner. In
the rest of this section we explain the steps that follow the
generation of the team solution in more detail.

3.1 Producing the Traces
Having generated the team problem, Pteam, we solve it and
produce the traces, to capture the possible scenarios of the
problem. We must specify three hyper-parameters: a pair of
confidence parameters α, β and a precision parameter εteam.
We generate an εteam-optimal solution to Pteam using an
off-the-shelf POMDP solver, and then simulate that solution
to produce nt traces. We want the the empirical distribution
of the initial states observed in the traces and the distribution
given by the initial belief state to be close. To do so, we
generate sufficiently many traces so that the probability of
the KL-Divergence to be greater than β, is less than α.

To pick the number of traces we use a result on concen-
traion bounds for multinomial distribution from (Agrawal
2019), since the initial belief state b0 is a multinomial dis-
tribtuion. We denote by T0 the sampled distribution, and by
k the number of initial states, namely the support set of b0.
Using the theorem, for every nt > k−1

β we have:

Pr(KL(T0||b0) ≥ β) ≤ e−nt·β
(
eβnt
k − 1

)k−1

Example 6. In our example, solving the team problem
yields the following policy graph. Agent1 starts by pushing
Box2 to the right, and then senses whether it had succeeded.
It then moves left to assist Agent2 to push the heavy box,
Box1, to the right, and again senses to verify its success.

Next, we use the policy graph to produce the traces.
Different traces will differ by the number of pushes the
agents performs until success. Table 1 shows two possible
traces. Recall that the state is composed of 4 state variables:
(XA1, XA2, XB1, XB2), where each variables can take val-
ues in (L, R). The actions’ names will be denoted by the
action name (M for move, P for push, CP for collaborative
push and S for sense), followed by the direction for move
and push actions (L, R), and sub-scripted by the target box
for sense and push actions (B1, B2). We also denote the
null-obs by φ

XA1 XA2 XB1 XB2 a1 a2 ω1 ω2

1 L R R L PRB2 IDLE φ φ

2 L R R R SB2 IDLE φ no
3 L R R R MR IDLE φ φ

4 R R R R CPLB1 CPLB1 φ φ

5 R R L R SB1 IDLE no φ

1 L R R L PRB2 IDLE φ φ

2 L R R R SB2 IDLE φ no
3 L R R R MR IDLE φ φ

4 R R R R CPLB1 CPLB1 φ φ

5 R R R R SB1 IDLE yes φ

6 R R R R CPRB1 CPLB1 φ φ

7 R R L R SB1 IDLE no φ

Table 1: An example of two traces

3.2 Extracting Contexted Actions
We seek a policy for each agent in which the agent’s public
actions executions are identical to those that appear in the
team plan. That is, the agent should execute the same public
actions it executes in the team plan and in the same contexts.
To generate such a policy, we define an appropriate reward
function for each agent that encourages the agent to execute
the public actions in the team plan in its own plan and in the
same context.

The context of an action must capture the conditions un-
der which the policy chooses the specific action to be ex-
ecuted. We can associate the context with a specific state,
but this is too restrictive, as the state might contain various
variables that are irrelevant to the action. It is preferable to
define a less restrictive context that generalizes to all states
where the action achieves the same effects.

Definition 1. The context of an action a for agent i is the
set of values 〈xj1 , ..., xjk〉 for the public variables and the
private variables of agent i.

Definition 2. A contexted action (CA for short) is a pair
〈c, a〉, where a is a public action and c is the context of a,
such that there exists a trace t and an index i, where ti =
〈s, a, ω〉, and c and s assign identical values to the context
variables of a for agent i.
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We extract the CAs for agent i, denoted CActionsi from
the traces. For each trace t, we identify all the public ac-
tions in t. For each such public action a of agent i executed
in a state s, we identify the context c — the values that s
assigns to the public variables of the problem and private
variables of agent i. In many cases, even though an action
a is executed in two different states s1, s2 in the traces, the
context is identical, as we are interested only in the values of
the state variables that are relevant to the execution. We fo-
cus on the public actions because the projected single agent
problems are designed to plan execute these actions only in
their appropriate context.

