
30th International Conference on
Automated Planning and Scheduling

October 19–30, 2020, Virtual Nancy, France

PRL 2020
Proceedings of the 1st Workshop on

Bridging the Gap Between AI Planning and
Reinforcement Learning (PRL)

Edited by:

Alan Fern, Vicenç Gómez, Anders Jonsson, Michael Katz,
Hector Palacios, and Scott Sanner

Organization

Alan Fern
Oregon State University, USA

Vicenç Gómez
Universitat Pompeu Fabra, Barcelona, Spain

Anders Jonsson
Universitat Pompeu Fabra, Barcelona, Spain

Michael Katz
IBM Research AI, NY, USA

Hector Palacios
Element AI, Montreal, Canada

Scott Sanner
University of Toronto, Toronto, Canada

ii

Foreword

While AI Planning and Reinforcement Learning communities focus on similar sequential decision-making problems, these
communities remain somewhat unaware of each other on specific problems, techniques, methodologies, and evaluation.

This workshop aimed to encourage discussion and collaboration between the researchers in the fields of AI Planning and
Reinforcement Learning. We aimed to bridge the gap between the two communities, facilitate the discussion of differences and
similarities in existing techniques, and encourage collaboration across the fields. We solicited interest from AI researchers that
work in the intersection of Planning and Reinforcement Learning, in particular, those that focus on intelligent decision making.
As such, the joint workshop program was an excellent opportunity to gather a large and diverse group of interested researchers.

Alan Fern, Vicenç Gómez, Anders Jonsson, Michael Katz, Hector Palacios, and Scott Sanner
October 2020

iii

Contents

PDDLGym: Gym Environments from PDDL Problems
Tom Silver and Rohan Chitnis 1

Model-free Automated Planning Using Neural Networks
Michaela Urbanovská, Jan Bı́m, Leah Chrestien, Antonı́n Komenda and Tomáš Pevný 7

Generalized Planning With Deep Reinforcement Learning
Or Rivlin, Tamir Hazan and Erez Karpas 16

Reinforcement Learning of Risk-Constrained Policies in Markov Decision Processes (Extended Abstract)
Tomas Brazdil, Krishnendu Chatterjee, Petr Novotný and Jiřı́ Vahala 25

Time-based Dynamic Controllability of Disjunctive Temporal Networks with Uncertainty: A Tree Search Approach
with Graph Neural Network Guidance
Kevin Osanlou, Jeremy Frank, J. Benton, Andrei Bursuc, Christophe Guettier, Eric Jacopin and Tristan Cazenave 28

Synthesis of Search Heuristics for Temporal Planning via Reinforcement Learning
Andrea Micheli and Alessandro Valentini 41

A Framework for Reinforcement Learning and Planning: Extended Abstract
Thomas Moerland, Joost Broekens and Catholijn Jonker 50

Think Neither Too Fast Nor Too Slow: The Computational Trade-off Between Planning And Reinforcement Learn-
ing
Thomas Moerland, Anna Deichler, Simone Baldi, Joost Broekens and Catholijn Jonker 53

Learning Heuristic Selection with Dynamic Algorithm Configuration
David Speck, André Biedenkapp, Frank Hutter, Robert Mattmüller and Marius Lindauer 61

Knowing When To Look Back: Bidirectional Rollouts in Dyna-style Planning
Yat Long Lo, Jia Pan and Albert Y.S. Lam 70

PBCS: Efficient Exploration and Exploitation Using a Synergy between Reinforcement Learning and Motion Plan-
ning
Guillaume Matheron, Olivier Sigaud and Nicolas Perrin 78

Hierarchical Reinforcement Learning in StarCraft II with Human Expertise in Subgoals Selection
Xinyi Xu, Tiancheng Huang, Pengfei Wei, Akshay Narayan and Tze-Yun Leong 89

Symbolic Network: Generalized Neural Policies for Relational MDPs
Sankalp Garg, Aniket Bajpai and Mausam Mausam 97

Safe Learning of Lifted Action Models
Brendan Juba, Hai Le and Roni Stern 111

Reinforcement Learning for Planning Heuristics
Patrick Ferber, Malte Helmert and Joerg Hoffmann 119

Bridging the gap between Markowitz planning and deep reinforcement learning
Eric Benhamou, David Saltiel, Sandrine Ungari and Abhishek Mukhopadhyayg 127

iv

Planning from Pixels in Atari with Learned Symbolic Representations
Frederik Drachmann, Andrea Dittadi and Thomas Bolander 137

Offline Learning for Planning: A Summary
Giorgio Angelotti, Nicolas Drougard and Caroline Ponzoni Carvalho Chanel 153

Real-time Planning as Data-driven Decision-making
Maximilian Fickert, Tianyi Gu, Leonhard Staut, Sai Lekyang, Wheeler Ruml, Joerg Hoffmann and Marek Petrik 162

v

PDDLGym: Gym Environments from PDDL Problems

Tom Silver and Rohan Chitnis
MIT Computer Science and Artificial Intelligence Laboratory

tslvr@mit.edu, ronuchit@mit.edu

Abstract
We present PDDLGym, a framework that automatically con-
structs OpenAI Gym environments from PDDL domains and
problems. Observations and actions in PDDLGym are re-
lational, making the framework particularly well-suited for
research in relational reinforcement learning and relational
sequential decision-making. PDDLGym is also useful as a
generic framework for rapidly building numerous, diverse
benchmarks from a concise and familiar specification lan-
guage. We discuss design decisions and implementation de-
tails, and also illustrate empirical variations between the
20 built-in environments in terms of planning and model-
learning difficulty. We hope that PDDLGym will facilitate
bridge-building between the reinforcement learning commu-
nity (from which Gym emerged) and the AI planning commu-
nity (which produced PDDL). We look forward to gathering
feedback from all those interested and expanding the set of
available environments and features accordingly.

1 Introduction
The creation of benchmarks has often accelerated re-
search progress in various subdomains of artificial intelli-
gence (Deng et al. 2009; Wang et al. 2018; Wu et al. 2018).
In sequential decision-making tasks, tremendous progress
has been catalyzed by benchmarks such as the environments
in OpenAI Gym (Brockman et al. 2016) and the planning
tasks in the International Planning Competition (IPC) (Val-
lati et al. 2015). Gym defines a standardized way for an agent
to interact with an environment, allowing easy comparison
of various reinforcement learning algorithms. IPC provides
a set of planning domains and problems written in the Plan-
ning Domain Definition Language (PDDL) (McDermott et
al. 1998), allowing easy comparison of symbolic planners.

In this work, we present PDDLGym, an open-source
framework that combines elements of Gym and PDDL.
PDDLGym is a Python library that automatically cre-
ates Gym environments from PDDL domain and prob-
lem files. The library is available at: https://github.com/
tomsilver/pddlgym. Pull requests are welcome!

As with Gym, PDDLGym allows for episodic, closed-
loop interaction between the agent and the environment;

ICAPS Workshop on Bridging the Gap Between AI Planning and
Reinforcement Learning (PRL), 2020.

Figure 1: Some examples of environments implemented
in PDDLGym. From top left: Sokoban, Hanoi, Blocks,
Travelling Salesman (TSP), Slide Tile, and Crafting.

the agent receives an observation from the environment and
gives back an action, repeating this loop until the end of
an episode. As in PDDL, PDDLGym is fundamentally rela-
tional: observations are sets of ground relations over objects
(e.g. on(plate, table)), and actions are templates
ground with objects (e.g. pick(plate)). PDDLGym is
therefore particularly well-suited for relational learning and
sequential decision-making research. See Figure 1 for ren-
derings of some environments currently implemented in
PDDLGym, and Figure 2 for code examples.

The Gym API used in reinforcement learning defines a
hard boundary between the agent and the environment. In
particular, the agent only interacts with the environment by
taking actions and receiving observations. The environment
implements a function step that advances the state given
an action by the agent; step defines the transition model
of the environment. Likewise, a PDDL domain encodes a
transition model via its operators. However, in typical us-
age, PDDL is understood to exist entirely in the “mind” of
the agent. A separate process is then responsible for turning
plans into actions that the agent can execute in the world.

PDDLGym defies this convention: in PDDLGym, PDDL
domains and problems lie firmly on the environment side of
the agent-environment boundary. The environment uses the
PDDL files to implement the step function that advances
the state given an action. PDDLGym is thus perhaps best un-
derstood as a repurposing of PDDL. Implementation-wise,
this repurposing has subtle but important implications, dis-
cussed in (§2.2) and Appendix A.

1

Figure 2: PDDLGym code examples. A PDDLGym environment is characterized by a PDDL domain file and a list of PDDL
problem files. (A) One operator in the PDDL domain file for Blocks. (B) An excerpt of a simple PDDL problem file for Blocks.
(C) After the PDDL domain and problem files have been used to register an environment with name “PDDLEnvBlocks-v0,” we
can interact with this PDDLGym environment in just a few lines of Python.

PDDLGym serves three main purposes:
(1) Facilitate the creation of numerous, diverse bench-

marks for sequential decision-making in relational domains.
PDDLGym allows tasks to be defined in PDDL, automati-
cally building a Gym environment from PDDL files. PDDL
offers a compact symbolic language for describing domains,
which might otherwise be cumbersome and repetitive to de-
fine directly via the Gym API.

(2) Bridge reinforcement learning and planning research.
PDDLGym makes it easy for planning researchers and ma-
chine learning researchers to test their methods on the ex-
act same set of benchmarks, and to develop techniques that
draw on the strengths of both families of approaches. Fur-
thermore, since PDDLGym includes built-in domains and
problems, it is straightforward to perform apples-to-apples
comparisons without having to collect third-party code from
disparate sources (see also (Muise 2016)).

(3) Catalyze research on sequential decision-making in
relational domains. In our own research, we have found
PDDLGym to be very useful while studying exploration for
lifted operator learning (Chitnis et al. 2020), hierarchical
goal-conditioned policy learning (Silver et al. 2020a), and
state abstraction (Silver et al. 2020b). Other open research
problems that may benefit from using PDDLGym include
relational reinforcement learning (Lang, Toussaint, and Ker-
sting 2012; Džeroski, De Raedt, and Driessens 2001; Tade-
palli, Givan, and Driessens 2004), learning symbolic de-
scriptions of operators (Lang, Toussaint, and Kersting 2012;
Amir and Chang 2008; Pasula, Zettlemoyer, and Kaelbling
2007), discovering relational transition rules for efficient
planning (Xia et al. 2019; Lang and Toussaint 2010), and
learning lifted options (Konidaris, Kaelbling, and Lozano-
Perez 2014; Stolle and Precup 2002; Precup, Sutton, and
Singh 1998; Chentanez, Barto, and Singh 2005).

2 Design and Implementation
The Gym API defines environments as Python classes with
three essential methods: init , which initializes the en-
vironment; reset, which starts a new episode and returns

an observation; and step, which takes an action from the
agent, advances the current state, and returns an observation,
reward, a Boolean indicating whether the episode is com-
plete, and optional debugging information. The API also in-
cludes other minor methods, e.g., to handle rendering and
random seeding. Finally, Gym environments are required to
implement an action space, which represents the space
of possible actions, and an observation space, which
represents the space of possible observations. We next give a
brief overview of PDDL files, and then we describe how ac-
tion and observation spaces are defined in PDDLGym. Sub-
sequently, we move to a discussion of our implementation
of the three essential methods. For implementation details
regarding the main data structures used in PDDLGym, see
structs.py in the code.

2.1 Background: Domain and Problem Files
There are two types of PDDL files: domain files and problem
files. A single benchmark is characterized by one domain file
and multiple problem files.

A PDDL domain file includes predicates — named re-
lations with placeholder variables such as (on ?x ?y) —
and operators. An operator is composed of a name, a list
of parameters, a first-order logic formula over the parame-
ters describing the operator’s preconditions, and a first-order
logic formula over the parameters describing the operator’s
effects. The forms of the precondition and effect formulas
are typically restricted depending on the version of PDDL.
Early versions of PDDL only permit conjunctions of ground
predicates (Fikes and Nilsson 1971); later versions also al-
low disjunctions and quantifiers (Pednault 1989). See Figure
2A for an example of a PDDL operator.

A PDDL problem file includes a set of objects (named en-
tities), an initial state, and a goal. The initial state is a set of
predicates ground with the objects. Any ground predicates
not in the state are assumed to be false, following the closed-
world assumption. The goal is a first-order logical formula
over the objects (the form of the goal is limited by the PDDL
version, like for operators’ preconditions and effects). Note

2

that PDDL (and PDDLGym) also allows objects and vari-
ables to be typed. See Figure 2B for a partial example.

2.2 Observation and Action Spaces
Each observation obs in PDDLGym has three compo-
nents, mirroring the components of a PDDL problem file:
obs.objects is a set containing all objects present in
the problem; obs.goal contains the problem goal; and
obs.literals is a set of all ground predicates that are
true in the current state. These observations fully encapsu-
late the state of the environment, i.e., PDDLGym environ-
ments are fully-observed. The observation space is the pow-
erset of all possible ground predicates, together with the ob-
jects and goal, which are static. This powerset is typically
enormous; fortunately, it usually does not need to be explic-
itly computed. We expect that most algorithms for solving
PDDLGym tasks will not be sensitive to its size.

The action space for a PDDLGym environment is one of
the more subtle aspects of the overall framework, and there
are two possible avenues to take. Instructions for taking both
avenues are provided in the repository’s README, in the
“Step 3: Register Gym environment” section. We include a
detailed discussion of the action spaces and the related de-
sign choices in Appendix A.

2.3 Initializing and Resetting an Environment
A PDDLGym environment is parameterized by a PDDL do-
main file and a list of PDDL problem files. For research con-
venience, each PDDLGym environment is associated with
a test version of that environment, where the domain file
is identical but the problem files are different (for instance,
they could encode more complicated planning tasks, to mea-
sure generalizability). During environment initialization, all
of the PDDL files are parsed into Python objects; we use
a custom PDDL parser for this purpose. When reset is
called, a single problem instance is randomly selected.1 The
initial state of that problem instance is the state of the en-
vironment. For convenience, reset also returns (in the de-
bugging information) paths to the PDDL domain and prob-
lem file of the current episode. This makes it easy to run to
a symbolic planner and execute resulting plans in the envi-
ronment; see the repository’s README for an example that
uses Fast-Forward (Hoffmann 2001).

2.4 Implementing step
The step method of a PDDLGym environment takes in
an action, updates the environment state, and returns an
observation, reward, done Boolean, and debugging infor-
mation. To determine the state update, PDDLGym checks
whether any PDDL operator’s preconditions are satisfied
given the current state and action. Note that it is impossi-
ble to “accidentally match” to an undesired operator: each
operator has a unique precondition as illustrated in Fig-
ure 4C, which is generated automatically based on the
passed-in action. Since actions are distinct from operators

1Problem selection when resetting an episode is the only use of
randomness in PDDLGym (aside from stochastic transitions).

(Appendix A), this precondition satisfaction check is non-
trivial; non-free parameters must be bound. We have im-
plemented two inference back-ends to perform this check.
The first is a Python implementation of typed SLD res-
olution, which is the default choice when the query in-
volves only conjunctions. The second is a wrapper around
SWI Prolog (Wielemaker et al. 2012), which permits us to
handle more sophisticated preconditions involving disjunc-
tions and quantifiers. The latter is slower, but more gen-
eral, than the former. When no preconditions hold for a
given action, the state remains unchanged by default. In
some applications, it may be preferable to raise an error if
no preconditions hold; the optional initialization parameter
raise error on invalid action permits this.

Rewards in PDDLGym are sparse and binary. In particu-
lar, the reward is 1.0 when the problem goal is satisfied and
0.0 otherwise. Similarly, the done Boolean is True when the
goal is reached and False otherwise. (In practice, a maxi-
mum episode length is often used.)

If the underlying PDDL domain has probabilistic effects,
as in PPDDL (Bryce and Buffet 2008), the step method
will parse this appropriately and choose an effect based on
the given probability distribution. If the given probabilities
do not sum to 1, a default trivial effect is added in.

2.5 Development Status
In terms of lines of code, the bulk of PDDLGym is dedicated
to PDDL file parsing and inference (used in step). We are
continuing to develop both of these features so that a wider
range of PDDL domains are supported. Aspects of PDDL
1.2 that are supported by PDDLGym include STRIPS, hier-
archical typing, equality, quantifiers, constants, and derived
predicates. Notable features that are not supported include
conditional effects and action costs. Aspects of later PDDL
versions, such as numeric fluents, are not supported. Our
short-term objective is to provide full support for PDDL 1.2.
We have found that a wide range of standard PDDL domains
are already well-supported by PDDLGym; see (§3) for an
overview. We welcome requests for features and extensions,
via either issues created on the Github page or email. The
authors’ emails are provided at the top of this document.

3 PDDLGym by the Numbers
In this section, we start with an overview of the domains
built into PDDLGym, as of the last date this report was up-
dated (September 22, 2020). We then provide some exper-
imental results that give insight into the variation between
these domains, in terms of planning and model-learning dif-
ficulty. All experiments are performed on a single laptop
with 32GB RAM and a 2.9GHz Intel Core i9 processor.

3.1 Overview of Environments
There are currently 20 domains built into PDDLGym. Most
of the domains are adapted from existing PDDL reposito-
ries; the remainder are ones we found to be useful bench-
marks in our own research. We have implemented custom
rendering for 11 of the domains (see Figure 1 for examples).
Table 1 gives a list of all environments, their sources, and

3

Domain Name Source Rendering Included Probabilistic Average FPS

Baking Ours No No 5897

Blocks (Helmert 2011) Yes No 7064

Casino Ours No No 7747

Crafting Ours Yes No 4568

Depot (Helmert 2011) No No 97

Doors (Konidaris and Barto 2007) Yes No 917

Elevator (Helmert 2011) No No 3501

Exploding Blocks (Bryce and Buffet 2008) Yes Yes 6260

Ferry (CSU 2002) No No 1679

Gripper (Soar 2020) Yes No 319

Hanoi (Soar 2020) Yes No 4580

Meet-Pass (CSU 2002) No No 7380

Rearrangement Ours Yes No 3808

River (Bryce and Buffet 2008) No Yes 18632

Search and Rescue Ours Yes No 3223

Slide Tile (Soar 2020) Yes No 3401

Sokoban (Helmert 2011) Yes No 155

Triangle Tireworld (Bryce and Buffet 2008) No Yes 6491

TSP (Soar 2020) Yes No 1688

USA Travel Ours No No 1251

Table 1: List of the 20 domains currently included in
PDDLGym, as of the last date this report was updated
(September 22, 2020). For each environment, we report the
original source of the PDDL files, whether or not we have
implemented custom rendering, whether or not the domain
has probabilistic effects, and the average frames per second
(FPS). The FPS is calculated by executing a random policy
for 100 episodes of 10 timesteps each, with no rendering.

their average frames per second (FPS) calculated by execut-
ing a random policy for 100 episodes of 10 timesteps each.

3.2 Variation in Environment Difficulty
We now provide some results illustrating the variation be-
tween the domains built into PDDLGym. We examine two
axes of variation: planning difficulty and difficulty of learn-
ing the transition model.

Figure 3 (left) illustrates the average time taken by Fast-
Forward (Hoffmann 2001) to find a plan in each of the de-
terministic environments, averaged across all problem in-
stances. The results reveal a considerable range in planning
time, with the most difficult domain (Depot, omitted from
the plot for visual clarity) requiring two orders of magni-
tude more time than the simplest one (TSP). The results also
indicate that many included domains are relatively “easy”
from a modern planning perspective. However, even in these
simple domains, there are many interesting challenges to be
tackled, such as learning the true PDDL operators from in-
teraction data, or defining good state abstractions amenable
to learning. One can always make larger problem instances
if desired, to push the limits of modern planners.

Figure 3 (right) provides insight into the difficulty of
learning transition models in some of the environments. For
each environment, an agent executes a random policy for
episodes of horizon 25. The observed transitions are used to
learn transition models, which are then used for planning on
a suite of test problems. The fraction of test problems solved
is reported as an indicator of the learned transition model.
To learn the transition models, we use first-order logic deci-
sion tree (FOLDT) learning (Blockeel and De Raedt 1998).

Figure 3: Variation among PDDLGym environments. The
PDDL domains and problems built into PDDLGym vary
considerably in terms of planning difficulty (top) and model
learning difficulty (bottom). See text for details.

Five domains are visualized for clarity; among the remain-
ing ones, several are comparable to the ones shown, but oth-
ers, including Baking, Depot, and Sokoban, are difficult for
our learning method: FOLDT learning is unable to find a
model that fits the data in a reasonable amount of time. Of
course, model-learning difficulty varies considerably with
the learning method and the exploration strategy. We have
implemented simple strategies here to show these results,
but these avenues for future research are exactly the kind
that we hope to enable with PDDLGym.

4 Conclusion and Future Work
We have presented PDDLGym, an open-source Python
framework that automatically creates OpenAI Gym environ-
ments from PDDL domain and problem files. Our empirical
results demonstrate considerable diversity among the built-
in environments. We have been using PDDLGym actively in
our own research on relational sequential decision-making
and reinforcement learning. We also hope to interface
PDDLGym with other related open-source frameworks, par-
ticularly the PDDL collection in planning.domains (Muise
2016), so that one can use PDDLGym simply by specifying
a URL (along with information about free parameters).

We look forward to gathering feedback from the commu-
nity and expanding the set of environments and features.

4

References
Amir, E., and Chang, A. 2008. Learning partially observ-
able deterministic action models. Journal of Artificial Intel-
ligence Research 33:349–402.
Blockeel, H., and De Raedt, L. 1998. Top-down induction
of first-order logical decision trees. Artificial intelligence
101(1-2):285–297.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
gym. arXiv preprint arXiv:1606.01540.
Bryce, D., and Buffet, O. 2008. International planning com-
petition uncertainty part: Benchmarks and results. In In Pro-
ceedings of IPC. Citeseer.
Chentanez, N.; Barto, A. G.; and Singh, S. P. 2005. In-
trinsically motivated reinforcement learning. In Advances in
neural information processing systems, 1281–1288.
Chitnis, R.; Silver, T.; Tenenbaum, J.; Kaelbling, L. P.;
and Lozano-Perez, T. 2020. GLIB: Exploration via goal-
literal babbling for lifted operator learning. arXiv preprint
arXiv:2001.08299.
CSU. 2002. Colorado state university PDDL repository.
https://www.cs.colostate.edu/meps/repository.html.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
Džeroski, S.; De Raedt, L.; and Driessens, K. 2001. Rela-
tional reinforcement learning. Machine learning 43(1-2):7–
52.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial intelligence 2(3-4):189–208.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2011. Pyperplan. https://bitbucket.org/malte/
pyperplan.
Hoffmann, J. 2001. FF: The fast-forward planning system.
AI magazine 22(3):57–57.
Konidaris, G., and Barto, A. G. 2007. Building portable
options: Skill transfer in reinforcement learning. In IJCAI,
volume 7, 895–900.
Konidaris, G.; Kaelbling, L.; and Lozano-Perez, T. 2014.
Constructing symbolic representations for high-level plan-
ning. In Twenty-Eighth AAAI Conference on Artificial Intel-
ligence.
Lang, T., and Toussaint, M. 2010. Planning with noisy prob-
abilistic relational rules. Journal of Artificial Intelligence
Research 39:1–49.
Lang, T.; Toussaint, M.; and Kersting, K. 2012. Exploration
in relational domains for model-based reinforcement learn-
ing. Journal of Machine Learning Research 13(Dec):3725–
3768.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. Pddl-the
planning domain definition language.

Muise, C. 2016. Planning.Domains. In The 26th Interna-
tional Conference on Automated Planning and Scheduling -
Demonstrations.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning symbolic models of stochastic domains. Journal of
Artificial Intelligence Research 29:309–352.
Pednault, E. P. 1989. ADL: Exploring the middle ground
between strips and the situation calculus. Kr 89:324–332.
Precup, D.; Sutton, R. S.; and Singh, S. 1998. Theoretical
results on reinforcement learning with temporally abstract
options. In European conference on machine learning, 382–
393. Springer.
Silver, T.; Chitnis, R.; Ajay, A.; Tenenbaum, J.; and Kael-
bling, L. P. 2020a. Learning skill hierarchies from predicate
descriptions and self-supervision. In AAAI GenPlan Work-
shop.
Silver, T.; Chitnis, R.; Curtis, A.; Tenenbaum, J.; Lozano-
Perez, T.; and Kaelbling, L. P. 2020b. Planning with learned
object importance in large problem instances using graph
neural networks. arXiv preprint arXiv:2009.05613.
Soar. 2020. Soar group PDDL repository. https://github.
com/SoarGroup.
Stolle, M., and Precup, D. 2002. Learning options in rein-
forcement learning. In International Symposium on abstrac-
tion, reformulation, and approximation, 212–223. Springer.
Tadepalli, P.; Givan, R.; and Driessens, K. 2004. Relational
reinforcement learning: An overview. In Proceedings of the
ICML-2004 workshop on relational reinforcement learning,
1–9.
Vallati, M.; Chrpa, L.; Grześ, M.; McCluskey, T. L.; Roberts,
M.; Sanner, S.; et al. 2015. The 2014 international planning
competition: Progress and trends. Ai Magazine 36(3):90–98.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2018. Glue: A multi-task benchmark and
analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461.
Wielemaker, J.; Schrijvers, T.; Triska, M.; and Lager, T.
2012. SWI-Prolog. Theory and Practice of Logic Program-
ming 12(1-2):67–96.
Wu, Z.; Ramsundar, B.; Feinberg, E. N.; Gomes, J.; Ge-
niesse, C.; Pappu, A. S.; Leswing, K.; and Pande, V. 2018.
MoleculeNet: a benchmark for molecular machine learning.
Chemical science 9(2):513–530.
Xia, V.; Wang, Z.; Allen, K.; Silver, T.; and Kaelbling, L. P.
2019. Learning sparse relational transition models. Interna-
tional Conference on Learning Representations.

5

Figure 4: Explicating free parameters in PDDL operators. PDDL operators traditionally conflate free and non-free pa-
rameters. For example, in a typical move operator for Sokoban (A), the free parameter ?dir is included alongside non-free
parameters. PDDLGym must distinguish free parameters to properly define the action space. One option would be to require
that all operator parameters are free, and introduce quantifiers in the operator body accordingly (B); however, this is cumber-
some and leads to clunky, deeply nested operators, so we do not do this. Instead, we opt to introduce new predicates that are tied
to operators, and whose parameters are just the operators’ free parameters (C). An example of such a new predicate is shown in
yellow (move-action-selected).

A Action Space Details
The action space for a PDDLGym environment is one of the
more subtle aspects of the overall framework, and there are
two possible avenues to take. Instructions for taking both
avenues are provided in the repository’s README, in the
“Step 3: Register Gym environment” section.

The first avenue is appropriate if one wants to simply use
off-the-shelf PDDL files with PDDLGym. One can do so
by setting operators as actions to True in the envi-
ronment registration, which tells PDDLGym that the opera-
tors present in the PDDL domain file should themselves be
treated as the actions in the environment, parameterized by
those operators’ parameters.

The second avenue is recommended for more serious re-
search, and stems from the semantic difference between “op-
erators” in classical AI planning and “actions” in reinforce-
ment learning. In AI planning, actions are typically equated
with ground operators — operators whose parameters are
bound to objects. However, in most PDDL domains, only
some operator parameters are free (in terms of controlling
the agent); the remaining parameters are included in the op-
erator because they are part of the precondition/effect ex-
pressions, but can be derived from the current state or the
choice of free parameters. PDDL itself makes no distinction
between free and non-free parameters. For example, con-
sider the operator for Sokoban shown in Figure 4A. This
operator represents the rules for a player (?p) moving in
some direction (?dir) from one cell (?from) to another
cell (?to). In a real game of Sokoban, the only choice that
an agent makes is what direction to move — only the ?dir
parameter is free. The player ?p is always the same, ?from
is defined by the agent’s location in the current state, and

?to can be derived from ?from and the agent’s choice of
?dir. To properly define the action space for a PDDLGym
environment, we must explicitly distinguish free parameters
from non-free ones. One option is to require that operator
parameters are all free. Non-free parameters could then be
folded into the preconditions and effects using quantifiers
(Pednault 1989); see Figure 4B for an example. However,
this is cumbersome and leads to clunky, deeply nested oper-
ators. Instead, we opt to introduce new predicates that rep-
resent operators, and whose variables are these operators’
free parameters. We then include these predicates in the pre-
conditions of the respective operators; see Figure 4C for an
example. Doing so requires only minimal changes to exist-
ing PDDL files and does not affect readability, but requires
adding in domain knowledge about the agent-environment
boundary. Note that this domain knowledge is equivalent to
defining an action space, which is very commonly done in
reinforcement learning and is not a strong assumption. In
this case, the action space of a PDDLGym environment is
a discrete space over all possible groundings of the newly
introduced predicates.

When sampling from the action space of a PDDLGym
environment, PDDLGym will automatically only sample
valid actions, i.e., actions that satisfy the preconditions of
some operator. This check for validity is done using Fast
Downward’s translator (Helmert 2006), which can add non-
negligible overhead in large problem instances.

6

Model-free Automated Planning Using Neural Networks

Michaela Urbanovská and Jan Bı́m and Leah Chrestien and Antonı́n Komenda and Tomáš Pevný
Department of Computer Science, Faculty of Electrical Engineering

Czech Technical University in Prague
{michaela.urbanovska,chreslea,antonin.komenda,pevnytom}@fel.cvut.cz,

jan.bim@datamole.cz

Abstract
Automated planning for problems without an explicit
model is an elusive research challenge, which, however,
if tackled, could provide general approach to problems
in real-world unstructured environments. There are cur-
rently two strong research directions in the area of Ar-
tificial Intelligence (AI), namely, machine learning and
symbolic AI. The former provides techniques to learn
models of unstructured data but does not provide further
problem solving capabilities on such models. The latter
provides efficient algorithms for general problem solv-
ing, but requires a model to work with. In this paper, we
propose a combination of these two areas, namely deep
learning and classical planning, to form a planning sys-
tem that works without a human-encoded model. The
deep learning part extracts the model in a form of a
transition system and a goal-distance heuristic estima-
tor; the classical planning part uses such a model to
efficiently solve the planning problem. Besides the de-
sign of such planning systems, we provide experimen-
tal evaluations comparing the implemented technique to
classical model-based methods.

Introduction
The main focus of this work is to analyze the possibilities
and limitations of using deep learning in combination with
classical planning. Instead of replacing the planning process
as a whole and trying to make the network learn a search
algorithm, we decided to focus on partial replacement of two
components involved in many standard planning algorithms,
namely, the transition system and heuristic functions.

Classical planning provides great methods for general
problem solving. Unfortunately, these methods can strug-
gle in large unstructured domains. On the other hand, deep
learning methods have been demonstrated to work well on
many domains without a clear structure. Therefore, combin-
ing both of these methods may remove the need for an ex-
plicit planning model.

Asai and Fukunaga in (Asai and Fukunaga 2017) and
(Asai and Fukunaga 2018) connected deep learning and
classical planning by creating LatPlan, which is a system
that takes in an initial and a goal state of a problem in-
stance and returns a visualised plan execution. The image
on the input is transformed and processed in order to gener-
ate a standardized problem representation, which can then be
solved by classical planning methods. In (Garrett, Kaelbling,
and Lozano-Pérez 2016), Garret et al. uses machine learning

techniques to create heuristic functions that improve a search
algorithm. Finally, in (Gomoluch et al. 2019), learning poli-
cies for search algorithms is provided.

This work can be understand as a follow-up work of Asai
and Fukunaga’s architecture. In contrast to their work, we
use maze-like problems and images of these mazes are the
input to our algorithm. The solution is then produced as a
sequential plan navigating through our designed transition
system, which in turn is generated by our learned model. To
increase efficiency of the search, we use heuristic principle
proposed by Garret et al.

Background
Classical Planning
Let’s first focus on STRIPS, which provides a symbolic rep-
resentation to a model-based planning problem instance.
Definition 1 (STRIPS Planning Task) A STRIPS planning
task Π is a tuple

Π = 〈F,O, si, sg, c〉
where F = {f1, f2, ..., fn} is a set of facts, which can hold
in the world. A state of the world is defined by facts which
hold in the state s ⊆ F . O = {o1, o2, ..., om} is a set of op-
erators transforming the world, si is the initial state, which
consists of facts that hold in the initial state, sg is a goal
state condition, which contains facts that hold in every goal
state and c is a cost function c(o) : o → R+ which gives
each operator a positive cost.

Every operator o ∈ O is a tuple where o =
〈pre(o), add(o), del(o)〉, pre(o) ⊆ F is a set of precondi-
tions, which are facts, that have to hold in a state for the
operator o to be applicable in that state, add(o) ⊆ F is a
set of facts, which are added to the state after applying the
operator o in s and del(o) ⊆ F are delete effects, which are
facts that are no longer true after using the operator o.

To create a STRIPS representation of a problem, we have
to be able to construct the facts and the operators from the
problem definition. To find a solution of such a problem, we
construct a state-transition system, in which we look for a
path to the goal state from the initial state.

Definition 2 (Transition System) A transition system is a
tuple Σ = 〈S,A, γ, c〉, where
• S is a finite set of states
• A is a finite set of actions

7

• γ : S × A → S is a state-transition function. γ(s, a)
is defined iff a is applicable in s, with γ(s, a) being the
predicted outcome.

• cost : A→ [0,∞) is a cost function assigning a value to
each action. The cost value can have various meanings,
for example time, price or anything we want to optimize.

Any problem Π defined as STRIPS by Definition 1 can be
translated to a transition system Σ and solved by the means
of path-searching algorithms.

In order to find a solution to a planning problem, we need
to find a path through the induced transition system, which
is typically done by one of the heuristic state-space search
algorithms.

Definition 3 (State-Space Search) State-space search al-
gorithm performs search over a graph G = (N,E), where
N is a set of nodes and E is a set of edges. Having a plan-
ning problem Π = 〈F,O, si, sg, c〉 and its induced transi-
tion system Σ = 〈S,A, γ, c〉, N corresponds to S and E
corresponds to A. The search starts in si, expanding each
found state with γ, until a goal state is reached. In that case,
plan π can be returned as a sequence of actions applied at
each expansion of the search in order to reach the goal state.

State space of many problems can be very large and
exhaustive search may not be the most efficient way to
look for the solution. Generally speaking, state-space search
can be done blindly, however, additional information can
greatly improve its performance. This additional informa-
tion is added in the form of heuristic functions.

Heuristic function h(s) : s → R+ maps any state s ∈ S
to a positive value. Heuristic function gives us an estimate of
path length from the current state s to a goal state. A func-
tion, which always maps h(s) to the length of shortest possi-
ble path is called perfect or optimal heuristic and is denoted
as h∗.

Neural Networks
Neural networks have proved to be a very powerful tool in
many different domains. Here, we use the current state of
the art approach which uses feed-forward neural networks
that learn through back-propagation using Stochastic Gradi-
ent Descent (Ruder 2016).

Our primary aim lies in creating two networks, each one
to substitute a different part of the state-space search algo-
rithm. First network is used to replace the state-transition
function γ in order to generate possible successor states in
the state-transition system as defined in Definition 2. The
second network is used to replace a heuristic function h(s),
which returns a number representing an estimate of the dis-
tance from state s to a goal state.

These two networks are implemented using convolutional
neural networks (CNNs) as described in (LeCun, Bengio,
and Hinton 2015).

The problem domains, in our case, have image-like grid
structures which makes CNNs a viable choice in trying to
extract information from the representations.

By replacing these parts of the state-space search, we
avoid the need of creating a symbolic representation of the
states which would have been necessary if we were to adhere
to classical architectures. Thus, in this manner, we make our
problem domains model free.

Attention for Neural Networks
In the recent past, by introducing the Transformer architec-
ture, attention networks have proven to be a great success as
shown in (Vaswani et al. 2017). In general, attention allows
the network to focus only on subsets of inputs and requires
the creation of attention masks.

In this work, we use soft attention in which the network
focuses on input values that are between 0 and 1 as opposed
to hard attention where the network focuses on either zeroes
or ones.

Masks are generated using convolutional layer and a soft-
max layer of the same width and heigth as the input, with
all values summing up to one. On having such a mask, we
can then multiply the input features, resulting in a modified
input with some of the features ”emphasized” by the atten-
tion mask. The layers, which generate the attention masks
are also trained with the whole architecture.

Data Domains
One of the key challenges of implementing the proposed ap-
proach is obtaining a good quality data set in order to train
the networks. As CNNs are well suited to process data sets
organized in grids, we consider problem domains which can
be represented by a grid.

We use four problem domains; for each one of them, we
create generators in order to obtain enough data. Examples
of all four domains are shown in Figure 1.

First domain is a maze with one agent and one goal. The
agent can move only in its 4-neighborhood and every free
cell in the maze is accessible by the agent.

The second domain is the same, except we have multiple
goals in the map. Therefore, we call this one the multi-goal
maze. The goal in this domain is reached when the agent
arrives in one of the goals.

The third domain is a multi-agent maze where the same
rules apply, but we have the number of agents greater than
one and the same number of goals in the maze. All the agents
have to move at the same time and the goals are not assigned
to a specific agent. The goal is reached when every agent in
the map stands on a goal.

The last domain we use is the Sokoban puzzle which is
similar to the maze domains in terms of movement, but it
is more complicated because of the added box entity. Agent
can push a box if there’s a free space behind it and it’s not
possible to push multiple boxes at the same time. The main
goal is to move every box to an arbitrary goal position in the
map. Once every box is on a goal position, we reach the goal
state.

Expansion Network
In the state-space search (Definition 3), transition function
takes in a current state of the search and returns all its suc-

8

Figure 1: Examples of all four problem domains - A denotes
agent, G denotes goal, B denotes box (in Sokoban domain)

cessors. The expansion network is used to generate these
successors.

By observing pairs of states (in form of images of the
mazes with the agent) without knowledge about actions that
connect them, we want to learn possible actions for the prob-
lem. Even for the most simple maze domain, the size of the
data set is important in order to train the network. The task
does not only lay in the locating the free spaces around the
agent. We need to make sure that the maze structure remains
the same and no rules are broken on performing the learned
actions.

We work with mazes represented as images, therefore, as
mentioned earlier, it is convenient to use a CNN for this task.
As we want to focus on the 4-neighborhood of the agent,
we choose the kernel as a 3x3 window. Since we want to
preserve the size of the input through the whole network,
the padding for our CNN is equal to one.

To additionally improve the network, we use residual con-
nections. A residual connection is an architecture modifica-
tion, which is often used in deep learning and has achieved
great results in learning an identity function, for example, in
ResNet image classification network (He et al. 2016). Fur-
thermore, residual connections resulted in a reduction in the
complexity of the network and an improvement in the re-
sults.

Our expansion network has one residual connection
which connects the input data with the output of the three
chained convolutional layers. After concatenating these two
parts of data, we process them through a 1x1 convolution to
adjust the number of channels to match the input. In order
to obtain even better results, we added normalization in the
form of dropout between the first three convolutional layers.
We can see the whole architecture in Figure 2.

Input and Output
The input of this network is the visual representation of the
problem encoded in one-hot representation. This gives us a
one-hot encoded vector for each cell in the problem’s im-
age, which tells us, which entity is in the cell based on the
placement of the ones and zeros in the vector.

The output of this network is exactly the same in size, and
it is similar to the one-hot encoding, however, the values on
the output give us a distribution of the reachable next states.
We can then use a threshold in order to extract the possible
future states from this output.

Loss Function
In this network, we want to learn probabilistic distributions
of the possible successor states of a current state. Our data
is one-hot encoded, which means that there is a vector for
each cell in the map or maze. According to the entity type
placed on that cell, we put 1 to the corresponding index in
the vector.

To train the network properly, we have to use a loss func-
tion suited for measuring the accuracy between true distribu-
tion and learned distribution of the possible successor states.
Therefore, we use logistic cross entropy as our loss function
for this network.

Heuristic Network
Another function in the state-space search (Definition 3) is
the heuristic function which aids the search process. Com-
putation of a heuristic is a non-trivial problem, especially in
the case of non-simplified visual representation.

Since the input data is still based on the visual represen-
tation of the problem, convolutional networks are a good
direction to explore. Inspired by the classical planning ap-
proaches for computing heuristics, we use attention to sim-
plify the problem. Such simplification is usually used in
classical planning heuristics in the form of relaxations or ab-
stractions (Ghallab, Nau, and Traverso 2016).

Input and Output
The heuristic network receives a one-hot encoded visual rep-
resentation of an input state. The label is the value of the h∗
heuristic which is the length of the shortest path from the in-
put state to the closest goal state. Therefore, we want the net-
work to produce a single value for each input as well. This
generated value is the heuristic in the planning algorithm.

Although learning a heuristic estimator from optimal
plans sounds rather nonsensical (why to learn something we
know the ground truth for), it acts in this work more as a
proof of concept. The overall idea is to learn the heuristic
from the best information about the distances to the goal.
Since the learning process generalizes, it should be able to
provide heuristic estimates even for cases in which it did not
learn.

Loss Function and Data Set Structure
Training a network to return heuristic values requires opti-
mal plan lengths as labels for all the data. For each maze

9

Figure 2: Expansion network architecture. Size of the input is width (W), heigth (H), number of channels (C) and number of
samples in a batch. Each convolutional layer Conv has size of its kernel, number of input channels and output channels of the
layer (C⇒ k means C input channels and k output channels), padding and activation function. In this network, we use rectified
linear unit (ReLu), swish (modified ReLu) or no activation (identity).

instance in the original data set, we randomly picked multi-
ple positions from all possible agent placements and added
those randomly picked samples with their computed labels
(h∗ values) into the data set. To train the network, we cre-
ated the batches by taking a selected number of positions
from each maze instance so that there were always multiple
different agent placements in the maze at one batch. This
is important, because loss function in this case has to be fo-
cused on the relation between the values in the same problem
instance and not just the pair (state, value).

Since neural networks represent a black-box approxima-
tion scheme, we cannot expect to ensure any properties of
the generated values. Therefore, we used satisficing plan-
ning for our experiments. In our case, the additional heuristic
information was provided by the trained heuristic network.

Another property which can influence the performance,
also held by the labels is monotonicity. Having monotonic
heuristic values for all the states provides us with a possibil-
ity of selecting the best states on just following the descent
of the state heuristic values. To get as close as possible to
this property, we implemented a custom loss function, which
measures how far off is the monotonicity of the learned val-
ues when compared to the h∗ values.

f u n c t i o n l o s s (mx , y)
p a r t i a l l o s s e s = []
f o r e v e r y maze i n s t a n c e i n b a t c h

i x s = a l l i n d e x e s o f t h e i n s t a n c e
d a t a d i f f s = mx[i x s] − t r a n s p o s e (mx[i x s])
l a b e l s d i f f s = y [i x s] − t r a n s p o s e (y [i x s])
tmp = −d a t a d i f f s ∗ s i g n (l a b e l s d i f f s)+1
l = sum (max (0 , tmp)
p a r t i a l l o s s e s . add (l)

end
r e t u r n sum (p a r t i a l l o s s e s)
end

Listing 1: Pseudocode of loss for the heuristic network

Figure 3: Attention block used in the heuristic network ar-
chitecture - W is width of the input, H is height of the input,
C is number of channels of the input structure

Architecture
One of the most notable features in this architecture is the usage
of attention as described in section Attention for Neural Networks.
The is analogous to the relaxation technique (Ghallab, Nau, and
Traverso 2016) used in planning. If we imagine looking at a maze
and identifying interesting parts of it, such as crossroads or long
straight paths, we might simplify the problem enough to obtain a
distance estimate from the agent to the goal.

Implementation of attention was done by using convolutional
layers and using softmax over the first two dimensions of the input.
Meaning, at the end, we received the attention mask, which has the
same width and height as the input and all its values sum up to
one (soft attention). One problem which comes up on using atten-
tion is deciding on the number of attention masks required to find
enough attention-worthy places in the data. We experimented with
different numbers of attentions in the architecture while selecting
the networks that are further used in the planning experiments.

The input of this network is of the size W ×H × C ×N ; first
two dimensions are width and height of the data; the third is the
number of channels and the last one is number of samples in the
processed mini-batch. Size of the mini-batch has been deliberately
omitted in the architecture diagrams for simplification.

10

Figure 4: Heuristic network architecture

After creating M attention masks, we multiply the input data by
each of the masks, thereby concatenating the results. This results
in a data tensor of size M ×C +C +2. We multiply each channel
of the data by each attention and after concatenating the results
with the original data, this multiplication is denoted in Figure 3 as
”multiplication”. Then, we add two last channels which are x and
y coordinates for the mazes. It was shown in the (Wei et al. 2019)
that for learning spacial information, it can be highly beneficial to
provide coordinates for the data. Therefore, we added coordinates
at the end of our data tensor. This whole computation happens in
the ”attention block” displayed in the Figure 3.

This created data tensor is then processed by multiple convolu-
tional layers with same padding that keeps the width and height of
the data the same throughout the whole network. After processing
through the convolutional layers, aggregation in the form of a sum
is performed over the first two dimensions, creating a vector of the
same size as the number of channels in the last convolutional layer.
Then, it is processed through a dense layer, returning one value,
which is our final heuristic value for the input.

That is the top level description of the architecture. We exper-
imented it with multiple small modifications to see if they influ-
ence the results. One modification is the number of attention layers
which we mentioned earlier. The second modification which we
denoted as an ”attention block” states, how many times we repeat
creating the attention masks and the large multiplication of these
with the input data. One case is using is only once, as described
above, at the beginning of the network. The other case is using five
of them, one between each of the two convolutional layers. This
case is displayed in Figure 5.