Example 7. Returning to our Box-Pushing example: we
find the following public CAs of Agent1 in the traces:

• (L,R,R,L),PRB2

• (R,R,R,R),CPLB1

We construct CActions1 for Agent1 by taking the values of
the public variables of the problem, and the private variables
of Agent1. The public variables are XB1, XB2, while the
private variable of Agent1 is XA1.

This results in the following CAs:

• 〈XA1 = L,XB1 = R,XB2 = L〉, PRB2

• 〈XA1 = R,XB1 = R,XB2 = R〉, CPLB1

We next describe how the single-agent problems are con-
structed, given the CActionsi sets.

3.3 Single Agent Projection
Our next step is to define a factored POMDP Pi for each
agent i. Pi is designed to incentivize the agents to execute
the contexted actions of i in the appropriate context. The
actions of other agents are used to ”simulate” some of the
behaviors of the other agents – behaviors that eventually en-
able the agent to carry out its own actions. Pi contains all
state variables of the original problem. It also contains ac-
tions of agent i and of other agents. Other agents’ actions are
included to allow i to simulate their behavior. More specif-
ically, Pi contains all and only the public actions that ap-
peared in some trace of the team plan. In addition, Pi con-
tains all sensing actions of i, but not those of other agents.

For each private action a of another agent, Pi contains a
deterministic version of a. Here, we use the assumption that
each action has a known desired effect, and the determin-
istic version of a always achieves this desired effect. This
determinization is done mainly to simplify Pi, allowing us
to scale to larger problems. We can avoid this determiniza-
tion, at the cost of a more complicated Pi.

We now design the reward function of Pi,R′i. The rewards
incentivize the execution of the CAs in their appropriate con-
text, while the penalties discourage the agent from applying
them outside their context, so that its policy would emulate
its behavior in the team plan.

When considering the single agent problems, we no
longer want to reward the agents for achieving the team
problem goals, but rather reward them for achieving their
own parts of the team solution. Therefore, to make the new
goals beneficial, we need their associated rewards to surpass

the cost required to achieve them. To do so, we take a heuris-
tic upper bounding approach, which manifests the following
idea: In the single agent solutions, each CA will be preceded
by a sequence of private actions. If the reward for applying
that CA would surpass the total cost of its preceding actions
sequence sequence, the agent will find it beneficial to apply.
Furthermore, if satisfied for all CAs, the whole compound
of single agent goals would become beneficial to achieve.

Let MaxCost be the maximal negative reward received
by a private action, that appeared in the traces. Recalling
that we assume each action to have a single successful out-
come, let MinSP be the minimal success probability of all
actions in the problem, and MinCASP the minimal suc-
cess probability of the actions appearing in the CAs. Let
MTL be the maximal trace length we produced, and MPG
be the Maximal Public Gap – the maximal number of pri-
vate actions that precede a public action in the traces. We
set ε > 0 to some small positive value. Let CA = 〈c, a〉
be a contexted-action and Cost(CA) be the maximal nega-
tive reward received from CA in the traces (and 0 if it was
always positive). We compute rCA, the reward given to CA:∑MTL−1

i=MTL−MPG(MaxCost
MinSP · γ

i−1) + Cost(CA)·γMTL−1

MinSP + ε

γMTL−1 ·MinCASP

The numerator is an upper bound on the expected discounted
cost we would pay before applying CA as the last CA (the
preceding sequence cost + the cost of the CA itself). The de-
nominator amplifies that cost to be beneficial when sched-
uled as the last action in the policy.