Experiments
Experiments in this work were conducted by training all described
networks and then comparing their performance with techniques
used in classical planning. To obtain each of the networks used in
the planning experiments, we had to train dozens of its versions
with different hyper-parameters to obtain the best possible one.
Comparison of these trained networks was performed by evalua-
tion functions.

In case of the expansion network, the adjusted hyper-parameters
were number of channels in the convolutional layers, size of the
convolutional kernel (in case of Sokoban), padding and number of
epochs.

In case of the heuristic network, adjusted hyper-parameters were
padding, number of channels in the convolutional layers, number
of attention masks, number of used attention blocks and number of

epochs.

Expansion Network Evaluation
Evaluation function for the expansion network is mostly used to
check how accurately it can generate the possible successor states
while also checking whether the network structure stays the same
during the process. All the successor states in the output distribu-
tion also have to be valid and actually reachable. Same goes the
other way - it is not desired to obtain any unreachable states in the
output distribution. Based on these factors, we tested the trained
expansion networks.

Since we use three domains which are very similar, we trained
one expansion network for maze, multi-goal maze and multi-agent
maze domains. Since the input dimension is different for Sokoban,
we trained a separate expansion network for the Sokoban domain.

In Table 1, we can see results of the evaluation. Wall difference
denotes the largest value assigned to a cell which is not supposed
to be a wall. This means that we aim for the lowest possible values.
In the evaluation table, it is obvious that wall placement is not a big
problem for any of the networks.

Minimal correct step denotes the smallest value assigned to a
cell which should contain an agent. The smaller the values, the less
probable it is that agent can be located on the cell. In case of maze-
exp-net, we can see that the value is 0.23101, which means that the
least probable correct agent placement has this value. In the case of
sokoban-exp-net, this value is very small, which means, that some
of the possible successor states will not be discovered at all.

Maximal wrong step is analogical to the previous case. Here,
we look for very small values because it denotes the highest pos-
sible wrong agent placement. In case of maze-exp-net, the value
is very small, so there are no invalid successor states generated. In
case of sokoban-exp-net, the value is very high, which means that
invalid successor states can be generated during the search.

Therefore, the expansion network for Sokoban has not been suc-
cessfully implemented and the complexity of the problem is prob-
ably higher then we first anticipated. This results in bad results for
the planning experiments that use this expansion network as a state-
transition function.

Heuristic Network Evaluation
Evaluation of the heuristic network is a more complicated prob-
lem since we’re trying to train a monotonic function. Therefore,
we took a set of optimal plans and each step of the plan was as-
signed a value by the heuristic network. Then we ordered the steps

11

Figure 5: Heuristic network architecture using 5 attention blocks

Model Wall difference Minimal correct step Maximal wrong step
maze-exp-net 1.85346e-5 0.23101 1.5056f-7

sokoban-exp-net 0.00241 1.33777e-11 0.96589

Table 1: Evaluation of expansion networks

by the heuristic network generated values and measured how far is
the ordering from the ordering in the original optimal plan.

Planning Experiments
Based on the evaluation functions, we chose both expansion and
heuristic networks which are used in the planning experiments.
There are two expansion networks, one for Sokoban and one for
all the three maze-related domains. There are also four heuristic
networks, one for each problem domain.

For every domain, we implemented a planner with the same al-
gorithms and the same heuristics. There are three state-space search
algorithms. The first one is greedy best-first search (GBFS) which
is guided by the computed heuristic values. State with the lowest
value is always expanded first because the heuristic suggests it is
closest to the goal.

Next one is the best-first search algorithm (BFS) with the same
h value computation as in A*. This means, we don’t expand the
states based only on the heuristic value but we use sum of the
heuristic with length of the path from the initial state to the cur-
rent state.

The last one is multi-heuristic search (MH-GBFS) using tie-
breaking (Röger and Helmert 2010). It uses a main heuristic and
a second heuristic in case there’s a tie between the main heuristic
values. Since the order of heuristics is important in this case, we
computed the experiments with all possible combinations of pairs
of heuristics.

For heuristic, we can select a blind heuristic, Euclidean dis-
tance, HFF heuristic (Hoffmann 2001), LM-cut (Pommerening
and Helmert 2013) and the heuristic neural network. For use in
multi-heuristic search, they can be arbitrarily combined.

Since we’re in the field of satisficing planning, we want to com-
pare our proposed methods against the state of the art in the field.
One of the most successful planners in the community is LAMA
(Richter and Westphal 2010), which uses HFF heuristic together
with landmarks. Therefore, we decided to implement both HFF

and LM-cut (which uses landmarks) and compare the approach
with our heuristic network.

For each problem domain, we created 50 new problem instances
which are not in any of the training data sets we used earlier.
To compare the performance of all the planner configurations, we
measured length of the output plans and number of expanded states
during the search. There is also coverage denoted as cvg, which
states the percentage of solved problems from the set of 50. All the

experiments were executed with time limit set to 10 minutes per
one problem instance on the same hardware.

Coverage Comparison We decided to compare the regular
state-transition function and the expansion network by measuring
coverage of the planners. Coverage tells us how many of the given
problems were solved by the planner in a given time limit per prob-
lem.

In Tables 2, 3 and 4, we can see coverage for each of the state-
space search algorithms used in the planning experiments. One big
difference between the regular state-transition function and the ex-
pansion network is the zero percent coverage on Sokoban. The ex-
pansion network for Sokoban was not a success and we did not
manage to train a well functioning expansion network for this do-
main as we described earlier. On the other hand, for the rest of
the domains, the coverage is the same as in the case of the regular
state-transition function.

Heuristic Performance Comparison In order to compare
performances of all heuristics provided in the planner, including
the heuristic network, we measured length of the resulting plan and
number of expanded states during the search.

In the maze domain, both GBFS and BFS results show that the
performance of the heuristic network is comparable to the other
heuristics. Length of the resulting plans is the same in most cases
and the only heuristic outperforming the heuristic network in terms
of expanded states is the LM-cut heuristic. In MH-GBFS, using
the heuristic network as a primary heuristic function provides us
with results comparable to other heuristics. LM-cut seems to be
the only heuristic which is giving a lot better results in terms of the
expanded states. Results of all three search algorithms are in Figure
6.

] In the multi-goal maze domain, the results are very similar.
GBFS performance is the best possible, same as HFF and LM-cut.
In BFS, heuristic network even outperforms both of these in the
average number of expanded states. The MH-GBFS results show
that heuristic network as a primary heuristic gives great results. All
results are in Figure 7.

In the multi-agent domain, the number of expanded states are a
lot higher for the heuristic network, as we can see in Figure 8 for
all three search algorithms. This can be caused by the complexity
of this problem. Simultaneous movement of multiple agents in the
maze is a lot more complicated than movement of just one. Also,

12

State-transition function Expansion Network
maze mg-maze ma-maze sokoban maze mg-maze ma-maze sokoban

blind 1 1 1 1 1 1 1 0
euclid 1 1 1 1 1 1 1 0

hff 1 1 1 0 1 1 1 0
lmcut 1 1 0.94 0 1 1 0.94 0

nn 1 1 1 1 1 1 1 0

Table 2: Coverage comparison for GBFS

State-transition function Expansion Network
maze mg-maze ma-maze sokoban maze mg-maze ma-maze sokoban

blind 1 1 1 1 1 1 1 0
euclid 1 1 1 1 1 1 1 0

hff 1 1 1 0 1 1 1 0
lmcut 1 1 0.94 0 1 1 0.94 0

nn 1 1 1 1 1 1 1 0

Table 3: Coverage comparison for BFS

State-transition function Expansion Network
maze mg-maze ma-maze sokoban maze mg-maze ma-maze sokoban

euclid, hff 1 1 1 0 1 1 1 0
euclid, lmcut 1 1 0.74 0 1 1 0.78 0

euclid, nn 1 1 1 1 1 1 1 0
hff, eucl 1 1 1 0 1 1 1 0

hff, lmcut 1 1 0.98 0 1 1 0.96 0
hff, nn 1 1 1 0 1 1 1 0

lmcut, eucl 1 1 0.98 0 1 1 0.96 0
lmcut, hff 1 1 0.98 0 1 1 0.96 0
lmcut, nn 1 1 0.98 0 1 1 0.96 0
nn, eucl 1 1 1 1 1 1 1 0
nn, hff 1 1 1 0 1 1 1 0

nn, lmcut 1 1 0.82 0 1 1 0.82 0

Table 4: Coverage comparison for MH-GBFS

the goals are not assigned, therefore it becomes even more compli-
cated in terms of computing the distance estimate to a goal state.

In Sokoban domain, HFF and LM-cut were not capable of solv-
ing the problems in the given time limit. The coverage for both
of these heuristics is equal to zero. In the GBFS, heuristic network
found the shortest plans on average. Also, in BFS, the average num-
ber of expanded states was also the lowest when using the heuristic
network. We can see the results in Figure 9.

This shows us that the heuristic network is performing better in
domains with one agent. Another advantage of the heuristic net-
work is its computation time. Compared to HFF and LM-cut, the
computation is much faster, especially on a complicated domain
like Sokoban, as reflected in the coverage comparison.

Conclusions
In this work, we have proposed replacement of two key parts of
search-based automated planning algorithm by deep neural net-
works. One network learns the planning model from image rep-
resentation of state transitions. The other network learns heuristic
function from image representations of states and their distances
to a goal. Such architecture allows for use of automated planning
for model-free problems. Experimentally, we have shown the effi-
ciency of such search is on par with the classical planning heuristics

and therefore a viable direction for future research.
Although the work provides promising results, it is preliminary

in several aspects. First of all, the heuristic function is learned from
optimal plans, which makes sense only as an optimistic placeholder
for cleverly generated (sub-)sequences of actions towards goals
(e.g. by action backward chaining). Other future work is to design
a neural network usable for variable sizes of the inputs, i.e. one
neural network for different maze/Sokoban puzzle sizes.

Acknowledgements The work was supported by the Czech
Science Foundation (grant no. 18-24965Y).

References
Asai, M., and Fukunaga, A. 2017. Classical planning in deep latent
space: From unlabeled images to pddl (and back). In NeSy.
Asai, M., and Fukunaga, A. 2018. Classical planning in deep latent
space: Bridging the subsymbolic-symbolic boundary. In Thirty-
Second AAAI Conference on Artificial Intelligence.
Garrett, C. R.; Kaelbling, L. P.; and Lozano-Pérez, T. 2016. Learn-
ing to rank for synthesizing planning heuristics. arXiv preprint
arXiv:1608.01302.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated planning
and acting. Cambridge University Press.

13

Figure 6: Performance of heuristics for maze domain in all search algorithms

Figure 7: Performance of heuristics for multi-goal maze domain in all search algorithms

Figure 8: Performance of heuristics for multi-agent maze domain in all search algorithms

Figure 9: Performance of heuristics for Sokoban domain in all search algorithms

14

Gomoluch, P.; Alrajeh, D.; Russo, A.; and Bucchiarone, A. 2019.
Learning neural search policies for classical planning. arXiv
preprint arXiv:1911.12200.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 770–778.
Hoffmann, J. 2001. Ff: The fast-forward planning system. AI
magazine 22(3):57–57.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning. nature
521(7553):436–444.
Pommerening, F., and Helmert, M. 2013. Incremental lm-cut.
In Twenty-Third International Conference on Automated Planning
and Scheduling.
Richter, S., and Westphal, M. 2010. The lama planner: Guiding
cost-based anytime planning with landmarks. Journal of Artificial
Intelligence Research 39:127–177.
Röger, G., and Helmert, M. 2010. The more, the merrier: Com-
bining heuristic estimators for satisficing planning. In Twentieth
International Conference on Automated Planning and Scheduling.
Ruder, S. 2016. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention is
all you need. In Advances in neural information processing sys-
tems, 5998–6008.
Wei, X.; Bârsan, I. A.; Wang, S.; Martinez, J.; and Urtasun, R.
2019. Learning to localize through compressed binary maps. In
Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 10316–10324.

15

Generalized Planning With Deep Reinforcement Learning

Or Rivlin1, Tamir Hazan2, Erez Karpas2
1Technion Autonomous Systems and Robotics Program, 2Faculty of Industrial Engineering and Management

srivlin@campus.technion.ac.il, [tamir.hazan, karpase] @technion.ac.il
Technion Israel Institute of Technology

Abstract
A hallmark of intelligence is the ability to deduce general
principles from examples, which are correct beyond the range
of those observed. Generalized Planning deals with finding
such principles for a class of planning problems, so that prin-
ciples discovered using small instances of a domain can be
used to solve much larger instances of the same domain. In
this work we study the use of Deep Reinforcement Learning
and Graph Neural Networks to learn such generalized policies
and demonstrate that they can generalize to instances that are
orders of magnitude larger than those they were trained on.

Introduction
Classical Planning is concerned with finding plans, or se-
quences of actions, that when applied to some initial condi-
tion specified by a set of logical predicates, will bring the
environment to a state that satisfies a set of goal predicates.
This is usually performed by some heuristic search proce-
dure, and the resulting plan is applicable only to the specific
instance that was solved. However, a possibly stronger out-
come would be to find some sort of higher level plan that can
solve many instances that belong to the same domain, and
thus share an underlying structure. The study of methods that
can discover such higher level plans is called Generalized
Planning. Generalized plans do not necessarily exist for all
classical planning domains, but finding such solutions for
domains in which it is possible could obviate the need to per-
form compute intensive search in cases where we only wish
to find a goal satisfying solution. To give an example of such
a generalized plan, let us consider a simplified Blocksworld
domain. In this domain there are unique blocks that can be
either stacked on each other or strewn about the floor, and
the goal is to stack and unstack blocks such that we arrive at
a goal configuration from an initial configuration. Finding a
plan that does so in an optimal number of steps is generally
NP-hard (Gupta and Nau 1992), but finding a plan that sat-
isfies the goal regardless of cost can be done in polynomial
time in the following manner:

1. Unstack all the blocks so that they are scattered on the
floor

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2. stack the block according to the goal configuration, begin-
ning with the lower blocks
This strategy is not optimal since we might unstack blocks

that are already in their proper place according to the goal
specification, but it will yield a goal satisfying plan for every
instance in this simplified Blocksworld domain. Such a gener-
alized strategy can also be thought of as a policy, which raises
the possibility of learning it through reinforcement learning.
Machine learning theory often assumes that our training data
distribution is representative of the test data distribution, thus
justifying our expectation that our models generalize well
to the test data. In generalized planning this is not the case,
as our test instances could be much larger than the training
instances, and thus far out of the training distribution. In this
work we show that having the right inductive bias in the form
of a neural network architecture could lead to models that
effectively learn policies that are akin to general principles,
and can solve problems that are orders of magnitude larger
than those encountered during training.

Background
Classical Planning
Classical planning uses a formal description language called
Planning Domain Definition Language (PDDL) (McDermott
et al. 1998), derived from the STRIPS modeling language
(Fikes and Nilsson 1971) to define problem domains and
their corresponding states and goals. we are concerned with
satisficing planning tasks, which can be defined by a set
(F,O, I,G) where F is a set of propositions (or predicates)
that describe the properties of the objects present in task
instance and their relations, O is a set of operators (or actions
types), I ⊆ F is the initial state and G ⊆ F is a set of
goal states. each action type o ∈ O is defined by a triple
(Pre(o), Add(o), Del(o)), where the preconditions Pre(o)
is a set of predicates that must have a true value for the
action to be applicable, Add(o) is a set of predicates which
the action turns to true upon application and Del(o) is a set
of predicates which the action turns false upon application.
We seek to find a plan, or a sequence of actions that when
applied will lead to a state s for which G ⊆ s, within some
time limit or a predefined number of steps. Finding plans
for planning tasks is often accomplished by heuristic search

16

methods, however in this work we focus on learning reactive
planning policies that can train on instances of a specific
domain and then generalize to new, unseen instances in that
same domain.

Reinforcement Learning
Reinforcement learning (RL) is a branch of machine learn-
ing that deals with learning policies for sequential decision
making problems. RL algorithms most often assume the prob-
lem can be modelled as a Markov Decision Process (MDP),
which in the finite horizon case is defined by a tuple (S, A, r,
P , T , ρ), where S is the set of states, A is the set of actions, r
is a reward function that maps states or state-actions to some
scalar reward, P is the transition probability function such
that p(s′|s, a) = P (s′, s, a), T is the task horizon and ρ is
the distribution over initial states. The value of a policy π in
the finite horizon RL problem is:

J(π) = Eτ∼π

[
T∑

t=0

r(st, at)

]
(1)

Where τ are trajectories sampled from the distribution in-
duced by the policy π, initial state distribution ρ and tran-
sition function P , and r(st, at) is the reward received after
taking action at at state st. The learning problem can thus be
formalized as an optimization problem, in which we wish to
find a policy that maximizes the objective:

π∗ = argmax
π

J(π) (2)

We focus on stochastic policies with parameters θ, which
map states and actions to probabilities, such that p(a|s) =
πθ(a|s), and use proximal policy optimization as the learning
algorithm.

Proximal Policy Optimization
Proximal Policy Optimization (PPO) (Schulman et al. 2017)
is a policy gradient based algorithm that seeks to better ex-
ploit the data gathered during the learning process, by per-
forming several gradient updates on the collected data before
discarding it to collect more. In order to avoid stability issues
that could arise from large policy updates, PPO uses a spe-
cial clipped objective to discourage divergence between the
current policy and the data collection policy, by defining the
following optimization problem:

θk+1 = argmax
θ

1

|Dk|
∑

τ∈Dk

T∑

t=0

min (g1, g2) (3)

g1 =
πθ(at|st)
πθk(at|st)

A(at|st)πθk (4)

g2 = clip

(
πθ(at|st)
πθk(at|st)

, 1− ε, 1 + ε

)
A(at|st)πθk (5)

Where clip is a function that clips the values of its input to
be between the specified minimum and maximum values, πθ
is the policy we are currently optimizing, πθk is the policy
used to collect the data (before updating) and A(at|st)πθk

is the advantage of the action given the current state and
parameters:

Â(at|st)πθk = Rt − V̂φk(s) (6)

Where the dependency on the action a comes from the em-
pirical return to-go R(st), which depends on the specific
actions that were taken by the policy. Vφk(s) is a state value
predicted by some function approximator with parameters
φk, obtained at each iteration by solving:

φk+1 = argmin
φ

1

|Dk|
∑

τ∈Dk

T∑

t=0

∣∣∣V̂φ(st)−Rt)
∣∣∣
2

(7)

Learning Generalized Policies
State Representation
We chose to represent the states in our framework as graphs,
with features encoding the properties and relations between
the objects in a given state. Our framework operates on prob-
lem domains specified by the PDDL modeling language, in
which problem instances are defined by a list of objects and a
list of predicates that describe the properties of these objects
and the relations between them at the current state. We limit
ourselves to domains for which predicates have an arity of
no more than two, which is not a significant limitation since
higher arity predicates can in many cases be decomposed
to several lower arity predicates. Our graphs are composed
of global features, node features and edge features, as in
(Battaglia et al. 2018). We denote our global features U , our
nodes V and our edges E. Global features represent proper-
ties of the problem instance or entities that are unique for the
domain, such as the hand in the Blocksworld domain, and are
determined by the 0-arity predicates of the domain. Node fea-
tures represent properties of the objects in the domain, such
as their type, and are determined by the 1-arity predicates.
Lastly, edge features represent relations between the objects
and are determined by the 2-arity predicates.
When producing a graph representation of a PDDL instance
state, a complete graph is produced with a node for each
object in the state. For each predicate in the state, the corre-
sponding feature is assigned a binary value of 1, and all other
features are assumed to be false with a value of 0. In order
to include the goal configuration in the input to the neural
network, the goal predicates are treated almost as if they were
another state-graph, and the two graphs are concatenated to-
gether to form a single representation for the state-goal. The
difference between state graphs and goal graphs, is that in
the goal graphs a 0 valued feature means that it contributes
no goal, and in the state graph a 0 valued feature means that
the predicate is assigned a false value.

The classical planning domains used throughout this work
are deterministic and Markovian, meaning that the current
state holds all the required information to solve the problem
optimally. Despite this property, we found that adding past
states in addition to the current one helps the learning process
and improves the generalization capability to larger instances.
While this is not strictly essential, our experiments suggest
that this step helps the policy mitigate "back-and-forth" be-
havior to some extent, and this is especially helpful on the

17

State:
arm-empty
clear b1
on-table b3
on b1 b2
on b2 b3

Goals:
on b1 b3

1

0001

1

0000

1000

0

0

1

0

0

𝑈

𝑏1

𝑏2

𝑏3

𝑒𝑏1→𝑏2

𝑒𝑏1→𝑏3

𝑒𝑏2→𝑏1

𝑒𝑏2→𝑏3
𝑒𝑏3→𝑏1

𝑒𝑏3→𝑏2

0

1

0

0

0

0

0000

0000

0000

0

arm
-em

p
ty

clear

h
o

ld
in

g

o
b

ject

o
n

-tab
le

o
n

arm
-em

p
ty

o
n

clear

h
o

ld
in

g

o
b

ject

o
n

-tab
le

Figure 1: Example state-goal graph from the Blocksworld domain. The left side shows the PDDL description of the state-goal,
and the right side shows the graph representation of the same state-goal. Blue represents state information and orange represents
goal information

b3

b2

b1

b2 b3

b1

b2

b3

b1

Figure 2: Visualization of the state from the previous figure
(blue) and possible goal-satisfying configurations (orange)

larger instances where the policy is more prone to make mis-
takes and then attempt to correct them. Adding this history is
straight-forward; we simply concatenate the graphs for the
K previous states and current state, and then concatenate the
goal graph as mentioned previously. We tested several such
history horizons, and found that adding only the last state
results in overall best performance and generalization. An
example of a state-goal graph from the Blocksworld domain
can be seen in figures 1 and 2, showing an instance with 3
blocks.

Graph Embedding
In order to learn good policies using the graph representations
of state-goals we first use a Graph Neural Network (GNN)
to embedd the node, edge and global features of the graph in
respective latent spaces. The GNN performs message passing
between the different components of the graph, allowing
useful information to flow. We use two different types of
GNN blocks, each enforcing a different style of information
flow within the graph and thus more suited to certain problem
domains than others. In both of these types the update order
is similar and takes the following common form:

1. Edges are updated using the previous edges and the "ori-
gin" nodes of those edges.

2. Nodes are updated using the previous nodes, the incoming
updated edges and the global features.

3. Globals are updated using the previous globals and the
aggregation of the updated nodes.

𝒗𝒊

𝑢

𝒗𝒊

𝒗𝒋

𝒗𝒌

𝑢

𝒗𝒊

𝒗𝒋

𝒗𝒌

𝒗𝒑

𝑢

𝒆𝒊𝒋 𝒆𝒊𝒋
𝒆𝒌𝒋

Figure 3: Flow of information within the graph network block.
The black piece is the component being updated at each step,
the additional information used to update that component is
in blue color, and the gray information is not used. On the
left: updating the edges. In the middle: updating the nodes.
On the right: updating the global features

The first block type we used is similar to the one described
in (Battaglia et al. 2018) which we name accordingly Graph
Network block (GN block). Mathematically, this block per-
forms the following operations:

ẽij = φ(W e[eij , vi] + be) (8)

hij = φ(W v
1 [Vi, ẽij] + bv1) (9)

mi = ψ(hij) (10)

ṽi = φ(W v
2 [mi, u] + bv2) (11)

ũ = φ(Wu 1

|v|
∑

i∈v
ṽi + bu) (12)

In the above notation, φ is a nonlinearity such as Rectified
Linear Unit, ψ is a node-wise max-pooling operation over
messages h and W , b are respective weight matrices and
biases. In the GN block, nodes receive messages from their
neighbouring nodes indiscriminately, which works well to

18

propagate general information across the graph but makes it
harder to transfer specific bits of information when needed.

The second type of block was designed to address that
shortcoming of the GN block, and for that purpose was en-
dowed with an attention mechanism. We named the second
block Graph Network Attention block (GNAT block), and
unlike the Graph Attention Network of (Veličković et al.
2017), it uses an attention mechanism similar to the Trans-
former model of (Vaswani et al. 2017). This block performs
the following operations:

ẽij = φ(W e[eij , vi] + be) (13)
hi = φ(W v

1 vi + bv1) (14)

ki = φ(W kvi + bk) (15)
qij = φ(W q ẽij + bq) (16)

αij =
exp (kTi qij)∑
p exp (k

T
i qip)

(17)

mi = ϕ(αij � ẽij) (18)
ṽi = φ(W v

2 [hi,mi, u] + bv2) (19)

ũ = φ(Wu 1

|v|
∑

i∈v
ṽi + bu) (20)

In the above notation, ϕ is a node-wise summation oper-
ation, � is the Hadamard product and W , b are respective
weight matrices and biases. As mentioned above, this type of
block allows certain bits of information to travel in the graph
in a more deliberate manner, by endowing the nodes with the
ability to focus on specific messages. When constructing our
GNN model, we can stack several blocks of these types (and
combinations of them) to attain a deeper graph embedding
capacity. In most of our experiments we used two blocks, ei-
ther two successive GN blocks, or a GNAT block followed by
a GN block. Each configuration excelled at a different group
of problems as we will show in the experiments section.

Policy Representation
Unlike common reinforcement learning benchmarks where
the set of actions is fixed and can be conveniently handled
by standard neural network architectures, in classical plan-
ning problems the set of actions is state dependent and varies
in size between states. In PDDL, each domain description
defines a set of action types that can be instantiated by ground-
ing those action types to the state. Each action type receives
a set of arguments, and in order to be applicable the argu-
ments of the action must conform to a set of pre-conditions.
For example, the Blocksworld domain has an action type
called "pick-up" which gets a single block object as an argu-
ment. This block must be "clear", "on-table" and the "arm-
empty" property must be true for the action to be applica-
ble. All blocks that comply with these pre-conditions can
be picked up, and represent a unique action. In addition to
pre-conditions, each action type also has effects which are
caused to the states upon application of the action. Some of
these effects could be positive (certain predicates of the state
will take a true value) and some negative (predicates will
assume a false value).

At each step of planning, the successor-state generator
gives the current state and a list of applicable actions. In or-
der to represent the actions in a meaningful way that enables
learning a policy over them, we chose to describe the actions
in terms of their effects, since these are the essential com-
ponents needed to make decisions. Since the successor-state
generator provides the agent with all the legal actions at each
step, we ignored the preconditions (all legal actions satisfy
the pre-conditions). Each action is composed of several ef-
fects, each concerning a different aspect of the state, and are
either positive or negative. The effects are clustered together
based on their type (global effect, node effect or edge effect),
and are represented as a concatenation of the embedding of
the respective component and a one-hot vector describing
which predicate is changed and if it is positive or negative.
This one-hot vector is in the dimension of corresponding in-
put component (dv for node effects for example) and contains
either 1 for positive effects or -1 for negative effects at the
appropriate predicate location. Each effect is transformed by
a multi layered perceptron (MLP) according the its type and
then the transformed effects are scattered back to their origin
actions. The effects of each action are aggregated together to
form a single vector representation of that action, which is fed
eventually to the policy neural network. Figure 4 illustrates
the process of action representation.

The final policy is a MLP that outputs a single scalar for
each action, and these scalars are then normalized by a soft-
max operation to get a discrete distribution over the actions.
In addition, another MLP takes the final global feature embed-
dings of the graph and outputs the predicted value of the state,
to be used for advantage estimation in the RL algorithm.

Training Procedure
Since the focus of this work was finding feasible plans, we
chose to model our problem as a sparse reward problem with
a binary reward. If the agent satisfies all the goals within a
predefined horizon length, it gets a reward of 1, and if not it
gets no reward. To determine an appropriate time limit we
used the commonly used hff heuristic (Hoffmann and Nebel
2001), which solves a relaxed version of the problem in linear
time (the relaxed problem has no negative effects). We take
the length of the relaxed plan and multiply it by a constant
factor of 5 to get the horizon length.

To train our policy we chose to use Proximal Policy Opti-
mization (PPO) (Schulman et al. 2017) for its simplicity and
good performance. To handle the problem of sparse rewards
we initially experimented with using Hindsight Experience
Replay DQN (Andrychowicz et al. 2017) due to its demon-
strated ability to tackle sparse goal reaching problems, but
found that it introduced a lot of bias and resulted in unsatisfac-
tory performance. To allow our policy to learn from a sparse
binary reward, we resorted to a simpler method; we generated
each training episode from a distribution over instance sizes,
which includes sizes small enough to be occasionally solved
by a randomly initialized policy. Doing this allows the policy
to progress to eventually solve all the instance sizes in the
distribution, without the need for a manual tuning of a cur-
riculum. Although setting this distribution needs to be done
manually, we found it very easy and quick to do by simple

19

𝑢 1

𝑢 -1

𝑣𝑖 0 0 1

𝑣𝑗 0 -1 0

ǁ𝑒𝑖𝑗 0 1

ǁ𝑒𝑖𝑘 0 1

ǁ𝑒𝑗𝑘 -1 0

ǁ𝑒𝑘𝑖 0 -1

𝑣𝑘 1 0 0

𝜙𝑢

𝜙𝑣

𝜙𝑒

ሚ𝐴1

ሚ𝐴2

ሚ𝐴3

𝐴1

𝐴2

𝐴3

Figure 4: Illustration of the action embedding process. From left to right: gray blocks represent original action effects, blue
blocks represent embedding of appropriate graph elements clustered (according to globals, nodes and edges), red blocks represent
the one-hot effect type vectors, black ellipses represent MLPs, purple blocks represent effect embeddings clustered and then
scattered back to their origin actions, and green blocks represent final action embeddings

trial and error with a random untrained neural network.
We made several small adjustments to the standard PPO

algorithm which improved performance in our case. Many
RL algorithms implementations roll out the policy for a fixed
number of steps before updating the model parameters, often
terminating episodes before completion in the process and
using methods such as Generalized Advantage Estimation
(Schulman et al. 2015) and bootstrapping value estimations
to estimate the returns as in (Mnih et al. 2016). We found
these elements to add unwanted bias to our learning process,
and instead rolled out each episode until termination, using
empirical returns instead of bootstrapped value estimates to
compute advantages. We also found that using many roll-outs
and large batch sizes helped stabilize the learning process
and resulted in better final performance, and so we performed
100 episode roll-outs and used the resulting data to update the
model parameters at each iteration of the learning algorithm.

Planning During Inference
To improve the ability of our generalized policies to use
additional time during test, we use them within a search al-
gorithm, as was done in many other works such as (Silver
et al. 2016), (Anthony, Tian, and Barber 2017). This type
of synthesis gained great success in zero sum games such
as Go and Chess (Silver et al. 2017), where a deep neural
network policy was used in conjunction with a Monte Carlo
Tree Search algorithm, which prompted other authors to do
the same even for non-game problems (Abe et al. 2019). We
take a different approach and design our search algorithm
specifically for the case of deterministic planning problems
with a strong reactive policy. Our algorithm is based on the
classic Greedy Best First Search (GBFS) algorithm, but aug-
ments it in several key ways. In standard GBFS, a search tree
is constructed from the root node, and at each iteration, the
node with the best heuristic estimate is extracted from the

open list, expanded and its child nodes added to the open list,
and this procedure is repeated until a goal node is found or
until time is out. Our algorithm, which we name GBFS-GNN,
performs a similar procedure, but uses the policy and value
functions to compute a heuristic value for each node, and per-
forms a full roll-out for each expanded node. The offspring
of the expanded node are added to the open list, but the rest
of the nodes encountered during the roll-out are not, to avoid
rapid memory consumption growth in large problems. Each
node in our search tree represents a state-action pair, and we
use the following heuristic estimate for each node:

g(s, a) =
π(a|s) · V (s)

1 +H(π(·|s)) (21)

In this equation, g(s, a) is the heuristic estimate of the
state-action, π(a|s) is the probability of action a under our
policy π, V (s) is the estimated state value according the the
critic part of our neural network policy, and H(π(·|s)) is the
entropy of the policy’s distribution over actions at state s.
Figure 5 illustrates our search algorithm.

Related Work
Learning to plan has been an active topic of research for many
years, with different methods attempting to learn different
aspects of a complete solver. Some works attempted to learn
heuristic values of states for specific domains using features
generated by other domain independent heuristics, such as
(Yoon, Fern, and Givan 2006), which learns heuristic values
by regression. more recent works such as (Garrett, Kaelbling,
and Lozano-Pérez 2016) learn to rank successor states by us-
ing RankSVM (Joachims 2002). These types of methods do
not explicitly use the state or goal information from the prob-
lem description, but rather learn using hand crafted features,
and in addition do not learn an explicit planning policy over
the available actions. Contrary to this, our methods learns

20

Figure 5: Illustration of the search procedure. From left to
right: a state-action edge with the highest heuristic estimate is
chosen (black), the action is applied to generate the successor
state with its child edges (green) and finally a full roll-out is
performed from the successor state using the policy (purple
spiral)

planning policies over explicit states and goals, that directly
choose actions to take.

Other works such as (Tamar et al. 2016), (Groshev et al.
2018) and (Guez et al. 2019) learn an explicit planning policy
over actions, using the actual state of the problem as input
and a deep convolutional neural network, but rely on having a
visual representation of the problem. This limits their usage to
domains where a visual representation is available. Another
limitation is that (Tamar et al. 2016) and (Groshev et al. 2018)
rely in addition on successful plans generated by a planning
algorithm and learn policies using imitation learning, while
(Guez et al. 2019) use reinforcement learning for this purpose.
Our work does not rely on visual representations or successful
plans generated by planning algorithms, but learns directly
from a PDDL representation of the problem by trial and error
via deep reinforcement learning.

Some works have begun to study the use of graph repre-
sentations of states and the use of different kinds of graph
neural networks for the task of learning policies or heuristics.
In (Toyer et al. 2018) the authors proposed a unique kind
of neural network called Action Schema Network (ASNet)
which consists of alternating action layers and proposition
layers to learn planning policies. They represent their state
as a graph in which objects and actions are connected and
propagate information back and forth to finally output a prob-
ability over actions. They train their ASNets by imitating
plans generated by other planners, and augment the input
with domain independent heuristic values to improve perfor-
mance. In their experiments, they focus mainly on stochastic
planning problems and demonstrate that their trained policies
can generalize to larger instances than trained on. A limita-
tion of ASNet is their fixed receptive field, that limits their
ability to reason over long chains, which our work does not
share.

In a recent paper, (Shen, Trevizan, and Thiébaux 2019)
propose an extension of (Battaglia et al. 2018) to hypergraphs,
and use it to learn heuristics over hypergraphs that represent
the delete relaxation states of planning problems. They use
supervised learning of optimal heuristic values generated by a

planning algorithm, and then use the resulting neural network
as a heuristic function within a search algorithm. In contrast
to this, our method focuses on learning policies, which can be
more time-efficient during evaluation since a single forward
pass over the neural network is needed to make a decision
at each state. Using heuristic estimates requires estimating
all the successor states of a state in order to choose the best
action, which could potentially increase run-time. Another
difference is that our work operates directly on states instead
of delete relaxations, which might limit the power of heuris-
tics since some information is omitted. Overviews of older
methods of learning to plan can be found in (Minton 2014),
(Zimmerman and Kambhampati 2003) and (Fern, Khardon,
and Tadepalli 2011).

Experiments
Domains
We evaluate our approach on five common classical planning
domains, Chosen from the IPC planning competition collec-
tion of domain generators that have predicates of arity no
larger than 2:

• Blocksworld (4 op): A robotic arm must move blocks from
an initial configuration in order to arrange them according
to a goal configuration.

• Satellite: A fleet of satellites must take images of locations,
each with a specified type of sensor.

• Logistics: Packages must be delivered to target locations,
using airplanes and trucks to move them between cities
and locations.

• Gripper: A twin-armed robot must deliver balls from room
A to room B.

• Ferry: A ferry must transport cars from initial locations to
designated target locations.

What these five domains have in common is that simple gen-
eralized plans can be formulated for them, which are capable
of solving arbitrarily large instances. We wish to demon-
strate that our method is capable of producing policies that
solve much larger instances than those they were trained on,
thus automatically discovering such generalized plans. Some
domains are easier than others, and in cases where the gener-
alized plan is very easy to describe we often witnessed that
the policy generalizes very successfully. For example, the
Gripper domain has a very simple strategy (Grab 2 balls with
each trip to room B) and indeed our neural network learns
the optimal strategy and usually still performs optimally even
for instances with hundreds of balls. To demonstrate that our
policies indeed generalize well, we trained them on small
instances and used both small and large instances for evalua-
tion.

• For the Blocksworld domain we trained our policy on
instances with 4 blocks, and evaluated on instances with
5-100 blocks.

• For the Satellite domain we trained our policy on instances
with 1-3 satellites, 1-3 instruments per satellite, 1-3 types
of instruments, 2-3 targets, and evaluated on instances with

21

1-14 satellites, 2-11 instruments per satellite, 1-6 types of
instruments and 2-42 targets.

• For the Logistics domain we trained our policy on in-
stances with 2-3 airplanes, 2-3 cities, 2-3 locations per
city, 1-2 packages, and evaluated on instances with 4-12
airplanes, 4-15 cities, 1-6 locations per city and 8-40 pack-
ages.

• For the Gripper domain we trained our policy on instances
with 3 balls, and evaluated on instances with 5-200 balls.

• For the Ferry domain we trained our policy on instances
with 3-4 locations, 2-3 cars and evaluated on instances
with 4-40 locations and 2-120 cars.

Experimental setting
For training our policies, we rely on having instance genera-
tors to produce random training instances, since our method
requires large amounts of training data. All policies are
trained for 1000 iterations, each with 100 training episodes
and up to 20 gradient update steps. Experiments are per-
formed on a single machine with a i7-8700K processor and a
single NVIDIA GTX 1070 GPU. We used the same training
hyperparameters for all five domains, but slightly varying
neural network models. We used a hidden representation size
of 256 and ReLU activations, a learning rate of 0.0001, a
discount factor of 0.99, an entropy bonus of 0.01, a clipping
ratio of 0.2 and a KL divergence cutoff parameter of 0.01.
For the Blocksworld and Gripper domains we used a two
layer GNN with both layers of the GN block type, and for the
Satellite, Ferry and Logistics domains we used a two layer
GNN with a GNAT block followed by a GN block. Our code
was implemented in Python and our neural networks and
learning algorithm were implemented using PyTorch (Paszke
et al. 2019).

Baseline
We focus in our evaluation on solving large instances of gen-
eralized planning domains and compare our method with a
classical planner. Other learning based methods either had
no available code by the time this work was written (such
as (Shen, Trevizan, and Thiébaux 2019)) or were inherently
limited in scaling to the large problems (for example (Toyer
et al. 2018)), so we opted for a more general baseline in the
form of a classical planner, which can scale to large prob-
lems given enough time and memory. We compare against
fast-downward (Helmert 2006), which is a state of the art
framework. Our approach uses Pyperplan as the model and
successor state generator, which is a Python based framework.
We use the LAMA-first configuration as the setup for fast-
downward, as it is a top performing competitive satisficing
planning algorithm.

Evaluation Metrics
Since our work is focused on satisficing planning, we use
success rate as our main metric. We run both our GBFS-
GNN and fast-downward on a set of 50 held out evaluation
instances per domain, and run each method for a fixed time
limit of 600 seconds per instance, we then plot the success

rate of each method against the time limit and against the
number of expanded states to see how each method scales
with given computation. The evaluation instances are gener-
ated according to a wide distribution such that both small and
large instances are sampled. During GBFS-GNN planning
we count all the states visited including during rollouts.

Results
We now present our results. Figure 6 shows a comparison
between our method and fast-downward for the five domains
we used in our experiments. The plots show success rate as
a function of number of expanded states, and demonstrate
that our method indeed scales favourably compared to the
classical planner on 4 of the 5 domains. In fact, on the 4
domains where our policies generalized well, GBFS-GNN
required very little to no search. In these domains, a solution
can be found by just greedily following the policy in all but
the hardest instances. Our search algorithm builds on this
generalization capability and uses a small number of full
policy roll-outs while searching.

In figure 7 we present a comparison between our method
and fast-downward, plotting success rate against given run-
time. We can see that even though fast-downward has a
highly optimized C++ implementation and uses sophisti-
cated modeling tools to efficiently solve planning problems,
our method overcomes it in one domain (Blocksworld) and
closely matches it on three others. Despite GBFS-GNN using
a successor state and legal action generator that is orders of
magnitude slower than that of fast-downward, our method’s
generalization capability makes it competitive with state of
the art implementations of classical planners.

An obvious exception concerning the generalization per-
formance of our method is the Logistics domain. Our policy
successfully achieved good performance on the training in-
stances but failed to generalize to much larger instance sizes,
and consequently was vastly outperformed by fast-downward
on that domain. We hypothesize that unlike the other domains,
the Logistics domain contains a tighter coupling between the
different objects in each instance. In the Satellite domain
for example, calibrating an instrument or imaging a target
does not interfere with other satellites, in the sense that the
policy can have multiple "half-baked" goals and switch be-
tween them without interference. This is not possible in the
Logistics domain, as all the packages share the trucks and
airplanes, and moving a specific truck to pick up a package
might interfere with another package that was meant to be
picked up in another location. Different graph neural net-
work architectures could perhaps encourage the policy to
remain "fixed" on a single goal until its satisfaction before
moving to another, thus possibly overcoming the issue with
the Logistics domain and other similar types of problems.

Conclusion and Future Work
In this work we studied the ability of graph neural networks
and deep reinforcement learning algorithms to learn general-
ized planning policies that can solve instances much larger
than those encountered during training, in effect learning prin-
ciples that generalize well. Unlike some other approaches,

22

0 25000 50000 75000 100000125000150000175000
expanded states

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

Blocksworld

GBFS-GNN
FD-lama-first

0 200 400 600 800 1000
expanded states

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

Satellite

GBFS-GNN
FD-lama-first

0 2000 4000 6000 8000 10000 12000 14000
expanded states

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

Ferry

GBFS-GNN
FD-lama-first

0 200 400 600 800
expanded states

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

Gripper

GBFS-GNN
FD-lama-first

0 20000 40000 60000 80000 100000
expanded states

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

Logistics

GBFS-GNN
FD-lama-first

Figure 6: These plots compare success rate against number of expanded states for the various domains used in the evaluation

0 100 200 300 400 500 600
time [sec]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s r

at
e

Blocksworld

GBFS-GNN
FD-lama-first

0 100 200 300 400 500 600
time [sec]

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

su
cc

es
s r

at
e

Satellite

GBFS-GNN
FD-lama-first

0 100 200 300 400 500 600
time [sec]

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

su
cc

es
s r

at
e

Ferry

GBFS-GNN
FD-lama-first

0 100 200 300 400 500 600
time [sec]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s r

at
e

Gripper

GBFS-GNN
FD-lama-first

0 100 200 300 400 500 600
time [sec]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s r

at
e

Logistics

GBFS-GNN
FD-lama-first

Figure 7: These plots compare success rate against run time for the various domains used in the evaluation

our method does not rely on optimal solutions provided by
existing planners, nor on heuristics to boost performance.
We further introduce GBFS-GNN, a search algorithm that
exploits the availability of high performing reactive policies
to quickly find solutions to very large instances. Our poli-
cies are learned from scratch via reinforcement learning, and
combined with GBFS-GNN achieve performance that sur-

passes highly optimized implementations of state of the art
planners in terms of expanded states, and is on par in terms
of run-time. Directions for future work include studying how
specific mechanisms in graph neural networks architectures
relate to the emergent generalization behaviour on differ-
ent domains, studying the effect of different reinforcement
learning algorithms on generalization and perhaps exploring

23

regularization schemes on the policy training procedure that
might encourage better generalization.

References
Abe, K.; Xu, Z.; Sato, I.; and Sugiyama, M. 2019. Solving np-
hard problems on graphs by reinforcement learning without
domain knowledge. arXiv preprint arXiv:1905.11623.
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, O. P.; and
Zaremba, W. 2017. Hindsight experience replay. In Advances
in neural information processing systems, 5048–5058.
Anthony, T.; Tian, Z.; and Barber, D. 2017. Thinking fast
and slow with deep learning and tree search. In Advances in
Neural Information Processing Systems, 5360–5370.
Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-Gonzalez,
A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.;
Santoro, A.; Faulkner, R.; et al. 2018. Relational inductive
biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261.
Fern, A.; Khardon, R.; and Tadepalli, P. 2011. The first learn-
ing track of the international planning competition. Machine
Learning 84(1-2):81–107.
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3-4):189–208.
Garrett, C. R.; Kaelbling, L. P.; and Lozano-Pérez, T. 2016.
Learning to rank for synthesizing planning heuristics. arXiv
preprint arXiv:1608.01302.
Groshev, E.; Tamar, A.; Goldstein, M.; Srivastava, S.; and
Abbeel, P. 2018. Learning generalized reactive policies using
deep neural networks. In 2018 AAAI Spring Symposium
Series.
Guez, A.; Mirza, M.; Gregor, K.; Kabra, R.; Racanière, S.;
Weber, T.; Raposo, D.; Santoro, A.; Orseau, L.; Eccles, T.;
et al. 2019. An investigation of model-free planning. arXiv
preprint arXiv:1901.03559.
Gupta, N., and Nau, D. S. 1992. On the complexity of blocks-
world planning. Artificial Intelligence 56(2-3):223–254.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Joachims, T. 2002. Optimizing search engines using click-
through data. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data
mining, 133–142.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. Pddl-the
planning domain definition language.
Minton, S. 2014. Machine learning methods for planning.
Morgan Kaufmann.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-

chronous methods for deep reinforcement learning. In Inter-
national conference on machine learning, 1928–1937.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems, 8024–8035.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and Abbeel,
P. 2015. High-dimensional continuous control using general-
ized advantage estimation. arXiv preprint arXiv:1506.02438.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Shen, W.; Trevizan, F.; and Thiébaux, S. 2019. Learning
domain-independent planning heuristics with hypergraph net-
works. arXiv preprint arXiv:1911.13101.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of go with deep neural networks and tree search. nature
529(7587):484.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354–359.
Tamar, A.; Wu, Y.; Thomas, G.; Levine, S.; and Abbeel, P.
2016. Value iteration networks. In Advances in Neural
Information Processing Systems, 2154–2162.
Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018.
Action schema networks: Generalised policies with deep
learning. In Thirty-Second AAAI Conference on Artificial
Intelligence.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. In Advances in neural information processing
systems, 5998–6008.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903.
Yoon, S. W.; Fern, A.; and Givan, R. 2006. Learning heuristic
functions from relaxed plans. In ICAPS, volume 2, 3.
Zimmerman, T., and Kambhampati, S. 2003. Learning-
assisted automated planning: looking back, taking stock, go-
ing forward. AI Magazine 24(2):73–73.