As noted, we penalize the application of public actions in
contexts other than those they appeared in in the team plan.
This also eliminates potential positive reward cycles (Ng,
Harada, and Russell 1999) that can cause an agent to end-
lessly achieve one of its sub-goals. The penalty is chosen
to be −maxCA∈CActionsirCA· |CActionsi| , as an upper
bound on the sum of rewards that can be achieved from ap-
plying CAs. This ensures that public actions executed out
of context cost more than applying all the CAs. There is
no penalty for other agents’ CAs (i.e., contexted actions in⋃
j 6=i CActionsj). We want to allow the agent to simulate

other agents’ CAs in order to plan the execution of its own
actions at appropriate times, and also in order to act based
on the uncertainty these actions can introduce.

Finally, we remove rewards related to public variables the
agent can achieve because single-agent POMDP’s role is to
imitate the team policy, not compute an alternative solution.

Given an action a ∈ Ai, a source state s and a
state s′ 6= s which differs from s on at least one vari-
able X ∈ eff (a), we set R′i(s, a, s

′) = R(s, a, s′) −
max (0, R(s, a, s′)−R(s, a, s))

Example 8. We now construct Agent1’s single-agent prob-
lem. We denote the CAs from the previous example with
ca1, ca2, and their reward with rca1 , rca2 . We follow the pro-
jection stages one by one:

1. As the push action is the only public action in the prob-
lem, we remove all push actions except for the ones that
are observed in the traces. For Agent2 we leave only
CPLB1 and for Agent1 we leave CPLB1 and PRB2.
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Notice that we keep Agent2’s CPLB1 action in Agent1’s
problem, as we might need to simulate it.

2. We remove the sensing action of Agent2, as well as its
observation variable.

3. We don’t have any non-deterministic private actions, so
no actions are turned to deterministic.

4. We add a penalty of−2·max(rca1 , rca2) to the remaining
public actions, applied in any context except for the CA’s
contexts.

5. We add the rewards rca1 , rca2 to ca1 and ca2 respectively.
6. The rewards for pushing the boxes to the target cells are

set to 0 - we reward the agent only for doing its public
action in context.

3.4 Policy Adjustment and Alignment
We run the planner on each of the single agent projections
that we generate, constructing a set of single agent policy
graphs for the projections. We now adapt the policies to ap-
ply to the joint problem.

First, the projection of agent i contains private actions of
other agents that must be removed. We traverse through the
policy graph and replace every action of another agent by its
child. As we do not allow sensing actions of other agents,
there is always a single child to actions of other agents.

We now align the policies to increase the chance that ac-
tions of different agents occur in the same order as in the
team plan. An action a1 of agent 1 that sets the context value
of a variable in the context of an action a2 of agent 2 should
be executed before a2. Also, collaborative actions should be
executed at the same time by all participating agents.

Given stochastic action effects, we cannot guarantee that
the policies will be well correlated. It is desirable that we
will maximize the probability of synchronization, but cur-
rently, we only offer a heuristic approach that empirically
improves synchronization probability.

For each public action a in the team plan we select a sim-
ple path from the root to a. The identifier of the action is
the sequence of public actions along the simple path. Public
actions in individual agent policy graphs that share the same
identifier are assumed to be identical in all graphs.

For a public action a that has the same identifier in all
agent graphs, let l be the length of the longest simple path
to the action in all policy graphs, including private actions.
In any graph where the length is less than l, we add no-op
actions prior to a to delay its execution.

We use an iterative process — we begin with the action
with the shortest identifier (breaking ties arbitrarily), and de-
lay its execution where needed using no-ops. Then, we move
to the next action, and so forth. After the alignment we re-
move from each agent’s aligned policy graph all the public
actions of other agents.

Finally, we handle the problem of a potential “livelock”
between collaborative actions. Consider a scenario where
two agents need to perform a non-deterministic collabora-
tive action whose effect can be directly sensed. To do so,
after executing the action, both agents perform a sensing ac-
tion that senses the effect of that collaborative action. In ex-
ecutions, the agents may be unsynchronized, applying the

collaborative and sensing actions in an alternating manner,
where one agent performs the collaborative action while the
other performs the sensing action, causing them to enter a
livelock. To handle that, given a collaborative action with n
collaborating agents, we modify the graph so that every col-
laborative action that is part of a cycle is repeated by every
agent for n times instead of just once. This way, a livelock
can never occur.