24

Reinforcement Learning of Risk-Constrained Policies
in Markov Decision Processes

(Extended Abstract)
Tomáš Brázdil1, Krishnendu Chatterjee2, Petr Novotný1, Jiřı́ Vahala1

1Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbrazdil, petr.novotny, xvahala1}@fi.muni.cz

2Institute of Science and Technology Austria, Klosterneuburg, Austria
Krishnendu.Chatterjee@ist.ac.at

Abstract

Markov decision processes (MDPs) are the standard model
of sequential decision making under stochastic uncertainty. A
classical optimization criterion for MDPs is to maximize the
expected discounted-sum payoff, which ignores low proba-
bility catastrophic events with highly negative impact on the
system. On the other hand, risk-averse policies require the
probability of undesirable events to be below a given thresh-
old, but they do not account for optimization of the expected
payoff. We consider MDPs with discounted-sum payoff and
with failure states which represent catastrophic outcomes.
The objective of risk-constrained planning is to maximize the
expected discounted-sum payoff among risk-averse policies
that ensure the probability to encounter a failure state is be-
low a desired threshold. Our main contribution is an efficient
risk-constrained planning algorithm that combines UCT-like
search with a predictor learned through interaction with the
MDP (in the style of AlphaZero) and with a risk-constrained
action selection via linear programming. We demonstrate the
effectiveness of our approach with experiments on classical
MDPs from the literature, including benchmarks with an or-
der of 106 states.
This extended abstract summarizes results presented in the
paper Reinforcement Learning of Risk-Constrained Policies
in Markov Decision Processes published at AAAI’20.

1 Introduction & Problem Statement
MDPs. We consider Markov decision processes (MDPs)
with discounted-sum payoff, a standard model of probabilis-
tic decision-making (Puterman 1994). Formally and MDP
consists of: a finite set S of states; a finite alphabet A of ac-
tions; a probabilistic transition function δ that given a state
s ∈ S and an action a ∈ A returns the probability distri-
bution δ(s, a) over the successor states; a reward function
rew : S ×A → R; and a discount factor γ.

Fixing some initial state s0, the interaction with an MDP
starts in s0 and proceeds sequentially through a policy π,
a function which acts as a blueprint for selecting actions,
producing longer and longer history of actions and obser-
vations. We denote by Pπ(E) the probability of an event E
under policy π, and by Eπ[X] the expected value of a ran-
dom variable X under π.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Expectation optimization and risk. In the classical studies of
MDPs with discounted-sum payoff, the objective is to obtain
policies that maximize the expected payoff. Formally, the
expected payoff of a policy π is the number Payoff (π) =
Eπ[
∑∞
i=0 γ

i · rew(si, ai)], where si, ai are the current state
and the action selected in step i. However, the expected pay-
off criterion ignores the possible presence of low probability
failure events that can have a highly negative impact.
Motivating scenarios. In scenarios such as a robot exploring
an unknown environment, a significant damage of the robot
ends the mission. Of course, the policy which never moves
the robot would be likely safe in such a scenario, but goes
against the robot’s primary objective of an effective explo-
ration. Instead, the operator can set a risk threshold, i.e. the
probability of the robot’s destruction that is acceptable under
given operational parameters. The goal is to ensure effective
exploration while keeping the risk of destruction below the
threshold, which naturally gives rise to the risk-constrained
planning problem we consider.

In the pure expectation-optimizing framework, we might
attempt to encode the risk-taking aspect directly into the re-
ward function, e.g. by stipulating that entering a failure state
incurs a large negative penalty. However, the risk-taking as-
pect of the resulting policy is then very sensitive to the
penalty variations, demanding an elaborate tuning of the
penalties to achieve a desired behaviour (see also (Undurti
and How 2010) for a critical discussion of reward-function
engineering in risk-constrained scenarios). In contrast, we
aim to achieve an explicit control over the risk taken by a
policy, decoupling the risk-taking aspect from the expected
payoff optimization.
Problem statement. Given an MDP, we fix a set F ⊆ S of
failure states. A risk of a policy π is then the probability that
a failure state is encountered:

Risk(π) = Pπ
(∞⋃

i=0

{si ∈ F}
)
.

We assume that each s ∈ F is a sink, i.e. δ(s, a)(s) = 1
and rew(s, a) = 0 for all a ∈ A. Hence, F models fail-
ures after which the agent has to cease interacting with the
environment (e.g. due to being destroyed).

The risk-constrained planning problem is defined as fol-
lows: given an MDPM and a risk threshold ∆ ∈ [0, 1], find

25

a policy π which maximizes Payoff (π) subject to the con-
straint that Risk(π) ≤ ∆. If there is no feasible policy, i.e. a
policy s.t. Risk(π) ≤ ∆, then we want to find a policy that
minimizes the risk and among all such policies optimizes the
expected payoff.

The risk-constrained planning problem can be formu-
lated as a special case of constrained MDPs (Altman 1999)
(see (Brázdil et al. 2020) for an overview of related work).
Our main contribution is a new reinforcement-learning algo-
rithm for risk-constrained planning.

2 Our Contribution
We present RAlph (a portmanteau of “Risk” and “Alpha”),
an online algorithm for risk-constrained planning. Inspired
by the successful approach of AlphaZero (Silver et al. 2017;
2018), RAlph combines a UCT-like exploration of the his-
tory tree T of the MDP with evaluation of the leaf nodes via
a suitable predictor learned through a repeated interaction
with the system. On top of this, we augment the algorithm’s
action-selection phase with a risk-constrained mechanism
based on evaluation of a linear program over the constructed
tree. The algorithm starts with a risk threshold ∆0 = ∆,
which is updated in each decision step to take into account
the risk already taken by the agent. We denote by ∆i the
threshold in step i.

The main novel features of RAlph (in comparison with
the AlphaZero framework) are the following:

Risk predictor. In our algorithm, the predictor is extended
with risk prediction.

Risk-constrained action selection. When selecting an ac-
tion ai to be played at step i, we solve a linear program (LP)
over T , yielding a local policy that maximizes the estimated
payoff while keeping the estimated risk below the current
threshold ∆t. The distribution ξi used by the local policy in
the first step is then used to sample ai. The LP is such that
if the predictor was replaced with a perfect oracle, the LP
solution would give the optimal risk-constrained policy.

Risk-constrained exploration. Some variants of Alp-
haZero enable additional exploration by selecting each ac-
tion with a probability proportional to its exponentiated visit
count (Silver et al. 2017). Our algorithm uses a technique
which perturbs the distribution computed by the LP while
keeping the risk estimate of the perturbed distribution below
the required threshold

Estimation of alternative risk. The risk threshold must be
updated after playing an action, since each possible outcome
of the action has a potential contribution towards the global
risk. We use linear programming and the risk predictor to
obtain an estimate of these contributions.

3 Implementation & Evaluation
Predictor. In principle any predictor (e.g. a neural net) can
be used with RAlph. In our implementation, as a proof of
concept, we use just a simple table predictor, directly storing
the estimated payoff and risk for each state s.
Benchmarks. We implemented RAlph and evaluated it on
two types of benchmarks. The first is a perfectly observable
version of Hallway (Pineau et al. 2003; Smith and Simmons

1 1 1 1 1 1
1 A B x 1
1 D C E g 1
1 1 1 1 1 1

Figure 1: Example of a Hallway MDP. Symbols ’1’, ’x’, ’g’
represent wall/trap/goal cell respectively. The agent starts in
B facing east, and obtains a reward for reaching the goal cell.

2004) where we control a robot in a grid maze. In each move,
there is a chance of the robot being shifted sideways of the
intended move direction, possibly into a trap where there is a
chance of destruction. As a second type, we consider a con-
trollable 1-dimensional random walk, modeling an investor
in a financial market.
Evaluation. We evaluate RAlph on four instances of the
Hallway benchmark. The corresponding MDPs have state-
spaces of sizes equal to 20, 44, 1136, and 6553600, respec-
tively. For the random walk, we consider benchmarks with
50 and 200 states. We compared RAlph with the RAMCP
algorithm from (Chatterjee et al. 2018). RAMCP can also
perform risk-averse planning via the use of heuristic search
and linear programming, but does not use any predictor. The
outcome of our experiments is reported in (Brázdil et al.
2020). RAlph was shown to be much faster than RAMCP,
making up to two orders of magnitude less node expansions
when building T . RAlph also consistently finds solutions
that satisfy the risk threshold, which is not always the case
for RAMCP, whose expected payoff and risk tended to de-
teriorate quite fast with increasing number of states. In con-
trast, RAlph was able to learn a well-behaving risk-averse
policy in less than 15 minutes even in the largest benchmark.
Discussion. RAlph exhibited interesting behavior on several
benchmarks. An an example, consider the Hallway instance
shown in Figure 1. For ∆ = 0, the only way to reach the gold
is by exploiting the move perturbations: since the robot can-
not to move east from C without risking a shift to the trap,
it must keep circling through A, B, C, D until it is randomly
shifted to E. RAlph is able, with some parameter tuning, to
find this policy.

4 Conclusions & Future Work
Our experiments show that even with a simple predictor,
RAlph performs and scales significantly better than a state-
of-the-art algorithm. As an interesting future work we see
extension of the method to POMDPs and incorporation of
more sophisticated predictors.

Acknowledgements
Krishnendu Chatterjee is supported by the Austrian Science
Fund (FWF) NFN Grant No. S11407-N23 (RiSE/SHiNE),
and COST Action GAMENET. Tomáš Brázdil is supported
by the Grant Agency of Masaryk University grant no.
MUNI/G/0739/2017 and by the Czech Science Foundation
grant No. 18-11193S. Petr Novotný and Jiřı́ Vahala are sup-
ported by the Czech Science Foundation grant No. GJ19-
15134Y.

26

References
Altman, E. 1999. Constrained Markov decision processes,
volume 7. CRC Press.
Brázdil, T.; Chatterjee, K.; Novotný, P.; and Vahala, J.
2020. Reinforcement learning of risk-constrained policies
in Markov decision processes. CoRR abs/2002.12086.
Chatterjee, K.; Elgyütt, A.; Novotný, P.; and Rouillé, O.
2018. Expectation optimization with probabilistic guaran-
tees in pomdps with discounted-sum objectives. In IJCAI
2018, 4692–4699.
Pineau, J.; Gordon, G.; Thrun, S.; et al. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In IJ-
CAI, volume 3, 1025–1032.
Puterman, M. L. 1994. Markov Decision Processes. J. Wiley
and Sons.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018. A
general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science 362(6419):1140–
1144.
Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for POMDPs. In UAI, 520–527. AUAI Press.
Undurti, A., and How, J. P. 2010. An online algorithm for
constrained POMDPs. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, 3966–3973. IEEE.

27

Time-based Dynamic Controllability of Disjunctive Temporal Networks with
Uncertainty: A Tree Search Approach with Graph Neural Network Guidance

Kevin Osanlou1,2,3,4, Jeremy Frank1, J. Benton1, Andrei Bursuc5, Christophe Guettier2, Eric
Jacopin6 and Tristan Cazenave3

1 NASA Ames Research Center 2 Safran Electronics & Defense 3LAMSADE, Paris-Dauphine
4 Universities Space Research Association 5valeo.ai 6CREC Saint-Cyr Coetquidan

{kevin.osanlou, jeremy.d.frank, j.benton}@nasa.gov
{kevin.osanlou, christophe.guettier}@safrangroup.com andrei.bursuc@valeo.com

eric.jacopin@st-cyr.terre-net.defense.gouv.fr tristan.cazenave@lamsade.dauphine.fr

Abstract
Scheduling in the presence of uncertainty is an area of interest
in artificial intelligence due to the large number of applica-
tions. We study the problem of dynamic controllability (DC)
of disjunctive temporal networks with uncertainty (DTNU),
which seeks a strategy to satisfy all constraints in response
to uncontrollable action durations. We introduce a more re-
stricted, stronger form of controllability than DC for DTNUs,
time-based dynamic controllability (TDC), and present a tree
search approach to determine whether or not a DTNU is TDC.
Moreover, we leverage the learning capability of a message
passing neural network (MPNN) as a heuristic for tree search
guidance. Finally, we conduct experiments for which the tree
search shows superior results to state-of-the-art timed-game
automata (TGA) based approaches, effectively solving fifty
percent more DTNU problems on a known benchmark. We
also observe that MPNN tree search guidance leads to sub-
stantial performance gains on benchmarks of more complex
DTNUs, with up to eleven times more problems solved than
the baseline with the same time budget.

1 Introduction
Temporal Networks (TN) are a common formalism to rep-
resent temporal constraints over a set of time points (e.g.
start/end of activities in a scheduling problem). The Simple
Temporal Networks with Uncertainty (STNUs) (Tsamardi-
nos 2002) (Vidal and Fargier 1999) explicitly incorporate
qualitative uncertainty into temporal networks. Considerable
work has resulted in algorithms to determine whether or not
all timepoints can be scheduled, either up-front or reactively,
in order to account for uncertainty (e.g. (Morris and Muscet-
tola 2005), (Morris 2014)). In particular, an STNU is dy-
namically controllable (DC) if there is a reactive strategy
in which controllable timepoints can be executed either at
a specific time, or after observing the occurrence of an un-
controllable timepoint. Cimatti et al. (Cimatti, Micheli, and
Roveri 2016) investigate the problem of DC for Disjunctive
Temporal Networks with Uncertainty (DTNUs), which gen-
eralize STNUs. Figure 1a shows two DTNUs γ and γ′ on
the left side; ai are controllable timepoints, uj are uncontrol-
lable timepoints. Timepoints are variables which can take on

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Two example DTNUs γ and γ′. In both examples, time-
points a1 and a2 are controllable; u1 is uncontrollable. Black ar-
rows and their intervals represent time constraints between time-
points; the light red arrow and its interval contingency links. The
dashed dark red arrow in γ′ implies u1 has already been activated
and will occur in the specified interval. A TDC strategy is displayed
for γ. Nodes below γ are sub-DTNUs except the∨ node which lists
transitional possibilities. DTNU γ′, on the other hand, is an exam-
ple of a DTNU which is DC but not TDC.

any value in IR. Constraints between timepoints characterize
a minimum and maximum time distance separating them,
likewise valued in IR. The key difference between STNUs
and DTNUs lies in the disjunctions that yield more choice
points for consistent scheduling, especially reactively.

The complexity of DC checking for DTNUs is
PSPACE-complete (Bhargava and Williams 2019), mak-
ing this a highly challenging problem. The difficulty in prov-
ing or disproving DC arises from the need to check all pos-
sible combinations of disjuncts in order to handle all pos-
sible occurrence outcomes of the uncontrollable timepoints.
The best previous approaches for this problem use timed-
game automata (TGAs) and Satisfiability Modulo Theories
(SMTs), described in (Cimatti, Micheli, and Roveri 2016).

A new emerging trend of neural networks, graph-based
neural networks (GNNs), have been proposed as an exten-

28

sion of convolutional neural networks (CNNs) (Krizhevsky,
Sutskever, and Hinton 2012) to graph-structured data. Re-
cent variants based on spectral graph theory include (Def-
ferrard, Bresson, and Vandergheynst 2016), (Li et al. 2016),
(Kipf and Welling 2017). They take advantage of relational
properties between nodes for classification, but do not take
into account potential edge weights. In newer approaches,
Message Passing Neural Networks (MPNNs) with architec-
tures such as in (Battaglia et al. 2016), (Gilmer et al. 2017)
and (Kipf et al. 2018) use embeddings comprising edge
weights within each computational layer. We focus our inter-
est on these architecture types as DTNUs can be formalized
as graphs with edge distances representing time constraints.

In this work, we study DC checking of DTNUs as a
search problem, express states as graphs, and use MPNNs
to learn heuristics based on previously solved DTNUs to
guide search. The key contributions of our approach are the
following. (1) We introduce a time-based form of dynamic
controllability (TDC) and a tree search approach to iden-
tify TDC strategies. We informally show that TDC implies
DC, but the opposite is not generally true. (2) We describe
an MPNN architecture for handling DTNU scheduling prob-
lems and use it as heuristic for guidance in the tree search.
Moreover, we define a self-supervised learning scheme to
train the MPNN to solve randomly generated DTNUs with
short timeouts to limit search duration. (3) We introduce
constraint propagation rules which enable us to enforce time
domain restrictions for variables in order to ensure sound-
ness of strategies found. We carry out experiments show-
ing that the tree search algorithm improves performance and
scalability over the best previous DC-solving approach in
(Cimatti, Micheli, and Roveri 2016), PYDC-SMT, with 50%
more DTNU instances solved. Moreover, we expose that
the learned MPNN heuristic considerably improves the tree
search on harder DTNUs: performance gains go up to 11
times more instances solved within the same time frame. Re-
sults also highlight that the MPNN, which is trained on a set
of solved DTNUs, is able to generalize to larger DTNUs.

2 Time-based Dynamic Controllability
A DC strategy for a DTNU either executes controllable
timepoints at a specific time, or reacts to the occurrence of
an uncontrollable timepoint. We present our TDC formal-
ism here. A TDC strategy executes controllable timepoints
at specific times under the assumption that some uncontrol-
lable timepoints may occur or not in a given time interval.
Each interval in a TDC strategy can have an arbitrary dura-
tion. Controllable timepoints are usually executed at the start
or the end of an interval, while uncontrollable timepoints
may occur inside the interval. TDC also makes it possible
to execute a controllable timepoint at the exact same time
as the occurrence time of an uncontrollable timepoint inside
the interval, with a reactive execution.

TDC is less flexible than a DC strategy which can wait
for an uncontrollable timepoint to occur before making a
new decision. Conversely TDC does not allow, for instance,
a delayed reactive execution of a controllable timepoint in
response to an uncontrollable one. TDC is a subset of DC,
and a stronger form of controllability: TDC implies DC.

DTNU γ′ in Figure 1a shows an example of an STNU
which is not TDC but DC. In this example, uncontrollable
timepoint u1 is activated, i.e. the controllable timepoint as-
sociated to u1 in the contingency links has been executed.
Moreover, it is known that u1 occurs between t and t + 1,
where t is the current time. The interval [t, t+ 1] is referred
to as the activation time interval for u1. Controllable time-
point a1 must be executed at least 1 time unit after u1, and
controllable timepoint a2 at least 5 time units after a1. How-
ever, controllable timepoint a2 cannot be executed later than
6 time units after u1. A valid DC strategy waits for u1 to
occur, then schedules a1 exactly 1 time unit later, and a2 5
time units after a1. However, for any TDC strategy, there is
no wait duration small enough while waiting for u1 to hap-
pen that does not violate these constraints. There will always
be some strictly positive lapse of time between the moment
u1 occurs and the end of the wait. The exact execution time
of u1 during the wait is unknown: a TDC strategy therefore
assumes u1 happened at the end of the wait when trying to
schedule a1 at the earliest. Therefore, the earliest time a1

can be scheduled in a TDC strategy is 1 time unit after the
end of the wait, which is too late.

3 Tree Search Preliminaries
We introduce here the tree search algorithm. The approach
discretizes uncontrollable durations, i.e. durations when one
or several uncontrollable timepoints can occur, into reduced
intervals. These are in turn used to account for possible out-
comes of uncontrollable timepoints and adapt the scheduling
strategy accordingly. The root of the search tree built by the
algorithm is a DTNU, and other tree nodes are either sub-
DTNUs or logical nodes (OR, AND) which respectively rep-
resent decisions that can be made and how uncontrollable
timepoints can unfold. At a given DTNU tree node, deci-
sions such as executing a controllable timepoint or waiting
for a period of time develop children DTNU nodes for which
these decisions are propagated to constraints. The TDC con-
trollability of a leaf DTNU, i.e. a sub-DTNU for which all
controllable timepoints have been executed and uncontrol-
lable timepoints are assumed to have occurred in specific
intervals, indicates whether or not this sub-DTNU has been
solved at the end of the scheduling process. We also refer to
the TDC controllability of a DTNU node in the search tree
as its truth attribute. Lastly, the search logically combines
TDC controllability of children DTNUs to determine TDC
controllability for parent nodes. We give a simple example
of a TDC strategy for a DTNU γ in Figure 1.

Let Γ = {A,U,C, L} be a DTNU. A is the list of con-
trollable timepoints, U the list of uncontrollable timepoints,
C the list of constraints and L the list of contingency links.
The root node of the search tree is Γ. There are four dif-
ferent types of nodes in the tree and each node has a truth
attribute (see §4.4) which is initialized to unknown and can
be set to either true or false. The different types of tree nodes
are listed below and shown in Figure 2.

DTNU nodes. Any DTNU node other than the original
problem Γ corresponds to a sub-problem of Γ at a given

29

point in time t, for which some controllable timepoints may
have already been scheduled in upper branches of the tree,
some amount of time may have passed, and some uncon-
trollable timepoints are assumed to have occurred. A DTNU
node is made of the same timepoints A and U , constraints
C and contingency links L as DTNU Γ. It also carries a
schedule memory S of what exact time, or during what time
interval, scheduled timepoints were executed during previ-
ous decisions in the tree. Lastly, the node also keeps track of
the activation time intervals of activated uncontrollable time-
points B. The schedule memory S is used to create an up-
dated list of constraints C ′ resulting from the propagation of
the execution time or execution time interval of timepoints
in constraints C as described in §4.5. A non-terminal DTNU
node, i.e. a DTNU node for which all timepoints have not
been scheduled, has exactly one child node: a d-OR node.

OR nodes. When a choice can be made at time t, this tran-
sition control is represented by an OR node. We distinguish
two types of such nodes, d-OR and w-OR . For d-OR nodes,
the first type of choice available is which controllable time-
point ai to execute. This leads to a DTNU node. The other
type of choice is to wait a period of time (§4.1) which leads
to a WAIT node. w-OR nodes can be used for reactive wait
strategies, i.e. to stipulate that some controllable timepoints
will be scheduled reactively during waits (§4.3). The parent
of a w-OR node is therefore a WAIT node and its children
are AND nodes, described below.

WAIT nodes. These nodes are used after a decision to wait
a certain period of time ∆t. The parent of a WAIT node is
a d-OR node. A WAIT node has exactly one child: a w-OR
node, which has the purpose of exploring different reactive
wait strategies. The uncertainty management related to un-
controllable timepoints is handled by AND nodes.

AND nodes. Such nodes are used after a wait decision is
taken and a reactive wait strategy is decided, represented re-
spectively by a WAIT and w-OR node. Each child node of
the AND node is a DTNU node at time t + ∆t, t being the
time before the wait and ∆t the wait duration. Each child
node represents an outcome of how uncontrollable time-
points may unfold and is built from the set of activated un-
controllable timepoints (uncontrollable timepoints that have
been triggered by the execution of their controllable time-
point) whose occurrence time interval overlaps the wait. If
there are l activated uncontrollable timepoints, then there are
at most 2l AND node children, representing each element of
the power set of activated uncontrollable timepoints (§4.1).

Figure 2 illustrates how a sub-problem of Γ, referred to
as DTNUO,P,t, is developed. Here, O ⊂ A is the set
of controllable timepoints that have already been executed,
P ⊂ U the set of uncontrollable timepoints which have
occurred, and t the time. This root node transitions into a
d-OR node. The d-OR node in turn is developed into sev-
eral children nodes DTNUO∪{ai},P,t and a WAIT node.
Each node DTNUO∪{ai},P,t corresponds to a sub-problem
which is obtained from the execution of controllable time-
point ai at time t. The WAIT node refers to the process of
waiting a given period of time, ∆t in the figure, before mak-
ing the next decision. The WAIT node leads directly to a

Figure 2: Basic structure of the search tree describing how a
DTNU node DTNUO,P,t is developed.DTNUO,P,t (placed at
the root of the tree) refers to a DTNU where O is the set of con-
trollable timepoints that have already been executed, P the set of
uncontrollable timepoints that have occurred, and t the time. Each
branch ai refers to a controllable timepoint ai, Ri to a reactive
strategy during the wait, and Λi to a combination of uncontrollable
timepoints which can occur during the wait.

w-OR node which lists different wait strategies Ri. If there
are l activated uncontrollable timepoints, there are 2l sub-
sets of uncontrollable timepoints Λi that could occur. Each
ANDRj node has one sub-problem DTNU for each Λi. Each
sub-problem DTNUOi,P∪Λi,t+∆t of the node ANDRj is a
DTNU at time t+∆t for which all uncontrollable timepoints
in Λi are assumed to have happened during the wait period,
i.e. in the time interval [t, t + ∆t]. Additionally, some con-
trollable timepoints may have been reactively executed dur-
ing the wait and may now be included in the set of scheduled
controllable timepoints Oi. Otherwise, Oi = O.

Two types of leaf nodes exist in the tree. The first type
is a node DTNUA,U,t for which all controllable time-
points ai ∈ A have been scheduled and all uncontrol-
lable timepoints ui ∈ U have occurred. The second type
is a node DTNUA\A′,U,t for which all uncontrollable time-
points ui ∈ U have occurred, but some controllable time-
points ai ∈ A′ have not been executed. The constraint sat-
isfiability test of the former type of leaf node is straight-
forward: all execution times of all timepoints are propa-
gated to constraints in the same fashion as in §4.5. The
leaf node’s truth attribute is set to true if all constraints are
satisfied, false otherwise. For the latter type, we propagate
the execution times of all uncontrollable timepoints as well
as all scheduled controllable timepoints in the same way,
and obtain an updated set of constraint C ′. This leaf node,
DTNUA\A′,U,t, is therefore characterized as {A′, ∅, C ′, ∅}
and is a DTN. We add the constraints a′i ≥ t, ∀a′i ∈ A′

and use a mixed integer linear programming solver (Cplex
2009) to solve the DTN. If a solution is found, the execution
time values for each a′i ∈ A′ are stored and the leaf node’s
truth value is set to true. Otherwise, it is set to false. After a
truth value is assigned to the leaf node, the truth propagation
function defined in §4.4 is called to logically infer truth value
properties for parent nodes. Lastly, the search algorithm ex-

30

plores the tree in a depth-first manner. At each d-OR , w-OR
and AND node, children nodes are visited in the order they
are created. Once a child node is selected, its entire subtree
will be processed by the algorithm before the other children
are explored. Some simplifications made in the exploration
are detailed in §11.6 in the appendix.

4 Tree Search Characteristics
4.1 Wait action
When a wait decision of duration ∆t is taken at time t for
a DTNU node, two categories of uncontrollable timepoints
are considered to account for all transitional possibilities:

• Z = {ζ1, ζ2, ..., ζl} is a set of timepoints that could either
happen during the wait, or afterwards, i.e. the end of the
activation time interval for each ζi is greater than t+ ∆t.

• H = {η1, η2, ..., ηm} is a set of timepoints that are certain
to happen during the wait, i.e. the end of the activation
time interval for each ηi is less than or equal to t+ ∆t.

There are q = 2l number of different possible combina-
tions (empty set included) Υ1,Υ2, ...,Υq of elements taken
from Z. For each combination Υi, the set Λi = H ∪ Υi is

created. The union
q⋃
i=1

Λi refers to all possible combinations

of uncontrollable timepoints which can occur by t + ∆t. In
Figure 2, for each AND node, the combination Λi leads to
a DTNU sub-problem DTNUOi,P∪Λi,t+∆t

for which the
uncontrollable timepoints in Λi are considered to have oc-
curred between t and t + ∆t in the schedule memory S. In
addition, any potential controllable timepoint φ planned to
be instantly scheduled in a reactive wait strategy Ri in re-
sponse to an uncontrollable timepoint u in Λi will also be
considered to have been scheduled between t and t + ∆t in
S. The only exception is when checking constraint satisfi-
ability for the conjunct u − φ ∈ [0, y] which required the
reactive scheduling, for which we assume φ executed at the
same time as u, thus the conjunct is considered satisfied.

4.2 Wait Eligibility and Period
The way time is discretized holds direct implications on the
search space explored and the capability of the algorithm
to find TDC strategies. Longer waits make the search space
smaller, but carry the risk of missing key moments where
a decision is needed. On the other hand, smaller waits can
make the search space too large to explore. We explain when
the wait action is eligible, and how its duration is computed.

Eligibility At least one of these two criteria has to be met
for a WAIT node to be added as child of a d-OR node. (1)
There is at least one activated uncontrollable timepoint for
the parent DTNU node. (2) There is at least one conjunct
of the form v ∈ [x, y], where v is a timepoint, in the con-
straints of the parent DTNU node. These criteria ensure that
the search tree will not develop branches below WAIT nodes
when waiting is not relevant, i.e. when a controllable time-
point necessarily needs to be scheduled. It also prevents the
tree search from getting stuck in infinite WAIT loop cycles.

Wait Period We define the wait duration ∆t at a given
d-OR node eligible for a wait dynamically by examining
the updated constraint list C ′ of the parent DTNU and the
activation time intervals B of its activated uncontrollable
timepoints. Let t be the current time for this DTNU node.
The wait duration is defined by comparing t to elements in
C ′ and B to look for a minimum positive value defined by
the following three rules. (1) For each activated time inter-
val u ∈ [x, y] in B, we select x − t or y − t, whichever
is smaller and positive, and we keep the smallest value δ1
found over all activated time intervals. (2) For each conjunct
v ∈ [x, y] in C ′, where v is a timepoint, we select x − t
or y − t, whichever is smaller and positive, and we keep
the smallest value δ2 found over all conjuncts. (3) We deter-
mine timepoints which need to be scheduled ahead of time
by chaining constraints together. Intuitively, when a con-
junct v ∈ [x, y] is in C ′, it means v has to be executed
when t ∈ [x, y] to satisfy this conjunct. However, v could
be linked to other timepoints by constraints which require
them to happen before v. These timepoints could in turn
be linked to yet other timepoints in the same way, and so
on. The third rule consists in chaining backwards to iden-
tify potential timepoints which start this chain and potential
time intervals in which they need to be executed. The fol-
lowing mechanism is used: for each conjunct v ∈ [x, y]
in C ′ found in (2), we apply a recursive backward chain
function to both (v, x) and (v, y). We detail here how it
is applied to (v, x), the process being the same for (v, y).
Conjuncts of the form v − v′ ∈ [x′, y′], x′ ≥ 0 in C ′ are
searched for. For each conjunct found, we add to a list two
elements, (v′, x− x′) and (v′, x− y′). We select x− x′ − t
or x− y′ − t, whichever is smaller and positive, as potential
minimum candidate. The backward chain function is called
recursively on each element of the list, proceeding the same
way. We keep the smallest candidate δ3. Figure 8 in the ap-
pendix illustrates an application of this process. Finally, we
set ∆t = min(δ1, δ2, δ3) as the wait duration. This duration
is stored inside the WAIT node.

4.3 Reactive scheduling during waits
Execution of a controllable timepoint may be necessary in
some situations at the exact same time as when an uncon-
trollable timepoint occurs to satisfy a constraint. Therefore,
different reactive wait strategies are considered and listed as
children of a w-OR node after a wait decision, before the ac-
tual start of the wait itself. We designate as a conjunct a con-
straint relationship of the form vi−vj ∈ [x, y] or vi ∈ [x, y],
where vi, vj are timepoints and x, y,∈ IR. We refer to a con-
straint where several conjuncts are linked by ∨ operators as
a disjunct. If at any given DTNU node in the tree there is
an activated uncontrollable timepoint u with the potential
to occur during the next wait and there is at least one un-
scheduled controllable timepoint a such that a conjunct of
the form u − a ∈ [0, y], y ≥ 0 is present in the constraints,
a reactive wait strategy is available that will schedule a as
soon as u occurs.

If there are s controllable timepoints that may be reac-
tively scheduled, there are 2s different reactive wait strate-
gies Ri, each of which is embedded in an AND child of the

31

w-OR node. Let Φ = {φ1, φ2, ..., φs} ⊂ A be the com-
plete set of unscheduled controllable timepoints for which
there are conjunct clauses u − φi ∈ [0, y]. We denote as
R1, R2, ..., Rm all possible combinations of elements taken
from Φ, including the empty set. The child node ANDRi of
the w-OR node resulting from the combination Ri has a re-
active wait strategy for which all controllable timepoints in
Ri will be immediately executed at the moment u occurs
during the wait, if it does. If u doesn’t occur, no controllable
timepoint is reactively scheduled during the wait.

4.4 Truth Value Propagation
In this section, we describe how truth attributes of nodes are
related to each other. The truth attribute of a tree node rep-
resents its TDC controllability, and the relationships shared
between nodes make it possible to define sound strategies.
When a leaf node is assigned a truth attribute β, the tree
search is momentarily stopped and β is propagated onto up-
per parent nodes. To this end, a parent node ω is selected
recursively and we distinguish the following cases:

• The parent ω is a DTNU or WAIT node: ω is assigned β.

• The parent ω is a d-OR or w-OR node: If β = true, then
ω is assigned true . If β = false and all children nodes
of ω have false attributes, ω is assigned false . Otherwise,
the propagation stops.

• The parent ω is an AND node: If β = false, then ω is
assigned false . If β = true and all children nodes of ω
have true attributes, ω is assigned true . Otherwise, the
propagation stops.

After the propagation finishes, the tree search algorithm
resumes where it was stopped. A true attribute reaching the
root node of the tree means a TDC strategy has been found.
A false attribute means none could be found. The pseu-
docode for the propagation algorithm is given in Algorithm
1 in the appendix.

4.5 Constraint Propagation
Decisions taken in the tree define when controllable time-
points are executed and also bear consequences on the ex-
ecution time of uncontrollable timepoints. We explain here
how these decisions are propagated into constraints, as well
as the concept of ‘tight bound’. Let C ′ be the list of updated
constraints for a DTNU node ψ for which the parent node is
ω. We distinguish two cases. Either ω is a d-OR node and ψ
results from the execution of a controllable timepoint ai, or
ω is an AND node andψ results from a wait of ∆t time units.
In the first case, let t be the execution time of ai. The updated
list C ′ is built from the constraints of the parent DTNU of
ψ in the tree. If a conjunct contains ai and is of the form
ai ∈ [x, y], this conjunct is replaced with true if t ∈ [x, y],
false otherwise. If the conjunct is of the form vj−ai ∈ [x, y],
we replace the conjunct with vj ∈ [t + x, t + y]. The other
possibility is that ψ results from a wait of ∆t time at time t,
with a reactive wait strategy Rj . In this case, the new time
is t+ ∆t for ψ. As a result of the wait, some uncontrollable
timepoints ui ∈ Λi are assumed to have occured, and some
controllable timepoints ai ∈ Rj may be executed reactively

during the wait. Let vi ∈ Λi ∪ Rj be these timepoints oc-
curring during the wait. The execution time of these time-
points is assumed to be in [t, t + ∆t]. For uncontrollable
timepoints u′i ∈ Λ′i ⊂ Λi for which the activation time ends
at t + ∆′ti < t + ∆t, and potential controllable timepoints
a′i instantly reacting to these uncontrollable timepoints, the
execution time is further reduced and considered to be in
[t, t + ∆′ti]. We define a concept of tight bound to update
constraints which restricts time intervals in order to account
for all possible values vi can take between t and t + ∆t.
For all conjuncts vj − vi ∈ [x, y], we replace the conjunct
with vj ∈ [t + ∆t + x, t + y]. Intuitively, this means that
since vi can happen at the latest at t + ∆t, vj can not be
allowed to happen before t+ ∆t +x. Likewise, since vi can
happen at the earliest at t, vj can not be allowed to happen
after t + y. Finally, if t + ∆t + x > t + y, the conjunct is
replaced with false . Also, the process can be applied recur-
sively in the event that vj is also a timepoint that occurred
during the wait, in which case the conjunct would be re-
placed by true or false. In any case, any conjunct obtained
of the form aj ∈ [x′, y′] is replaced with false if t+∆t > y′.
Finally, if all conjuncts inside a disjunct are set to false by
this process, the constraint is violated and the DTNU is no
longer satisfiable.

5 Learning-based Heuristic
We present here our learning model and explain how it pro-
vides tree search heuristic guidance. Our learning architec-
ture originates from (Gilmer et al. 2017). It uses message
passing rules allowing neural networks to process graph-
structured inputs where both vertices and edges possess fea-
tures. This architecture was originally designed for node
classification in quantum chemistry and achieved state-of-
the-art results on a molecular property prediction bench-
mark. Here, we first define a way of converting DTNUs into
graph data. Then, we process the graph data with our MPNN
and use the output to guide the tree search.

Let Γ = {A,U,C, L} be a DTNU. We explain how we
turn Γ into a graph G = (K, E). First, we convert all time
values from absolute to relative with the assumption the cur-
rent time for Γ is t = 0. We search all converted time inter-
vals [xi, yi] in C and L for the highest interval bound value
dmax, i.e. the farthest point in time. We proceed to normalize
every time value in C and L by dividing them by dmax. As
a result, every time value becomes a real number between 0
and 1. Next, we convert each controllable timepoint a ∈ A
and uncontrollable timepoint u ∈ U into graph nodes with
corresponding controllable or uncontrollable node features.
The time constraints in C and contingency links in L are ex-
pressed as edges between nodes with 10 different edge dis-
tance classes (0 : [0, 0.1), 1 : [0.1, 0.2), ..., 9 : [0.9, 1]). We
also use additional edge features to account for edge types
(constraint, disjunction, contingency link, direction sign for
lower and upper bounds). Moreover, intermediary nodes are
used with a distinct node feature in order to map possible
disjunctions in constraints and contingency links. We add
a WAIT node with a distinct node feature which implicitly
designates the act of waiting a period of time. The graph
conversion of DTNU γ is characterized by three elements:

32

the matrix of all node features Xκ, the adjacency matrix of
the graph Xε and the matrix of all edge features Xρ.

These features are processed by several consecutive mes-
sage passing layers from (Gilmer et al. 2017). Each layer
takes an input graph, consists of a phase during which mes-
sages are passed between nodes, and returns the same graph
with new node features. The overall process for a layer is
the following. For each node κi in the input graph, a feature
aggregation phase is applied and creates new features for
κi from current features of neighboring nodes and edges. In
detail, for each neighbor node κj , a small neural network
(termed multi-layer perceptron, or MLP) takes as input the
features of the edge connecting κi and κj and returns a ma-
trix which is then multiplied by the features of κj to obtain a
feature vector. The sum of these vectors for the entire neigh-
borhood defines the new features for κi. The output of the
message passing layer consists of the graph updated with
the new node features. The feature aggregation process be-
ing the same for any node, it can be applied to input graphs
of any size, i.e. it enables our MPNN architecture to take as
input DTNUs of any size. Moreover, each message passing
layer contains a different MLP and can thus be trained to
learn a different feature aggregation scheme.

Let f be the mathematical function for our MPNN and θ
its set of parameters. Our function f stacks 5 message pass-
ing layers coupled with the ReLU(·) = max(0, ·) piece-
wise activation function (Glorot, Bordes, and Bengio 2011).
The sigmoid function σ(·) = 1

1+exp(−·) is then used
to obtain a list of probabilities π over all nodes in G :
fθ(Xκ, Xε, Xρ) = π. The probability of each node κ in π
corresponds to the likelihood of transitioning into a TDC
DTNU from the original DTNU Γ by taking the action cor-
responding to κ. If κ represents a controllable timepoint a
in Γ, its corresponding probability in π is the likelihood of
the sub-DTNU resulting from the execution of a being TDC.
If κ represents a WAIT decision, its probability refers to the
likelihood of the WAIT node having a true attribute, i.e. the
likelihood of all children DTNUs resulting from the wait be-
ing TDC (with the wait duration rules set in §4.2). We call
these two types of nodes active nodes. Otherwise, if κ is
another type of node, its probability is not relevant to the
problem and ignored. Our MPNN is trained on DTNUs gen-
erated and solved in §6 only on active nodes by minimizing
the cross-entropy loss:

1

m

m∑

i=1

q∑

j=1

−Yij log(fθ(Xi)j)− (1−Yij) log(1− fθ(Xi)j)

Here Xi = (Xiκ , Xiε , Xiρ) is DTNU number i among a
training set of m examples, Yij is the TDC controllability (1
or 0) of active node number j for DTNU number i.

Lastly, the MPNN heuristic is used in the following way
in the tree search. Once a d-OR node is reached, the parent
DTNU node is converted into a graph and the MPNN f is
called upon the corresponding graph elements Xκ, Xε, Xρ.
Active nodes in output probabilities π are then ordered by
highest values first, and the tree search visits the correspond-
ing children tree nodes in the suggested order, preferring
children with higher likelihood of being TDC first.

6 Randomized Simulations for Heuristic
Training

We leverage a learning-based heuristic to guide the tree
search. A key component in learning-based methods is the
annotated training data. We generate such data in automatic
manner by using a DTNU generator to create random DTNU
problems and solving them with a modified version of the
tree search. We store results and use them for training the
MPNN. We detail now our data generation strategy.

We create DTNUs with a number of controllable time-
points ranging from 10 to 20 and uncontrollable timepoints
ranging from 1 to 3. The generation process is the following.
For interval bounds of constraint conjuncts or contingency
links, we randomly generate real numbers within [0, 100].
We restrict the number of conjuncts inside a disjunct to 5 at
most. A random number n1 ∈ [10, 20] of controllable time-
points and n2 ∈ [1, 3] of uncontrollable timepoints are se-
lected. Each uncontrollable timepoint is randomly linked to
a different controllable timepoint with a contingency link.
Next, we iterate over the list of timepoints, and for each
timepoint vi not appearing in constraints or contingency
links, we add in the constraints a disjunct for which at least
one conjunct constrains vi. The type of conjunct is selected
randomly from either a distance conjunct vi− vj ∈ [x, y] or
a bounded conjunct vi ∈ [x, y]. On the other hand, if vi was
already present in the constraints or contingency links, we
add a disjunct constraining vi with only a 20% probability.

In order to solve these DTNUs, we modify the tree search
as follows. For a DTNU Γ, the first d-OR child node is de-
veloped as well as its children ψ1, ψ2, ..., ψn ∈ Ψ. The mod-
ified tree search explores each ψi multiple times (ν times at
most), each time with a timeout of τ seconds. We set ν = 25
and τ = 3. For each exploration of ψi, children nodes of any
d-OR node encountered in the corresponding subtree are ex-
plored randomly each time. If ψi is proved to be either TDC
or non-TDC during an exploration, the next explorations of
the same child ψi are called off and the truth attribute βi of
ψi is updated accordingly. The active node number k, cor-
responding to the decision leading to ψi from DTNU Γ’s
d-OR node, is updated with the same value, i.e. Yk = βi (1
for true, 0 for false). If every exploration times out, ψi is
assumed non-TDC and Yk is set to false. Once each ψi has
been explored, the pair 〈G(Γ), (Y1, Y2, ..., Yn)〉 is stored in
the training set, whereG(Γ) is the graph conversion of Γ de-
scribed in §5. Data related to solved sub-DTNUs of Γ are not
stored in the training set as it was found to cause bias issues
and overall decrease generalization in MPNN predictions.

The assumption of non-TDC controllability for children
nodes for which all explorations time out is acceptable in the
sense that the heuristic used is not admissible and does not
need to be. The output of the MPNN is a probability for each
child node of the d-OR node, creating a preferential order of
visit by highest probabilities first. Even in the event the sug-
gested order first recommends visiting children nodes which
will be found to be non-TDC, the algorithm will continue to
explore the remaining children nodes until one is found to
be TDC. Nevertheless, such a scenario will rarely occur as
the trained MPNN will give higher probabilities for children

33

nodes for which explorations would tend to find a TDC strat-
egy before timeout, and lower probabilities for ones where
explorations would tend to result in a timeout.

7 Strategy Execution
A strategy found by the tree search for a DTNU Γ is sound
and guarantees constraint satisfiability if executed in the fol-
lowing manner. LetQ be the system interacting with the en-
vironment, executing controllable timepoints and observing
how uncontrollable timepoints unfold. At each DTNU node
in the tree, Q moves on to the child d-OR node. The child
node ψi of the d-OR node which was found by the strategy
to have a true attribute is selected. If ψi is a DTNU node,
Q executes the corresponding controllable timepoint ai and
moves on to ψi. If ψi is a WAIT node, Q moves on to ψi,
reads the wait duration ∆t stored in ψi and moves on to the
child w-OR node. The child node ANDRj of the w-OR node
which has a true attribute is selected, and Q will wait ∆t

time units with the reactive wait strategy Rj . After the wait
is over, Q observes the list of all uncontrollable timepoints
Λi which occurred, deduces which DTNU child node of the
ANDRj node it transitioned into, and moves on to that node.

By following these guidelines, the final tree node Q tran-
sitions into is necessarily a leaf node with a true attribute, i.e.
a node for which all constraints are satisfied. This is due to
the fact that for d-OR and w-OR nodes Q visits, Q chooses
to transition into a child node with a true attribute. For AND
nodes Q visits, all children DTNU nodes have a true at-
tribute, soQ transitions into a child node with a true attribute
regardless of how uncontrollable timepoints unfold.

8 Experiments
We evaluate experimentally the efficiency of the tree search
approach and the effect of the MPNN’s guidance. We also
compare them with a DC solver from (Cimatti, Micheli, and
Roveri 2016). TDC is a subset of DC and a more restric-
tive form of controllability: non-TDC controllability does
not imply non-DC controllability. A TDC solver can thus
be expected to offer better performance than a DC one while
potentially being unable to find a strategy when a DC algo-
rithm would. In this section, we refer to the tree search algo-
rithm as TS, the tree search algorithm guided by the trained
MPNN up to the 15th (respectively Xth) d-OR node depth-
wise in the tree as MPNN-TS (respectively MPNN-TS-X)
and the most efficient DC solver from (Cimatti, Micheli, and
Roveri 2016) as PYDC-SMT ordered.

First, we use the benchmark in the experiments of
(Cimatti, Micheli, and Roveri 2016) from which we remove
DTNs and STNs. We compare TS, MPNN-TS and PYDC-
SMT on the resulting benchmark which is comprised of 290
DTNUs and 1042 STNUs. Here, Limiting the maximum
depth use of the MPNN to 15 offers a good trade off between
guidance gain and cost of calling the heuristic. Results are
given in Figure 3. We observe that TS solves roughly 50%
more problem instances than PYDC-SMT within the allo-
cated time (20 seconds). In addition, TS solves 56% of all
instances while the remaining ones time out. Among solved
instances, a strategy is found for 89% and the remaining

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time in seconds

300

400

500

600

700

800

900

1000

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

MPNN-TS
TS

PYDC-SMT ordered

Figure 3: Experiments on (Cimatti, Micheli, and Roveri 2016)’s
benchmark from which DTNs and STNs have been removed.
The X-axis represents the allocated time in seconds and the Y-axis
the number of instances in the benchmark each solver can solve
within the corresponding allocated time. Timeout is set to 20 sec-
onds per instance.

11% are proved non-TDC. On the other hand, PYDC-SMT
solves 37% of all instances. A strategy is found for 85%
of PYDC-SMT’s solved instances while the remaining 15%
are proved non-DC. Finally, out of all instances PYDC-SMT
solves, TS solves 97% accurately with the same conclusion,
i.e. TDC when DC and non-TDC when non-DC. The use
of the heuristic leads to an additional +6% problems solved
within the allocated time. We argue this small increase is es-
sentially due to the fact that most problems solved in the
benchmark are small-sized problems with few timepoints
which are solved quickly. Despite this fact, the heuristic still
provides performance boost on a benchmark generated with
another DTNU generator, suggesting the bias introduced by
our DTNU generator remains limited and the MPNN is able
to generalize to DTNUs created with a different approach.

For further evaluation of the heuristic, we create new
benchmarks using the DTNU generator from §6 with vary-
ing number of timepoints. These benchmarks have fewer
quick to solve DTNUs and harder ones instead. Each bench-
mark contains 500 randomly generated DTNUs which have
1 to 3 uncontrollable timepoints. Moreover, each DTNU has
10 to 20 controllable timepoints in the first benchmark B1,
20 to 25 in the second benchmark B2 and 25 to 30 in the
last benchmark B3. Each disjunct in the constraints of any
DTNU contains up to 5 conjuncts. Experiments on B1, B2

and B3 are respectively shown in Figure 4, 6c (in the ap-
pendix) and 5. We note that for all three benchmarks no
solver ever proves non-TDC or non-DC controllability be-
fore timing out due to the larger size of these problems.

PYDC-SMT performs poorly on B1 and cannot solve any
instance on B2 and B3. TS does not perform well on B2

and only solves 2 instances on B3. However, we see a sig-
nificantly higher gain from the use of the MPNN, varying
with the maximum depth use. At best depth use, the gain is

34

0 5 10 15 20 25 30
Time in seconds

0

25

50

75

100

125

150

175

200
Nu

m
be

r o
f i
ns
ta
nc
es
 so

lv
ed

TS
MPNN-TS-5
MPNN-TS-15
MPNN-TS-30

MPNN-TS-60
MPNN-TS-120
PYDC-SMT ordered

Figure 4: Experiments on benchmark B1. Axes are the same as
in Figure 3. Timeout is set to 30 seconds per instance.

+91% instances solved forB1, +980% forB2 and +1150%
forB3. The more timepoints instances have, the more worth-
while heuristic guidance appears to be. Indeed, the optimal
maximum depth use of the MPNN in the tree increases with
the problem size: 15 for B1, 60 for B2 and 120 for B3. We
argue this is due to the fact that more timepoints results in a
wider search tree overall, including in deeper sections where
heuristic use was not necessarily worth its cost for smaller
problems. Furthermore, the MPNN is trained on randomly
generated DTNUs which have 10 to 20 controllable time-
points. The promising gains shown by experiments on B2

and B3 suggest generalization of the MPNN to bigger prob-
lems than it is trained on.

The proposed tree search approach presents a good trade
off between search completeness and effectiveness: almost
all examples solved by PYDC-SMT from (Cimatti, Micheli,
and Roveri 2016)’s benchmark are solved with the same
conclusion, and many more which could not be solved are.
Moreover, the TDC approach scales up better to problems
with more timepoints, and the tree structure allows the use
of learning-based heuristics. Although these heuristics are
not key to solving problems of big scales, our experiments
suggest they can still provide a high increase in efficiency.

9 Related Work
Learning-based heuristics have become increasingly popu-
lar for planning, combinatorial and network modeling prob-
lems. Recent works applied to network modeling and rout-
ing problems include (Rusek et al. 2019), (Chen et al. 2018),
(Xu et al. 2018), (Kool and Welling 2018). Recently, GNNs
have become a popular extension of CNNs. Essentially, their
ability to represent problems with a graph structure and the
resulting node permutation invariance makes them conve-
nient for some applications. We refer the reader to (Wu et
al. 2019) for a complete survey on GNNs. In combinatorial
optimization, GNNs can benefit both approximate and exact
solvers. In (Li, Chen, and Koltun 2018), authors combine
tree search, GNNs and a local search algorithm to achieve

0 25 50 75 100 125 150 175
Time in seconds

0

10

20

30

40

50

Nu
m
be
r o

f i
ns
ta
nc
es
 so

lv
ed

TS
MPNN-TS-5
MPNN-TS-15
MPNN-TS-30

MPNN-TS-60
MPNN-TS-120
PYDC-SMT ordered

Figure 5: Experiments on benchmark B3. Axes are the same as
in Figure 3. Timeout is set to 180 seconds.

state-of-the-art results for approximate solving of NP-hard
problems such as the maximum independent set problem.
On the other hand, (Gasse et al. 2019) use a GNN for branch
and bound variable selection for exact solving of NP-hard
problems and achieve superior results to previous learning
approaches. In path-planning problems with NP-hard con-
straints, (Osanlou et al. 2019) use a GNN to predict an upper
bound for a branch and bound solver and outperform an A*-
based planner coupled with a problem-suited handcrafted
heuristic. (Ma et al. 2018) leverage a GNN for the selection
of a planner inside a portfolio for STRIPS planning prob-
lems and outperform the previous leading learning-based ap-
proach based on a CNN (Sievers et al. 2019). In most works,
GNNs seem to offer generalization to bigger problems than
they are trained on. Results from our experiments are in line
with this observation.

10 Conclusion

We introduced a new type of controllability, time-based dy-
namic controllability (TDC), and a tree search approach
for solving disjunctive temporal networks with uncertainty
(DTNU) in TDC. Strategies are built by discretizing time
and exploring different decisions which can be taken at dif-
ferent key points, as well as anticipating how uncontrol-
lable timepoints can unfold. We defined constraint propa-
gation rules which ensure soundness of strategies found. We
showed that the tree search approach is able to solve DTNUs
in TDC more efficiently than the state-of-the-art dynamic
controllability (DC) solver, PYDC-SMT, with almost al-
ways the same conclusion. Lastly, we created MPNN-TS, a
solver which combines the tree search with a heuristic func-
tion based on message passing neural networks (MPNN) for
guidance. The MPNN is trained with a self-supervised strat-
egy and enables steady improvements of the tree search on
harder DTNU problems, notably on DTNUs of bigger size
than those used for training the MPNN.

35

References
Battaglia, P.; Pascanu, R.; Lai, M.; Rezende, D. J.; et al.
2016. Interaction networks for learning about objects, re-
lations and physics. In Advances in neural information pro-
cessing systems, 4502–4510.
Bhargava, N., and Williams, B. C. 2019. Complexity bounds
for the controllability of temporal networks with conditions,
disjunctions, and uncertainty. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence, 6353 – 6357.
Chen, X.; Guo, J.; Zhu, Z.; Proietti, R.; Castro, A.; and Yoo,
S. 2018. Deep-rmsa: A deep-reinforcement-learning rout-
ing, modulation and spectrum assignment agent for elastic
optical networks. In 2018 Optical Fiber Communications
Conference and Exposition (OFC), 1–3. IEEE.
Cimatti, A.; Micheli, A.; and Roveri, M. 2016. Dynamic
controllability of disjunctive temporal networks: Validation
and synthesis of executable strategies. In Thirtieth AAAI
Conference on Artificial Intelligence.
Cplex, I. I. 2009. V12. 1: User’s manual for cplex. Interna-
tional Business Machines Corporation 46(53):157.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information Pro-
cessing Systems, 3844–3852.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. Journal of machine learning research 12(Jul):2121–
2159.
Gasse, M.; Chételat, D.; Ferroni, N.; Charlin, L.; and Lodi,
A. 2019. Exact combinatorial optimization with graph con-
volutional neural networks. In Advances in Neural Informa-
tion Processing Systems, 15554–15566.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, 1263–1272. JMLR.
org.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Deep sparse
rectifier neural networks. In Proceedings of the fourteenth
international conference on artificial intelligence and statis-
tics, 315–323.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In International
Conference on Learning Representations.
Kipf, T.; Fetaya, E.; Wang, K.-C.; Welling, M.; and Zemel,
R. 2018. Neural relational inference for interacting systems.
arXiv preprint arXiv:1802.04687.
Kool, W., and Welling, M. 2018. Attention solves your tsp.
arXiv preprint arXiv:1803.08475.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. S. 2016.
Gated graph sequence neural networks. In International
Conference on Learning Representations.
Li, Z.; Chen, Q.; and Koltun, V. 2018. Combinatorial opti-
mization with graph convolutional networks and guided tree
search. In Advances in Neural Information Processing Sys-
tems, 536—-545.
Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M. 2018.
Adaptive planner scheduling with graph neural networks.
CoRR abs/1811.00210.
Morris, P., and Muscettola, N. 2005. Temporal dynamic con-
trollability revisited. In Proceedings of the 22nd National
Conference on Artificial Intelligence.
Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In Proceedings of the IInternational Confer-
ence on AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, 464 – 479.
Osanlou, K.; Bursuc, A.; Guettier, C.; Cazenave, T.; and
Jacopin, E. 2019. Optimal solving of constrained path-
planning problems with graph convolutional networks and
optimized tree search. In 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 3519–
3525. IEEE.
Rusek, K.; Suárez-Varela, J.; Mestres, A.; Barlet-Ros, P.;
and Cabellos-Aparicio, A. 2019. Unveiling the potential of
graph neural networks for network modeling and optimiza-
tion in sdn. In Proceedings of the 2019 ACM Symposium on
SDN Research, 140–151.
Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and
Ferber, P. 2019. Deep learning for cost-optimal plan-
ning: Task-dependent planner selection. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
7715–7723.
Tsamardinos, I. 2002. A probabilistic approach to robust
execution of temporal plans with uncertainty. In Methods
and Applications of Artificial Intelligence, 97 – 108.
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. Journal of Experimental and Theoretical Artificial
Intelligence 11(1):23 – 45.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu, P. S.
2019. A comprehensive survey on graph neural networks.
arXiv preprint arXiv:1901.00596.
Xu, Z.; Tang, J.; Meng, J.; Zhang, W.; Wang, Y.; Liu, C. H.;
and Yang, D. 2018. Experience-driven networking: A
deep reinforcement learning based approach. In IEEE IN-
FOCOM 2018-IEEE Conference on Computer Communica-
tions, 1871–1879. IEEE.

36

11 Appendix
11.1 Plots

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time in seconds

300

400

500

600

700

800

900

1000

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

MPNN-TS
TS

PYDC-SMT ordered

(a) Experiments on (Cimatti, Micheli, and Roveri 2016)’s bench-
mark from which the DTNs and STNs have been removed. The
X-axis represents the allocated time in seconds and the Y-axis the
total number of instances that each solver can solve within the cor-
responding allocated time. Timeout is set to 20 seconds per in-
stance.

0 5 10 15 20 25 30
Time in seconds

0

25

50

75

100

125

150

175

200

Nu
m
be

r o
f i
ns
ta
nc
es
 so

lv
ed

TS
MPNN-TS-5
MPNN-TS-15
MPNN-TS-30

MPNN-TS-60
MPNN-TS-120
PYDC-SMT ordered

(b) Experiments on benchmark B1. Axes are the same as in figure
6a. Timeout is set to 30 seconds per instance.

0 10 20 30 40 50 60
Time in seconds

0

10

20

30

40

50

60

70

Nu
m
be
r o

f i
ns
ta
nc
es
 so

lv
ed

TS
MPNN-TS-5
MPNN-TS-15
MPNN-TS-30

MPNN-TS-60
MPNN-TS-120
PYDC-SMT ordered

(c) Experiments on benchmark B2. Axes are the same as in figure
6a. Timeout is set to 60 seconds per instance.

0 25 50 75 100 125 150 175
Time in seconds

0

10

20

30

40

50

Nu
m
be
r o

f i
ns
ta
nc
es
 so

lv
ed

TS
MPNN-TS-5
MPNN-TS-15
MPNN-TS-30

MPNN-TS-60
MPNN-TS-120
PYDC-SMT ordered

(d) Experiments on benchmark B3. Axes are the same as in figure
6a. Timeout is set to 180 seconds per instance.

Figure 6: Summary of experiments on benchmarks

37

11.2 Simplified Example
Figure 7 is a simplified example of a TDC strategy of the
example DTNU from (Cimatti, Micheli, and Roveri 2016).

Figure 7: Simplified TDC strategy of a DTNU Γ. For space
reasons, we only give a summarized copy of the strategy found.
Branches leading to unsolved cases are excluded, and we do not
include d-OR , w-OR , AND and WAIT nodes. The node γ is the
original DTNU. Other nodes are sub-DTNUs, except the ∨ node
which aims to list transitional possibilities, and should be inter-
preted in the figure as an AND node.

11.3 Truth Value Propagation Algorithm
We present in this section Algorithm 1. This algorithm is
called to propagate a truth value in the tree. The propagation
is done in an ascending way: truth values are inferred from
the leaves of the tree towards the root.

Algorithm 1 Truth Value Propagation
1: function PROPAGATETRUTH(TREENODE ψ)
2: ω ← parent(ψ) . 1∗
3: if ω = null then
4: return
5: if isDTNU(ω) or isWAIT(ω) then . 2∗
6: ω.truth← ψ.truth
7: propagateTruth(ω)
8: else if isOR(ω) then . 3∗
9: if ψ.truth = True then

10: ω.truth← True
11: propagateTruth(ω)
12: else
13: if ∀σi, σi.truth = False then . 4∗
14: ω.truth← False
15: propagateTruth(ω)
16: else if isAND(ω) then . 5∗
17: if ψ.truth = False then
18: ω.truth← False
19: propagateTruth(ω)
20: else
21: if ∀σi, σi.truth = True then . 4∗
22: ω.truth← True
23: propagateTruth(ω)
1∗ parent(x): Returns the parent node of x, null if none.
2∗ isDTNU(x): Returns True if x is a DTNU node, False other-
wise; isWait(x): Returns True if x is a WAIT node, False otherwise.
3∗ isOR(x): Returns True if x is an d-OR or w-OR node, False
otherwise.
4∗ σi: Child number i of ω. For a d-OR or w-OR node, in the
case where ψ is false but not all other children of ω are false
the propagation stops. Likewise, for an AND node and in the
case where ψ is true but not all other children of ω are true , the
propagation stops.
5∗ isAnd(x): Returns True if x is an AND node, False otherwise.

38

11.4 Tree Search Algorithm
We give the simplified pseudocode for the tree search in Al-
gorithm 2.

Algorithm 2 Tree Search
1: function EXPLORE(TREENODE ψ)
2: if parent(ψ).truth 6= unknown then
3: return
4: if isDTNU(ψ) then
5: updateConstraints(ψ) . 6∗
6: if IsLeaf(ψ) then . 7∗
7: propagateTruth(ψ)
8: return
9: Create d-OR child ψ′

10: explore(ψ′)
11: if isOR(ψ) then
12: Create list of all children Ψ′ . 8∗
13: for ψ′ ∈ Ψ′ do
14: explore(ψ′)
15: if isAND(ψ) then
16: Create list of all children Ψ′ . 9∗
17: for ψ′ ∈ Ψ′ do
18: explore(ψ′)
19: if isWAIT(ψ) then
20: create w-OR child ψ′

21: explore (ψ′)
22: function MAIN(DTNU γ)
23: explore(γ)
24: if γ.truth = True then
25: return True
26: else
27: return False
6∗ updateConstraints(x): Updates the constraints of DTNU node x.
7∗ isLeaf(x): Sets the truth value of x to true and returns true if
all constraints are satisfied. Sets the truth value to false and returns
true if a constraint is violated. If no truth value can be inferred
at this stage with the updated constraints, a second check is run
to determine if all uncontrollable timepoints have occurred. If so,
the corresponding DTN is solved, the truth value of x is updated
accordingly, and the function returns true . Otherwise, no logical
outcome can be inferred for the current state of the constraints be-
cause there remains at least one uncontrollable timepoint and this
function returns false .
8∗ If this is a d-OR node, the list Ψ′ contains all the children DTNU
nodes resulting from either the decision of scheduling a control-
lable timepoint, or the WAIT node resulting from a wait if avail-
able. If this is a w-OR node, Ψ′ contains all ANDRj nodes, each of
which possess a reactive wait strategy Rj
9∗ Here, the list Ψ′ contains all DTNUs resulting from all possible
combinations Λ1,Λ2, ...,Λq of uncontrollable timepoints which
have the potential to occur during the current wait.

11.5 Wait Period
Figure 8 gives an example of the third rule used to compute
a wait duration.

11.6 Optimization Rules
The following rules are added to make branch cuts when
possible.

Figure 8: Application of the 3rd rule to determine a wait du-
ration. Current time is t. Variables v1, v2 and v3 are timepoints.
Here, v2 is constrained to execute in the time interval [1, 2] after
v1, v3 in [3, 5] after v2 as well as in [t + 9, t + 10]. The rule sug-
gests not to wait longer than 2 units of time at t: an execution of v1
at t + 2, followed by an execution of v2 at t + 4 opens a window
of opportunity for v3 to execute at t+ 9.

Constraint Check. When a DTNU node is explored and
the updated list of constraints C ′ is built according to §4.5,
if a disjunct is found to be false , C ′ will no longer be sat-
isfiable. All the subtree which can be developed from the
DTNU will only have leaf nodes for which this is the case as
well. Therefore, the search algorithm will not develop this
subtree.
Symmetrical subtrees. Some situations can lead to the de-
velopment of the exact same subtrees. A trivial example,
for a given DTNU node at a time t, is the order in which
a given combination of controllable timepoints a1, a2, ..., ak
is taken before taking a wait decision. Regardless of what or-
der these timepoints are explored in the tree before moving
to a WAIT node, they will be considered executed at time t.
Therefore, when taking a wait decision, it is checked that all
preceding controllable timepoints executed before the previ-
ous wait are a combination of timepoints that has not been
tested yet.
Truth Checks. Before exploring a new node for which the
truth attribute is set to unknown, the truth attribute of the
parent node is also checked. The node is only developed if
the parent node’s truth attribute is set to unknown. In this
manner, when children of a tree node are being explored
(depth-first) and the exploration of a child node leads to the
assignment of a truth value to the tree node, the remaining
unexplored children can be left unexplored.

11.7 Message Passing Layer
We use message passing layers that take as input a graph
where nodes and edges possess features and return the graph
with new node features. We detail pseudocode of a message
passing layer applied to a graph G = (K, E) in Algorithm 3.

11.8 Learning Implementation Details
Our MPNN architecture is made of 5 graph convolutional
layers from (Gilmer et al. 2017). Each layer has a residual
skip connection to the preceding layer (He et al. 2016), 32
abstract node features and a different two-layer MLP (multi-
layer perceptron) which has 128 neurons in its hidden layer.
In addition, we use batch normalization after each graph

39

Algorithm 3 Message Passing Layer

1: function MSGPASS(GRAPH 〈(K, E), (Hκ, Xε, Xρ)〉) . 10∗
2: H ′

κ(·, ·)← 0 // Initialize new node features matrix
3: for all κi ∈ K do
4: h′

i ← 0 // Initialize new features for κi
5: for all κj ∈ K do
6: if Xε(κi, κj) = 1 then
7: α← Xρ(κi, κj)
8: h← Hκ(κj , ·)
9: h′

i ← h′
i +MLP (α)h . 11∗

10: H ′
κ(κi, ·)← h′

i // Assign new features for κi
11: return 〈(K, E), (H ′

κ, Xε, Xρ)〉
10∗ Hκ(κi, ·) returns a vector of current features for node κi;
Xε(κi, κj) returns 1 if (κi, κj) ∈ E , 0 otherwise; Xρ(κi, κj)
returns a vector of current features for edge (κi, κj).
11∗ MLP represents a multi-layer perceptron mapping input edge
features to a matrix of dimension num-output-node-features x
num-input-node-features. Moreover, h is of dimension num-input-
node-features x 1. The matrix multiplication therefore results in a
vector of size num-output-node-features.

layer and apply the ReLU(·) = max(0, ·) activation func-
tion. The input of the MPNN is the graph conversion of
a DTNU. Figure 9 illustrates an example of graph conver-
sion. We use 10 different edge distance classes: 0 : [0, 0.1),
1 : [0.1, 0.2), ..., 9 : [0.9, 1]. Training is done with the
adagrad optimizer (Duchi, Hazan, and Singer 2011) and an
initial learning rate 10−4 on a dataset comprised of 30K
instances generated as described in §6. We split the data
into a training set comprised of 25K instances and a cross-
validation set comprised of 5K instances. We add a dropout
regularization layer with a keep rate 0.9 before the output
layer to reduce overfitting.

11.9 Architecture Comparison
We study the impact of the design choices of the MPNN ar-
chitecture on performance. To this end we compare different
architectures of MPNN by varying depth and width (num-
ber of abstract node features per layer) and train them on the
training set created in §6. We also assess the added value of
residual skip connections to preceding layers. We create a
benchmark of 400 DTNU instances, each of which has 20 to
25 controllable timepoints and up to 3 uncontrollable time-
points. We solve them using the tree search guided by each
of these MPNN architectures. We limit the use of the MPNN
architectures to a maximal depth of 50 (d-OR node-wise).
Results are shown in Figure 10. We note the smallest net-
work is too small to learn efficiently and performs poorly.
Three-layer networks perform better. Wider networks per-
form slightly better for the same depth, black network 32
vs. green network 16. Overall, medium-depth networks of
5 layers work best. Residual connections lead to slight but
steady gains. Interestingly, deeper networks (8+ layers) dis-
play lower scores compared to more shallower variants (5
layers), suggesting depth performance saturation. The quan-
tity of training data can however be a limiting factor: we
assume the optimal architecture to be actually deeper.

Figure 9: Conversion of a DTNU γ into a graph. γ′ is the nor-
malized DTNU. Edge distances are expressed as distance classes.
To distinguish between lower and upper bounds in intervals, we
introduce an additional negative directional sign feature.

0 5 10 15 20 25 30
Time in seconds

0

10

20

30

40

50

60

Nu
m
be

r o
f i
ns

ta
nc

es
 so

lv
ed

2L-8N
3L-16N
3L-32N
5L-32N-R

5L-32N
8L-32N-R
16L-32N-R

Figure 10: Comparison of different MPNN architectures. The
notation XL-YN refers to an MPNN with X layers and Y abstract
node features per layer. The ”-R” tag refers to the presence of resid-
ual layers. Experiments are done on a DTNU benchmark contain-
ing 400 instances with 20 to 25 controllable timepoints and up to 3
uncontrollable timepoints per DTNU. Timeout is set to 30 seconds
per DTNU instance.

40

Synthesis of Search Heuristics for Temporal Planning via Reinforcement Learning

Andrea Micheli and Alessandro Valentini
Fondazione Bruno Kessler, Trento, Italy
{amicheli,alvalentini}@fbk.eu

Abstract

Automated temporal planning is the problem of synthesiz-
ing, starting from a model of a system, a course of actions
to achieve a desired goal when temporal constraints, such as
deadlines, are present in the problem. Despite considerable
successes in the literature, scalability is still a severe limita-
tion for existing planners, especially when confronted with
real-world, industrial scenarios.
In this paper, we aim at exploiting recent advances in rein-
forcement learning, for the synthesis of heuristics for tempo-
ral planning. Starting from a set of problems of interest for a
specific domain, we use a customized reinforcement learning
algorithm to construct a value function that is able to estimate
the expected reward for as many problems as possible. We use
a reward schema that captures the semantics of the temporal
planning problem and we show how the value function can
be transformed in a planning heuristic for a semi-symbolic
heuristic search exploration of the planning model. We show
on two case studies how this method can be used to extend
the reach of current temporal planning technology with en-
couraging results.

1 Introduction
Automated temporal planning concerns the synthesis of
strategies to reach a desired goal with a system that is for-
mally specified by providing an initial condition together
with the possible actions that can drive it in presence of tem-
poral constraints. In this context, actions become intervals
(instead of being instantaneous as in classical planning) that
have a duration (possibly subject to metric constraints). Sim-
ilarly, plans are no longer simple sequences of actions, but
they are schedules. Automated temporal planning received
considerable attention in the literature, and the definition
of the standard PDDL 2.1 language (Fox and Long 2003)
fueled the research of effective search-based techniques to
solve the problem (Coles et al. 2010; Eyerich, Mattmüller,
and Röger 2012; Rankooh and Ghassem-Sani 2015).

Despite considerable success stories, scalability is still
a major hindrance for the adoption of automated temporal
planning in real-world industrial scenarios. For example, the
experiments reported in (Micheli and Scala 2019) and, more
recently in (Valentini, Micheli, and Cimatti 2020) show how
existing tools are unable to cope with very small and sim-
ple industrial problems when rich temporal constraints need

to be modeled. From a practical standpoint, in many scenar-
ios one wants to have a planner that is able to quickly solve
problems on the same domain: for this reason, many practi-
tioners resort to domain-dependent planners.

In order to mitigate this issue and retain a domain-
independent framework, we propose to leverage recent ad-
vances in model-free reinforcement learning (RL), in partic-
ular Value Iteration using Neural Networks, to automatically
construct temporal planning heuristics for a specific domain.
Ideally, we want to take a temporal planning domain, ana-
lyze it off-line using RL and produce a heuristic function
that allows a planning technique to extend the coverage of
solved problems in that domain. To the best of our knowl-
edge, no previous work addressed the problem of learning
heuristics for temporal planning.

In this paper, we present a domain-independent learning
and planning framework that, given a planning domain and
a set of training problems (not solution plans), synthesizes
a temporal planning heuristic for problems in the same do-
main. We empirically show how this method outperforms
existing symbolic heuristics on two use-case domains with
rich temporal constraints. Our results emphasize how this
approach truly requires a combination of learning and rea-
soning, because the learned policy alone and the purely-
symbolic planner are incapable of reaching the performance
of the symbolic planner equipped with the learned heuristic.

2 Problem Definition
We start by defining the syntax of temporal planning: we
formalize an abstract syntax adherent to the ANML (Smith,
Frank, and Cushing 2008) fragment supported by our plan-
ner (Valentini, Micheli, and Cimatti 2020) using a lifted rep-
resentation to separate domain and problem specifications.

For the sake of simplicity, we formalize a language that is
un-typed and with Boolean predicates only; our implemen-
tation supports the entire ANML typing system and finite-
and infinite-codomain functions.

Definition 2.1. An atom is a tuple 〈p,~v〉 where p is a predi-
cate with arity n and ~v is a vector of n variables.

In our temporal language specification, conditions and ef-
fects can be declared to happen at any time within the dura-
tion of an action, and conditions can be durative, so they are

41

associated with an interval of times (we called this feature
“Intermediate Conditions and Effects”).

Definition 2.2. An effect on atom a at relative time τ is a
tuple 〈τ, a〉 where τ is either START + k or END − k with
k ∈ Q>=0. A condition1 on atom a in the relative interval
[τ1, τ2] is a tuple 〈[τ1, τ2], a〉 where τi is either START + ki
or END − ki with ki ∈ Q>=0.

Then, a planning domain is a set of predicates and actions.

Definition 2.3. A planning domain is a tuple 〈P,A〉 where
P is a finite set of predicates; A is a finite set of actions,
each action a has a minimal (dmina) and maximal (dmaxa)
duration, a set of parameter variables ~v, a set of conditions
Ca, a set of add effects E+

a and a set of delete effects E−a
(with E+

a ∩E−a = ∅). All the atoms appearing in the defini-
tion of a can only use variables appearing in ~v.

We define a ground atom as an atom where all the vari-
ables are assigned to an object.

Definition 2.4. A ground atom is a tuple 〈a, ~o〉 where
a =̇ 〈p,~v〉 is an atom and ~o is a vector of n objects oi with
n = arity(p).

Finally, a planning problem is composed of a finite set of
objects, an initial state and a goal to reach.

Definition 2.5. A planning problem for a planning domain
〈P,A〉 is a tuple 〈O, I,G〉 where O is a finite set of objects
oi; I and G are sets of ground atoms over predicates in P .

We indicate a planning instance as a pair of a planning
domain D and a problem Pi (〈D, Pi〉).

We do not report the full semantics of temporal plan-
ning; for the sake of this paper it suffices to say that a plan-
ning instance can be grounded and the ground semantics
is the usual one: we want to find a valid simulation of the
ground system starting from the initial state and terminating
in a goal state. This semantics can be found in (Valentini,
Micheli, and Cimatti 2020). Moreover, in this paper we dis-
regard action self-overlapping (Gigante et al. 2020); that is,
we forbid an instance of an ground action to overlap in time
with another instance of the same ground action.

In order to solve a ground instance, TAMER (Valen-
tini, Micheli, and Cimatti 2020) searches an interleaving of
events (also called happenings or time-points) that represent
the discrete changes of state in a plan ensuring that the ab-
stract sequence of events can be lifted to a plan by schedul-
ing the temporal constraints. TAMER represents search states
as follows and performs a search in the space of the possible
reachable states starting from the initial state. The transitions
considered by the planner for a planning problem Pi (called
events and indicated as events(Pi)) are either instantiations
of new actions or expansions of time-points, each indicating
an effect, the starting of a condition or its ending.

Definition 2.6. A search state is a tuple 〈µ, δ, λ, χ, ω〉 s.t.:
• µ records the ground predicates that are true in the state;
• δ is a multiset of ground predicates, representing the ac-
tive durative conditions to be maintained valid;

1We only formalize closed condition intervals; open and semi-
open intervals are supported by our implementation.

Algorithm 1 TAMER search algorithm
1: procedure SEARCH(w)
2: i← GETINIT(); g(i)← 0; Q← NEWPRIORITYQUEUE()
3: PUSH(Q, i, h(i))
4: while c← POPMIN(Q) do
5: if |c.λ| = 0 then return GETPLAN(c.χ)
6: else
7: for all s ∈ SUCC(c) do
8: g(s)← g(c) + 1

9: PUSH(Q, s, (1− w)× g(s) + w × h(s))

• λ is a list of lists of time-points. It constitutes the
“agenda” of future commitments to be resolved.
• χ is a Simple Temporal Network (STN) defined over time-
points that stores and checks the metric and precedence tem-
poral constraints;
• ω is the last time-point evaluated in this search branch.

We indicate the set of possible states for a given instance
〈D, Pi〉 as S〈D,Pi〉. The exploration performed by TAMER
is detailed in algorithm 1: SUCC indicates the possible suc-
cessor states of a given state (see (Valentini, Micheli, and
Cimatti 2020) for the details).

For the purpose of this paper, we need to define a set of
problems of interest for a given domain: the objective of
our learning technique will be to automatically synthesize a
heuristic to guide a planner for efficiently solve any instance
in the identified set. We make two assumptions on this set.
First, we require the set to be finite: in principle one could
have an infinite set and a sampler, but some details of our
learning algorithm currently assume a finite set of problems.
Second, we assume the number of objects is bounded: this is
needed because we use a feed-forward neural network that
requires a known input dimension to be constructed. For this
reason, we need to assume a maximum number of objects
that results in a maximum number of ground predicates and
in turn a maximum number of inputs for the neural network.
Definition 2.7. A bounded planning problem set with at
most k objects for a planning domain D =̇ 〈P,A〉 written
PkD is a finite set of planning problems Pi =̇ 〈Oi, Ii, Gi〉 for
D such that each |Oi| ≤ k.

In essence, our objective consists in synthesizing a heuris-
tic function that can guide the search of TAMER. The heuris-
tic takes in input a search state and the description of the
problem being solved (i.e. it takes the state of the search,
the goal formulation and the set of objects, the initial state is
ignored).
Definition 2.8. The optimal distance heuristic for a
bounded planning problem set PkD is a function

h∗PkD
:
(⋃

Pi∈PkD S〈D,Pi〉
)
× PkD → R

s.t. for each Pi ∈ PkD and each state s ∈ S〈D,Pi〉,
d =̇ h∗(s, Pi) is the minimum number for which SUCCd(s)
is a goal state.

The aim of this paper is to automatically learn an approx-
imation of h∗ given a temporal planning domain and a train-
ing bounded planning problem set.

42

3 Planning Heuristics as Reinforcement
Learning

In order to learn an approximation of h∗, we first cast the
learning problem as a model-free Reinforcement Learning
(RL) problem, in which an instance is non-deterministically
picked from the set PkD without the agent knowing about
the choice and then an episodic RL algorithm is started to
synthesize a value function.

We start by defining the Markov Decision Process (MDP)
over which we will run our RL algorithm.
Definition 3.1. A Markov Decision Process (MDP) is a tu-
pleM=̇〈S,A, T,R, s0〉 where S is a set of states,A is a set
of actions, T : S ×A→ p(S) is the transition function that
given a state and an action returns a probability distribution
for the successor state,R : S×A×S → R is the immediate
reward function and s0 is the initial state.

In RL, we want to construct (an estimation of) the optimal
value function for an MDPM. We assume to interact with
the environment through a policy π : S → A that selects
the action to be applied in each state. After specifying an
action at in state st, the environment returns a state st+1 ∼
T (st, at) and the reward rt=̇R(st, at, st+1). The goal of RL
is to find the policy yielding the maximal cumulative reward
discounted by γ, defined below.

Let the state-action value of a policy π be as follows.

QπM(s, a) =̇ Eπ

[∞∑

i=0

γirt+i | st = s, at = a

]

The value function is given by: V πM(s) =̇ E [QM(s, π(s))].
The objective of RL is to find the optimal policy
π∗(s) =̇ arg maxπ QM(s, π(s)). Moreover, in this paper,
we are interested in computing the optimal value function
(V ∗M =̇ V π

∗
M) for extracting heuristic estimates.

Definition 3.2. Given a bounded planning problem set PkD,
its MDP encodingMPkD is the MDP 〈S,A, T,R,`〉 where:
• S =̇ {`} ∪⋃Pi∈PkD 〈S〈D,Pi〉, Pi〉;
• A =̇ {ξ} ∪⋃Pi∈PkD events(〈D, Pi〉);

• T (s, a) =̇

{
{〈IPi , 1

|PkD|
〉 | Pi ∈ PkD} if s =`, a = ξ

{〈a[s], 1〉} if s 6=`
where IPi indicates the initial search state of problem Pi and
a[s] indicates the (unique) successor state of s using action
a. Here, we encoded the successor states using discrete uni-
form probability distributions (we wrote pairs of successor
states with the associated probability).

• R(s, a, s′) =̇

1 if s′ = 〈si, 〈O, I,G〉〉 and si |= G

−1 if 6 ∃b. s′′ = b[s′]
0 otherwise.

Intuitively, we are defining a MDP in which a first, prob-
abilistic transition is used to uniformly select a problem Pi
to be solved from the set PkD; such a transition drives the
MDP in a state where one problem to be solved is identified
and such a problem is in its initial state IPi . From this state
on, the MDP is fully deterministic and the search space is

`

〈IP2
, P2〉〈IP1

, P1〉 〈IP3
, P3〉

S〈D,P1〉 S〈D,P3〉

· · ·

〈sg, P2〉

0 ξ

0 α1

1 αg

Figure 1: The state space and rewards ofMPkD .

homomorphic to the planning space for problem Pi (that is,
all transitions are deterministic and the successor function
changes the first element of the state tuple according to the
successor function of the planning problem). Note that since
we disallowed action self-overlapping, the decision to take
a certain event is unambiguous as there can be at most one
action instance running at each time. The reward of the en-
coding MDP is shaped to give a 1 when the system is in a
state over problem Pi that satisfy the problem goals, a−1 in
dead-ends and 0 everywhere else. This makes the maximal
possible cumulative reward to be 1 assuming that after the
goal is reached the planning successor function deadlocks.
Figure 1 depicts the encoding MDP state space and rewards.

Note that the resulting MDP is a faithful representation of
the set of planning instances we want to solve, no abstrac-
tion is taken. If we could solve this MDP, we would be able
to solve all the planning instances with the resulting policy
without search. At this point, we can introduce the main the-
orem summarizing the basic intuition of this work: we can
transform the optimal value function for the MDP into the
optimal heuristic for all the planning problems.

Theorem 3.1. For a bounded planning problem set PkD the
following equation holds.

h∗PkD
(s) =

{
logγ(V ∗MPkD

(s)) if V ∗MPkD
(s) > 0

∞ otherwise

Proof. (Sketch) The MDPMPkD is deterministic except for
the first action ξ starting from state ` that is however not
needed for the heuristic since ` is not a search state of any
problem. We are therefore interested only in the value of the
other states that is unaffected by action ξ since our MDP is
a tree.

On a deterministic system with the reward shape ofMPkD ,
the optimal policy is the policy reaching a goal state in the
minimum number of steps. Let 〈s0, · · · , sg〉 be the optimal
path from state s0 to the nearest state satisfying a goal sg .
The discounted reward in si clearly is V ∗MPkD

(si) = γg−i,

and the distance to the goal is h∗PkD
(si) = g − i. If a state

s cannnot reach any goal, then V ∗MPkD
(s) <= 0. Hence, we

can retrieve the distance from the discounted reward as per
the theorem statement.

43

Algorithm 2 Vectorization of an STN χ

1: procedure STN2VECTOR(χ)
2: ~r ← 〈0 for all actions ai〉; τ ← GETMINMAKESPANSOLUTION(χ)
3: lastSafe← 0 . A “safe” state is a state where no action is running
4: balance← 0 . The difference between the started and terminated actions
5: for all time points tp sorted by τ [tp] do
6: if tp is a starting of an action then balance← balance+ 1

7: else if tp is the termination of an action then balance← balance− 1

8: if balance = 0 then
9: ~r ← 〈0 for all actions ai〉

10: lastSafe← τ [tp]

11: else
12: ~r[action(tp)]← τ [tp]− lastSafe
13: if tp = ω then break . ω is the last scheduled time-point

14: return ~r

4 Reinforcement Learning Algorithm
In this section, we detail a dedicated RL algorithm derived
from classical Value Iteration that uses a Neural Network to
estimate the optimal value function V ∗MPkD

. The overarching

idea is to use RL to estimate V ∗MPkD
and from that estima-

tion, derive an estimation of h∗PkD
.

Problem scaling and vector representation. The first in-
gredient needed for our algorithm is to create a uniform vec-
tor representation of the MDP state. To do so, we first need
to scale the state representation so that all the problems in
PkD can be represented uniformly despite the fact that the
number of actions and fluents can be different from one an-
other. To overcome this issue, we exploit the bound k on the
number of objects. For each object oi, we introduce a fresh
Boolean constant2 o∃i that is set to true if the object oi exists
in an instance. In this way, all the instances can be repre-
sented uniformly by considering all the possible k objects,
by adding a precondition o∃i to each action where oi appears
and by setting the initial value of all predicates depending on
a non-existing oi to false. This simple transformation, essen-
tially scales any problem in PkD to a problem with exactly
k objects and a fixed number of actions, that has the same
plans of the original problem.

At this point, we are left with a set of problems that can
be grounded, resulting in a consistent number of fluents. The
neural network we will use to represent the RL policy re-
quires a vector representation of a state of the MDPMPkD .
Given a search state 〈µ, δ, λ, χ, ω〉 and a problem Pi, we de-
fine the vectorization of the MPD state as follows. First, we
vectorize the predicate values (i.e. the µ part of the state),
we pick a fixed ordering for the ground predicates of the
biggest possible problem in PkD. Note that the cardinality of
the ground states is exactly kx with x=̇

∑
p∈P arity(p). We

set the input vector value to 1 (resp. 0) if the corresponding
ground predicate is true (resp. false). The second part of the
vector is a representation of the status of the events (i.e. the
λ). For each possible ground action we have a vector ele-
ment set to the size of the corresponding list of time-points

2A constant is a fluent that is assigned in the initial state and
never changed. ANML explicitly supports constants.

Fluents

Actions

Constants

Goals

Times

5x100 neurons (ReLU)

100 neurons
(ReLU)

1 neuron
(SoftSign)

Figure 2: The neural network architecture.

in λ or to 0 if the action is not started in the current state.
The third part of the input vector contains the constants of
the problem, i.e. the fluents that are never changed by ef-
fects. Constants are encoded as normal fluents. The fourth
part of the vector encodes the goals. For each fluent we have
an entry that is either set to the desired goal value of the
predicate/fluent (using the same encoding of the fluents sec-
tion) or to −1 to indicate that we do not care for this value
in this problem. The fifth and final part of the input vector
encodes the temporal part of the state and can be seen as a
summary of the STN χ. Since the STN grows while plan-
ning search unfolds, we need a way to compress as much
information as possible in form of a fixed-size vector. We
use a simple encoding that captures the time passed in the
minimal-makespan solution of the current STN χ since a
running action has been started. This is formally reported in
algorithm 2. The final vector for a state s (indicated as ~s)
is the concatenation in a single, linear vector of all the five
vector sections above.

Neural Network. Given the vectorization of a state, the
neural network architecture we use is depicted in figure 2.
We split the input vector into the five “sections” described
above. For each of them, we have a dense layer with out-
put size 100 and ReLU activation function. In this way, we
obtain a first hidden layer of 500 neurons. Then, we have a
second layer with output size 100 and ReLU activation func-
tion. Finally, we compute the output of the network using
a single neuron densely connected with the second hidden
layer that uses a softsign (y = x

1+|x|) activation function.
The neural network will be trained to approximate the op-

timal value function V ∗MPkD
. Note that the expected reward

along any path must be in the range [−1, 1] because of the
reward shape of MPkD , hence the use of the softsign func-
tion to compress the values in the admissible range. To train
the neural network, we use an Adam optimizer and the Mean
Squared Error (MSE) loss function.