Example 9. Figures 1(a) and 1(b) show Agent1’s policy
graph before and after the alignment and adjustments pro-
cedure. Since Agent2’s job is only to collaboratively push
Box1 with Agent1, there are no action simulations of Agent2
in Agent1’s policy, hence no alignment is required. The only
modification that occurs is the insertion of the live-lock han-
dling.

4 Empirical Evaluation
We provide experimental results focusing on longer plan-
ning horizons and scaling up with respect to current Dec-
POMDP solvers. The experiments were conducted on a vari-
ation of the popular cooperative box pushing problem. We
compare our algorithm, FDMAP, with two Dec-POMDP
solvers, GMAA-ICE (Oliehoek et al. 2013) and JESP (Nair
et al. 2003), using MADP-tools. (Oliehoek et al. 2017). We
evaluate FDMAP, GMMA-ICE and JESP on a Linux ma-
chine with 4 cores and 8GB of memory.

4.1 Collaborative Box-Pushing
In the cooperative box pushing domain, agents on a grid can
move and push boxes in four principle directions, or perform
a no-op. Light boxes can be pushed by a single agent, while
heavy boxes can only be pushed by a collaborative push of
two agents. All actions except for the push actions are deter-
ministic.

Each grid cell can contain any number of agents and
boxes, and each agent can sense for a box at its present lo-
cation. Initially, each box can appear in either the target cell
(and hence, need not be moved) or the lower right cell, with
equal probability. The goal of the agents is to move the boxes
to a target cell, located at the upper left corner of the grid.

Each action (except for no-op) has a cost — 10 for mov-
ing, 1 for sensing (encouraging sensing rather than blindly
pushing), 30 for pushing, and 20 for a collaborative push
(per agent). The reward for moving a box to its target posi-
tion is 500. In addition, there’s a penalty of 10000 for push-
ing a box out of the target cell to avoid abuse. In configura-
tions with heavy boxes we double the reward and penalty. A
domain instance of m cells with n agents, l light boxes, and
h heavy boxes, hasmn+l+h states, (5·(l+1)+4h·(n−1))n

actions and 3n observations.
Evidently, the box pushing domain calls for longer hori-

zon policies, rather than good local reactive policies, and re-
quires careful coordination to ensure that collaborative push
actions are performed simultaneously by the agents.

4.2 Settings
We compared FDMAP with GMAA-ICE and DP-JESP.
GMAA-ICE and DP-JESP require an horizon specification,
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(a) Before

(b) After

Figure 1: Agent1’s Policy

while FDMAP computes a policy for an unbounded hori-
zon. Therefore, we specify the maximal reached planning
horizon for them under the column -H-, and for FDMAP
we specify the average number of steps until reaching the
goal state, under the column -Avg-. Discount factor is set to
γ = 0.99.

For GMAA-ICE and DP-JESP we report the computed
policy value. For FDMAP we measured the average dis-
counted accumulated reward of 1000 simulations.

We provide results on several configurations of Collabo-
rative Box-Pushing. Each box starts at either the top-left or
bottom-lower corner with equal probabilities. The problem
name convention is composed of 5 marks (each mark spec-
ified in brackets), BP − [w][h][n][l][h]. The marks stand for
Width, Height, Number of agents, Number of light boxes,
Number of heavy boxes. For 1 dimensional grids, DP-JESP
and GMAA-ICE were given a minimalistic version of the
problem that does not include unnecessary actions — push
and move for the up and down directions — to decrease the
domain size. We specify the agents’ initial locations (de-
noted by I), as well as the domain size, alongside the con-
figuration name.