Learning Algorithm. The full RL algorithm scheme
is reported in algorithm 3. The algorithm main function

44

Algorithm 3 Reinforcement Learning Algorithm
1: procedure RL2PLANHEURISTIC(tis,Nepisodes)
2: Vnn ←INITNN() . Creates NN with the described architecture
3: mem←LIST() . The algorithm experience memory
4: i2s← {i→ 0 | i ∈ tis} . maps i to # of times i was solved
5: for i ∈ 1, . . . , Nepisodes do
6: 〈s, goals〉 = inst←PICKKEYINVPROPORTIONALLYTOVALUE(i2s)
7: 〈done, solved〉 ← 〈False, False〉
8: π ← 〈s〉
9: while not done do

10: ε← εmax × e
(
ln(εmin/εmax)
Nepisodes

×i)
. Decay εmax → εmin

11: if RANDOM()< ε then .With probability ε
12: α←SELECTACTIONUSINGHEURISTIC(s)
13: else
14: α←SELECTACTIONUSINGPOLICY(Vnn, s)

15: 〈s′, done, ρ〉 ←DOSTEP(π, s, α, inst) . Simulate α move
16: APPEND(mem, 〈s, ρ〉)
17: if ρ[α] = 1 then
18: solved← True

19: APPEND(π, 〈s′〉)
20: s← s′

21: Vnn ←REPLAY(Vnn,mem) . Do a learning step
22: if solved then
23: i2s[inst]← i2s[inst] + 1 . Update solved # count for inst

24: return Vnn

25: procedure PICKKEYINVPROPORTIONALLYTOVALUE(b)
26: V ← {v | i→ v ∈ b} . Get the values of the map b
27: m←CEIL(1.1×MAX(V)) . Allow a 10% slack
28: t← m× |b| − (

∑
v∈V v) . Factor to narmalize probabilities

29: perc← {i→ m−v
t | i→ v ∈ b} . Probability to pick each element i

30: return RANDOMSELECTIONBASEDONPERCENTAGE(perc)

31: procedure SELECTACTIONUSINGHEURISTIC(s)
32: h←EMPTYMAP() . A map from successor states to their heuristic values
33: for all α ∈GETAPPLICABLEEVENTS(s) do
34: s′ ←SIMULATEACTIONAPPLY(s, α)
35: h[α] =hadd(s′)

36: return PICKKEYINVPROPORTIONALLYTOVALUE(h)

37: procedure SELECTACTIONUSINGPOLICY(Vnn, s)
38: app ← GETAPPLICABLEEVENTS(s)
39: ns← {α→ ~s′ | s′ = SIMULATEACTIONAPPLY(s, α), α ∈ app}
40: return argmaxα∈app Vnn(ns[α])

41: procedure DOSTEP(π, s, α, inst)
42: ρ← {β → GETREWARD(π, s, β, inst) | β ∈ GAinst}
43: s′ ←SIMULATEACTIONAPPLY(s, α)
44: done← (ρ[α] = 1) or |π| ≥ GETMAXDEPTH()
45: return 〈s′, done, ρ〉

46: procedure REPLAY(net,mem)
47: batch←SAMPLE(mem) . Pick elements from memory to learn from
48: x← 〈~s | 〈s, ρ〉 ∈ batch〉; y ←EMPTYLIST()
49: for all 〈s, ρ〉 ∈ batch do
50: app ← GETAPPLICABLEEVENTS(s)
51: ns← {α→ ~s′ | s′ = SIMULATEACTIONAPPLY(s, α), α ∈ app}
52: ys ← max(α→r∈ρ)(r + γ × net(ns[α])) . Update equation
53: APPEND(y, MAX(ys))

54: net←TRAINBATCH(net, x, y) . Backpropagation learning
55: return net

56: procedure GETREWARD(π, s, α, inst)
57: s′ ←SIMULATEACTIONAPPLY(s, α)
58: if s′ |= goals then return 1
59: else if GETAPPLICABLEEVENTS(s′) = ∅ then return -1
60: else . c counts the sub-goals achieved for the first time by α
61: c← |{g | g ∈ GOALS(inst), s′ |= g, ∀s′′ ∈ π. s′′ 6|= g}|
62: return c

|goals| × 10−5

RL2PLANHEURISTIC takes a set of training ground in-
stances tis and a number of episodes to run for Nepisodes;
its goal is to evolve a value function represented as a neural
network Vnn that approximates the optimal value function.
The experience is collected in a finite-size memory mem
that caches pairs 〈s, ρ〉; where s is a state and ρ is a map-
ping of all the applicable events in s to their immediate re-
ward. Differently from a standard RL algorithm, we manip-
ulate the probability of selecting a specific instance among
the ones in the training set by favoring the ones that have
been solved (i.e. that reached a reward of 1) less often. This
amounts to dynamically adapting the probability distribu-
tion of the ξ transition in the MDP MPkD . Concretely, we
record for each planning instance, how many time it has been
solved in the i2s map and we use the PICKKEYINVPRO-
PORTIONALLYTOVALUE function to select an instance for
each episode. This function essentially computes the his-
togram of the solving times for each instance and picks an
instance proportionally to the inverse of this histogram aug-
mented by 10% to allow a non-zero probability of select-
ing each instance. This manipulation of the probabilities is
used to focus the learning on instances that have been solved
less often and are therefore likely to be more difficult. This
is needed because of the nature of the planning problems:
some might have short, simple plans while other can be hard;
in the training set both these cases co-exist and we want to
obtain a flexible policy rather than a policy highly optimized
for the simple cases.

We use an exponential epsilon-decay strategy to balance
between random exploration and policy exploitation, but we
exploit the planning heuristic (hadd in our case) to skew
the probabilities among the possible events. This is done in
the SELECTACTIONUSINGHEURISTIC function that re-uses
the PICKKEYINVPROPORTIONALLYTOVALUE function to
randomly pick an action with a probability inversely propor-
tional to the heuristic value3.

The trajectory simulation is standard and uses the TAMER
planning engine as a simulator. In the memory mem, we
store for each state in the trajectory the reward of each pos-
sible successor state. We forcibly bound the length of the
traces to a maximum depth given by the GETMAXDEPTH
function: we want to avoid the exploration of very long (or
even infinite) paths, in fact, by allowing an arbitrary num-
ber of steps we might get trapped in loops yielding 0 reward
and never finish an episode. In the following, we indicate the
maximum depth used to bound the paths as ∆RL.

We use a reward function that is slightly adjusted with
respect to the one presented in definition 3.2: in particular,
we grant a small (10−5 in total) reward for the sub-goals (a
sub-goal is an element of G) achieved for the first time in
a trace and we give 0 reward for traces that reach the max-
imum depth. This is done by the GETREWARDFUNCTION
that analyzes the trace and checks, for each sub-goal, if it is
achieved for the first time or not. Note that this change has
a small numerical impact on the expected reward and hence
on theorem 3.1, but we picked a number that is small enough

3Since the heuristic estimates the distance to the goal, we prefer
events leading to successor states having a small heuristic value.

45

to be practically negligible while giving useful intermediate
reward signals.

The learning algorithm is then a standard value itera-
tion with finite memory using the neural network Vnn; the
pseudo-code is reported in function REPLAY. The function
takes advantage of the determinism of the transitions in each
ground planning instance. In fact, by removing the ξ tran-
sition from MDP MPkD , the state space of each instance
is fully deterministic and tree-shaped. For this reason, we
omitted the learning rate (by implicitly setting it to 1) and
we need no expectation operator on the outcome of α. The
value iteration update rule (line 52) simply collapses to:

Vi+1(s)← max
α

(R(s, α, s′) + γ × Vi(s′))
where α ranges over the applicable events in s and s′ is the
successor state of s obtained by applying α.
Planning Algorithm. The output of the learning algorithm
is a policy that estimates the reward forMPkD . We use this
policy as a heuristic function in our planning algorithm ac-
cording to theorem 3.1 with some practical adjustments to
take into account the maximum exploration depth (∆RL) we
fixed for the algorithm.

hnn(s)=̇

min(logγ(Vnn(~s)),∆h) if Vnn(~s) > 0

∆h if Vnn(~s) = 0

2∆h −min(logγ(−Vnn(~s)),∆h) otherwise

Where ∆h ≥ ∆RL. Intuitively, we exploit theorem 3.1 when
Vnn(~s) > 0, but we clip the logarithm output to the maxi-
mum depth ∆h because the RL exploration was limited to
a depth of ∆RL. Note that the output of Vnn is constrained
between−1 and 1 excluded, so the logarithm in the first case
is guaranteed to be positive (because γ < 1). Moreover, if
the neural network returns 0, we return ∆h as heuristic value
and if it is negative (due to the dead-ends), we return a value
that is between ∆h and 2∆h. Note that this heuristic never
returns∞, as we cannot formally guarantee that a state is a
dead-end (while hadd can sometimes determine that a state
shall be pruned). Therefore, we use the range of number be-
tween ∆h and 2∆h to give informative results. The ∆h con-
stant used in this heuristic does not need to be equal to the
one (∆RL) used in the RL algorithm, we just require that
∆h ≥ ∆RL. This consideration is important because empir-
ically, we discovered that using a larger value for ∆h yields
better results. This is probably due to the “flattening” of the
heuristic value due to the min operators in the heuristic: the
smaller ∆h, the more values of hnn(s) get compressed to
∆h, losing the possibility of discriminating among them.

5 Related Work
Several works aimed at combining learning with planning.

Macro-actions (Coles and Smith 2007; Botea et al. 2005)
consist in the combination of several actions in a single
one: creating “shortcuts” in the search-space. Case-based
planning (Spalazzi 2001; Bonisoli et al. 2015) constructs a
database of plans for a specific domain that can be used as a
source of learned knowledge to efficiently solve new prob-
lems. Some authors (Asai and Fukunaga 2018) also focused
on the problem of learning symbolic models from data.

The learning of heuristics to speed up the planner is the
most related topic. To the best of our knowledge, no work
currently addresses the problem of learning heuristics for
temporal planning: only few papers deal with this problem
in the case of classical planning. In their seminal work, de
la Rosa, Olaya, and Borrajo use a case-based database to
inform heuristics (de la Rosa, Olaya, and Borrajo 2007).
Yoon, Fern, and Givan used machine-learning techniques
to learn control policies that are then exploited in a classi-
cal, heuristic-search planner (Yoon, Fern, and Givan 2008).
Another approach in this area is (Arfaee, Zilles, and Holte
2011), where the authors use the search spaces generated by
employing one, weak classical planning heuristic to learn
an incrementally better one. (Choudhury et al. 2018) aims at
learning heuristic functions for robotic planning by imitation
of a oracle used for training. (Virseda, Borrajo, and Alcazar
2013) uses machine learning to compose a fixed set of clas-
sical planning heuristics into one, single heuristic value for
cost-based planning. Recently, (Ferber, Helmert, and Hoff-
mann 2020) showed a comprehensive hyper-parameter ex-
perimentation for the case of supervised-learning of a classi-
cal planning heuristic represented as a neural-network. Dif-
ferently from all these previous works, this paper tackles ex-
pressive temporal planning with intermediate conditions and
effects and provides a fully-automated technique to learn
heuristics from simulations via RL. Moreover, we do not fo-
cus on a single instance or a group of instances with the same
structure, but we allow for arbitrary sets of instances sharing
the same domain and having a known upper-bound on the
number of objects.

Also in the context of classical planning, some approaches
aimed at learning domain-specific planners. (Spector 1994)
used genetic programming to automatically code a planner
for a specific domain. (Khardon 1999) learned decision-lists
to guide the planner, but both these approaches were un-
able to reliably produce good results. DISTILL (Winner and
Veloso 2003) works by synthesizing the source code of a
planner that can solve each of the example problems and
then code-merging operators are used to generalize the code.
Another approach was developed in the CLAY framework
(Srivastava and Kambhampati 1998), where automatic de-
ductive program synthesis was used to construct domain-
dependent planners. In this paper, we contribute to this line
by providing an automated technique to automatically learn
domain-dependent temporal planning heuristics: this is not
the same as producing the code of a domain-dependent plan-
ner, but a planner equipped with our heuristic becomes a
specialized planner for a certain domain.

Another related field is generalized planning, where the
objective is the synthesis of plans (in forms of programs or
automata) that work for a set of instances sharing some char-
acteristics (Celorrio, Aguas, and Jonsson 2019). A recent
and relevant advancement in this area is (Toyer et al. 2018)
presenting “Action Schema Networks” (ASN). In this work,
a generalized policy is extracted by means of deep learning
from a set of problem instances on the same domain and a
planning-specific transfer-learning technique is used to gen-
eralize and exploit the policy for new problems. In this pa-
per, we are not tackling generalized planning: we maintain

46

(and rely on) reasoning capabilities in the planner, so instead
of generating a plan that works for all the instances, we learn
a heuristic to be informative in a certain domain.

Finally, some works used external control knowledge to
guide planners (Doherty and Kvarnström 2001; Bacchus and
Kabanza 2000). In temporal planning, (Micheli and Scala
2019) focuses on temporal control knowledge to express
complex problem constraints, but no learning is present.

6 Experimental Evaluation
In this section we experimentally evaluate the merits of our
approach by both comparing the planner equipped with the
learned heuristic against baseline techniques and also by as-
sessing the sensitivity of our learning approach to the differ-
ent kinds of input described in section 4.

We consider two benchmark planning domains. The first
one is the MAJSP domain used in (Micheli and Scala 2019)
and (Valentini, Micheli, and Cimatti 2020); the domain con-
sists of a job-shop scheduling problem in which a fleet of
moving agents transport items and products between operat-
ing machines. We created 770 instances by varying the num-
ber of items and the number of treatments. Second, we cre-
ated a new domain (called “kitting”) in which a robot has to
collect several components distributed in different locations
of a warehouse in order to compose a pre-fixed kit and then
deliver it to a specific location synchronizing with a human
operator. We created 1092 instances of this domain by scal-
ing the kit size (up to 5 components) and the number of kits
to deliver (up to 3).

We implemented the learning part of our framework in
Python3 using an adaptation of our planner, TAMER, as sim-
ulator via a dedicated API. We used the PyTorch framework
for representing and training the value function neural net-
works. The learning process takes in input all the training in-
stances and, using TAMER as simulator, outputs the trained
value function as a neural network. In the learning algorithm
we set the following parameters: γ = 0.99, the maximum
size of the memory mem is 50K, the REPLAY batch size
is 1000, ∆RL = 140, εmax = 0.5 and εmin = 0.001. For
the planning part, we extended TAMER to be able to use the
trained neural network (TAMER (hnn)) as a heuristic (i.e. we
equipped TAMER with hnn) and we set ∆h = 1200 and the
weight w for the planner search to 0.8.

All the experiments have been conducted on a Xeon E5-
2620 2.10GHz; the experimental material is available at
https://es-static.fbk.eu/people/amicheli/resources/prl20.

Performance comparison. To measure the effectiveness of
our framework we performed a 10-fold cross validation: for
each domain, we generated the set of ground instances and
we randomly partitioned such set into 10 equal sized sub-
samples. In turn, we use each subsample as the testing data
for the planning part, and the remaining 9 subsamples as
training data for the learning part, resulting in ten runs.

We consider three competitors. TAMER (hadd) is the
fully-symbolic planner described in (Valentini, Micheli, and
Cimatti 2020) that uses no learned information, TAMER
(hnn) is the same planner equipped with the learned heuris-
tic and πnn is the execution of the learned policy with no

0 20000 40000 60000 80000 100000
Episodes

0%

20%

40%

60%

80%

100%

S
ol

vi
ng

R
at

e

fold
(size: 77)

TAMER (hadd) # episodes πnn TAMER (hnn)
solved avg plan size solved avg plan size solved avg plan size

1 52 14 50k 66 25 73 18
100k 71 22 73 18

2 58 14 50k 70 22 75 17
100k 70 19 72 17

3 58 14 50k 70 21 73 17
100k 73 19 75 17

4 57 13 50k 66 21 72 17
100k 68 20 76 17

5 55 15 50k 66 25 75 19
100k 69 21 69 19

6 60 14 50k 66 23 76 17
100k 69 17 77 17

7 54 14 50k 68 21 76 18
100k 75 21 73 18

8 57 14 50k 61 23 73 18
100k 73 20 69 18

9 57 14 50k 71 25 74 18
100k 66 21 70 18

10 52 14 50k 72 21 77 19
100k 65 22 54 16

all 560 14 50k 676 23 744 18
100k 699 20 708 18

Figure 3: Results on the MAJSP domain: learning curves
(above) and coverage (table). We plot the curve for each fold
in light blue and the average solving rate in dark blue. For
each fold and each approach, we report the total number of
solved instances and the average plan length.

backtracking (πnn(s) = arg maxα Vnn(α[s])).
We imposed a 600s/20GB time/memory limit for execut-

ing all the planning approaches; instead, the learning algo-
rithm has been executed for 100000 episodes.

Figures 3 and 4 report the learning curves and the cover-
age results for all the ten folds. In the learning curves, we
plotted on the y-axis the solving rate of the previous 1000
episodes, that is we plot the percentage of episodes (over the
previous 1000) that reached a goal state while learning. In
dark blue we averaged the 10 runs (one for each fold). In the
tables, for the πnn and TAMER (hnn) approaches, we also re-
port the performance of a snapshot of the learned value func-
tion after 50000 and 100000 episodes to assess the learning
speed. The last row of each table reports the average plan
length and the total number of solved instances.

The results show how the RL algorithm is able to learn
in all the ten folds, reaching a high solving rate for both
domains with a small variance between the ten runs. It is
interesting to note that in the MAJSP domain after 40000
episodes the curve spikes and the average solving rate imme-
diately reaches 80%, while the learning curve for the kitting
domain exhibits a steady linear growth.

The tables show how both the learning-based approaches
(πnn and TAMER (hnn)) are significantly superior to the
plain TAMER(hadd). In fact, the two selected domains are
hard for the normal reasoning techniques because they ex-
hibit complex temporal constraints, cyclic behaviors (e.g.

47

0 20000 40000 60000 80000 100000
Episodes

0%

20%

40%

60%

80%

100%

S
ol

vi
ng

R
at

e

fold
(size: 109)

TAMER (hadd) # episodes πnn TAMER (hnn)
solved avg plan size solved avg plan size solved avg plan size

1 44 15 50k 66 18 99 21
100k 97 21 107 21

2 35 15 50k 66 21 95 22
100k 82 21 97 21

3 38 15 50k 55 18 83 20
100k 97 20 99 20

4 45 15 50k 68 20 98 19
100k 88 22 100 21

5 47 15 50k 85 19 101 19
100k 88 19 101 19

6 38 15 50k 53 20 85 20
100k 78 22 108 23

7 30 15 50k 44 18 75 19
100k 90 24 106 23

8 42 15 50k 65 18 95 20
100k 95 21 104 21

9 36 15 50k 44 15 70 17
100k 89 22 91 20

10 40 14 50k 71 19 95 21
100k 92 21 102 21

all 395 15 50k 617 19 896 20
100k 896 21 1015 21

Figure 4: Results for the Kitting domain.

in kitting we need to move between the deposit location
and the different shelves several times) and because they
are combinatorially hard (e.g. the JSP component of MA-
JSP). Moreover, the TAMER(hnn) approach is able to solve
consistently more instances than any competitor: even when
the policy execution πnn comes close to the coverage of
TAMER(hnn), the average plan length is higher. This is due
to the combination of the heuristic function (derived from
the learned value function) with the path cost g(s) in the
search algorithm. This combination balances the systematic
search performed by the planner with the information gath-
ered during learning. We also highlight that both TAMER(*)
approaches are guaranteed to eventually find a plan if it ex-
ists, while the plain execution of the learned policy (πnn)
can diverge or fail to find a plan.

Sensitivity Analysis. A second experiment is aimed at as-
sessing the relevance of the different inputs we provide to
the neural network Vnn during learning. We tried to learn
from the whole set of ground instances for each domain and
we disabled each of the five kinds of inputs to the network by
removing the corresponding input neurons and the attached
part of first layer before starting the learning algorithm.

Figure 5 shows the learning curves for both the domains.
The results indicate that, for MAJSP, the encodings of flu-
ents, actions and temporal network are needed to reach a
good learning performance, while the other inputs (goals and
constants) seem less impacting on this domain as their learn-
ing curve is similar to the one with all the inputs provided.
This phenomenon is due to the nature of the MAJSP domain
and the way it is encoded: essentially each item needs to be
treated in a certain way and the goal just requires a subset

0 20000 40000 60000 80000 100000
Episodes

0%

20%

40%

60%

80%

100%

S
ol

vi
ng

R
at

e

No Constants and Goals
No Fluents
No Actions
No Constants
No Goals
No TN
All

0 20000 40000 60000 80000 100000
Episodes

0%

20%

40%

60%

80%

100%

S
ol

vi
ng

R
at

e

No Fluents
No Actions
No Constants
No Goals
No TN
All

Figure 5: Learning curves of the MAJSP (above) and kitting
(below) domains with different input configurations.

of the items to be processed. However, the information on
which items are relevant for the current instance is present
in both the goal formulation and in the constants that are
used to indicate which objects do exist (the o∃i constants).
For this reason, we experimented with a network deprived
of both the goals and constants inputs and we can see how it
performs badly, confirming the need of all the provided in-
put. The situation for kitting is similar, but only the network
without goals is able to learn comparably with the fully-
informed one. This is again due to the problem nature: the
goal of kitting is to deliver a certain number of kits, but their
composition (that determines the path to be taken between
the shelves) is encoded using constants that, in this case, be-
come necessary for learning a useful value function.

7 Conclusions
This paper presents the first approach to learn heuristic func-
tions for temporal planning. Leveraging recent advance-
ments in RL, we designed a workflow that is able to use
a finite set of instances with different number of objects and
synthesize a heuristic that can effectively solve problems
with a bounded number of objects. The approach exploits
modern neural networks and is experimentally shown to be
superior to both planning and reinforcement learning alone.

There are several avenues for future research. First, the
approach is limited because the instances being solved need
to have a known bound on the number of objects; moreover,
we currently assume that the training set is finite instead one
can consider the case where an instance sampler is given
ranging over a set of possibly infinite instances. A third di-
rection is to generalize the network architecture: the current
one has been experimentally derived, but having a structured
way to construct the architecture given the domain and the
bound would widen applicability of the technique.

48

References
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learn-
ing heuristic functions for large state spaces. Artif. Intell.
175(16-17):2075–2098.
Asai, M., and Fukunaga, A. 2018. Classical planning in deep
latent space: Bridging the subsymbolic-symbolic boundary.
In McIlraith, S. A., and Weinberger, K. Q., eds., Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), the 30th innovative Applications of Artifi-
cial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, 6094–
6101. AAAI Press.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1):123 – 191.
Bonisoli, A.; Gerevini, A.; Saetti, A.; and Serina, I. 2015.
Effective plan retrieval in case-based planning for metric-
temporal problems. Journal of Experimental and Theoreti-
cal Artificial Intelligence 27:1–45.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-ff: Improving AI planning with automatically
learned macro-operators. J. Artif. Intell. Res. 24:581–621.
Celorrio, S. J.; Aguas, J. S.; and Jonsson, A. 2019. A review
of generalized planning. Knowledge Eng. Review 34:e5.
Choudhury, S.; Bhardwaj, M.; Arora, S.; Kapoor, A.;
Ranade, G.; Scherer, S. A.; and Dey, D. 2018. Data-driven
planning via imitation learning. I. J. Robotics Res. 37(13-
14).
Coles, A., and Smith, A. 2007. Marvin: A heuristic search
planner with online macro-action learning. J. Artif. Intell.
Res. 28:119–156.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In ICAPS 2010.
de la Rosa, T.; Olaya, A. G.; and Borrajo, D. 2007. Us-
ing cases utility for heuristic planning improvement. In
Case-Based Reasoning Research and Development, 7th In-
ternational Conference on Case-Based Reasoning, ICCBR
2007, Belfast, Northern Ireland, UK, August 13-16, 2007,
Proceedings, 137–148.
Doherty, P., and Kvarnström, J. 2001. Talplanner: A tempo-
ral logic-based planner. AI Magazine 22(3):95–102.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2012. Using
the context-enhanced additive heuristic for temporal and nu-
meric planning. In Towards Service Robots for Everyday En-
vironments - Recent Advances in Designing Service Robots
for Complex Tasks in Everyday Environments.
Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Neural
network heuristics for classical planning: A study of hyper-
parameter space. ECAI.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of artificial intelligence research.
Gigante, N.; Micheli, A.; Montanari, A.; and Scala, E. 2020.
Decidability and complexity of action-based temporal plan-
ning over dense time. In The Thirty-Fourth AAAI Conference

on Artificial Intelligence, AAAI 2020, The Thirty-Second In-
novative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, 9859–9866. AAAI Press.
Khardon, R. 1999. Learning action strategies for planning
domains. Artif. Intell. 113(1-2):125–148.
Micheli, A., and Scala, E. 2019. Temporal planning with
temporal metric trajectory constraints. In AAAI 2019, 7675–
7682.
Rankooh, M. F., and Ghassem-Sani, G. 2015. Itsat: an effi-
cient sat-based temporal planner. Journal of Artificial Intel-
ligence Research.
Smith, D.; Frank, J.; and Cushing, W. 2008. The anml lan-
guage. In KEPS 2008.
Spalazzi, L. 2001. A survey on case-based planning. Artif.
Intell. Rev. 16(1):3–36.
Spector, L. 1994. Genetic programming and AI planning
systems. In Proceedings of the 12th National Conference on
Artificial Intelligence, Seattle, WA, USA, July 31 - August 4,
1994, Volume 2., 1329–1334.
Srivastava, B., and Kambhampati, S. 1998. Synthesizing
customized planners from specifications. J. Artif. Intell. Res.
8:93–128.
Toyer, S.; Trevizan, F. W.; Thiébaux, S.; and Xie, L. 2018.
Action schema networks: Generalised policies with deep
learning. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artifi-
cial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, 6294–6301.
Valentini, A.; Micheli, A.; and Cimatti, A. 2020. Temporal
planning with intermediate conditions and effects. In AAAI
2020.
Virseda, J.; Borrajo, D.; and Alcazar, V. 2013. Learning
heuristic functions for cost-based planning. In Proceedings
of the 4th Workshop on Planning and Learning, 6–13.
Winner, E., and Veloso, M. M. 2003. DISTILL: learning
domain-specific planners by example. In Machine Learn-
ing, Proceedings of the Twentieth International Conference
(ICML 2003), August 21-24, 2003, Washington, DC, USA,
800–807.
Yoon, S. W.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. J. Mach. Learn.
Res. 9:683–718.

49

A Framework for Reinforcement Learning and Planning: Extended Abstract∗

Thomas M. Moerland,1,2 Joost Broekens,2 Catholijn M. Jonker1,2

1 Interactive Intelligence, Delft University of Technology, The Netherlands
2 Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

Abstract
Two successful approaches to Markov Decision Process op-
timization are planning and reinforcement learning. Both re-
search communities operate large separate. This framework
attempts to bridge both fields, by disentangling their com-
mon algorithmic space, showing that both fields face exactly
the same algorithmic decisions. The full paper is available
from https://arxiv.org/pdf/2006.15009.pdf.

Sequential decision making, commonly formalized as
Markov Decision Process (MDP) optimization, is a key chal-
lenge in artificial intelligence research. The two prime re-
search directions in this field are reinforcement learning
(Sutton and Barto 2018), a subfield of machine learning,
and planning (also known as search), of which the discrete
and continuous variants have been studied in the fields of
artificial intelligence (Russell and Norvig 2016) and con-
trol (Bertsekas 1995), respectively. Planning and learning
approaches differ with respect to a key assumption: is the
dynamics model of the environment known (planning) or
unknown (reinforcement learning).

Departing from this distinctive assumption, both research
fields have largely developed their own methodology, in
relatively separated communities. There has been cross-
breeding as well, better known as ‘model-based reinforce-
ment learning’ (recently surveyed by Moerland, Broekens,
and Jonker (2020)). While the combination of planning and
learning has shown great empirical success (Silver et al.
2017), literature still lacks a fundamental view on the rela-
tion between both fields, and how their approaches overlap
and differ.

Therefore, this paper* introduces the Framework for Re-
inforcement learning and Planning (FRAP), which identifies
the essential algorithmic decisions that any planning or RL
algorithm has to make. It consists of six main dimensions,
which we will shortly discuss in more detail. However, the
main message of the framework is that any RL or planning
algorithm, from Q-learning (Watkins and Dayan 1992) to A?

(Hart, Nilsson, and Raphael 1968), will have to make a de-
cision on each of these dimensions. Therefore, planning and

∗Full paper available at: https://arxiv.org/pdf/2006.15009.pdf
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learning are not only related, but really two sides of the same
coin. We illustrate this point in the full paper*, by formally
comparing a variety of planning and RL papers along the
dimensions of our framework.

Framework
We will here shortly introduce the structure of FRAP. It con-
sists of six main dimensions, of which some have multiple
sub-considerations, which are summarized in Table 1. FRAP
centers around the concept of trials and back-ups. A trial is
a single call to the environment, where we impute a state-
action pair and get back a next state (distribution) and asso-
ciated reward (distribution). Trials are the fundamental way
in which we get information about the environment. After
one or more trials, we want to back-up the acquired informa-
tion to better decide where we want to make the next trial.
We may disentangle this process into six key questions:

1. Where to put our computational effort?
We first determine for which states we seek a solution at
all. As a crucial distinction, we may either consider all
states (as used by Dynamic Programming approaches),
or only the reachable states (which we can track by only
sampling from a start state distribution).

2. Where to make the next trial?
We then determine where to make the next trial. There
are several relevant considerations, like which set of state-
action pairs are candidate for selection in the current it-
eration (e.g., all actions at the current state, or all state-
actions at the frontier), and how to add exploration (since
greedy selection leads to suboptimal behaviour).

3. How to estimate the cumulative return?
After we make the trial, we need an estimate of the re-
maining cumulative reward after the trial. We can either
sample and/or bootstrap, which we both need to decide
on.

4. How to back-up?
We then want to back-up this new information (obtained
from the trial). We need to decide on the back-up policy,
and on how to deal with the expectations over the actions
and dynamics in the one-step Bellman equation. As an ex-
ample, both a well-known planning algorithm like MCTS

50

Table 1: Overview of dimensions in the Framework for Reinforcement learning and Planning (FRAP). For any planning or reinforcement
learning algorithm, we should be able to identify the decision on each of the dimensions. The subconsiderations and possible options are
shown in the right columns. IM = Intrinsic Motivation.

Dimension Consideration Choices

1. Comp. effort - State set All↔ reachable↔ relevant

2. Trial selection - Candidate set Step-wise↔ frontier

- Exploration Random↔ Value-based↔ State-based
-For value: mean value, uncertainty, priors
-For state: ordered, priors (shaping), novelty, knowledge IM, competence IM

- Phases One-phase↔ two-phase

- Reverse trials Yes↔ No

3. Return estim. - Sample depth 1↔ n↔∞

- Bootstrap func. Learned↔ heuristic↔ none

4. Back-up - Back-up policy On-policy↔ off-policy

- Policy expec. Expected↔ sample

- Dynamics expec. Expected↔ sample

5. Representation - Function type Value↔ policy↔ both (actor-critic)
- For all: generalized↔ not generalized

- Function class Tabular↔ function approximation
- For tabular: local↔ global

6. Update - Loss - For value: e.g., squared
-For policy: e.g., (det.) policy gradient↔ value gradient↔ cross-entropy, etc.

- Update Gradient-based↔ gradient-free
- For gradient-based, special cases: replace & average update

(Kocsis and Szepesvári 2006) and a well-known RL algo-
rithm like SARSA (Rummery and Niranjan 1994) make
the same algorithmic choice here (an on-policy, sample
action, sample dynamics back-up).

5. How to represent the solution? We also want to be able to
store the new information. Here, planning and reinforce-
ment learning have emphasized different approaches,
since planning methods mostly focus on tabular/atomic
representations (like nodes), while reinforcement learn-
ing approaches have emphasized approximate (learned)
representations of the solution.

6. How to update the solution? Finally, we need to update
our solution (from 5) based on the back-up estimate (from
4). We can distinguish gradient-based and gradient-free
updates. FRAP also shows how common planning up-
dates can be cast into this categorization.

The framework shows that planning and learning essentially
do the same thing. As an illustration, note that a MCTS

of 500 traces is conceptually not too different from 500
episodes of a model-free Q-learning agent in the same envi-
ronment. In both cases, we repeatedly move forward in the
environment to acquire new information, make back-ups to
store this information, with the goal to make better informed
decisions in the next trace/episode. The model-free RL agent
is restricted in the order in which it can visit states, but oth-
erwise, the methodology of exploration, back-ups, represen-
tation and updates is the same.

The main paper includes a large table comparing a vari-
ety of planning, model-free RL and model-based RL papers
along the dimensions of our framework, which illustrates the
validity of FRAP. In short, FRAP provides a common lan-
guage to categorize algorithms in both fields, hopefully serv-
ing as a bridge between both. We hope it also inspires new
research, for example by identifying novel possible combi-
nations of planning and learning, or stimulating the design
of a new algorithm in one field based on inspiration from the
other.

51

References
Bertsekas, D. P. 1995. Dynamic programming and optimal
control, volume 1.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2):100–107.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In ECML, volume 6, 282–293. Springer.
Moerland, T. M.; Broekens, J.; and Jonker, C. M. 2020.
Model-based Reinforcement Learning: A Survey. arXiv
preprint arXiv:2006.16712.
Rummery, G. A., and Niranjan, M. 1994. On-line Q-
learning using connectionist systems, volume 37. Univer-
sity of Cambridge, Department of Engineering Cambridge,
England.
Russell, S. J., and Norvig, P. 2016. Artificial intelligence: a
modern approach. Malaysia; Pearson Education Limited,.
Silver, D.; van Hasselt, H.; Hessel, M.; Schaul, T.; Guez, A.;
Harley, T.; Dulac-Arnold, G.; Reichert, D.; Rabinowitz, N.;
Barreto, A.; et al. 2017. The predictron: End-to-end learn-
ing and planning. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, 3191–3199.
JMLR. org.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279–292.

52

Think Neither Too Fast Nor Too Slow:
The Computational Trade-off Between Planning And Reinforcement Learning

Thomas M. Moerland,1,2∗ Anna Deichler,1,4* Simone Baldi,3,4 Joost Broekens,2 Catholijn M. Jonker1,2

1 Interactive Intelligence, Delft University of Technology, The Netherlands
2 Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

3 School of Cyberscience and Engineering, Southeast University, China
4 Delft Center for Systems and Control, Delft University of Technology, The Netherlands

Abstract

Planning and reinforcement learning are two key approaches
to sequential decision making. Multi-step approximate real-
time dynamic programming, a recently successful algorithm
class of which AlphaZero (Silver et al. 2018) is an example,
combines both by nesting planning within a learning loop.
However, the combination of planning and learning intro-
duces a new question: how should we balance time spend on
planning, learning and acting? The importance of this trade-
off has not been explicitly studied before. We show that it is
actually of key importance, with computational results indi-
cating that we should neither plan too long nor too short. Con-
ceptually, we identify a new spectrum of planning-learning
algorithms which ranges from exhaustive search (long plan-
ning) to model-free RL (no planning), with optimal perfor-
mance achieved midway.

1 Introduction
Sequential decision-making, commonly formalized as
Markov Decision Process (MDP) optimization, is a key chal-
lenge in artificial intelligence (AI) and machine learning
research. Important solution approaches include planning
(or search) (Russell and Norvig 2016) and reinforcement
learning (Sutton and Barto 2018). Recently, a class of algo-
rithms, known as multi-step approximate real-time dynamic
programming (MSA-RTDP), combines both fields. MSA-
RTDP iterates planning, which uses a learned value/policy
function, and learning, which uses output from the plan-
ning procedure. A successful example in this class is the
AlphaZero algorithm, which achieved super-human perfor-
mance in the game of Go, Chess, and Shogi (Silver et al.
2017; 2018).

This iterated planning and learning procedure introduces
a crucial new question: how long should we plan at a given
state? We hypothesize that this is a crucial trade-off for
planning-learning integrations: when we plan too exten-
sively, we make too little progress in the domain and have
less training targets for learning, while when we plan too
briefly, our local decisions and training targets are likely

∗Authors contributed equally.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to be less optimal. This trade-off was never present in on-
line planning, where the budget per real step is typically
as high as the application permits (in the order of millisec-
onds for a video game, or in the order of seconds to minutes
for a game of Chess (Campbell, Hoane Jr, and Hsu 2002)).
It was neither present in model-free reinforcement learning
(RL), since those approaches do not have access to a dy-
namics model and can therefore not plan. Model-based RL,
where we use observed data to approximate the dynamics
model, has mostly focused on dealing with enhancing data
efficiency and dealing with uncertainty in the learned models
(Sutton 1991; Chua et al. 2018). Instead, we focus on the sit-
uation with a known, perfect model without uncertainty, to
fully investigate the trade-off between planning and learning
once a good model is available.

We therefore study the AlphaZero algorithm on several
known tasks, where we fix the overall computational bud-
get, but vary the planning budget per real step and associated
training iteration. Our results show that, for a fixed over-
all time budget, approaches with an intermediate planning
budget per time-step achieve the highest final performance.
First, this is an important empirical insight for model-based
reinforcement learning and MSA-RTDP algorithms. More-
over, the fundamental mutual benefit of planning and learn-
ing, which outperforms their isolated application, may also
provide an argument for the existence of fast prediction
(System 1) and explicit planning (System 2) in human deci-
sion making. This theory, better known as dual process the-
ory (Evans 1984), was more recently popularized as ‘think-
ing fast and slow’ (Kahneman 2011). A short summary of
our results could be: ‘think too fast nor too slow’.

The remainder of this paper is organized as follows. Sec-
tion 2 provides essential background on Markov Decision
Process optimization, while Section 3 introduces the al-
gorithm class of interest, multi-step approximate real-time
dynamic programming. Section 4 and 5 detail methodol-
ogy and results, respectively. The final sections cover Re-
lated work (Sec. 6), Discussion (Sec. 7) and Conclusion
(Sec. 8). Code to replicate experiments is available from
https://github.com/ratponto/tree-rl-adaptive.

53

2 Preliminaries
We study the Markov Decision Process (MDP) (Puterman
2014) optimization problem. An MDP is defined by a state
space S, an action space A, a transition function T : S ×
A → p(S), a reward functionR : S×A×S → R, an initial
state distribution p(s0) and a discount parameter γ ∈ [0, 1].

We can interact with the environment through a policy
π : S → p(A). After specifying an action at in state st,
the environment returns a next state st+1 ∼ T (·|st, at) and
associated reward rt = R(st, at, st+1). We are interested in
finding the policy that gives the highest cumulative pay-off.
Define the state-action value as:

Q(s, a)=̇Eπ,T

[
K∑

k=0

γkrt+k

∣∣∣st = s, at = a

]
(1)

and V (s) = Ea∼π(·|s)[Q(s, a)]. There is only one optimal
value function Q?(s, a) (Sutton and Barto 2018), and our
goal is to find an optimal policy π? that achieves the optimal
value:

π? = arg max
π

Q(s, a). (2)

The possible approaches to this problem crucially rely on
our type of access to the environment dynamics T and re-
ward function R. In model-free reinforcement learning, the
environment cannot be reverted, and we therefore have to
sample forward from the state that we reach. This property,
also referred to as an ‘unknown model’, is also part of the
real world. In contrast, in planning and model-based RL, we
are either given or have learned a reversible model, better
known as a ‘known model’, which we can query for a next
state and reward for any state-action pair that we impute.

A classic approach in the latter case (known model) is
Dynamic Programming (DP) (Bellman 1966). For example,
in Q-value iteration we sweep through a state-action value
table, where at each location we update Q(s, a) according
to:

Q(s, a)← Es′∼T (·|s,a)
[
R(s, a, s′) + γmax

a∈A
Q(s, a)

]
(3)

Dynamic programming is guaranteed to converge to the
optimal policy. However, due to the curse of dimensionality,
it can not be applied in high-dimensional problems. In the
next section we introduce a recently popularized extension
of DP.

3 Multi-step Approximate Real-Time
Dynamic Programming

Multi-step approximate real-time dynamic programming
(Efroni, Ghavamzadeh, and Mannor 2019) has recently
shown impressive empirical results, for example beating hu-
mans and achieving state-of-the-art performance in the game
of Go (Silver et al. 2017), Chess and Shogi (Silver et al.
2018). MSA-RTDP is based on Dynamic Programming con-
cepts, but adds three additional concepts:

Figure 1: Multi-step Real-time Dynamic Programming. The
three key procedures are 1) Planning, 2) Learning, and 3)
Real steps (acting).

• ‘Real time’ (Barto, Bradtke, and Singh 1995) implies that
we act on traces through the environment that start from
some initial state s0 ∼ p(s0). This property is assumed
by most RL and planning algorithms. Compared to the
DP sweeps, it avoids work on states that we will never
reach.

• ‘Approximate’ implies that we will use function approxi-
mation to store a global parametrized solution, in the form
of a value Vθ(s)/Qθ(s, a) and/or policy function πθ(a|s),
where θ ∈ Θ denote the parameters of the approximation.
Compared to a tabular representation, approximate rep-
resentations can deal with high-dimensional state spaces
and benefit from generalization between similar states, al-
though they do make approximation errors. Approximate
solutions are especially popular in RL literature.

• ‘Multi step’ implies that for every Dynamic Programming
back-up, we are allowed to make a multi-step lookahead,
i.e., we can plan.

The resulting multi-step approximate RTDP algorithm
class has three key components, which are visualized in Fig-
ure 1:

1. Plan: At every state st in the trace, we get to expand some
computational budget B of forward planning, which could
for example be a depth-d full-breadth search (Russell and
Norvig 2016), or a more complicated planning procedure
like Monte Carlo Tree Search (Browne et al. 2012). The
planning procedure can use learned value/policy functions
to aid planning, for example through bootstrapping (Sut-
ton and Barto 2018).

2. Learn: After planning, we use the output of planning (our
improved knowledge about the optimal value and policy
at st) to train our global value/policy approximation.

3. Real step: We finally use the planning output to decide
which action at we will commit to, and make a ‘real step’,
transitioning to a sampled next state st+1 ∼ T (·|st, at).
The next iteration of planning continues from st+1.

MSA-RTDP has two special cases that depend on the
computation planning budget B per real step. One the one
extreme, B → ∞, we completely enumerate all possible fu-
ture traces, better known as exhaustive search (Russell and

54

Figure 2: Image stills from the studied tasks. Left: CartPole, where we attempt to balance the pole. Middle: MountainCar, where
we attempt to reach the top-left flag by swinging back and forth. Right: RaceCar, where we need to control a car to reach a
goal, indicated by a ball.

Norvig 2016). On the other extreme, B = 0, we do not
plan at all, but directly make a real step based on the global
approximations, better known as model-free reinforcement
learning (Sutton and Barto 2018).

Anthony, Tian, and Barber (2017) already related this ap-
proach to cognitive psychology research, in particular dual
process theory (Evans 1984; Kahneman 2011). The global
value/policy approximation, which makes fast predictions
about the value of actions, can be considered a System 1
(‘Thinking Fast’), while explicit forward planning to im-
prove over these fast approximations seems related to Sys-
tem 2 (‘Thinking slow’).

4 Methods
For this paper, we will follow the AlphaGo Zero (Silver et al.
2017) variant of MSA-RTDP. AlphaGo Zero uses a variant
of MCTS (Browne et al. 2012) for planning, and deep neu-
ral networks for leaning of a policy πθ(a|s) and value Vθ(s)
approximation. A key aspect of iterated planning-learning is
their mutual influence, where planning improves the learned
function, and the learned function directs new planning iter-
ations. We will detail both these integrations, starting with
training target construction based on planning output.

To train the policy network, we normalize the action vis-
itation counts n(s, a) at the tree root state s to a probability
distribution, and train on a cross-entropy loss:

Lπ(θ) =
∑

a

n(s, a)

n(s)
log πθ(a|s). (4)

For value network training, we use a target based on the
reweighted value estimates at the root of the MCTS,

V̂ (s) =
∑

a

n(s, a)

n(s)
Q̄(s, a), (5)

where Q̄(s, a) denotes the mean pay-off of all traces
through (s, a), and train on a squared error loss,

LV (θ) =
(
Vθ(s)− V̂ (s)

)2
. (6)

This is a slight variation of the original AlphaZero imple-
mentation, based on recent results of Efroni et al. (2018).
The above equations define the planning to learning connec-
tion in Fig. 1.

For the reverse connection, influencing planning based on
the learned functions, we i) replace the MCTS rollout by a
bootstrap estimate from the value network, and ii) modify
the MCTS selects step to

arg max
a

[
Q̄(s, a) + c · πθ(a|s) ·

√
n(s, a)

1 + n(s)

]
, (7)

where c ∈ R is a constant that scales exploration pressure.
We vary the planning budget per timestep through adjust-

ment of the number of traces per MCTS iteration, denoted
by nMCTS, while keeping the overall computational budget
(in the form of wall clock time) fixed. We experiment with
two well-known control tasks, CartPole and MountainCar,
available from the OpenAI Gym (Brockman et al. 2016),
and with the RaceCar task, available in the PyBullet package
(Coumans and Bai 2016). For MountainCar, we use a reward
function variant with r = −0.005 on every step, and r = +1
when the Car reaches the top of the hill. Visualizations of the
tasks are shown in Figure 2.

The total computational budget (planning, training and
acting) was fixed in advance on every environment: 500 sec-
onds for CartPole, 150 minutes for MountainCar, and 270
minutes for RaceCar. These budgets were predetermined
to allow for convergence on each domain. Therefore, long
planning per timestep (higher nMCTS) also implies less real
steps and less new training targets over the entire training
period.

Hyperparameters The effect of search budget may also
interact with the setting of other hyperparameters. We chose
the following approach. We quickly search for a general hy-
perparameter configuration that shows increasing learning
curves on all domains. Crucially, the search budget was var-
ied in this quick search, but we were unaware of its actual
values, to not bias the other hyperparameter settings towards
good performance on a particular search budget. We will
touch upon alternative approaches in the Discussion.

We here report the fixed values for the other hyperparame-
ters. For neural network training, we used batches of size 16
with a replay buffer of size 5e3 and learning rate of 1e-3 on
all domains, optimized with ADAM optimizer (Kingma and

55

Figure 3: Learning curves on CartPole, MountainCar and RaceCar environments. The colour legend per plot displays the MCTS
trace budget before every real step (nMCTS). There is no clear normalization criterion for the return scales on each domain, so
we report their absolute values. We see that AlphaGo Zero learns on all tasks, with best performance on CartPole, MountainCar
and RaceCar achieved for budgets of, respectively, 8, 32 and 32 traces per timestep.

Figure 4: Trade-off between planning and learning. The horizontal axis shows the computational budget per MCTS search in
the form of the total number of traces. The vertical axis shows the cumulative reward achieved by the specific set-up. Data
based on last 15% of the learning curves in Fig. 3. Note that the total computation time for every repetition was fixed, i.e.,
higher planning budget per timestep will yield less real steps and less targets for training the neural networks. We observe a
clear trade-off on all domains, with optimal results achieved for intermediate search budgets.

Ba 2014). Policy and value network shared their hidden lay-
ers, with 256 hidden nodes per layer. Since the reward scales
between the task varied greatly, the c parameter (Eq. 7) did
require adjustment per domain: for CartPole we decayed it
from 0.8 to 0.05 in 500 steps, for MountainCar from 5 to
0.5 in 5000 steps, and for RaceCar from 1.0 to 0.05 in 1500
steps. All results are averaged over 3 repetitions.

5 Results
Figure 3 shows learning curves for the three environments.
We see that the AlphaZero algorithm manages to learn all
three tasks. The largest variation in performance is seen on
the CartPole task. Clearly, the most stable performance for
CartPole uses nMCTS = 8. Compared to CartPole, Moun-
tainCar has a sparser reward. We therefore require longer
total budget and more traces per timestep to achieve best
performance, which is attained with nMCTS = 32. Finally,

RaceCar has a larger action space than both other domains,
wich requires longer training, and generally more traces per
timestep. The best performance is achieved for nMCTS = 32
traces.

The learning curves indicate that optimal performance is
achieved for an intermediate search budget. To better illus-
trate this observation, we aggregate the average pay-offs
from the last 15% of total time for every planning budget
in each environment. These results are visualized in Figure
4. The horizontal axis now displays search budget, while the
vertical axis displays mean pay-off at the end of training.
For all three environments, we observe clear optimal perfor-
mance for an intermediate search budget per real step.

To further investigate what happens during training, we
visualize the output of the policy network on RaceCar for
different search budgets in Figure 5. The right, middle and
left progression refer to nMCTS settings of 16, 32 and 128,

56

Figure 5: Training progression of policy network on RaceCar, for a) n = 16 trace budget per MCTS iteration, b) n = 32
trace budget, and c) n = 128 trace budget. Each plot (a-c) visualizes a progression over training, where the number above
the subplot indicates the episode number. A subplot within each plot visualizes the two-dimensional state space (x-y location
of the ball in first person view), where each state is colour coded according to the entropy of the policy network at that state.
High entropy (red colour) implies an uncertain policy, while low entropy (blue) implies a converged policy network. We see
that the right progression (nMCTS = 128) qualitatively seems to slow, as there are too little training targets. The left progression
(nMCTS = 16) seems to converge fast, but Fig. 4 shows that convergence is premature, as the achieved return is worse than the
middle progression (nMCTS = 128).

respectively. Each subplot shows the two-dimensional Race-
Car state space, which describes the (x,y)-location of the ball
in first person view. Each state in this state space is coloured
according to the entropy of the policy network. Red colour
implies high entropy and therefore an uncertain policy, while
blue colour implies low entropy and a near converged pol-
icy. The number above each subplots indicates the episode
number.

First of all, we may note that the entropy of the policy is
high in the entire state space at the beginning of all three
search budgets, which is to be expected. Second, we can
clearly observe a difference in the number of completed
episodes. Looking at the bottom-right subplot of the left
(nMCTS = 16), middle (nMCTS = 32) and right (nMCTS =
128) plot, we observe that we completed 750, 332 and 93
full episodes for the search budgets of 16, 32 and 128 traces
per real step, respectively. Of course, a higher search budget
implies that we complete less episodes.

More interestingly, we can qualitatively compare the con-
vergence of the policy networks in all three scenarios. When
we compare the high search budget (right) with the inter-
mediate one (middle), we see that the high search budget
shows a similar progression, but it progresses slower. For
example, the policy network at episode 93 for nMCTS = 128
shows similarity with the situation after episode 170 for
nMCTS = 32, with near convergence (blue) at the border of
the state space, and demarcation of early convergence areas
(white) in the center of state space. Although we did require
less episodes to reach that situation for nMCTS = 128, it did
take more computation due to the relatively high planning
effort per real step. Therefore, the high planning budget can-
not benefit enough from generalization of information. The
reverse situation is visible when we compare the left plot
(nMCTS = 16) with the middle plot (nMCTS = 32). In the

left plot, the policy network seems to converge faster, with
a very certain policy (blue) in most of the state space at the
end of the total time budget. However, if we look at the per-
formance in Fig. 4, the convergence was actually premature,
as we probably trained on planning targets that were too un-
stable. We will further interpret these observations in the dis-
cussion.

6 Related Work
AlphaGo Zero (Silver et al. 2017) and Alpha Zero (Sil-
ver et al. 2018), as used in this work as well, are exam-
ples of multi-step approximate real-time dynamic program-
ming. AlphaGo Zero treats the trade-off between planning
and learning as a fixed hyperparameter, where they use 1600
MCTS traces per real step in the game of Go, and 800 MCTS
traces per real step for both Chess and Shogi. A very simi-
lar algorithm is Expert Iteration (ExIt) (Anthony, Tian, and
Barber 2017), which shows state-of-the-art performance in
the game Hex. The authors do not report the MCTS budget
per search used during training.

The earliest idea of iterated search and learning seems to
date back to Samuel’s checkers programme (Samuel 1967).
In later work, Carmel and Markovitch (1999) explicitly stud-
ies lookahead-based exploration. The authors do mention
that ‘it is rational for the agent to invest in computation in
order to save interaction’, but do not further investigate this
trade-off. Chang et al. (2015) made a step towards multi-step
approximate real-time dynamic programming with Locally
Optimal Learning to Search (LOLS). LOLS iterates i) Monte
Carlo search, which leverages the policy, and ii) policy train-
ing, which is based on the estimated values during planning.
Other algorithms that update a global value approximation
based on nested search are Sheppard (2002) and Veness et
al. (2009).

57

A theoretical study of multi-step greedy real-time dy-
namic programming was recently provided by Efroni,
Ghavamzadeh, and Mannor (2019). One of their results
shows that the sample complexity of multi-step greedy
RTDP scales as Ω(1/d), where d denotes the depth of the
lookahead, while the computational complexity scales as
Ω(d). We directly see the trade-off appearing here, as deeper
planning decreases the required number of real steps at the
expense of increased computation. Our work provides an
empirical investigation of the effect of this trade-off. Our
results also seem to indicate that the optimal, intermediate
planning budget also correlates with the dimensionality of
the problem, where more complex problems require a higher
budget.

Our empirical results are also partly visible in the concur-
rent work of Wang et al. (2019). These authors benchmark
several model-based RL algorithms. They do not focus on
iterated search and RL algorithms, like multi-step approxi-
mate real-time dynamic programming, but do include results
of standard RL methods that train on learned dynamics mod-
els. Their results show a similar trade-off. However, their
results could also be caused by the uncertainty in a learned
model, which makes planning far ahead less reliable. In con-
trast, our work shows a more fundamental trade-off exist,
even in the case of a converged/perfect model.

As mentioned before, from a psychological perspective,
our work can be related to dual process theory. Developed in
the 70’s and 80’s by Evans (1984), it describes the presence
of a System 1 and System 2 in human cognition. System
1 and 2 have more recently been popularized as ‘Thinking
Fast and Slow’ (Kahneman 2011; 2003), respectively. Sys-
tem 1 includes fast, reactive, automatic behaviour, much like
a neural network prediction, while System 2 includes slow,
calculating, effortful decision-making, which bears similar-
ity to local planning. This paper identifies the mutual benefit
of both for optimal sequential decision making, and may as
such also provide a computational motivation for the pres-
ence of both systems in humans.

7 Discussion
The computational experiments in this work clearly show a
trade-off between planning, learning and acting. We identify
planning budget per timestep as the major factor of impor-
tance: with a higher budget per timestep, we generate less
training targets (and therefore spend less time on training)
and make less real steps (complete less full episodes).

Figure 6 conceptually illustrates the observations from
this paper. On the left of this plot, we find model-free RL,
where the planning budget per timestep B = 0, and we only
make real steps. Although model-free RL has shown impres-
sive results (Mnih et al. 2015), it is known to be notoriously
unstable, especially in combination with function approxi-
mation (Sutton and Barto 2018). On the right of this plot
we find exhaustive search, where the computational budget
per timestep B → ∞, and we try to completely enumerate
all futures from the root before choosing an action. Exhaus-
tive search has high computational complexity that scales
exponentially in the depth of the problem, and is therefore
generally not a feasible approach. The problem is that it

Figure 6: Conceptual illustration of the trade-off between
planning and learning. The horizontal axis shows the com-
putational budget of planning before every real step. On the
left extreme we find model-free RL, which samples only a
single transition before every step. On the far right, we find
exhaustive search, which completely enumerates the search
tree before executing a step. The curve illustrates the exper-
imental results, which show a trade-off.

never generalizes information between states it encounters
(no learning), and therefore repeats much work.

Given the above observations, the shape of Figure 6 may
come to no surprise, as it appears to keep the best of both
worlds. On the one hand, we use local planning to i) create
better training targets for our global value/policy approxima-
tion, and ii) correct for local errors in these approximations
by looking ahead to more clearly discriminable states. On
the other hand, learning adds to pure planning the ability
to generalize and store global solutions in memory, which
avoids repeating much work, as for example present in ex-
haustive search.

As mentioned in Sec. 4, the effect of planning budget per
timestep may interact with the value of other hyperparame-
ters. For this work we chose to quickly search for a general
hyperparameter setting on all domains, while being agnos-
tic to the search budget in that phase. There could be two
alternative approaches. First, we could separately optimize
all other hyperparameters for every search budget on every
domain. This would squeeze out the optimal performance,
but is very computationally demanding. Second, we could
specify an interval for every hyperparameter with reason-
able values, and test on a set of random samples from these
ranges, which would test robustness to hyperparameter vari-
ation. These could be interesting extensions with slightly
different messages. Nevertheless, our approach is also unbi-
ased, shows consistent results over tasks, and complies with
empirical search budget decisions in other papers, for exam-
ple in AlphaGo Zero (Silver et al. 2017) (which used 1600
MCTS traces per real step, not 1 or 10 million).

Neuroscience has suggested that both systems in dual pro-
cess theory compete for control over the decision (Daw, Niv,
and Dayan 2005). Our work provides computational motiva-
tion that both systems are complementary, and actually both
necessary for optimal decision making. This may also pro-
vide an evolutionary motivation for their existence.

58

A clear direction of future work would be to adaptively
adjust the planning budget per timestep in a data-driven way.
Cognitive science has for long investigated how humans de-
cide on planning duration, aiming to find a ‘satisficing’ (a
portmanteau of satisfy and suffice) solution (Schwartz et al.
2002). Computational models of such data-dependent trade-
offs, possibly based on the remaining uncertainty in the plan,
may further improve performance of planning-learning in-
tergrations.

8 Conclusion
This paper investigated the computational trade-off between
planning and learning. Our results indicate that high perfor-
mance requires both local planning and global function ap-
proximation, and that the planning budget per real time-step
should neither be too high nor too low. This is an important
insight for the empirical application of model-based RL al-
gorithms, but may also provide a computational motivation
for the existence of a dual system in human cognition. More-
over, it opens up towards future research on this trade-off, for
example identifying whether the budget per time-step should
be a context-dependent function of the observed data.

References
Anthony, T.; Tian, Z.; and Barber, D. 2017. Thinking fast
and slow with deep learning and tree search. In Advances in
Neural Information Processing Systems, 5360–5370.

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
intelligence 72(1-2):81–138.

Bellman, R. 1966. Dynamic programming. Science
153(3731):34–37.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. arXiv preprint arXiv:1606.01540.

Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1):1–43.

Campbell, M.; Hoane Jr, A. J.; and Hsu, F.-h. 2002. Deep
blue. Artificial intelligence 134(1-2):57–83.

Carmel, D., and Markovitch, S. 1999. Exploration strate-
gies for model-based learning in multi-agent systems: Ex-
ploration strategies. Autonomous Agents and Multi-agent
systems 2(2):141–172.

Chang, K.-W.; Krishnamurthy, A.; Agarwal, A.; Daume, H.;
and Langford, J. 2015. Learning to Search Better than Your
Teacher. In International Conference on Machine Learning,
2058–2066.

Chua, K.; Calandra, R.; McAllister, R.; and Levine, S. 2018.
Deep reinforcement learning in a handful of trials using
probabilistic dynamics models. In Advances in Neural In-
formation Processing Systems, 4754–4765.

Coumans, E., and Bai, Y. 2016. Pybullet, a python mod-
ule for physics simulation for games, robotics and machine
learning. GitHub repository.
Daw, N. D.; Niv, Y.; and Dayan, P. 2005. Uncertainty-
based competition between prefrontal and dorsolateral stri-
atal systems for behavioral control. Nature Neuroscience
8(12):1704–1711.
Efroni, Y.; Dalal, G.; Scherrer, B.; and Mannor, S. 2018.
Beyond the One-Step Greedy Approach in Reinforcement
Learning. In International Conference on Machine Learn-
ing, 1386–1395.
Efroni, Y.; Ghavamzadeh, M.; and Mannor, S. 2019. Multi-
Step Greedy and Approximate Real Time Dynamic Pro-
gramming. arXiv preprint arXiv:1909.04236.
Evans, J. S. B. 1984. Heuristic and analytic processes in
reasoning. British Journal of Psychology 75(4):451–468.
Kahneman, D. 2003. Maps of bounded rationality: Psychol-
ogy for behavioral economics. American economic review
93(5):1449–1475.
Kahneman, D. 2011. Thinking, fast and slow. Macmillan.
Kingma, D., and Ba, J. 2014. Adam: A Method for Stochas-
tic Optimization. International Conference on Learning
Representations.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.
Puterman, M. L. 2014. Markov Decision Processes.: Dis-
crete Stochastic Dynamic Programming. John Wiley &
Sons.
Russell, S. J., and Norvig, P. 2016. Artificial intelligence: a
modern approach. Malaysia; Pearson Education Limited,.
Samuel, A. L. 1967. Some studies in machine learning using
the game of checkers. II - Recent progress. IBM Journal of
research and development 11(6):601–617.
Schwartz, B.; Ward, A.; Monterosso, J.; Lyubomirsky, S.;
White, K.; and Lehman, D. R. 2002. Maximizing versus
satisficing: Happiness is a matter of choice. Journal of per-
sonality and social psychology 83(5):1178.
Sheppard, B. 2002. World-championship-caliber Scrabble.
Artificial Intelligence 134(1-2):241–275.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science
362(6419):1140–1144.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Sutton, R. S. 1991. Dyna, an integrated architecture

59

for learning, planning, and reacting. ACM Sigart Bulletin
2(4):160–163.
Veness, J.; Silver, D.; Blair, A.; and Uther, W. 2009. Boot-
strapping from game tree search. In Advances in neural in-
formation processing systems, 1937–1945.
Wang, T.; Bao, X.; Clavera, I.; Hoang, J.; Wen, Y.; Lan-
glois, E.; Zhang, S.; Zhang, G.; Abbeel, P.; and Ba, J.
2019. Benchmarking Model-Based Reinforcement Learn-
ing. CoRR abs/1907.02057.

60

Learning Heuristic Selection with Dynamic Algorithm Configuration

David Speck1,∗, André Biedenkapp1,∗, Frank Hutter1,2,
Robert Mattmüller1, Marius Lindauer3

1University of Freiburg, 2Bosch Center for Artificial Intelligence, 3Leibniz University Hannover
〈speckd, biedenka, fh, mattmuel〉@cs.uni-freiburg.de, lindauer@tnt.uni-hannover.de

Abstract

A key challenge in satisficing planning is to use multiple
heuristics within one heuristic search. An aggregation of mul-
tiple heuristic estimates, for example by taking the maximum,
has the disadvantage that bad estimates of a single heuristic
can negatively affect the whole search. Since the performance
of a heuristic varies from instance to instance, approaches
such as algorithm selection can be successfully applied. In
addition, alternating between multiple heuristics during the
search makes it possible to use all heuristics equally and im-
prove performance. However, all these approaches ignore the
internal search dynamics of a planning system, which can
help to select the most helpful heuristics for the current ex-
pansion step. We show that dynamic algorithm configuration
can be used for dynamic heuristic selection which takes into
account the internal search dynamics of a planning system.
Furthermore, we prove that this approach generalizes over
existing approaches and that it can exponentially improve the
performance of the heuristic search. To learn dynamic heuris-
tic selection, we propose an approach based on reinforcement
learning and show empirically that domain-wise learned poli-
cies, which take the internal search dynamics of a planning
system into account, can exceed existing approaches in terms
of coverage.

Introduction
Heuristic forward search is one of the most popular and
successful techniques in classical planning. Although there
is a large number of heuristics, it is known that the per-
formance, i.e. the informativeness, of a heuristic varies
from instance to instance (Wolpert and Macready 1995;
Droste, Jansen, and Wegener 2002). While in optimal plan-
ning it is easy to combine multiple admissible heuristic es-
timates using the maximum, in satisficing planning the esti-
mates of inadmissible heuristics are difficult to combine in
general (Röger and Helmert 2010). The reason for this is that
highly inaccurate and uninformative estimates of a heuris-
tic can have a negative effect on the entire search process
when aggregating all estimates. Therefore, an important task

∗Contact Author, Equal contribution
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in satisficing planning is to utilize multiple heuristics within
one heuristic search.

Röger and Helmert (2010) introduced the idea of a search
with multiple heuristics, maintaining a set of heuristics, each
associated with a separate open list to allow switching be-
tween such heuristics. This bypasses the problem of ag-
gregating different heuristic estimates, while the proposed
alternating procedure uses each heuristic to the same ex-
tent. Another direction is the selection of the best algo-
rithm or heuristic a priori based on the characteristics of the
present planning instance (Seipp et al. 2012; Cenamor, de
la Rosa, and Fernández 2016; Sievers et al. 2019). In other
words, different search algorithms and heuristics are part of
a portfolio from which one is selected to solve a particu-
lar problem instance. The automated procedure for perform-
ing the former is referred to as algorithm selection (Rice
1976) while optimization of algorithm parameters is re-
ferred to as algorithm configuration (Ansótegui, Sellmann,
and Tierney 2009; Hutter et al. 2009; López-Ibáñez et al.
2016). Both methodologies have been successfully applied
to planning (Fawcett et al. 2011; 2014; Seipp et al. 2015;
Sievers et al. 2019) and various other areas of artificial in-
telligence such as machine learning (Snoek, Larochelle, and
Adams 2012) or satisfiability solving (Hutter et al. 2017).
However, algorithm selection and configuration ignore the
non-stationarity of which configuration performs well. In or-
der to remedy this, Biedenkapp et al. (2020) showed that the
problem of selecting and adjusting configurations during the
search based on the current solver state and search dynamics
can be modelled as contextual Markov decision processes
and addressed by standard reinforcement learning methods.

In planning, there is only little work that take into account
the search dynamics of a planner to decide which planner to
use. Cook and Huber (2016) showed that switching between
different heuristic searches (planners) based on the search
dynamics obtained during a search leads to better perfor-
mance than a static selection of a heuristic. However, in this
approach, several disjoint searches (planners) are executed,
which do not share the search progress (Aine and Likhachev
2016). Ma et al. (2020) showed that a portfolio-based ap-
proach that can switch the planner at halftime, depending on
the performance of the previously selected one, can improve

61

performance over a simple algorithm selection at the begin-
ning. Recent works have investigated switching between dif-
ferent search strategies depending on the internal search dy-
namics of a planner (Gomoluch, Alrajeh, and Russo 2019;
Gomoluch et al. 2020). One approach that shares the search
progress is to maintain multiple heuristics as separate open
lists (Röger and Helmert 2010). Furthermore, it has been
shown that boosting, i.e., giving preference to heuristics that
have recently made progress, can improve search perfor-
mance (Richter and Helmert 2009). While in these works
heuristic values are computed for each state, Domshlak,
Karpas, and Markovitch (2010) investigated the question,
whether the time spent for the computation of the heuristic
value for a certain state pays off.

Another avenue of work considers how to “directly” cre-
ate or learn new heuristic functions. One example is the work
of Ferber, Helmert, and Hoffmann (2020), which utilizes su-
pervised learning to learn a heuristic function where the in-
put is the planning (world) state itself. Further, Virseda, Bor-
rajo, and Alcázar (2013) used regression techniques to auto-
matically learn good combinations of heuristics, which can
lead to an informative heuristic estimate, but which are also
learned a priori and do not adapt to current search dynam-
ics and progress. Finally, Thayer, Dionne, and Ruml (2011)
showed that admissible heuristics can be transformed online,
into inadmissible heuristics, which makes it possible to tai-
lor a heuristic to a specific planning instance.

In this work we introduce and define dynamic algo-
rithm configuration (Biedenkapp et al. 2020) for planning by
learning a policy that dynamically selects a heuristic within
a search based on the current search dynamics. We prove
that a dynamic adjustment of heuristic selection during the
search can exponentially improve the search performance of
a heuristic search compared to a static heuristic selection or a
non-adaptive policy like alternating. Furthermore, we show
that such a dynamic control policy is a strict generalization
of other already existing approaches to heuristic selection.
We also propose a set of state features describing the current
search dynamics and a reward function for training a rein-
forcement learning agent. Finally, an empirical evaluation
shows that it is possible to learn a dynamic control policy on
a per-domain basis that outperforms approaches that do not
involve search dynamics, such as ordinary heuristic search
with a single heuristic and alternating between heuristics.

Background
We first introduce classical planning, then discuss greedy
best-first search with multiple heuristics, and finally present
the concept of dynamic algorithm configuration based on
reinforcement learning. Note that the terminology and no-
tation of planning and reinforcement learning are similar, so
we use the symbol∼ for all notations directly related to rein-
forcement learning; e.g. π denotes a plan of a planning task,
while π̃ is a policy obtained by reinforcement learning.

Classical Planning
A problem instance or task in classical planning, modeled in
the SAS+ formalism (Bäckström and Nebel 1995), is a tu-
ple i = 〈V, s0,O, s?〉 consisting of four components. V is a

finite set of state variables, each associated with a finite do-
main Dv . A fact is a pair (v, d), where v ∈ V and d ∈ Dv ,
and a partial variable assignments over V is a consistent set
of facts, i.e. a set that does not contain two facts for the same
variable. If s assigns a value to each v ∈ V , s is called a state.
States and partial variable assignments are functions which
map variables to values, i.e. s(v) is the value of variable v in
state s (analogous for partial variable assignments). O is a
set of operators, where an operator is a pair o = 〈preo, eff o〉
of partial variable assignments called preconditions and ef-
fects, respectively. Each operator has cost co ∈ N0. The state
s0 is called the initial state and the partial variable assign-
ment s? specifies the goal condition, which defines all pos-
sible goal states S?. With S we refer to the set of all states
defined over V , and with |i| we refer to the size of the plan-
ning task i, i.e. the number of operators and facts.

We call an operator o ∈ O applicable in state s iff preo is
satisfied in s, i.e. s |= preo. Applying operator o in state s
results in a state s′ where s′(v) = eff o(v) for all variables
v ∈ V for which eff o is defined and s′(v) = s(v) for all
other variables. We also write s[o] for s′. The objective of
classical planning is to determine a plan, which is defined
as follows. A plan π = 〈o0, . . . , on−1〉 for planning task
i is a sequence of applicable operators which generates a
sequence of states s0, . . . , sn, where sn ∈ S? is a goal state
and si+1 = si[oi] for all i = 0, . . . , n − 1. The cost of plan
π is the sum of its operator costs.

Given a planning task, the search for a good plan is called
satisficing planning. In practice, heuristic search algorithms
such as greedy best-first search have proven to be one of the
dominant search strategy for satisficing planning.

Greedy Search with Multiple Heuristics
Greedy best-first search is a pure heuristic search which tries
to estimate the distance to a goal state by means of a heuris-
tic function. A heuristic is a function h : S 7→ N0 ∪ {∞},
which estimates the cost to reach a goal state from a state
s ∈ S. The perfect heuristic h? maps each state s to the
cost of the cheapest path from s to any goal state s? ∈ S?.
The general idea of greedy best-first search with a single
heuristic h is to start with the initial state and to expand
the most promising states based on h until a goal state is
found (Pearl 1984). During the search, relevant states are
stored in an open list that is sorted by the heuristic val-
ues of the contained states in ascending order so that the
state with the lowest heuristic values, i.e. the most promis-
ing state, is at the top. More precisely, in each step a state
s with minimal heuristic value is expanded, i.e. its succes-
sors S′ = {s[o] | o ∈ O} are generated and states s′ ∈ S′
not already expanded are added to the open list according
to their heuristic values h(s′). Within an open list, for states
with the same heuristic value (h-value) the tie-breaking rule
that is used is according to the first-in-first-out principle.

In satisficing planning it is possible to combine multi-
ple heuristic values for the same state in arbitrary ways. It
has been shown, however, that the combination of several
heuristic values into one, e.g. by taking the maximum or a
(weighted) sum, does not lead to informative heuristic es-
timates (Röger and Helmert 2010). This can be explained

62

by the fact that if one or more heuristics provide very in-
accurate values, the whole expansion process is affected.
Röger and Helmert (2010) introduced the idea to maintain
multiple heuristics H = {h0, . . . , hn−1} within one greedy
best-first search. More precisely, it is possible to maintain
a separate open list for each heuristic h ∈ H and switch
between them at each expansion step while always expand-
ing the most promising state of the currently selected open
list. The generated successor states are then evaluated with
each heuristic and added to the corresponding open lists.
This makes it possible to share the search progress (Aine and
Likhachev 2016). Especially, an alternation policy, in which
all heuristics are selected one after the other in a cycle such
that all heuristics are treated and used equally, has proven
to be an efficient method. Such equal use of heuristics can
help to progress the search space towards a goal state, even
if only one heuristic is informative. However, in some cases
it is possible to infer that some heuristics are currently, i.e.
in the current region of the search space, more informative
than others, which is ignored by a strategy like alternation.
More precisely, with alternation, the choice of the heuristic
depends only on the current time step and not on the cur-
rent search dynamics or planner state. In general, however,
it is possible to dynamically select a heuristic based on in-
ternal information provided by the planner. This is the key
idea behind our approach described in the following.

Dynamic Algorithm Configuration
Automated algorithm configuration (AC) has proven a pow-
erful approach to leveraging the full potential of algorithms.
Standard AC views the algorithms being optimized as black
boxes, thereby ignoring an algorithm’s temporal behaviour
and ignoring that an optimal configuration might be non-
stationary (Arfaee, Zilles, and Holte 2011).

Dynamic algorithm configuration (DAC) is a new meta-
algorithmic framework that makes it possible to learn to ad-
just the hyperparameters of an algorithm given a description
of the algorithm’s behaviour (Biedenkapp et al. 2020). We
first describe DAC on a high level. Given a parameterized
algorithm A with its configuration space Θ̃, a set of problem
instances I the algorithm has to solve, a state description s̃i

t
of the algorithm A solving an instance i ∈ I at step t ∈ N0,
and a reward signal r̃ assessing the reward of using a control
policy π̃ ∈ Π̃ to controlA on an instance i ∈ I (e.g. runtime
or number of state expansions), the goal is to find a (dy-
namic) control policy π̃∗ : N0×S̃ ×I → Θ̃, that adaptively
chooses a configuration θ̃ ∈ Θ̃ given a state s̃t ∈ S̃ of A at
time t ∈ N0 to optimize the reward of A across the set of
instances S, i.e. π̃∗ ∈ arg maxπ̃∈Π̃ E[r̃(π̃, i)]. Note that the
current time step t ∈ N0 and instance i ∈ I can be encoded
in the state description S̃ of an algorithm A, which leads to
a dynamic control policy, which is defined as π̃dac : S̃ → Θ̃.

Figure 1 depicts the interaction between a control policy
π̃ and a planning system A schematically. At each time step
t, the planner sends the current internal state s̃i

t and the cor-
responding reward r̃i

t to the control policy π̃ based on which
the controller decides which parameter setting ht+1 ∈ Θ̃
to use. The planner progresses according to the decision to

instance icontrol of h ∈ Θ̃

Control Policy π̃ Planner A

adapt parameter ht+1

state s̃it

reward r̃it

II

Figure 1: Dynamic configuration of parameter h ∈ Θ̃ of
algorithm A on an instance i ∈ I, at time step t ∈ N0. Until
i is solved or a budget is exhausted, the controller adapts
parameter h, based on the internal state s̃it of A.

the next internal state s̃it+1 with reward r̃it+1. This formalisa-
tion of dynamic algorithm configuration makes it possible to
recover prior meta-algorithmic frameworks as special cases
which we discuss below.

Dynamic Heuristic Selection
In this section, we will explain how dynamic algorithm con-
figuration can be used in the context of dynamic heuristic
selection and how it differs from time-adaptive or in short
adaptive algorithm configuration and algorithm selection,
which have already been used in the context of search with
multiple heuristics. Röger and Helmert (2010) introduced
the idea of maintaining a set of heuristics H each associated
with a separate open list in order to allow the alternation be-
tween such heuristics. Considering H as the configuration
space Θ̃ of a heuristic search algorithm A and each state
expansion as a time step t, it is possible to classify differ-
ent dynamic heuristic selection strategies within the frame-
work of algorithm configuration. For example, alternation is
an time-adaptive control policy because it maps each time
step to a specific heuristic, i.e. configuration, independent of
the instance or the state of the planner. The selection of a
particular heuristic depending on the current instance before
solving the instance, known as “portfolio planner”, is an al-
gorithm selection policy that depends only on the instance
and not on the current time step or the internal state of the
planner. Noteworthy exceptions are policies that compare
the heuristic values of states, such as the expansion of the
state with the overall minimal heuristic value or according
to a Pareto-optimality analysis (Röger and Helmert 2010).
Such policies depend on the current state of the planner, but
ignore the time step and the current instance being solved.
This indicates that all three components — the instance, the
time step, and the state of the planner — can be important
and helpful in selecting the heuristic for the next state expan-
sion. The following summarizes the existing approaches to
heuristic selection within the framework of algorithm con-
figuration.

• Algorithm Selection:

– Policy: π̃as : I → H

– Example: Portfolios (Seipp et al. 2012; Cenamor, de la
Rosa, and Fernández 2016; Sievers et al. 2019)

63

• Adaptive Algorithm Configuration:

– Policy: π̃aac : N0 → H

– Example: Alternation (Röger and Helmert 2010)

• Dynamic Algorithm Configuration:

– Policy: π̃dac : N0 × S̃ × I → H

– Example: Approach proposed in this paper

An Approach based on Reinforcement Learning
In this section, we describe all the parts required to dynami-
cally configure a planning system so that for each individual
time step, a dynamic control policy can decide which heuris-
tic to use based on a dynamic control policy. Here, a time
step is a single expansion step of the planning system.

State Description Learning dynamic configuration poli-
cies requires descriptive state features that inform the pol-
icy about the characteristics and the behavior of the plan-
ning system in the search space. Preferably, such features are
domain-independent, such that the same features can be used
for a wide variety of domains. In addition, such state features
should be cheap to compute in order to keep the overhead as
low as possible. As consequence of both desiderata and the
intended learning task we propose to use the following state
features computed over the entries contained in the corre-
sponding open list of each heuristic:

maxh: maximum h value for each heuristic h ∈ H;

minh: minimum h value for each heuristic h ∈ H;

µh: average h value for each heuristic h ∈ H;

σ2
h: variance of the h values for each heuristic h ∈ H;

#h: number of entries for each heuristic h ∈ H;

t: current time/expansion step t ∈ N0.

To measure progress, we do not directly use the values of
each state feature, but compute the difference of each state
feature between successive time steps t− 1 and t. The con-
figuration space is a finite set of n heuristics to choose from,
i.e., Θ̃ = H = {h0, . . . , hn−1}.

Note that the described set of state features is domain in-
dependent, but does not contain any specific context infor-
mation. In general, however, it is possible to describe an in-
stance or domain with state features that describe, for ex-
ample, the variables, operators or the causal graph (Sievers
et al. 2019). If the goal is to learn robust policies that can
handle highly heterogeneous sets of instances, it is possible
to add contextual information about the planning instance at
hand, such as the problem size or the required preprocessing
steps (Fawcett et al. 2014), to the state description. However,
in this work, limit ourselves to domain-wise dynamic con-
trol policies and show that the concept of DAC can improve
heuristic search in theory and practice.

Reward Function Similar to the state description, the
reward function we want to optimize should ideally be
domain-independent, cheap and quick to compute. Since the

goal is usually to quickly solve as many tasks as possible, a
good reward feature should reflect this desire.

We use a reward of −1 for each expansion step that the
planning system has to perform in order to find a solution.
Using this reward function, a configuration policy learns
to select heuristics that minimize the expected number of
state expansions until a solution is found. This sparse reward
function ignores aspects such as the quality of a plan, but
its purpose is to reduce the search effort and thus improve
search performance. Clearly, it is possible to define other re-
ward functions with, e.g., dense rewards to make learning
easier. We nevertheless demonstrate that already with our
reward function and state features it is possible to learn dy-
namic control policies, which dominate algorithm selection
and adaptive control policies in theory and practice.

Dynamic Algorithm Configuration in Theory
In optimal planning, where the goal is to find a plan with
minimal cost, the performance of heuristic search can be
measured by the number of state expansions (Helmert and
Röger 2008). This is different for satisficing planning, be-
cause plans with different costs can be found and there are
generally no “must expand” states that need to be expanded
to prove that a solution is optimal. However, the number of
state expansion until any goal state is found can be used to
measure the guidance of a heuristic or heuristic selection
(Richter and Helmert 2009; Röger and Helmert 2010).

We want to answer the question of whether it can theoret-
ically be beneficial to use dynamic control policies π̃dac over
algorithm selection policies π̃as or adaptive control policies
π̃aac. Proposition 1 proves that for each heuristic search al-
gorithm in combination with each collection of heuristics
there is a dynamic control policy π̃dac which is as good as
π̃as or π̃aac in terms of state expansions. The key insight is
that dynamic control policies are a strict generalization of al-
gorithm selection policies and adaptive control policies that
always allow the simulation of the former policies.

Proposition 1. Independent of the heuristic search algo-
rithm and the collection of heuristics, for each algorithm se-
lection policy π̃as and adaptive algorithm configuration pol-
icy π̃aac there is a dynamic control policy π̃dac which expands
at most as many states as π̃as and π̃aac until a plan is found
for a given planning instance.

Proof. DAC policies generalize algorithm selection and
adaptive algorithm configuration policies, thus it is always
possible to define π̃dac as π̃dac = π̃as or π̃dac = π̃aac.

With Proposition 1 it follows directly that an optimal al-
gorithm configuration policy π̃∗dac is at least as good as an
optimal algorithm selection policy π̃∗as and an optimal adap-
tive algorithm configuration policy π̃∗aac.

Corollary 2. Independent of the heuristic search algorithm
and the collection of heuristics, an optimal dynamic control
policy π̃∗dac expands at most as many states as an optimal
algorithm selection policy π̃∗as and an optimal adaptive al-
gorithm configuration policy π̃∗aac until a plan π is found for
a planning task.

64

s0

h0(s0) = 5
h1(s0) = 6

s1

h0(s1) = 5
h1(s1) = 3

s2 |= s?
h0(s2) = 0
h1(s2) = 0

s3

h0(s3) = 3
h1(s3) = 4

sk 6|= s?
h0(sk) = 1
h1(sk) = 1

∀k ∈ {4, . . . , 2n−1}

o1

o3

o2

Figure 2: Visualization of the induced transition system of
the planning task family in.

It is natural to ask the question to what extent the use of
a dynamic control policy instead of an algorithm selection
or an adaptive control policy can improve the search per-
formance of heuristic search. We will show that for each
algorithm selection policy π̃as and adaptive algorithm con-
figuration policy π̃aac, we can construct a family of planning
tasks so that a dynamic control policy π̃dac will expand ex-
ponentially fewer states until a plan is found. For this pur-
pose, we introduce a family of planning instances in with
O(n) propositional variables and O(n) operators. The in-
duced transition system of in is visualized in Figure 2. There
is exactly one goal path s0, s1, s2, which is induced by the
unique plan π = 〈o1, o2〉. Furthermore, exactly two states
are directly reachable from the initial state, s1 and s3. While
state s1 leads to the unique goal state s2, from s3 onward
exponentially many states s4, . . . , s2n−1 in n = |in|, i.e.
Ω(2n) = Ω(2|in|), can be reached by the subsequent appli-
cation of multiple actions.

Theorem 3. For each adaptive algorithm configuration pol-
icy π̃aac there exists a family of planning instances in, a col-
lection of heuristics H and a dynamic control policy π̃dac,
so that greedy best-first search with H and π̃aac expands ex-
ponentially more states in |in| than greedy best-first search
with H and π̃dac until a plan π is found.

Proof. Let π̃aac be an adaptive algorithm configuration pol-
icy. Now, we consider the family of planning tasks in (Fig-
ure 2) with |in| = O(n) and a collection of two heuris-
tics H = {h0, h1}. The heuristic estimates of h0 and h1

are shown in Figure 2 and the open lists of greedy best-
first search at each time step t are visualized in Figure 3.
In time step 0, it is irrelevant which heuristic is selected,
always leading to time step 1, where state s3 is the most
promising state according to heuristic h0, while state s1 is
the most promising state according to heuristic h1. In time
step 1, π̃aac can either select heuristic h0 or h1. We first as-
sume that π̃aac selects h0 so that state s3 is expanded, leading
to exponentially many states sk, which are all evaluated with
h0(sk) = h1(sk) = 1 and thus are all expanded before s1.
Therefore, the unique goal state s2 is found after all other
states in the state space S have been expanded.

In comparison, for π̃dac we can pick the policy that al-
ways selects the heuristic with minimum average heuris-
tic value of all states in the corresponding open list, i.e.
arg minh∈H µh. Following π̃dac, first h0 and then h1 is se-
lected, generating the goal state s2 in time step 1. Therefore,

〈s0, 5〉

h0

〈s0, 6〉

h1

〈s3, 3〉
〈s1, 5〉

h0

〈s1, 3〉
〈s3, 4〉

h1

〈sk, 1〉
· · ·
〈s1, 5〉

h0

〈sk, 1〉
· · ·
〈s1, 3〉

h1

〈s2,0〉
〈s3, 3〉

h0

〈s2,0〉
〈s3, 4〉

h1

π̃as, π̃aac: h0 π̃as, π̃aac: h0

π̃dac: h0 π̃dac: h1

Step: 0 Step: 1 Step: 2a Step: 2b

Figure 3: Visualization of two heuristics used to solve an
instance of the planning task family in.

π̃dac only expands 2 states, while π̃aac expands 2n−2 states
until a goal state is found.

Finally, for a policy π̃aac that selects h1 at time step 1,
it is possible to swap the heuristic estimates of h0 and h1 in
the constructed collection of heuristics, resulting in the same
number of state extensions.

Theorem 4. For each algorithm selection policy π̃as there
exists a family of planning instances in, a collection of
heuristics H and a dynamic control policy π̃dac, so that
greedy best-first search with H and π̃as expands exponen-
tially more states in |in| than greedy best-first search with
H and π̃dac until a plan π is found.

Proof. Let π̃as be an algorithm selection policy. Now, we
consider the family of planning tasks i′n, which is similar to
the family of planning tasks in (Figure 2), with one modifi-
cation: the goal state s2 is not directly reachable from s1, but
via an additional state s′. In other words, we insert the state
s′ between s1 and s2. Furthermore, we again consider a col-
lection of two heuristicsH = {h0, h1}with the heuristic es-
timates shown in Figure 2 and h0(s′) = 2 and h1(s′) = 10.
The idea is that both heuristics alone lead to the expansion
of exponentially many states, whereas a dynamic switch of
the heuristic only leads to constantly many expansions.

Policy π̃as selects exactly one heuristic, h0 or h1, for each
planning task. If h0 is selected, with the same argument used
in the proof of Theorem 3, exponentially many states in |i′n|
are expanded. If h1 is selected, in time step 2, states s3 and
s′ are contained in both open lists. According to h1, state s3

is more promising than s′, which leads again to an expansion
of exponentially many states in |i′n|.

In comparison, for π̃dac we pick again the policy that al-
ways selects the heuristic with minimum average heuris-
tic value of all states in the corresponding open list, i.e.
arg minh∈H µh. Policy π̃dac selects first h0, followed by h1

and again h0, resulting in the generation of the goal state
after three state extensions.

In Theorems 3 and 4 we assume for simplicity that ex-
panded states are directly removed from all open lists. In
practice, open lists are usually implemented as min-heaps,
and it is costly to search and remove states immediately.

65

Therefore, states that have already been expanded are kept
in the open lists and ignored as soon as they have reached the
top. We note that this does not affect the theoretical results.

Finally, it is important to emphasize that Proposition 1,
Corollary 2 and Theorems 3 and 4 are theoretical results.
All results are based on the assumption that it is possible to
learn good dynamic control policies. Next, we show that it is
possible in practice to learn such dynamic control policies.

Empirical Evaluation
We conduct experiments1 to measure the performance of our
reinforcement learning (RL) approach on domains of the In-
ternational Planning Competition (IPC). For each domain,
the RL policies are trained on a training set and evaluated
on a disjoint prior unseen test set of the same domain. Note
that such policies are not domain-independent, although it is
generally possible to add instance- and domain-specific in-
formation to the state features. We leave the task of learning
domain-independent policies for future work.

Setup
All experiments are conducted with FAST DOWNWARD
(Helmert 2006) as the underlying planning system. We
use (“eager”) greedy best-first search (Richter and Helmert
2009) and min-heaps to represent the open lists (Röger
and Helmert 2010). Furthermore, we implemented an ex-
tension for FAST DOWNWARD, which makes it possible to
communicate with a controller (dynamic control policy) via
TCP/IP and thus to send relevant information (state fea-
tures and reward) in each time/expansion step and to re-
ceive the selected parameter (heuristic). This architecture al-
lows the planner and controller to be decoupled, making it
easy to replace components. We considered four different
heuristic estimators as configuration space, i.e. Θ̃ = H =
{hff, hcg, hcea, hadd}which can be changed at each time step:

• hff: the FF heuristic (Hoffmann and Nebel 2001),

• hcg: the causal graph heuristic (Helmert 2004),

• hcea: the context-enhanced additive heuristic (Helmert and
Geffner 2008), and

• hadd: the additive heuristic (Bonet and Geffner 2001).

For the evaluation of the test set, i.e. the final planning
runs, we used a maximum of 4 GB memory and 5 min-
utes runtime. All experiments were run on a compute cluster
with nodes equipped with two Intel Xeon Gold 6242 32-
core CPUs, 20 MB cache and 188GB (shared) RAM running
Ubuntu 18.04 LTS 64 bit.

Similar to Biedenkapp et al. (2020), we use ε-greedy deep
Q-learning in the form of a double DQN (van Hasselt, Guez,
and Silver 2016) implemented in CHAINER (Tokui et al.
2019) (CHAINERRL v0.7.0) to learn the dynamic control
policies. The networks are trained using ADAM2 (Kingma
and Ba 2014) for 106 update steps. In order to avoid bad poli-
cies being executed arbitrarily long during training, we use

1Resources: https://github.com/speckdavid/rl-plan
2We use CHAINER’s v0.7.0 default parameters for ADAM.

a cutoff of 7 500 control/expansion steps. Although some in-
stances are not solved within this cutoff, even with the opti-
mal policy, the underlying assumption is that good policies
for smaller instances generalize to larger instances within a
domain. Note that it is in general also possible to add a cer-
tain time cutoff. To determine the quality of a learned policy,
we evaluated it every 30 000 steps during training and save
the best policy we have seen so far. In total, we performed
5 independent runs of our control policies for each domain,
for which we report the average performance. The policies
are represented by neural networks for which we determined
the hyperparameters in a white-box experiment on a new ar-
tifical domain and kept these hyperparameters fixed for all
domains in the experiments.

White-Box Experiments. We conducted preliminary ex-
periments on a newly created ARTIFICIAL domain with
two artificial heuristics. This domain is designed so that
in each step, only one of two heuristics is informative. In
other words, similar to the constructed example in the proof
of Theorem 4, at each time step, only one heuristic leads
to the expansion of a state which is on the shortest path
to a goal state. In order to obtain a good control policy
that leads to few state expansions, it is necessary to de-
rive a dynamic control policy from the state features. We
generated 30 training instances on which we performed a
small grid search over the following parameters #layers
∈ {2, 5}, hidden units ∈ {50, 75, 150, 200} and epsilon de-
cay ∈

{
2.5× 105, 5× 105

}
. We determined that a 2-layer

network with 75 hidden units and a linear decay for ε over
5× 105 steps from 1 to 0.1 worked best.

Interestingly, it was possible to learn policies with a per-
formance close to the optimal policy, see Figure 4. Both in-
dividual heuristics perform poorly (even when using an or-
acle selector). Randomly deciding which heuristic to play
performs nearly as good as the alternating strategy that al-
ternates between the heuristics at each step. In the begin-
ning the learned policy needs some time to figure out in
which states a heuristic might be preferable. However, it
quickly learns to choose the correct heuristic, outperforming
all other methods and nearly recovering the optimal policy.