All planners were given a total of 3600 seconds to
solve each 〈configuration, horizon〉 pair. In addition, we also
limited the solution of each single-agent problem withint
FDMAP to 900 seconds. For the hardest problem configu-
ration (BP-33221), we also present results for larger time
limit, as 900 seconds were not sufficient for the agents to
solve their Pi.

The time shown for DP-JESP and GMAA-ICE is based
only on its log from MADP-Toolbox, and does not include
the problem loading, which is in many cases non negligible.
FDMAP time does not include writing the SARSOP policies
and graphs to disk, as they are highly dependent on hardware
quality and can effectively remain in memory throughout the
whole process.

In both GMAA-ICE and DP-JESP, configurations BP-
32302, BP-32303 and BP-33221 could not be solved for any
horizon. Therefore we provide comparisons only for the first
four configurations (Table 2), while the harder configura-
tions are shown in Table 3. We also provide a more sensitive
analysis of the horizon in table 5

In DP-JESP, × marks a timeout. In GMAA-ICE we mark
two different timeout options: FF refers to failure of finding
a full policy for the required horizon, where FH refers to an
earlier stage timeout when computing the heuristic function.

4.3 Results
The main comparison is presented in Table 2. We can see
that FDMAP manages to produce policies with higher qual-
ity, as these policies require horizons beyond those that the
other planners can handle. We also see that FDMAP’s plan-
ning time is significanlty smaller. This is due to the fact that
FDMAP does not plan directly on the decentralized model,
but rather solves multiple POMDP models, which are known
to require much less computational effort (Bernstein, Zilber-
stein, and Immerman 2013).

For the largest problems, shown in Table 3, FDMAP still
manages to produce good quality policies, yet with signifi-
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DP-JESP GMAA-ICE FDMAP
BP-31211 |S| = 81, |A| = 16, I = 〈(1, 2), (1, 3)〉

H Time Value H Time Value Avg Time Value
4 1861.30 279 4 30.23 330.07 15 2.03 590.82

BP-22202 |S| = 256, |A| = 225, I = 〈(1, 2), (2, 2)〉
H Time Value H Time Value Avg Time Value
3 267.24 271 3 160.18 320.46 9 3.88 356.08

BP-22203 |S| = 1024, |A| = 400, I = 〈(1, 2), (2, 2)〉
H Time Value H Time Value Avg Time Value
2 59.06 0 2 1053.27 414 17 21.01 518.02

Table 2: The results for configurations BP-31211, BP-22202
and BP-22203. FDMAP outperforms DP-JESP and GMAA-
ICE with respect to both running time and policy value. The
running time is improved significantly. Results for DP-JESP
and GMAA-ICE are for maximal horizon reached, specified
under the -H- column. In FDMAP we present the average
number of steps until reaching the goal state when running
the policy for an unbounded number of steps, specified un-
der the -Avg- column

FDMAP
Problem MaxSteps AvgSteps Time Value %Wins

BP-32302
|S| = 7776, |A| = 3375 40 14 92.70 243.91 100
I = 〈(1, 2), (1, 3), (2, 3)〉

BP-32303
|S| = 46656, |A| = 8000 43 21 1799.94 353.82 98
I = 〈(1, 2), (1, 3), (2, 3)〉

BP-33221
|S| = 59049, |A| = 324 124 37 2962.29 8.64 95
I = 〈(1, 3), (3, 1)〉

BP-33221
3600 seconds per agent 105 35 5379.32 345.56 100

Table 3: Results for the largest scale problems, which only
FDMAP managed to solve. Running times are rapidly in-
creasing while reaching the scales limit of the underlying
POMDP solver. The policies are still very robust, and reach
the goal state in most cases (%Wins). MaxSteps and Avg-
Steps specify the maximal and average number of steps
made until reaching a goal state throughout the runs.