Experiments
We evaluated the performance of our RL approach on six
domains of the International Planning Competition (IPC).
These domains were chosen because there are instance gen-
erators available online3 that make it possible to create a
suitable number of instances of different sizes. Furthermore,
instances of these domains usually require a significant num-
ber of state expansions in order to find a plan. For this pur-
pose, we generated 200 instances for all domains and ran-
domly divided them into disjoint training and test sets with
the same size of 100 instances each. For each domain we
trained five dynamic control policies on the training set and
compared them with other approaches on the unseen test
set. We are mainly interested in comparing different poli-
cies for heuristic selection, which is why, here, the planner

3https://github.com/AI-Planning/pddl-generators

66

Algorithm CONTROL POLICY SINGLE HEURISTIC BEST AS (ORACLE)

Domain (# Inst.) RL RND ALT hff hcg hcea hadd RL ALT SINGLE h

BARMAN (100) 84.4 83.8 83.3 66.0 17.0 18.0 18.0 89.0 84.0 67.0
BLOCKSWORLD (100) 92.9 83.6 83.7 75.0 60.0 92.0 92.0 96.3 88.0 93.0
CHILDSNACK (100) 88.0 86.2 86.7 75.0 86.0 86.0 86.0 88.0 88.0 86.0
ROVERS (100) 95.2 96.0 96.0 84.0 72.0 68.0 68.0 96.0 96.0 91.0
SOKOBAN (100) 87.7 87.1 87.0 88.0 90.0 60.0 89.0 88.6 87.0 92.0
VISITALL (100) 56.9 51.0 51.5 37.0 60.0 60.0 60.0 61.4 52.0 60.0

SUM (600) 505.1 487.7 488.2 425.0 385.0 384.0 413.0 519.3 495.0 489.0

Table 1: Average coverage of different policies for the selection of a heuristic in each expansion step when evaluating the
strategies on the prior unseen test set. The first three columns are control policies, the next four are individual heuristic searches,
while the last three represent the best algorithm selection of the corresponding strategies, i.e. oracle selector for each instance.

10
4

10
5

10
6

#train steps

10
1

10
2

Ex
pa

nd
ed

 N
od

es

Incumbent Performance on Training Set

RL
optimal

0
1

Best AS
RND

ALT

Figure 4: Performance of the best learned policy during
training (RL), compared to the the performance of the in-
dividual heuristics (0 & 1), the oracle selector (BEST AS),
an alternating schedule (ALT), a random policy (RND) and
the optimal policy. Dashed lines indicate the performance of
our baselines, the solid line the mean performance and the
shaded area the standard deviation of our approach.

always maintains all four open lists, even if only one heuris-
tic is used, and the controller, i.e. the dynamic control policy,
alone decides which heuristic is selected.

Table 1 shows the percentage of solved instances per do-
main, i.e. the average coverage, on the test set. Each domain
has a score in the range of 0-100, with larger values indicat-
ing more solved instances on average. More precisely, it is
possible to obtain a score between 0 and 1 for each planning
instance. A value of 0 means that the instance was never
solved by the approach, 0.5 means that the instance was
solved in half the runs, and 1 means that the instance was
always solved. These scores are added up to give the aver-
age coverage per domain.

The first three columns correspond to control policies. En-
try RL is the average coverage of the five trained dynamic
control policies based on reinforcement learning, each aver-
aging over 25 runs with different seeds. Entry RND denotes
the average coverage of 25 runs, where a random heuristic
is selected in each step. Entry ALT stands for the average
over all possible permutations of the execution of alterna-
tion. Note that there are 4! = 24 different ways of execut-
ing alternation with four different heuristics. The SINGLE
HEURISTIC columns show the coverage when only the cor-
responding heuristic is used. Finally, the columns for select-

ing the best algorithm selection (BEST AS) stand for the use
of an oracle selector, which selects the best configuration
of the corresponding technique for each instance. In other
words, the best algorithm selection for RL is to choose the
best dynamic control policy from the five trained policies
for each instance, the best algorithm selection for ALT is to
choose the best permutation of alternation for each instance
and the best algorithm selection for SINGLE h is to choose
the best heuristic for each instance.

The results of Table 1 show that our approach (RL) per-
forms best on average in terms of coverage (individual cov-
erage of the five trained RL policies: 505.4, 500.6, 501.6,
507.4, 510.1). ALT is slightly better than the uniform ran-
domized choice of a heuristic RND, which indicates that the
most important advantage of ALT is to use each heuristic
equally with frequent switches and not to switch between
them systematically. Furthermore, consistent with the re-
sults of Röger and Helmert (2010), single heuristics per-
form worse than the use of multiple heuristics. Interestingly,
in the domain VISITALL, single heuristics have the highest
coverage and while RND and ALT have a low coverage, RL
performs better. This indicates that in this domain, the dy-
namic control policies of RL were able to infer that a static
policy is good or to exclude certain single heuristics. In
BLOCKSWORLD, RL has the highest coverage among all ap-
proaches. A possible explanation is that a dynamic policy
is the key to solving difficult instances in this domain. This
assumption is supported by the observation that the best al-
gorithm selection, i.e. the oracle selection of RL, clearly ex-
ceeds the other approaches in BLOCKSWORLD. Finally, in
ROVER, the use of multiple heuristics seems to be impor-
tant, and while RL scores better than using single heuristics,
the learned policy scores worse than RND and ALT. This may
be due to overfitting which we will discuss below.

Considering the columns of best algorithm selection, it is
possible to observe that an oracle single heuristic selection
or oracle alternating selection would not perform better than
the average performance of our learned RL which policies
shows that 1) heuristic search with multiple heuristics can in
practice benefit from dynamic algorithm configuration and
2) it is possible to learn good dynamic policies domain-wise.
Even under the unrealistic circumstances of an optimal algo-
rithm selector, our learned policies perform better and thus
outperform all possible algorithm selection policies.

67

Algorithm CONTROL POLICY SINGLE HEURISTIC

Metric RL RND ALT hff hcg hcea hadd

COVERAGE 84.2 81.3 81.4 70.8 64.2 64.0 68.8
GUIDANCE 38.5 37.4 37.5 30.8 27.6 28.6 30.4
SPEED 66.6 62.8 62.8 54.9 50.4 50.3 54.0
QUALITY 76.2 76.0 76.0 65.8 57.6 56.2 60.9

(a) Test set

Algorithm CONTROL POLICY SINGLE HEURISTIC

Metric RL RND ALT hff hcg hcea hadd

COVERAGE 87.0 83.6 83.0 71.7 64.3 65.0 68.5
GUIDANCE 39.8 38.3 38.4 31.4 26.6 28.8 30.2
SPEED 69.3 65.3 65.4 56.0 49.1 51.1 54.2
QUALITY 79.5 77.9 77.5 66.8 57.3 58.0 61.3

(b) Training set

Table 2: A comparison of different control policies and single heuristic search measuring coverage, guidance, speed and solution
quality on the prior unseen test set (a) and the training set (b). A higher score means better performance for all four metrics.

Table 2 shows four different metrics including the cov-
erage from above. We additionally evaluate the guidance,
speed and quality for each approach with a rating scale
(Richter and Helmert 2009; Röger and Helmert 2010). For
guidance, tasks solved within one state expansion get one
point, while unsolved tasks or tasks solved with more than
106 state expansions get zero points. Between these ex-
tremes the scores are interpolated logarithmically. For speed
the algorithm gets one point for tasks solved within one sec-
ond, while the algorithm gets zero points for unsolved tasks
or tasks solved in 300 seconds. For quality the algorithm
gets a score of c∗/c for a solved task, where c is the cost of
the reported plan and c∗ is the cost of the best plan found
with any approach. Finally, the sum of each metric is di-
vided by the number of domains to obtain a total score be-
tween 0 and 100. Considering those metrics, control poli-
cies perform better than single heuristic approaches. Fur-
thermore, dynamic control polices obtained by RL perform
best according to all metrics. However, this analysis favors
approaches which solve more instances than others. Recall
that plan quality is not taken into account when learning a
policy, which explains the small advantage of RL in plan
quality, even though more instances have been solved by RL.

Next we compare the performance of our approach RL on
the training set (Table 2b) with the performance of RL on the
test set (Table 2a). It is possible to observe that RL performs
better on the training set which can be attributed to overfit-
ting and can explain why in some instances the performance
of RL is worse than other approaches on the test set (see
column RL of Table 2a and 2b). This issue of RL can be ad-
dressed in several ways, such as tuning the hyperparamters,
expanding the training set or adding state features.

Finally, we want to mention the computational overhead
of our RL approach compared to ALT and SINGLE HEURIS-
TIC search approaches. While the performance of RL still ex-
ceeds the SINGLE HEURISTIC search of FAST DOWNWARD
for all four heuristics, RL performs slightly worse than the
internal heuristic alternation strategy of FAST DOWNWARD.
In the future the overhead can be reduced by integrating the
reinforcement learning part directly in FAST DOWNWARD
instead of communicating via TCP/IP.

Conclusion
We theoretically and empirically evaluated the use of dy-
namic algorithm configuration for planning. More specifi-
cally, we have shown that dynamic algorithm configuration

can be used for dynamic heuristic selection that takes into
account the internal search dynamics of a planning system.
Dynamic policies for heuristic selection generalize policies
of existing approaches like algorithm selection and adaptive
algorithm control, and their use can improve search perfor-
mance exponentially. We presented an approach based on
dynamic algorithm configuration and showed empirically
that it is possible to learn policies capable of outperforming
other approaches in terms of coverage.

For future work we will investigate domain-specific state
features to learn domain-independent dynamic policies. Fur-
ther, it is possible to dynamically control several parameters
of a planner and to switch dynamically between different
search algorithms. This raises the question how the search
progress (Aine and Likhachev 2016) can be shared when
using different search strategies. In particular, if we want to
combine different search techniques, such as heuristic search
(Bonet and Geffner 2001), symbolic search (Torralba et al.
2017; Speck, Geißer, and Mattmüller 2018) and planning as
satisfiability (Kautz and Selman 1992; Rintanen 2012), it is
an open question how to share the search progress.

Acknowledgments David Speck was supported by the
German Research Foundation (DFG) as part of the project
EPSDAC (MA 7790/1-1). André Biedenkapp, Marius Lin-
dauer and Frank Hutter acknowledge funding by the Robert
Bosch GmbH.

References
Aine, S., and Likhachev, M. 2016. Search portfolio with
sharing. In Proc. ICAPS 2016, 11–19.
Ansótegui, C.; Sellmann, M.; and Tierney, K. 2009. A
gender-based genetic algorithm for the automatic configu-
ration of algorithms. In Proc. of CP’09, 142–157.
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning
heuristic functions for large state spaces. AIJ 175:2075–
2098.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Biedenkapp, A.; Bozkurt, H. F.; Eimer, T.; Hutter, F.; and
Lindauer, M. 2020. Dynamic Algorithm Configuration:
Foundation of a New Meta-Algorithmic Framework. In
Proc. of ECAI’20.

68

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5–33.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2016. The
IBaCoP planning system: Instance-based configured portfo-
lios. JAIR 56:657–691.
Cook, B., and Huber, M. 2016. Dynamic heuristic planner
selection. In Proc. SMC 2016, 2329–2334.
Domshlak, C.; Karpas, E.; and Markovitch, S. 2010. To
max or not to max: Online learning for speeding up optimal
planning. In Proc. AAAI 2010.
Droste, S.; Jansen, T.; and Wegener, I. 2002. Optimization
with randomized search heuristics - the (A)NFL theorem,
realistic scenarios, and difficult functions. Theoretical Com-
puter Science 287(1):131–144.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.;
and Seipp, J. 2011. FD-Autotune: Automated configuration
of Fast Downward. In IPC 2011 planner abstracts, 31–37.
Fawcett, C.; Vallati, M.; Hutter, F.; Hoffmann, J.; Hoos, H.;
and Leyton-Brown, K. 2014. Improved features for runtime
prediction of domain-independent planners. In Proc. ICAPS
2014.
Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Neural
network heuristics for classical planning: A study of hyper-
parameter space. In Proc. ECAI 2020.
Gomoluch, P.; Alrajeh, D.; and Russo, A. 2019. Learning
classical planning strategies with policy gradient. In Proc.
ICAPS 2019, 637–645.
Gomoluch, P.; Alrajeh, D.; Russo, A.; and Bucchiarone, A.
2020. Learning neural search policies for classical planning.
In Proc. ICAPS 2020, 522–530.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Proc. ICAPS 2008, 140–
147.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In Proc. AAAI 2008, 944–949.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. ICAPS 2004, 161–170.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Hutter, F.; Hoos, H.; Leyton-Brown, K.; and Stützle, T.
2009. ParamILS: An automatic algorithm configuration
framework. JAIR 36:267–306.
Hutter, F.; Lindauer, M.; Balint, A.; Bayless, S.; Hoos, H.;
and Leyton-Brown, K. 2017. The configurable SAT solver
challenge (CSSC). AIJ 243:1–25.
Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Proc. ECAI 1992, 359–363.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv:1412.6980 [cs.LG].
López-Ibáñez, M.; Dubois-Lacoste, J.; Caceres, L. P.; Birat-
tari, M.; and Stützle, T. 2016. The irace package: Iterated

racing for automatic algorithm configuration. Operations
Research Perspectives 3:43–58.
Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M. 2020.
Adaptive planner scheduling with graph neural networks. In
Proc. AAAI 2020. 5077–5084.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Rice, J. R. 1976. The algorithm selection problem. Ad-
vances in Computers 15:65–118.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Proc. ICAPS
2009, 273–280.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. AIJ
193:45–86.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
Proc. ICAPS 2010, 246–249.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012.
Learning portfolios of automatically tuned planners. In
Proc. ICAPS 2012, 368–372.
Seipp, J.; Sievers, S.; Helmert, M.; and Hutter, F. 2015. Au-
tomatic configuration of sequential planning portfolios. In
Proc. AAAI 2015, 3364–3370.
Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Fer-
ber, P. 2019. Deep learning for cost-optimal planning: Task-
dependent planner selection. In Proc. AAAI 2019, 7715–
7723.
Snoek, J.; Larochelle, H.; and Adams, R. 2012. Practical
Bayesian optimization of machine learning algorithms. In
Proc. of NeurIPS’12, 2960–2968.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018. Symbolic
planning with edge-valued multi-valued decision diagrams.
In Proc. ICAPS 2018, 250–258.
Thayer, J. T.; Dionne, A. J.; and Ruml, W. 2011. Learning
inadmissible heuristics during search. In Proc. ICAPS 2011,
250–257.
Tokui, S.; Okuta, R.; Akiba, T.; Niitani, Y.; Ogawa, T.; Saito,
S.; Suzuki, S.; Uenishi, K.; Vogel, B.; and Yamazaki, H. V.
2019. Chainer: A deep learning framework for accelerating
the research cycle. In Proc. of KDD’19, 2002–2011.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient symbolic search for cost-optimal planning.
AIJ 242:52–79.
van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep re-
inforcement learning with double q-learning. In Proc. of
AAAI’16, 2094–2100.
Virseda, J.; Borrajo, D.; and Alcázar, V. 2013. Learning
heuristic functions for cost-based planning. In ICAPS 2013
Workshop on Planning and Learning.
Wolpert, D. H., and Macready, W. G. 1995. No free lunch
theorems for search. Technical Report SFI-TR-95-02-010,
Santa Fe Institute.

69

Knowing When To Look Back: Bidirectional Rollouts in Dyna-style Planning

Yat Long Lo, 1, 3 Jia Pan, 1 Albert Y.S. Lam 2, 3
1Department of Computer Science, University of Hong Kong

2Department of Electrical and Electronic Engineering, University of Hong Kong
3 Fano Labs, Hong Kong

Abstract

In model-based reinforcement learning (MBRL), a model of
the world is used to generate transitional data for an agent
to learn from, in order to reduce sample complexity. Dyna
is one of the most widely adopted MBRL frameworks that
perform planning, acting, and learning in an online manner.
Most of the previous works on Dyna perform one-step roll-
outs from sampled states to generate data based on the agent’s
history. Recently, it has been shown that planning shape and
directionality (forward or backward planning) of the rollouts
can impose a significant impact on the performance given a
fixed planning budget. In this work, we conduct a system-
atic study on how these two factors affect the performance
of model-based agents. We hypothesize that forward plan-
ning and backward planning serve complementary purposes,
i.e. exploration and value propagation, in which careful state-
dependent allocation of planning budget can improve learn-
ing efficiency. We further provide an online method to auto-
mate the decision between forward planning and backward
planning using error-based epistemic uncertainty. We exam-
ine our proposed method in the tabular and linear function ap-
proximation settings for both perfect and learned models on
GridWorld and Cartpole environments and propose the use
of an ensemble of world models to counter compounding er-
rors of long rollouts in the learned models. Our results show
that both planning shape and directionality have a profound
impact on Dyna methods’ efficacy and bidirectional rollouts
can improve learning efficiency using the same number of
planning steps.

1 Introduction
With numerous successes of model-free reinforcement
learning (RL) in various tasks from video game playing
(Volodymyr et al. 2015) to robotics control (Gu et al. 2017),
model-based RL has gained wide interest in the research
community as a means to reduce the number of interactions
with the environment, i.e., sample complexity, which can
be expensive when being applied to real-world problems.
Model-based RL commonly contains a model of the world
that can be either hand-crafted or learned. Akin to how hu-
mans imagine scenarios in our heads, an agent learns from

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the data generated by the world model without actually tak-
ing actions within the real environment. The learning pro-
cess from these generated data is known as planning.

Dyna (Sutton 1991) is a general framework of reinforce-
ment learning that combines both model-free and model-
based RL into a single coherent architecture. This frame-
work has the appealing property of asynchronous process-
ing of planning and learning in which an agent’s decision-
making and learning processes can operate at the same time
as the world model is learning and planning. The world
model is learned from an agent’s real experience while
both real and simulated experiences generated by the world
model are used to update the value function or policy. We re-
fer to the use of simulated experience to learn here as Dyna-
style planning. Given the general and learning-algorithm-
independent nature of Dyna, we study different planning
properties following this framework.

Dyna offers flexible control over the planning process by
how much computational budget is devoted to planning and
how is the budget distributed (Holland, Talvitie, and Bowl-
ing 2018). Most of the previous works on Dyna, includ-
ing the original Dyna-Q algorithm (Sutton 1991), performed
one-step rollouts from sampled states to perform planning.
The potential benefits of using such flexible control are
less investigated. Two major factors over such planning
control are planning shape (Holland, Talvitie, and Bowl-
ing 2018) and directionality. Holland, Talvitie, and Bowl-
ing (2018) studied the impact of planning shape on perfor-
mance, demonstrating that longer or mid-length rollouts are
often more beneficial than one-step rollouts for the same
amount of planning steps. In terms of directionality, forward
planning is the most common that the world model gen-
erates the reward and the next state given a sampled state
and action. Moore and Atkeson (1993) used a form of back-
ward planning by prioritizing states of high error and up-
dating the values of their predecessors, which was shown
to improve learning efficiency by propagating values along
a trajectory faster. Edwards, Downs, and Davidson (2018)
proposed forward-backward RL that uses a backward world
model to generate data starting from goal states to handle
sparse reward environments, but it assumed the knowledge
of goal states and only performed rollouts from those goal

70

states. Overall, to our best of our knowledge, there is no sys-
tematic study on both planning shape and directionality and
methods that take advantage of both forward and backward
planning.

With a focus on planning shape (i.e., rollout lengths), we
encounter the issue of compounding of errors (Asadi, Misra,
and Littman 2018) in longer rollouts. The issue originates
from the inaccuracy of generated data by learned models that
can detrimentally affect performance. This is exacerbated
when the rollouts are long, outweighing any benefits the
rollout lengths can bring. To mitigate this problem, Talvitie
(2014) and Venkatraman, Hebert, and Bagnell (2015) pro-
posed hallucination to prepare the model to handle the fake
and inaccurate inputs generated by itself. Asadi et al. (2019)
proposed using a multi-step model directly to avoid feeding
generated outputs back to the world model.

In this paper, we first conduct a systematic study on how
both planning shape and directionality affect performance.
Then, we hypothesize that forward planning and back-
ward planning serve complementary roles of exploration
and value propagation. We propose an automatic method for
bidirectional rollouts that takes advantage of their hypothe-
sized roles using error-based epistemic uncertainty. For the
same amount of planning budget, we show that our proposed
method for bidirectional rollouts produces the best overall
performance among different planning shapes when com-
pared with only-forward rollouts and only-backward roll-
outs, offering supporting evidence to our hypothesis for roles
of forward planning and backward planning. We test our
method in the tabular and linear function approximation set-
tings for both perfect and learned models on GridWorld and
Cartpole environments. Additionally, we propose the use of
an ensemble of world models to counter compounding er-
rors of long rollouts in learned models that drop inaccurate
data based on the degree of disagreement among them. The
simple and straightforward approach is found to be effective
in avoiding catastrophic failures in long rollouts.

2 Background
2.1 Reinforcement Learning
In reinforcement learning, an agent interacts with its en-
vironment by taking actions at discrete time steps t =
0, 1, 2, · · · . The environment is commonly formulated as
a Markov Decision Process (MDP) with states S, ac-
tions A, transition probabilities P : S ×A× S →
[0, 1], rewards R : S ×A× S → R and discount function
γ : S ×A× S → [0, 1] (White 2017). At each time step t,
the agent is in a state St, and takes an actionAt. In response,
the environment emits a reward Rt+1 and takes the agent to
a state St+1. The goal of the agent is to maximize the return,
defined as the discounted sum of the cumulative rewards:

Gt =
∞∑

k=0

γkRt+k+1. (1)

In this paper, as we focus on the rollout mechanisms in
Dyna-style planning, the methods used should be indepen-
dent of the choice of learning algorithms. Thus, we use Q-
learning (Watkins and Dayan 1992) as our default learning

algorithm to isolate the effect of the planning parameters
that we are interested in. In Q-learning, the agent learns to
approximate the state-action value function and acts near-
greedily according to those state-action values. The state-
action values for a policy π : S×A → [0, 1] are the expected
return for that policy beginning from state s and action a:

qπ(s, a) = Eπ[Gt|St = s,At = a], (2)

where Eπ[·] denotes taking expectation under policy π.
For linear function approximation, We parameterize the

state-action value functions, denoted as q̂(St, At,θt), where
θt refers to the weight vectors. State-action value functions
are commonly learned by bootstrapping the state-action
value of the next state, minimizing the temporal difference
error. The update rule for Q-learning to learn state-action
value functions is as follows:

θt+1 = θt + α(Rt+1 + γmax
At+1

q̂(St+1, At+1)

−q̂(St, At))∇θ q̂(St, At),
(3)

where α is the learning rate. Each linear function approxi-
mator takes in a state feature vector as an input and produces
state-action value for each possible action.

2.2 Model-Based Reinforcement Learning
Dyna Learning the value function often requires a huge
number of samples. Model-based approaches aim to lower
such sample complexity using world models to generate
imagined experiences. Dyna-Q (Sutton 1991) learns a value
function from both real and imagined experiences using
the same update rule as Q-learning. Specifically, a world
model is used to generate a complete transition to be used
by a learning algorithm. The world models are either hand-
crafted or learned. Here, we parameterize learned world
models with neural networks.

Figure 1: Different planning shapes

Planning Shape Planning shape is a term coined by Hol-
land, Talvitie, and Bowling (2018) to formalize how a plan-
ning budget is distributed. The budget refers to the number
of planning steps per real step taken in the environment. The

71

distribution can take many shapes. For instance, as illus-
trated in Figure 1, if the planning budget is 20 steps, an agent
can sample one state for 20 rollout steps, sample two states
for 10 rollout steps, sample four states for 5 rollout steps,
and so on. It is found that the distribution can have a pro-
found impact on the performance of a Dyna agent. Specif-
ically, 1-step rollouts do not seem to benefit performance
when compared with longer rollouts.

Figure 2: Forward and backward models

Directionality As shown in Figure 2, forward and back-
ward model have different input-output relationships. Same
as the way defined in Sutton and Barto (2018), a forward
model takes in a state and an action to produce the corre-
sponding next state and reward. Rollouts can be performed
iteratively by feeding the next state and a sampled action into
the forward model. On the other hand, a backward model
takes in a state and a reward to produce a corresponding pre-
vious state and the action that led to the current state. Using
either the forward or backward model gives the agent a com-
plete transition to learn but the value of the state that is being
updated is different. Note that another possible variant of the
backward model is to also predict the reward that an agent
gets to reach a particular state. This removes the assump-
tion of the knowledge of a reward function but increases the
learning burden of the agent. In this work, we assume that
we have a reward oracle that tells the agent the correct re-
ward as it rolls out backward.

3 Bidirectional Rollouts Using Epistemic
Uncertainty

Given a fixed planning budget, when should an agent per-
form forward and backward planning? If we crudely equate
learning from data generated by world models with animals’
imagination, the question would become when one should
look ahead and back from a scenario (a state). We hypoth-
esize that forward and backward plannings serve comple-
mentary purposes of exploration and value propagation, re-
spectively. Specifically, forward planning helps improve the
value estimation of a state by generating unfamiliar experi-
ences of possible futures. On the other hand, backward plan-
ning facilitates propagating the value learned for a particular

state back to its predecessors. Hence, as the value estimation
of a state-action pair improves through actual environment
learning and forward planning, backward planning should
be performed to a greater extent to inform value estima-
tions of the state’s predecessors. We hypothesize realizing
this intuition can improve learning efficiency, especially in
sparse reward settings. This is because what is learned would
be propagated faster through backward planning at the right
time when the value estimation of a state becomes accurate
enough.

To know when the estimation is accurate enough, we pro-
pose using the simple quantity of the learning error which
requires no extra computation to obtain. The learning er-
ror has a positive relationship with epistemic uncertainty,
which is induced during the learning process. As the error
goes down, an agent should be more certain about the value
estimation of that state. In other words, simply based on the
learning error, we can control how much backward planning
to perform. We show how to apply such intuition in both the
tabular and function approximation settings.

3.1 Tabular Setting
In the tabular setting, using Q-learning as an example, a sim-
ple extension can be done by having a maximum error (ME)
table of the same size as the Q-value table to store the max-
imum error of each state-action pair. With the maximum er-
ror known, we have a reference point to the assess learn-
ing progress for each pair. To translate such information into
resource allocation decisions in terms of how much to roll
out forward and backward, we use the maximum error as a
normalizing factor to obtain a value between 0 and 1. The
allocation equations are as follows:

n forward = (et/ME(St, At))×max plan steps, (4)

n backward = max plan steps− n forward, (5)

where max plan steps is the number of planning steps an
agent can take, n forward and n backward are the num-
ber of forward rollout steps and the number of backward
rollout steps, et is the last temporal difference error of the
state-action pair, and ME(St, At) refers to the maximum
error of the pair obtained from the maximum error table. We
can see that as the error goes down, fewer resources will be
allocated to perform forward rollouts with more resources
left for backward rollouts to propagate the learned values
backward. We hypothesize such a way of allocation would
improve learning efficiency.

3.2 Function Approximation Setting
Our simple extension in the tabular setting is not scalable
in the function approximation setting, especially in environ-
ments with large and continuous state spaces. Specifically,
three problems arise, namely the memory issue of the ME
table in continuous state spaces, the unreliability of the er-
ror measure under the function approximation setting, and
the poor quality of learned world models. We propose three
techniques to handle these issues

72

State Discretization: Having a ME table is intractable and
inefficient in continuous state spaces. To handle this issue,
we propose the use of state discretization to aggregate sim-
ilar states together. This is done by binning each dimen-
sion of the state features separately, denoted as a func-
tion discretize. The unique combination of bins across all
state dimensions would be one entry in the ME table. This
method is highly scalable as the number of state dimensions
grows linearly with the number of bins (Ghiassian et al.
2020). Hence, when we encounter a large and continuous
state space, we no longer need a huge or possibly infinite-
sized table but a reasonably sized one after state discretiza-
tion. With state discretization, the planning budget allocation
equation is as follows:

n forward = (et/ME(discretize(St, At)))

×max plan steps. (6)

Here, we have an additional discretize function that dis-
cretizes the state and returns the corresponding index to ac-
cess the maximum error value for a subset of states in the
ME table.
Exponential Moving Error: Another issue comes from the
unreliability of using the learning error as a pseudo-measure
of epistemic uncertainty. In the function approximation set-
ting, learning no longer strictly linearly reduces error. An
improvement in the value estimation of a state-action pair
may worsen the estimation of another pair. Additionally,
in some unseen or rarely seen states, or some catastrophic
states to the value function, the error values can become ex-
ceptionally large. As a result, the relationship between the
error and epistemic uncertainty is no longer as linear as we
may expect in the function approximation setting. To over-
come this, we propose the use of exponential moving error
in the replacement of maximum error. By doing so, the error
measure used for normalization is less likely to be skewed by
large values and is more adaptive to recent learning progress.
The update of ME table entries is as follows:

ME(discretize(St, At)) =

β ×ME(discretize(St, At)) + (1− β)× et,
(7)

where β is the decaying constant, a hyperparameter to be
tuned.
An Ensemeble of World Models: The last issue is the poor
quality of world models. As we move towards harder prob-
lems beyond the tabular setting, we can no longer have per-
fect world models. In simple environments like tabular Grid-
World, perfect world models can be created, given that we
have a deterministic environment with well-defined action
space. On the other hand, in harder problems like physics
simulators and robotics, it is almost impossible to have a
perfect world model, letting alone two perfect world models
for forward and backward rollouts. The issue is significantly
worse when such a world model is learned. When we use
an inaccurate model to perform rollouts, the longer a roll-
out, the more inaccurate the predictions, caused by the issue
of compounding errors (Asadi, Misra, and Littman 2018).
To alleviate this issue, we propose the use of an ensemble

of world models. The ensemble approach has been a com-
monly used approach in machine learning. The high-level
idea is to improve prediction accuracy by training a set of
models that differ by factors like different random initializa-
tion to achieve better performance. Osband et al. (2016) pro-
posed the approach of learning an ensemble of value func-
tions that are initialized differently. As learning progresses,
the difference in predictions across these functions serves as
an indicator of how certain the agent is with the predictions.
Taking inspiration from this idea, we propose having an en-
semble of learned world models. Their disagreements in the
generated rollouts can serve as an indicator of how certain
the models are with their predictions. If it is highly uncer-
tain, the agent drops those transitions and does not learn
from them. As a result, the agent can avoid learning from
data that are highly erroneous with the potential of nega-
tively affecting the learning progress. Specifically, we use
the standard deviation of predictions across all the world
models as the numerical measure. If the measure is greater
than a threshold κ, the rollout is dropped to avoid the com-
pounding of errors. We denote this threshold as κ. When the
rollout is not dropped, we use the averaged prediction across
the world models as the generated data. More options other
than simple averaging like weighted averaging can be fur-
ther explored.

By combining all these three techniques, we can extend
our intuition to the function approximation setting. We will
showcase the results in the experimental results section.

4 Experimental Setup
We conduct extensive experiments on the GridWorld envi-
ronment for the tabular setting and the Cartpole environment
for the linear function approximation setting.

For the GridWorld environment, an agent attempts to
reach the goal state at the upper-right corner, starting from
the lower-left corner. The agent only receives a reward
of +1 when reaching the goal state. The state represen-
tation is the coordinate of the agent on the grid. Grid-
World of various sizes are used to vary reward sparsity:
5x5, 10x10, 20x20, 40x40 and 80x80. For model-based
agents, we used a perfect forward and backward world
model with a fixed planning budget of 20 steps. To look at
the effect of rollout mechanisms, we examine three types of
model-based reinforcement learning agents, namely one that
only performs forward rollouts (Dyna Q Forward), one that
only performs backward rollouts (Dyna Q Backward) and
one that dynamically performs forward and backward roll-
outs based on the epistemic uncertainty as discussed above
(Dyna Q Forward Backward).

For the Cartpole environment, a pole is attached by an
unactuated joint to a cart, moving along a frictionless track.
An episode starts with the pole upright and the goal of the
agent is to prevent the pole from falling by increasing or
decreasing the cart’s velocity along the horizontal direction.
The agent receives a reward of +1 as long as the pole is up
and a terminating reward of -1 if the pole falls. The state
representation has four features, namely the cart’s position,
the cart’s velocity, the pole’s angle, and the pole’s velocity

73

Figure 3: Performance of forward, backward and bidirectional rollouts for GridWorld environments

at the tip. We used the implementation provided by Ope-
nAI (Brockman et al. 2016). To acquire a better feature
representation with a higher number of features, we pre-
train a feature extractor using Deep Q-learning (Mnih et al.
2015) and adopt the output of the last layer as the inputs
to the learning algorithm. We assume imperfect world mod-
els by pretraining fully connected neural networks with a
fixed planning budget of 20 steps. For the ensemble method,
we use an ensemble of six world models for forward mod-
els and backward models, respectively. Details on the pre-
training of the world models and feature extractor are in-
cluded in the appendix (7.1 and 7.2) . To assess the per-
formance of our proposed method, we compare with mul-
tiple Dyna-Q variants. We consider two algorithms that use
only-forward rollouts (Dyna Q F) and only-backward roll-
outs (Dyna Q B), respectively, and two other algorithms
with the same respective settings but with an ensemble of
world model (Dyna Q F DE and Dyna Q B DE). Our pro-
posed method is denoted as Dyna Q FB DE, which uses an
ensemble of world model and performs bidirectional rollouts
dynamically.

For both sets of experiments, we use model-free Q-
learning as our baseline. Parameters sweeps are done on the
learning rate, β and κ (see appendix 7.3). Results reported
are averaged over 10 runs of different random seeds.

5 Results
5.1 Tabular Setting
In Figure 3, we compare the performance of forward-only
(blue), backward-only (green), and bidirectional rollouts
(red) in the GridWorld environments of various sizes. To be-

gin with, as problem difficulty increases, we can see model-
based agents outperform the baseline Q-learning agent (yel-
low). This is obvious and expected as model-based agents
have additional learning experiences received from their cor-
responding world models. As the GridWorld size increases,
the model-free agent fails to acquire rewards due to the high
reward sparsity.

Comparing the two agents that only perform forward and
backward rollouts, we can see that as the problem difficulty
increases, the agent with only forward rollouts outperforms
the agent with only backward rollouts. One possible expla-
nation is the relatively lower capability of exploration using
backward rollouts, which prompts the question of whether
backward rollouts can be applied conditionally in combina-
tion with forward rollouts to achieve even more superior re-
sults.

Among the three types of model-based agents, our pro-
posed method with bidirectional rollouts has the best over-
all performance across GridWorld sizes. More importantly,
our proposed method has consistently better performance in
GridWorld sizes with larger reward sparsity (20x20, 40x40,
and 80x80). This provides supporting evidence of the signif-
icant impact of directionality on performance. Specifically,
learning efficiency can be improved by utilizing forward and
backward planning dynamically based on error-based epis-
temic uncertainty.

Additionally, looking at the planning shape, our tabular
results are in agreement with the conclusions made in Hol-
land, Talvitie, and Bowling (2018) under the nonlinear func-
tion approximation setting. We can see that medium-length
rollouts are much better than one-step rollouts.

74

Figure 4: Learning curves of forward, backward and bidirectional rollouts for Cartpole environment

5.2 Function Approximation Setting
In Figure 4, we show the performance of all the mentioned
agents across different planning shapes. Being consistent
with the results in the GridWorld Experiments, medium-
length planning shapes have the best performance for the
model-based agents.

We can see that our proposed approach (Dyna Q FB DE)
has the best overall results. As the rollout length increases,
we observe how an ensemble of world models alleviates the
problem of compounding errors by dropping harmful transi-
tions. In other words, the approach is robust when we have
imperfect world models and need longer rollouts. The same
effect can also be observed in agents that only perform for-
ward or backward rollouts exclusively but with an ensem-
ble of world models (Dyna Q F DE and Dyna Q B DE).
By comparing with these two agents, we can see how bidi-
rectional rollouts based on epistemic uncertainty helps with
improving learning efficiency. These results in the function
approximation setting provide further support to our hypoth-
esis on the differing roles of forward planning and backward
planning, and how careful and state-dependent allocation
can improve performance.

6 Conclusion and Future Work
In this work, we investigate how the planning shape and
directionality of the rollout mechanism affect the perfor-
mance of a model-based reinforcement learning agent. We
hypothesize that if an agent can perform forward and back-
ward plannings dynamically, it can achieve better perfor-
mance and learning efficiency. We postulate that forward

and backward plannings have complementary roles of ex-
ploration and value propagation respectively. Once the qual-
ity of value estimations improves, more backward planning
should be performed to propagate the values backward to
previous states for quicker credit assignment. By doing so, a
better value function can be obtained at a faster pace.

Based on our hypotheses, we propose an online method
to perform bidirectional rollouts using error-based epistemic
uncertainty, as a numerical indicator for the quality of value
estimations. Specifically, we keep track of the maximum
learning error (or exponential moving error in the function
approximation case) of each state-action pair to assess learn-
ing progress, which is then used to allocate the planning
budget for forward and backward plannings. To further ex-
tend our method to large and continuous state space, we ap-
ply state discretization, an efficient method to overcome the
need of keeping track of all possible state-action pairs. Ad-
ditionally, to counter the problem of error compounding in
long rollouts in imperfect world models, we propose using
an ensemble of world models to drop harmful and erroneous
rollouts from learning.

By conducting experiments in both the tabular and lin-
ear function approximation settings, we reaffirm the ben-
efits of medium-length rollouts when compared with one-
step rollouts for the same amount of planning steps. We also
demonstrate how our proposed method of bidirectional roll-
outs can improve performance and learning efficiency when
compared with our baseline Dyna agents of the same plan-
ning budget, particularly in the sparse reward settings. These
provide supporting evidence to the hypothesized roles of for-
ward and backward plannings.

75

For future work, we plan to conduct a larger scale of
study on more complicated problems to further assess our
hypotheses made in this work. We also plan to develop
better and more efficient methods in performing bidirec-
tional rollouts. For instance, we can look at more principled
approaches like Gaussian processes to model uncertainty,
which can also be used to assess a world model’s uncertainty
towards its predictions.

References
Asadi, K.; Misra, D.; Kim, S.; and Littman, M. L. 2019.
Combating the compounding-error problem with a multi-
step model. arXiv preprint arXiv:1905.13320.
Asadi, K.; Misra, D.; and Littman, M. L. 2018. Lipschitz
continuity in model-based reinforcement learning. arXiv
preprint arXiv:1804.07193.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.
Edwards, A. D.; Downs, L.; and Davidson, J. C. 2018.
Forward-backward reinforcement learning. arXiv preprint
arXiv:1803.10227.
Ghiassian, S.; Rafiee, B.; Lo, Y. L.; and White, A. 2020.
Improving performance in reinforcement learning by break-
ing generalization in neural networks. arXiv preprint
arXiv:2003.07417.
Gu, S.; Holly, E.; Lillicrap, T.; and Levine, S. 2017. Deep
reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), 3389–3396.
IEEE.
Holland, G. Z.; Talvitie, E. J.; and Bowling, M. 2018. The
effect of planning shape on dyna-style planning in high-
dimensional state spaces. arXiv preprint arXiv:1806.01825.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. nature
518(7540):529–533.
Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine learning 13(1):103–130.
Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B. 2016.
Deep exploration via bootstrapped dqn. In Advances in neu-
ral information processing systems, 4026–4034.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Sutton, R. S. 1991. Dyna, an integrated architecture
for learning, planning, and reacting. ACM Sigart Bulletin
2(4):160–163.
Talvitie, E. 2014. Model regularization for stable sample
rollouts. In UAI, 780–789.
Venkatraman, A.; Hebert, M.; and Bagnell, J. A. 2015. Im-
proving multi-step prediction of learned time series models.
In Twenty-Ninth AAAI Conference on Artificial Intelligence.

Volodymyr, M.; Koray, K.; David, S.; Andrei, A. R.; and
Joel, V. 2015. Human-level control through deep reinforce-
ment learning. Nature 518(7540):529–533.
Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279–292.
White, M. 2017. Unifying task specification in reinforce-
ment learning. In Proceedings of the 34th International Con-
ference on Machine Learning (ICML-17)-Volume 70, 3742–
3750.

7 Appendix
7.1 World Models Pretraining
To pretrain the forward and backward world models, we
first collect one million transitions by following a random
policy. Then, we perform supervised training using fully-
connected neural networks with 1 hidden layer by mini-
mizing the mean-squared errors. The parameters details are
given:

Batch Size 256
Epoch 50000
Learning Rate 0.0001
Optimizer Adam with default parameters
Number of hidden units 512

Table 1: Hyperparameter setting for world models pretrain-
ing

For an ensemble of world models, we train each of them
with different random seeds.

7.2 Feature Extractor Pretraining
We pretrain a feature extractor using a fully-connected neu-
ral network in order to obtain a better feature representation
for linear function approximation, used for the experiments
with the Cartpole environment. To do so, we pretrain a Deep
Q learning (Mnih et al. 2015) agent and use the output of
the last layer as features. The parameters details are shown
in table 2.

Batch Size 32
Epoch 500000
Learning Rate 0.0001
Optimizer Adam with default parameters
Number of hidden units 32
Experience replay buffer size 10000
Target network update rate 100

Table 2: Hyperparameter setting for feature extractor pre-
training

7.3 Hyperparameter Sweep
Table 3 presents the values of hyperparameters we sweep
over to produce the experimental results. We used the same
exploration policy for all the agents in this work.

76

GridWorld
Number of steps 100000
Learning rate 2−i, i ∈ 1, 2, 3, 4, 5, 6, 7, 8
Rollout sizes 1, 2, 4, 10, 20
World sizes 5, 10, 20, 40, 80
Discount rate 0.999
Planning buffer size 1000
Cartpole
Number of steps 20000
Feature size 32
Learning rate 10−i, i ∈ 1, 2, 3, 4
Discretization bin size 6, 8, 10, 15, 20
beta 0.99
kappa 2−i, i ∈ 4, 5, 6, 7, 8
Discount rate 0.999
Planning buffer size 10000
ε-greedy policy
ε starting value 1.0
ε minimum value 0.1
ε decay 0.9995

Table 3: Hyperparameter sweep for the experiments

77

PBCS: Efficient Exploration and Exploitation Using a Synergy between
Reinforcement Learning and Motion Planning

Guillaume Matheron1, Nicolas Perrin1, Olivier Sigaud1

1Sorbonne Université, CNRS,
Institut des Systèmes Intelligents et de Robotique, ISIR,

F-75005 Paris, France
guillaume pub [at] matheron.eu

Abstract

The exploration-exploitation trade-off is at the heart of rein-
forcement learning (RL). However, most continuous control
benchmarks used in recent RL research only require local ex-
ploration. This led to the development of algorithms that have
basic exploration capabilities, and behave poorly in bench-
marks that require more versatile exploration. For instance,
as demonstrated in our empirical study, state-of-the-art RL al-
gorithms such as DDPG and TD3 are unable to steer a point
mass in even small 2D mazes. In this paper, we propose a
new algorithm called ”Plan, Backplay, Chain Skills” (PBCS)
that combines motion planning and reinforcement learning to
solve hard exploration environments. In a first phase, a mo-
tion planning algorithm is used to find a single good trajec-
tory, then an RL algorithm is trained using a curriculum de-
rived from the trajectory, by combining a variant of the Back-
play algorithm and skill chaining. We show that this method
outperforms state-of-the-art RL algorithms in 2D maze en-
vironments of various sizes, and is able to improve on the
trajectory obtained by the motion planning phase.

Introduction
Reinforcement Learning (RL) algorithms have been used
successfully to optimize policies for both discrete and con-
tinuous control problems with high dimensionality (Mnih et
al. 2013; Lillicrap et al. 2015), but fall short when trying to
solve difficult exploration problems (van Hasselt et al. 2018;
Achiam, Knight, and Abbeel 2019; Schaul et al. 2015). On
the other hand, motion planning (MP) algorithms such as
RRT (Lavalle 1998) are able to efficiently explore in large
cluttered environments but, instead of trained policies, they
output trajectories that cannot be used directly for closed
loop control.

In this paper, we consider environments that present a
hard exploration problem with a sparse reward. In this con-
text, a good trajectory is one that reaches a state with a pos-
itive reward, and we say that an environment is solved when
a controller is able to reliably reach a rewarded state. We il-
lustrate our approach with 2D continuous action mazes as
they facilitate the visual examination of the results, but we
believe that this approach can be beneficial to many robotics
problems.

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

If one wants to obtain closed loop controllers for hard
exploration problems, a simple approach is to first use an
MP algorithm to find a single good trajectory τ , then op-
timize and robustify it using RL. However, using τ as a
stepping stone for an RL algorithm is not straightforward.
In this article, we propose PBCS, an approach that fits
the framework of Go-Explore (Ecoffet et al. 2019), and is
based on the Backplay algorithm (Resnick et al. 2018) and
skill chaining (Konidaris and Barto 2009; Konidaris et al.
2010). We show that this approach greatly outperforms both
DDPG (Lillicrap et al. 2015) and TD3 (Fujimoto, Hoof, and
Meger 2018) on continuous control problems in 2D mazes,
as well as approaches that use Backplay but no skill chain-
ing.

PBCS has two successive phases. First, the environment
is explored until a single good trajectory is found. Then this
trajectory is used to create a curriculum for training DDPG.
More precisely, PBCS progressively increases the difficulty
through a backplay process which gradually moves the start-
ing point of the environment backwards along the trajectory
resulting from exploration. Unfortunately, this process has
its own issues, and DDPG becomes unstable in long training
sessions. Calling upon a skill chaining approach, we use the
fact that even if Backplay eventually fails, it is still able to
solve some subset of the problem. Therefore, a partial policy
is saved, and the reminder of the problem is solved recur-
sively until the full environment can be solved reliably.

In this article, we contribute an extension of the Go-
Explore framework to continuous control environments, a
new way to combine a variant of the Backplay algorithm
with skill chaining, and a new state-space exploration algo-
rithm.