DP-JESP GMAA-ICE FDMAP
BPPEN-31211 |S| = 81, |A| = 16, I = 〈(1, 2), (1, 3)〉

H Time Value H Time Value Avg Time Value
3 25.95 0 5 3537.67 438.95 15 1.99 568.20

BPPEN-22202 |S| = 256, |A| = 225, I = 〈(1, 2), (2, 2)〉
H Time Value H Time Value Avg Time Value
3 495.61 135.40 3 446.03 213.79 9 3.72 289.55

BPPEN-22203 |S| = 1024, |A| = 400, I = 〈(1, 2), (2, 2)〉
H Time Value H Time Value Avg Time Value
2 38.70 0 2 1054.5 326.504 15 14.67 533.26

Table 4: Results for a variation of Collaborative Box-
Pushing, in which we penalize an agent for pushing a light
box blindly

BP-21210 |S| = 8, |A| = 16, I = 〈(1, 1), (1, 2)〉
H DP-JESP GMAA-ICE FDMAP

Time Value Time Value Time Value
4 19.87 0 1.15 426.91 1.28 329.34
5 1069.95 0 2.09 438.34 ” 321.12
6 × - 6.97 448.19 ” 337.63
7 × - 8.98 450.97 ” 416.74

Max 1069.95 0 (5) 17.1 454.7 (25) 1.28 414.36 (4)

Table 5: Results for BP-21210. FDMAP outputs a reason-
able value compared to GMAA-ICE, which optimizes the
small scaled problem. The last row presents results for the
maximal horizon reached on DP-JESP and GMAA-ICE, and
average simulations steps until reaching the goal state for
FDMAP when run for unbounded number of steps. These
are specified in parentheses next to the policy value

cantly longer running time. The size of the hardest config-
uration, BP-33221, approaches the maximal problems that
SARSOP (Kurniawati, Hsu, and Lee 2008) can solve.

Table 5 shows that FDMAP manages to produce reason-
able results compared to the other solvers even when dealing
with extremely small domains in which optimal solvers such
as GMAA-ICE can excel.

To observe the difference between the policies FDMAP
produces to the ones GMAA-ICE does, we present another
variation of the domain, where we add a penalty of 101 to
light boxes push actions that occur with no box in the cell.
The penalty is chosen to be slightly higher than the reward
for pushing a box to the target cell, times the fail probabil-
ity of the push action. Table 4 presents the results (config-
uration name prefixed with BPPEN). We can see that the
the reward difference on maximal results compared to Ta-
ble 2 are much lower for FDMAP, indicating that FDMAP’s
policies in the non-penalty configurations exploit the hori-
zon and avoid blindly pushing, leading to higher-quality
results. If we would handle domains in which reward can
be only achieved in large horizons, a case that was men-
tioned in contexts of reward shaping (Brys et al. 2014;
Laud and DeJong 2003), we expect FDMAP’s ability to
scale to very large horizons while managing to reward agents
for their public goals, to become crucial.

5 Conclusion And Future Research
We presented FDMAP — an algorithm for solving fac-
tored Dec-POMDPs. FDMAP begins by solving a central-
ized POMDP, which we call the team POMDP, obtaining a
team plan. Then, FDMAP creates agent specific POMDPs
whose solutions encourage agents to complete their role in
the team plan. The agent plans are then aligned for synchro-
nization between the agents. We experiment with box push-
ing examples that require collaboration, showing that we can
scale to much larger problems than current Dec-POMDP
solvers, while computing a reasonable policy.

There are two direction in which we deem FDMAP can
be improved, in both scalability and solution quality. The
use of online planners instead of SARSOP as the underlying
POMDP solver, can greatly improve the scale of solvable
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problems. The changes in terms of algorithm’s structure are
minor, as we merely need to be able to produce the single
agent policy graphs using an online solver. In terms of so-
lution quality, we aim at using more principled methods of
reward shaping, that come from the field of reinforcement
learning in forms of multi-objectivization (Brys et al. 2014).
Our goal would be to convert the concept of contexted ac-
tions into objectives of each agent, while preserving opti-
mality with respect to the decentralized problem.
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