1 Related Work
Many works have tried to incorporate better exploration
mechanisms in RL, with various approaches.

Encouraging exploration of novel states The authors
of (Tang et al. 2016) use a count-based method to penalize
states that have already been visited, while the method pro-
posed by (Benureau and Oudeyer 2016) reuses actions that
have provided diverse results in the past. Some methods try
to choose policies that are both efficient and novel (Pugh

78

et al. 2015; Cully and Demiris 2017; Pugh, Soros, and
Stanley 2016; Erickson and LaValle 2009), while some
use novelty as the only target, entirely removing the need
for rewards (Eysenbach et al. 2018; Knepper and Mason
2009). The authors of (Stadie, Levine, and Abbeel 2015;
Burda et al. 2018; Pathak et al. 2017) train a forward model
and use the unexpectedness of the environment step as a
proxy for novelty, which is encouraged through reward shap-
ing. Some approaches try to either estimate the uncertainty
of value estimates (Osband et al. 2016), or learn bounds on
the value function (Ciosek et al. 2019). All these solutions
try to integrate an exploration component within RL algo-
rithms, while our approach separates exploration and ex-
ploitation into two successive phases, as in (Colas, Sigaud,
and Oudeyer 2018).

Using additional information about the environment
Usually in RL, the agent can only learn about the environ-
ment through interactions. However, when additional infor-
mation about the task at hand is provided, other methods
are available. This information can take the form of ex-
pert demonstrations (Salimans and Chen 2018; Hosu and
Rebedea 2016; Resnick et al. 2018; Konidaris et al. 2010;
Fournier et al. 2019; Nair et al. 2018; Paine et al. 2019),
or having access to a single rewarded state (Florensa et
al. 2018). When a full representation of the environment is
known, RL can still be valuable to handle the dynamics of
the problem: PRM-RL (Faust et al. 2018) and RL-RRT (Chi-
ang et al. 2019) use RL as reachability estimators during a
motion planning process.

Building on the Go-Explore framework To our knowl-
edge, the closest approach to ours is the Go-Explore (Ecof-
fet et al. 2019) framework, but in contrast to PBCS, Go-
Explore is applied to discrete problems such as Atari bench-
marks. In a first phase, a single valid trajectory is com-
puted using an ad-hoc exploration algorithm. In a second
phase, a learning from demonstration (LfD) algorithm is
used to imitate and improve upon this trajectory. Go-Explore
uses Backplay (Resnick et al. 2018; Salimans and Chen
2018) as the LfD algorithm, with Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017) as policy optimization
method. Similar to Backplay, the authors of (Goyal et al.
2019) have proposed Recall Traces, a process in which a
backtracking model is used to generate a collection of tra-
jectories reaching the goal.

The authors of (Morere et al. 2020) present an approach
that is similar to ours, and also fits the framework of Go-
Explore. In phase 1, they use a guided variant of RRT, and
in phase 2 they use a learning from demonstration algorithm
based on TRPO. Similarly, PBCS follows the same two
phases as Go-Explore, with major changes to both phases.
In the first phase, our exploration process is adapted to con-
tinuous control environments by using a different binning
method, and different criteria for choosing the state to reset
to. In the second phase, a variant of Backplay is integrated
with DDPG instead of PPO, and seamlessly integrated with
a skill chaining strategy and reward shaping.

The Backplay algorithm in PBCS is a deterministic vari-
ant of the one proposed in (Resnick et al. 2018). In the orig-
inal Backplay algorithm, the starting point of each policy is
chosen randomly from a subset of the trajectory, but in our
variant the starting point is deterministic: the last state of
the trajectory is used until the performance of DDPG con-
verges (more details are presented in Sect. 8), then the pre-
vious state is chosen, and so on until the full trajectory has
been exploited.

Skill chaining The process of skill chaining was explored
in different contexts by several research papers. The authors
of (Konidaris and Barto 2009) present an algorithm that in-
crementally learns a set of skills using classifiers to identify
changepoints, while the method proposed in (Konidaris et
al. 2010) builds a skill tree from demonstration trajectories,
and automatically detects changepoints using statistics on
the value function. To our knowledge, our approach is the
first to use Backplay to build a skill chain. We believe that it
is more reliable and minimizes the number of changepoints
because the position of changepoints is decided using data
from the RL algorithm that trains the policies involved in
each skill.

2 Background
Our work is an extension of the Go-Explore algorithm. In
this section, we summarize the main concepts of our ap-
proach.

Reset-anywhere. Our work makes heavy use of the ability
to reset an environment to any state. The use of this primi-
tive is relatively uncommon in RL, because it is not always
readily available, especially in real-world robotics problems.
However, it can be invaluable to speed up exploration of
large state spaces. It was used in the context of Atari games
by (Hosu and Rebedea 2016), proposed in (Schulman et al.
2015) as VINE, and gained popularity with (Salimans and
Chen 2018).

Sparse rewards. Most traditional RL benchmarks only re-
quire very local exploration, and have smooth rewards guid-
ing them towards the right behavior. Thus sparse rewards
problems are especially hard for RL algorithms: the agent
has to discover without any external signal a long sequence
of actions leading to the reward. Most methods that have
been used to help with this issue require prior environment-
specific knowledge (Riedmiller et al. 2018).

Maze environments. Lower-dimension environments
such as cliff walk (Sutton and Barto 2018) are often used
to demonstrate fundamental properties of RL algorithms,
and testing in these environments occasionally reveals
fundamental flaws (Matheron, Perrin, and Sigaud 2019).
We deliberately chose to test our approach on 2D maze
environments because they are hard exploration problems,
and because reward shaping behaves very poorly in such
environments, creating many local optima. Our results in

79

Select state
from archive

Go to state

Step
environment

Update
archive

Path recon-
struction

T := N

Backplay:
train π

with DDPG

Add skill
[K;T ;π]
to chain

T := K

SuccessFail

Phase 1: explore until solved Phase 2: robustify

No reward

Blocked at K

K > 0

Reward

τ1 . . . τN

K = 0

Figure 1: Overview of PBCS. The red path is only used
when testing the algorithm without skill chaining, otherwise
the blue path is used.

Sect. 4 show that state-of-the-art algorithms such as DDPG
and TD3 fail to solve even very simple mazes.

DDPG. Deep Deterministic Policy Gradient (DDPG) is a
continuous action actor-critic algorithm using a determinis-
tic actor that performs well on many control tasks (Lillicrap
et al. 2015). However, DDPG suffers from several sources of
instability. Our maze environments fit the analysis made by
the authors of (Penedones et al. 2018), according to whom
the critic approximator may ”leak” Q-value across walls of
discontinuous environments. With a slightly different ap-
proach, (Fujimoto, Meger, and Precup 2018) suggests that
extrapolation error may cause DDPG to over-estimate the
value of states that have never been visited or are unreach-
able, causing instability. More generally, the authors of (Sut-
ton and Barto 2018) formalize the concept of ”deadly triad”,
according to which algorithms that combine function ap-
proximation, bootstrapping updates and off-policy are prone
to diverge. Even if the deadly triad is generally studied in the
context of the DQN algorithm (Mnih et al. 2013), these stud-
ies could also apply to DDPG. Finally, the authors of (Math-
eron, Perrin, and Sigaud 2019) show that DDPG can fail
even in trivial environments, when the reward is not found
quickly enough by the built-in exploration of DDPG.

3 Methods
Figure 1 describes PBCS. The algorithm is split in two suc-
cessive phases, mirroring the Go-Explore framework. In a
first phase, the environment is incrementally explored until
a single rewarded state is found. In a second phase, a single
trajectory provides a list of starting points, that are used to
train DDPG on increasingly difficult portions of the full en-
vironment. Each time the problem becomes too difficult and
DDPG starts to fail, training stops, and the trained agent is

recorded as a local skill. Training then resumes for the next
skill, with a new target state. This loop generates a set of
skills that can then be chained together to create a controller
that reaches the target reliably.

Notations
State neighborhood. For any state τi ∈ S, and ε > 0, we
define Bε(τi) as the closed ball of radius ε centered around
τi. Formally, this is the set {s ∈ S | d(s, τi) ≤ ε} where d is
the L2 distance.

Skill chaining. Skill chaining consists in splitting a com-
plex task into simpler sub-tasks that are each governed by a
different policy. Complex tasks can then be solved by exe-
cuting each policy sequentially.

Formally, each task Ti has an activation condition
Ai ⊂ S, and a policy πi : S → A. A task chain is a
list of tasks T0 . . . Tn, which can be executed sequentially:
the actor uses π0 until the state of the system reaches a state
s ∈ A1, then it uses π1, and so on until the end of the episode
(which can be triggered by reaching either a terminal state
or a predetermined maximum number of steps).

3.1 Phase 1: Explore until Solved
In phase 1, PBCS explores to find a single path that obtains a
non-zero reward in the environment. This exploration phase
is summarized in this section, and implementation details are
available in Appendix S1. An archive keeps track of all the
visited states. In this archive, states s are grouped in square
state-space bins. A state-counter cs is attached to each state,
and a bin-counter cb is attached to each bin. All counters are
initialized to 0.

The algorithm proceeds in 5 steps, as depicted in Figure 1:

1. Select state from archive. To select a state, the non-
empty bin with the lowest counter is first selected, then
from all the states in this bin, the state with the lowest
counter is selected. Both the bin and state counters are
then incremented.

2. Go to state. The environment is reset to the selected
state. This assumes the existence of a ”reset-anywhere”
primitive, which can be made available in simulated envi-
ronments.

3. Step environment. A single environment step is per-
formed, with a random action.

4. Update archive. The newly-reached state is added to the
archive if not already present.

5. Termination of phase 1. As soon as the reward is
reached, the archive is used to reconstruct the sequence
of states that led the agent from its initial state to the re-
ward. This sequence τ0 . . . τN is passed on to phase 2.

This process can be seen as a random walk with a con-
straint on the maximum distance between two states: in the
beginning, a single trajectory is explored until it reaches a
state that is too close to an already-visited state. When this
happens, a random visited state is selected as the starting
point of a new random walk. Another interpretation of this

80

process is the construction of a set of states with uniform
spatial density. Under this view, the number of states in each
cell is used as a proxy for the spatial density of the distribu-
tion.

3.2 Phase 2: Robustify
Phase 2 of PBCS learns a controller from the trajectory ob-
tained in phase 1.

Algorithm 1: Phase 2 of PBCS
Input : τ0 . . . τN the output of phase 1
Output: π0 . . . πn a chain of policies with activation

sets A0 . . . An
1 T = N
2 n = 0
3 while T > 0 do
4 πn, T = Backplay(τ0 . . . τT)
5 An = Bε(τT)
6 n = n+ 1
7 end
8 Reverse lists π0 . . . πn and A0 . . . An

Skill Chaining. Algorithm 1 presents the skill chaining
process. It uses the Backplay function, that takes as in-
put a trajectory τ0 . . . τT , and returns a policy π and an in-
dex K < T such that running policy π repeatedly on a state
from Bε(τK) always leads to a state in Bε(τT). The main
loop builds a chain of skills that roughly follows trajectory
τ , but is able to improve upon it. Specifically, activation sets
An are centered around points of τ but policies πn are con-
structed using a generic RL algorithm that optimizes the
path between two activation sets. The list of skills is then
reversed, because it was constructed backwards.

Backplay. The Backplay algorithm was originally pro-
posed in (Resnick et al. 2018). More details on the differ-
ences between this original algorithm and our variant are
available in sections 1 and S6.

The Backplay function (Algorithm 2) takes as input a
section τ0 . . . τT of the trajectory obtained in phase 1, and re-
turns a (K,π) pair where K is an index on trajectory τ , and
π is a policy trained to reliably attain Bε(τT) from Bε(τK).
The policy π is trained using DDPG to reach Bε(τT) from
starting pointBε(τK) 1 , whereK is initialized to T −1, and
gradually decremented in the main loop.

At each iteration, the algorithm evaluates the feasibility
of a skill with target Bε(τT), policy π and activation set
Bε(τK). If the measured performance is 100% without any
training (line 5), the current skill is saved and the starting
point is decremented. Otherwise, a training loop is executed
until performance stabilizes (line 8). This is performed by
running Algorithm 3 repeatedly until no improvement over
the maximum performance is observed α times in a row. We
ran our experiments with α = 10 , and a more in-depth dis-
cussion of hyperparameters is available in Appendix S2 .

1More details on why the starting point needs to be Bε(τK)
instead of τK are available in Appendix S6

Then the performance of the skill is measured again
(line 9), and three cases are handled:
• The skill is always successful (line 10). The current skill

is saved and the index of the starting point is decremented.
• The skill is never successful (line 13). The last successful

skill is returned.
• The skill is sometimes successful. The current skill is not

saved, and the index of the starting point is decremented.
In our maze environment, this happens when Bε(τK)
overlaps a wall: in this case some states ofBε(τK) cannot
reach the target no matter the policy.

Algorithm 2: The Backplay algorithm
Input : (τ0 . . . τT) a state-space trajectory
Output: πs a trained policy

Ks the index of the starting point of the
policy

1 K = T − 1
2 Initialize a DDPG architecture with policy π
3 while K > 0 do
4 Test performance of π between Bε(τK) and

Bε(τT) over β episodes
5 if performance = 100% then
6 πs = π, Ks = K
7 else
8 Run Train (Algorithm 3) repeatedly until

performance stabilizes.
9 Test performance of π between Bε(τK) and

Bε(τT) over β episodes
10 if performance = 100% then
11 πs = π, Ks = K
12 end
13 if performance = 0% and Ks exists then
14 return (Ks, πs)
15 end
16 end
17 K = K − 1
18 end
19 return (Ks, πs)

Reward Shaping. With reward shaping, we bypass the re-
ward function of the environment, and train DDPG to reach
any state τT . We chose to use the method proposed by (Ng,
Harada, and Russell 1999): we define a potential function in
Equation (1a), where d(s,Ai) is the L2 distance between s
and the center of Ai. We then define our shaped reward in
Equation (1b).

Φ(s) =
1

d(s,Ai)
(1a)

Rshaped(s, a, s′) =

{
10 if s ∈ Ai
Φ(s′)− Φ(s) otherwise.

(1b)

Algorithm 3 shows how this reward function is used in
place of the environment reward. This training function runs

81

Algorithm 3: Training process with reward shaping
Input : τK the source state

τT the target state
Output: The average performance p

1 n = 0
2 for i = 1 . . . β do
3 s ∼ Bε(τK)
4 for j = 1 . . .max steps do
5 a = π(s) + random noise
6 s′ = step(s, a)

7 r =

{
10 d(s′, τT) ≤ ε

1
d(s′,τT) − 1

d(s,τT) otherwise

8 DDPG.train(s, a, s′, r)
9 s = s′

10 if d(s′, τT) ≤ ε then
11 n = n + 1
12 break
13 end
14 end
15 end
16 p = n

β

β episodes of up to max steps steps each, and returns the
fraction of episodes that were able to reach the reward. β is
a hyperparameter that we set to 50 for our test, and more
details on this choice are available in Appendix S2 .

Importantly, reaching a performance of 100% is not al-
ways possible, even with long training sessions, because the
starting point is selected inBε(τK), and some of these states
may be inside obstacles for instance.

4 Experimental Results
We perform experiments in continuous maze environments
of various sizes. For a maze of size N , the state-space is the
position of a point mass in [0, N]2 and the action describes
the speed of the point mass, in [−0.1, 0.1]2. Therefore, the
step function is simply s′ = s + a, unless the [s, s′] seg-
ment intersects a wall. The only reward is −1 when hitting
a wall and 1 when the target area is reached. A more formal
definition of the environment is available in Appendix S4.

Our results are presented in Table 1. We first tested stan-
dard RL algorithms (DDPG and TD3), then PBCS, but
without skill chaining (this was done by replacing the blue
branch with the red branch in Figure 1). When the full algo-
rithm would add a new skill to the skill chain and continue
training, this variant stops and fails. These results are pre-
sented in column ”PBCS without skill chaining”. Finally,
the full version of PBCS with skill chaining is able to solve
complex mazes up to 15 × 15 cells, by chaining several in-
termediate skills.

5 Discussion of Results
As expected, standard RL algorithms (DDPG and TD3)
were unable to solve all but the simplest mazes. These algo-
rithms have no mechanism for state-space exploration other

than uniform noise added to their policies during rollouts.
Therefore, in the best-case scenario they perform a random
walk and, in the worst-case scenario, their actors may ac-
tively hinder exploration.

More surprisingly, PBCS without skill chaining is still
unable to reliably 2 solve mazes larger than 2× 2. Although
phase 1 always succeeds in finding a feasible trajectory τ ,
the robustification phase fails relatively early. We attribute
these failures to well-known limitations of DDPG exposed
in Sect. 2. We found that the success rate of PBCS without
skill chaining was very dependent on the discount rate γ,
which we discuss in Appendix S3.

The full version of PBCS with skill chaining is able to
overcome these issues by limiting the length of training ses-
sions of DDPG, and is able to solve complex mazes up to
7× 7, by chaining several intermediate skills.

6 Conclusion
The authors of Go-Explore identified state-space exploration
as a fundamental difficulty on two Atari benchmarks. We
believe that this difficulty is also present in many contin-
uous control problems, especially in high-dimension envi-
ronments. We have shown that the PBCS algorithm can
solve these hard exploration, continuous control environ-
ments by combining a motion planning process with rein-
forcement learning and skill chaining. Further developments
should focus on testing these hybrid approaches on higher
dimensional environments that present difficult exploration
challenges together with difficult local control, such as the
Ant-Maze MuJoCo benchmark (Tassa and et. al. 2018), and
developing methods that use heuristics suited to continuous
control in the exploration process, such as Quality-Diversity
approaches (Pugh, Soros, and Stanley 2016).

7 Acknowledgements
This work was partially supported by the French Na-
tional Research Agency (ANR), Project ANR-18-CE33-
0005 HUSKI.

References
Achiam, J.; Knight, E.; and Abbeel, P. 2019. To-
wards Characterizing Divergence in Deep Q-Learning.
arXiv:1903.08894.
Benureau, F. C. Y., and Oudeyer, P.-Y. 2016. Behavioral
Diversity Generation in Autonomous Exploration through
Reuse of Past Experience. Front. Robot. AI 3.
Burda, Y.; Edwards, H.; Storkey, A.; and Klimov, O.
2018. Exploration by Random Network Distillation.
arXiv:1810.12894.
Chiang, H.-T. L.; Hsu, J.; Fiser, M.; Tapia, L.; and Faust,
A. 2019. RL-RRT: Kinodynamic Motion Planning
via Learning Reachability Estimators from RL Policies.
arXiv:1907.04799.

2We tested PBCS without skill chaining with different seeds on
small mazes, these results are presented in Appendix S3

82

Table 1: Results of various algorithms on maze environments. For each test, the number of environment steps performed is
displayed with a red background when the policy was not able to reach the target, and a green one when training was successful.
In ”Vanilla” experiments, the red paths represent the whole area explored by the RL algorithm. In ”Backplay” experiments, the
trajectory computed in phase 1 is displayed in red, and the ”robustified” policy or policy chain is displayed in green. Activation
sets Ai are displayed as purple circles. Enlarged images are presented in Fig. S2.

Vanilla PBCS w/o skill chaining PBCS
DDPG TD3 DDPG DDPG

1M 1M 146k 321k

1M 1M 372k 5M

1M 1M 268k 6M

1M 1M 694k 8M

1M 1M 175k 22M

83

Ciosek, K.; Vuong, Q.; Loftin, R.; and Hofmann, K.
2019. Better Exploration with Optimistic Actor-Critic.
arXiv:1910.12807.
Colas, C.; Sigaud, O.; and Oudeyer, P.-Y. 2018. GEP-
PG: Decoupling Exploration and Exploitation in Deep Re-
inforcement Learning Algorithms. arXiv:1802.05054.
Cully, A., and Demiris, Y. 2017. Quality and Diversity Op-
timization: A Unifying Modular Framework. IEEE Trans-
actions on Evolutionary Computation 1–1.
Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2019. Go-Explore: a New Approach for Hard-
Exploration Problems. arXiv:1901.10995.
Erickson, L. H., and LaValle, S. M. 2009. Survivability:
Measuring and ensuring path diversity. In 2009 IEEE In-
ternational Conference on Robotics and Automation, 2068–
2073.
Eysenbach, B.; Gupta, A.; Ibarz, J.; and Levine, S. 2018.
Diversity is All You Need: Learning Skills without a Reward
Function. arXiv:1802.06070.
Faust, A.; Ramirez, O.; Fiser, M.; Oslund, K.; Francis, A.;
Davidson, J.; and Tapia, L. 2018. PRM-RL: Long-range
Robotic Navigation Tasks by Combining Reinforcement
Learning and Sampling-based Planning. arXiv:1710.03937.
Florensa, C.; Held, D.; Wulfmeier, M.; Zhang, M.; and
Abbeel, P. 2018. Reverse Curriculum Generation for Re-
inforcement Learning. arXiv:1707.05300.
Fournier, P.; Sigaud, O.; Colas, C.; and Chetouani, M. 2019.
CLIC: Curriculum Learning and Imitation for object Control
in non-rewarding environments. arXiv:1901.09720.
Fujimoto, S.; Hoof, H. v.; and Meger, D. 2018. Address-
ing Function Approximation Error in Actor-Critic Methods.
ICML.
Fujimoto, S.; Meger, D.; and Precup, D. 2018. Off-
Policy Deep Reinforcement Learning without Exploration.
arXiv:1812.02900.
Goyal, A.; Brakel, P.; Fedus, W.; Singhal, S.; Lillicrap, T.;
Levine, S.; Larochelle, H.; and Bengio, Y. 2019. Recall
Traces: Backtracking Models for Efficient Reinforcement
Learning. arXiv:1804.00379.
Hosu, I.-A., and Rebedea, T. 2016. Playing Atari Games
with Deep Reinforcement Learning and Human Checkpoint
Replay. arXiv:1607.05077.
Knepper, R. A., and Mason, M. T. 2009. Path diversity
is only part of the problem. In 2009 IEEE International
Conference on Robotics and Automation, 3224–3229.
Konidaris, G., and Barto, A. G. 2009. Skill Discovery in
Continuous Reinforcement Learning Domains using Skill
Chaining. In Bengio, Y., and et. al., eds., Advances in Neural
Information Processing Systems 22. 1015–1023.
Konidaris, G.; Kuindersma, S.; Grupen, R.; and Barto, A. G.
2010. Constructing Skill Trees for Reinforcement Learning
Agents from Demonstration Trajectories. In Lafferty, J. D.,
and et. al., eds., Advances in Neural Information Processing
Systems 23. 1162–1170.

Lavalle, S. M. 1998. Rapidly-Exploring Random Trees: A
New Tool for Path Planning. Technical report, Iowa State
University.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous con-
trol with deep reinforcement learning. arXiv:1509.02971.
Matheron, G.; Perrin, N.; and Sigaud, O. 2019. The problem
with DDPG: understanding failures in deterministic environ-
ments with sparse rewards. arXiv:1911.11679.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013.
Playing Atari with Deep Reinforcement Learning.
arXiv:1312.5602.
Morere, P.; Francis, G.; Blau, T.; and Ramos, F. 2020. Rein-
forcement Learning with Probabilistically Complete Explo-
ration. arXiv:2001.06940.
Nair, A.; McGrew, B.; Andrychowicz, M.; Zaremba, W.; and
Abbeel, P. 2018. Overcoming Exploration in Reinforcement
Learning with Demonstrations. arXiv:1709.10089.
Ng, A. Y.; Harada, D.; and Russell, S. J. 1999. Policy In-
variance Under Reward Transformations: Theory and Appli-
cation to Reward Shaping. In Proceedings of the Sixteenth
International Conference on Machine Learning, ICML ’99,
278–287.
Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy,
B. 2016. Deep Exploration via Bootstrapped DQN.
arXiv:1602.04621.
Paine, T. L.; Gulcehre, C.; Shahriari, B.; Denil, M.;
Hoffman, M.; Soyer, H.; Tanburn, R.; Kapturowski, S.;
Rabinowitz, N.; Williams, D.; Barth-Maron, G.; Wang,
Z.; and de Freitas, N. 2019. Making Efficient Use
of Demonstrations to Solve Hard Exploration Problems.
arXiv:1909.01387.
Pathak, D.; Agrawal, P.; Efros, A. A.; and Darrell, T. 2017.
Curiosity-driven Exploration by Self-supervised Prediction.
arXiv:1705.05363.
Penedones, H.; Vincent, D.; Maennel, H.; Gelly, S.; Mann,
T.; and Barreto, A. 2018. Temporal Difference Learning
with Neural Networks - Study of the Leakage Propagation
Problem. arXiv:1807.03064.
Pugh, J. K.; Soros, L. B.; Szerlip, P. A.; and Stanley, K. O.
2015. Confronting the Challenge of Quality Diversity. In
Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, GECCO ’15, 967–974. New
York, NY, USA: ACM.
Pugh, J. K.; Soros, L. B.; and Stanley, K. O. 2016. Quality
Diversity: A New Frontier for Evolutionary Computation.
Front. Robot. AI 3.
Resnick, C.; Raileanu, R.; Kapoor, S.; Peysakhovich, A.;
Cho, K.; and Bruna, J. 2018. Backplay: ”Man muss immer
umkehren”. arXiv:1807.06919.
Riedmiller, M.; Hafner, R.; Lampe, T.; Neunert, M.; De-
grave, J.; Van de Wiele, T.; Mnih, V.; Heess, N.; and Sprin-
genberg, J. T. 2018. Learning by Playing - Solving Sparse
Reward Tasks from Scratch. arXiv:1802.10567.

84

Salimans, T., and Chen, R. 2018. Learning Montezuma’s
Revenge from a Single Demonstration. arXiv:1812.03381.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D. 2015.
Prioritized Experience Replay. arXiv:1511.05952.
Schulman, J.; Levine, S.; Moritz, P.; Jordan, M. I.; and
Abbeel, P. 2015. Trust Region Policy Optimization.
arXiv:1502.05477.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algo-
rithms. arXiv:1707.06347.
Stadie, B. C.; Levine, S.; and Abbeel, P. 2015. Incentivizing
Exploration In Reinforcement Learning With Deep Predic-
tive Models. arXiv:1507.00814.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. MIT Press.
Tang, H.; Houthooft, R.; Foote, D.; Stooke, A.; Chen, X.;
Duan, Y.; Schulman, J.; De Turck, F.; and Abbeel, P. 2016.
#Exploration: A Study of Count-Based Exploration for Deep
Reinforcement Learning. arXiv:1611.04717.
Tassa, Y., and et. al. 2018. DeepMind Control Suite.
arXiv:1801.00690.
van Hasselt, H.; Doron, Y.; Strub, F.; Hessel, M.; Sonnerat,
N.; and Modayil, J. 2018. Deep Reinforcement Learning
and the Deadly Triad. arXiv:1812.02648.
Wilson, E. B. 1927. Probable Inference, the Law of Suc-
cession, and Statistical Inference. Journal of the American
Statistical Association 22(158):209–212.

85

Supplemental Materials
S1 Phase 1: Explore Until Solved

Algorithm 4: Exploration algorithm
Input : s0 ∈ S the initial environment state

step : S ×A→ S ×R×B the environment
step function
iterations ∈ N the number of samples to
accumulate
Bin : F → N a binning function

Output: transitions ⊆ S ×A×R× B× S the set of
explored transitions

1 transitions = ∅
2 b0 = Bin(s0)
3 bin usage[b0] = 0
4 states in bin[b0] = {s0}
5 state usage[s0] = 0
6 B = B ∪ {b0}
7 while |transitions| < iterations do
8 chosen bin = argmin

b∈B
bin usage[b]

9 chosen state = argmin
s∈states in bin[chosen bin]

state usage[chosen state]
10 action = random action()
11 s’,reward,terminal = step(chosen state, action)
12 bin usage[chosen bin] ++
13 state usage[chosen state] ++
14 transitions = transitions ∪

(chosen state,action,reward,terminal,s’)
15 if Not terminal then
16 state usage[s’] = 0
17 b’ = Bin(s’)
18 if b’ ∈ B then
19 states in bin[b’] = states in bin[b’] ∪

{s’}
20 else
21 B = B ∪ {b’}
22 bin usage[b’] = 0
23 states in bin[b’] = {s’}
24 end
25 end
26 end

Our proposed phase 1 exploration algorithm maintains a
pool of states, which initially contains only the start state.
At each step, a selection process described below is used to
select a state s from the pool (lines 8 to 9 in Algorithm 4).
A random action a is then chosen, and the environment is
used to compute a single step from state s using action a
(line 11). If the resulting state s′ is non-terminal, then it is
added to the pool (lines 16 to 23). This process is repeated
as long as necessary.

State selection The pool of states stored by the algorithm
is divided into square bins of size 0.05. During the state se-
lection process (lines 8 to 9), the least-chosen bin is selected
(on line 8), then the least-chosen state from this bin is se-
lected (line 9). In both cases, when several states or bins are
tied in the argmin operation, one is selected uniformly ran-
domly from the set of all tied elements.

S2 Choice of PBCS Hyperparameters
PBCS uses three hyperparameters α, β and ε.

The parameter α represents the number of consecutive
non-improvements of the training performance required to
assume training is finished. In our experiments, this value
was set to 10, and we summarize here what can be expected
if this parameter is set too high or too low.

• Setting α too high results in longer training sessions, in
which the policy keeps being trained despite being already
successful. The time and sample performance of PBCS is
impacted, but the algorithm should still be able to build a
policy chain.

• Setting α too low may cause training to stop early. In be-
nign cases, the policy is simply sub-optimal, but in some
cases this may lead to the creation of many changepoints,
and prevent PBCS from improving at all upon the phase 1
trajectory. If the activation conditions overlap too much,
PBCS may output a skill chain that is unable to navigate
the environment.

The parameter β represents the number of samples used
to evaluate the performance of a skill. In our experiments,
this value was set to 50.

• Setting β too high would increase the time and sample
complexity of PBCS, but would not impact the output.

• The main risk of setting β too low is that PBCS may in-
correctly compute that a skill has a performance of 100%.
If this skill is then selected, the output skill chain may be
unable to navigate the environment.

The parameter ε corresponds to the radius of the targets
used during skill chaining.

S3 Choice of Discount Factor γ
The discount factor γ is usually considered to be a parame-
ter of the environment and not the RL algorithm. It controls
the decay that is applied when evaluated the contributions of
future rewards to a present choice. In our experiments, we
tested two values of γ, that are γ = 0.9 and γ = 0.99.

DDPG uses a neural network Q̂ in order to estimate
the state-action value function Qπ(s, a) of the current pol-
icy π. In the case of deterministic environments, the state-
action value function is recursively defined as Qπ(s, a) =
R(s, a, s′) + γQ(s′, π(a)), where s′ = step(s, a).

Therefore, reaching a sparse reward of value 1 after n
steps with no reward carries a discounted value of γn. This
implies that rewards that are reached only after many steps
have very little impact on the shape of Q. For instance, with
γ = 0.9 and n = 50, γn ≈ 0.05. This effectively reduces
the magnitude of the training signal used by the actor update

86

2× 2 3× 3 4× 4

Maze size

0

20

40

60

80

100
S

u
cc

es
s

%
γ = 0.9

γ = 0.99

γ = 0.9 (am)

γ = 0.99 (am)

Figure S1: Success rate of PBCS without skill chaining,
depending on γ. Bars marked with (am) use the variant of
DDPG presented in Sect. S3.1. Error bars are computed us-
ing Wilson score intervals (Wilson 1927).

of DDPG, reducing the speed of actor updates the farther
from the reward. Evidence of this is presented in Sect. S3.1.

With this consideration, it seems that choosing γ very
close to 1 solves the problem of exponential decay of the
training signal. However, high γ values present their own
challenges. The state-action critic approximator Q̂ used by
DDPG is trained on (s, a, r, s′) tuples stored in an experi-
ence replay buffer, but as with any continuous approximator,
it generalizes the training data to nearby (s, a) couples.

In environments with positive rewards, Q̂ can over-
estimate the value of states: for instance in maze environ-
ments, the learned value can be generalized incorrectly and
”leak” through walls.

This mechanism is usually counter-balanced by the fact
that over-estimated Q(s, a) values can then be lowered. For
instance, in our maze environments, hitting a wall generates
a training tuple with s′ = s and r = 0. The update rule of
DDPG applied to this tuple yields: Q(s, a) ← Q(s, a)(1 +
c(γ − 1)) where c is the critic learning rate. Therefore, the
closer γ is to 1, the slower over-estimated values will be
corrected.

In smaller mazes, our experiments show that reducing
gamma increases the performance of PBCS without skill
chaining (Fig. S1).

S3.1 Replacing the Actor Update of DDPG
We claim that the lower reward signal obtained with γ val-
ues close to 1 affect the actor update of DDPG. We can test
this claim by using a variation of DDPG proposed by the
authors of (Matheron, Perrin, and Sigaud 2019): we replace
the actor update of DDPG with a brute-force approach that,
for each sampled state s, computes maxa Q̂(s, a) using uni-
form sampling. The performance of this variant is presented
in Fig. S1 with green and red bars.

S4 Experimental Setup
Our experiments are conducted in maze environments of
various sizes. A maze of size N is described using the fol-

lowing Markov Decision Process:

S = [0, N]× [0, N]

A = [−0.1, 0.1]× [−0.1, 0.1]

R(s, a, s′) = 1‖s′−target‖<0.2 − 1[s,s′] intersects a wall

step(s, a) =

{
s if [s, s+ a] intersects a wall
s+ a otherwise.

The set of walls is constructed using a maze generation
algorithm, and walls have a thickness of 0.1.

The target position is (N − .5, N − .5) when N > 2. In
mazes of size 2, the target position is (.5, 1.5).

S5 Enlarged Results
A more detailed view of the results of PBCS on mazes of
different sizes is presented in Fig. 1.

Figure S2: Enlarged view of the results of PBCS on mazes
of different sizes. The trajectory computed in phase 1 is dis-
played in red, and the ”robustified” policy chain is displayed
in green. Activation sets Ai are displayed as purple circles.

87

S6 Need for Resetting in Unseen States
As a reminder, for the Backplay algorithm and our variant,
a single trajectory τ0 . . . τT is provided, and training is per-
formed by changing the starting point of the environment to
various states.

In the original Backplay algorithm, the environment is al-
ways reset to a visited state τK , where K is an index chosen
randomly in a sliding window of [0, T]. The sliding window
is controlled by hyperparameters, but the main idea is that in
the early stages of training, states near T are more likely to
be selected, and in later stages, states near 0 are more likely
to be used.

However, we found that this caused a major issue when
combined with continuous control and the skill chaining
process. With skill chaining, the algorithm creates a se-
quence of activation sets (An), and a sequence of policies
(πn) such that when the agent reaches a state in An, it
switches to policy πn. Each activation set An is a ball of
radius ε centered around a state τK for some K.

The policy needs to be trained not only on portions of
the environment that are increasingly long, it also needs to
account for the uncertainty of its starting point. When exe-
cuting the skill chain, the controller switched to policy πn
as soon as the state reaches the activation set An, which
is Bε(τK) for some K. Even if An is relatively small, we
found it caused systematic issues on maze environments, as
presented in Fig. S3.

In our variant of the Backplay algorithm, we found it was
necessary to train DDPG on starting points chosen randomly
in Bε(τK), to ensure that the policy is trained correctly to
solve a portion of the environment with any starting point in
this volume.

This also means that we need to reset the environment to
unseen states, and can cause problems when these states are
unreachable (in our maze examples this is usually because
they are inside walls, but in higher dimensions we assume
this could be more problematic).

When possible, a solution would be to run the environ-
ment backwards from τK with random actions to gener-
ate these samples (while ensuring that they still lie within
Bε(τK)). Another solution, especially in high-dimension en-
vironments, would be to run the environment backwards for
a fixed number of steps, and use a classifier to define the
bounds of An, instead of using the L2 distance.

B2

B1

Figure S3: Policy π1 was trained using starting points
τ30 . . . τ10 without any added noise. Therefore, τ30 is reach-
able from τ10 using π1 (trajectory B2), but not necessarily
form any point in A1. In maze environments, the optimal
policy is usually close to walls, and provides little margin
for perturbations. The trajectory B2 (that starts in green and
ends in blue) results from the execution of the skill chain.
The controller switches from π0 to π1 as soon as the agent
reachesA1, and then hits the wall (trajectoryB2). This prob-
lem persists even when ε is reduced.

88

Hierarchical Reinforcement Learning in StarCraft II
with Human Expertise in Subgoals Selection

Xinyi Xu∗1, Tiancheng Huang2

Pengfei Wei1, Akshay Narayan1, Tze-Yun Leong1

1NUS, School of Computing, Medical Computing Lab,
{xuxinyi,weipf,anarayan,leongty}@comp.nus.edu.sg
2NTU, School of Computer Science and Engineering,

thuang013@e.ntu.edu.sg

Abstract
This work is inspired by recent advances in hierarchical re-
inforcement learning (HRL) (Barto and Mahadevan 2003;
Hengst 2010), and improvements in learning efficiency from
heuristic-based subgoal selection, experience replay (Lin
1993; Andrychowicz et al. 2017), and task-based curricu-
lum learning (Bengio et al. 2009; Zaremba and Sutskever
2014). We propose a new method to integrate HRL, expe-
rience replay and effective subgoal selection through an im-
plicit curriculum design based on human expertise to support
sample-efficient learning and enhance interpretability of the
agent’s behavior. Human expertise remains indispensable in
many areas such as medicine (Buch, Ahmed, and Maruthappu
2018) and law (Cath 2018), where interpretability, explain-
ability and transparency are crucial in the decision making
process, for ethical and legal reasons. Our method simpli-
fies the complex task sets for achieving the overall objec-
tives by decomposing them into subgoals at different levels
of abstraction. Incorporating relevant subjective knowledge
also significantly reduces the computational resources spent
in exploration for RL, especially in high speed, changing, and
complex environments where the transition dynamics cannot
be effectively learned and modelled in a short time. Experi-
mental results in two StarCraft II (SC2) (Vinyals et al. 2017)
minigames demonstrate that our method can achieve better
sample efficiency than flat and end-to-end RL methods, and
provides an effective method for explaining the agent’s per-
formance.

Introduction
Reinforcement learning (RL) (Sutton and Barto 2018) en-
ables agents to learn how to take actions, by interacting
with an environment, to maximize a series of rewards re-
ceived over time. In combination with advances in deep
learning and computational resources, the Deep Reinforce-
ment Learning (DRL) (Mnih et al. 2013) formulation has
led to dramatic results in acting from perception (Mnih et
al. 2015), game playing (Silver et al. 2016), and robotics
(Andrychowicz et al. 2020). However, DRL usually re-
quires extensive computations to achieve satisfactory per-
formance. For example, in full-length StarCraft II (SC2)
∗Corresponding author

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

games, AlphaStar (Vinyals et al. 2019) achieves superhu-
man performance at the expense of huge computational re-
sources1. Training flat DRL agents even on minigames (sim-
plistic versions of the full-length SC2 games) requires 600
million samples (Vinyals et al. 2017) and 10 billion sam-
ples (Zambaldi et al. 2019) for each minigame, and re-
peated with 100 different sets of hyper-parameters, approx-
imately equivalent to over 630 and 10,500 years of game
playing time respectively. Even with such large number
of training samples, DRL agents are not yet able to beat
human experts at some minigames (Vinyals et al. 2017;
Zambaldi et al. 2019).

We argue that learning a new task in general or SC2
minigames in particular is a two-stage process, viz., learn-
ing the fundamentals, and mastering the skills. For SC2
minigames, novice human players learn the minigame fun-
damentals reasonably quickly by decomposing the game
into smaller, distinct and necessary steps. However, to
achieve mastery over the minigame, humans take a long
time, mainly to practice the precision of skills. RL agents,
on the other hand, may take a long time to learn the fun-
damentals of the gameplay but achieve mastery (stage two)
efficiently. This can be observed from the training progress
curves in (Vinyals et al. 2017) which shows spikes followed
plateaus of reward signals instead of steady and gradual in-
creases.

We want to leverage human expertise to reduce the
‘warm-up’ time required by the RL agents. The Hierarchi-
cal Reinforcement Learning (HRL) framework (Bakker and
Schmidhuber 2004; Levy et al. 2019) comprises a general
layered architecture that supports different levels of abstrac-
tions corresponding to human expertise and agent’s skills at
the low-level manoeuvres. Intuitively, HRL provides a way
for combining the best from human expertise and agent by
organizing the inputs from humans at a high level (more ab-
stract) and those from agents at a lower level (more precise).
In this work, we extend the HRL framework to incorporate
human expertise in subgoal selection. We demonstrate the
effects of our methods in mastering SC2 minigames, and
present preliminary results on sample efficiency and inter-

1According to (Vinyals et al. 2019), for each of their 12 agents,
they conduct training on 32 TPUs for 44 days.

89

pretability over the flat RL methods.
The rest of the paper is organized as follows. We briefly

outline the background information in the next section. Next,
we describe our proposed methodology. Further, we discuss
the related works and present our experimental results. We
then conclude the paper highlighting opportunities for future
work.

Preliminaries
Markov decision process and Reinforcement learning:
A Markov decision process (MDP) is a five-tuple
〈S,A, T ,R, γ〉, where, S is the set of states the agent can
be in;A is the set of possible actions available for the agent;
R : S ×A 7→ R is the reward function, T : S ×A 7→ ∆S is
the transition function; and γ ∈ [0, 1] is the discount fac-
tor that denotes the usefulness of the future rewards. We
consider the standard formalism of reinforcement learning
where an agent continuously interacts with a fully observ-
able environment, defined using an MDP. A deterministic
policy is a mapping π : S 7→ A and we can describe
a sequence of actions and reward signals from the envi-
ronment. Every episode begins with an initial s0. At each
t, the agent takes an action at = πt(st), and gets a re-
ward rt = R(st, at). At the same time, st+1 is sampled
from T (st, at). Over time, the discounted cumulative re-
ward, called return, is calculated as:Rt =

∑∞
i=t γ

i−trt. The
agent’s task is to maximize the expected return Es0 [R0|s0].
Furthermore, the Q-function (or action-value function) is
defined as Qπ(st, at) = E[Rt|st, at]. Assuming an opti-
mal policy π∗ : Qπ

∗
(s, a) ≥ Qπ(s, a) ∀s ∈ S, a ∈

A, for any possible π. All optimal policies have the same Q-
function called the optimal Q-function, denoted Q∗, satisfy-
ing this Bellman equation:

Q∗(s, a) = Es′∼T (s,a)[R(s, a) + γ max
a′∈A

Q∗(s′, a′)].

Q-function Approximators The above definitions enable
one possible solution to MDPs: using a function approxi-
mator for Q∗. Deep-Q-Networks (DQN) (Mnih et al. 2013)
and Deep Deterministic Policy Gradients (DDPG) (Lilli-
crap et al. 2016), are such approaches tackling model-free
RL problems. Typically, a neural network Q is trained to
approximate Q∗. During training, experiences are gener-
ated via an exploration policy, usually ε-greedy policy with
the current Q. The experience tuples (st, at, rt, st+1) are
stored in a replay buffer. Q is trained using gradient de-
scent with respect to the loss L := E[Q(st, at)−yt]2, where
yt = rt + γmaxa′∈AQ(st+1, a

′) with experiences sampled
from the replay buffer.

An exploration policy is a policy that describes how the
agent interacts with the environment. For instance, a pol-
icy that picks actions randomly encourages exploration. On
the other hand, a greedy policy with respect to Q, as in
πQ(s) = argmaxa∈AQ(s, a), encourages exploitation. To
balance these, a standard approach of ε-greedy (Sutton and
Barto 2018) is adopted: with probability ε take a random ac-
tion, and with probability 1− ε take a greedy action.
Goal Space G Schaul et al. (2015) extended DQN to include
a goal space G. A (sub)goal can be described with specifi-
cally selected states, or via functions such as f : S 7→ [0, 1],

either a state is a goal or not. Introducing G modifies the
original reward function R slightly: ∀g ∈ G, Rg : S ×
A 7→ R, R(s, a|g) := Rg(s, a). At the beginning of each
episode, in addition to s0, the initialization includes a fixed
g to create a tuple (s0, g). Other modifications naturally fol-
low: π : S × G 7→ A, and Qπ(st, at, g) = E[Rt|st, at, g].
Experience Replay Lin (1993) proposed the idea of us-
ing ‘experiences buffers’ to help machines learn. For-
mally, a single time step experience is defined as a tuple
(st, at, rt, st+1) and more generally an experience can be
constructed by concatenating multiple consecutive experi-
ence tuples.
Curriculum Learning Methods in this framework typically
explicitly or implicitly design a series of tasks or goals (with
gradually increased difficulties) for the agent to follow and
learn, i.e., the curriculum (Bengio et al. 2009; Weng 2020).
StarCraft II SC2 is a real-time-strategy (RTS) game, where
players command their units to compete against each other.
In an SC2 full-length game, typically players start out by
commanding units to collect resources (minerals and gas) to
build up their economy and army at the same time. When
they have amassed a sufficiently large army, they com-
mand these units to attack their opponents’ base in order
to win. SC2 is currently a very promising simulation envi-
ronment for RL, due to its high flexibility and complexity
and wide-ranging applicability in the fields of game theory,
planning and decision making, operations optimization, etc.
SC2 minigames, as opposed to full-length games described
above, are built-in episodic tutorials where novice players
can learn and practice their skills in a controlled and less
complex environment. Some relevant skills include collect-
ing resources, building certain army units, etc.

Proposed Methodology
We propose a novel method of integrating the advantages
of human expertise and RL agents to facilitate fundamentals
learning and skills mastery of a learning task. Our method
adopts the principle of Curriculum Learning (Bengio et al.
2009) and follows a task-oriented approach (Zaremba and
Sutskever 2014). The key idea is to leverage human ex-
pertise to simplify the complex learning procedure, by de-
composing it into hierarchical subgoals as the curriculum
for the agent. More specifically, we factorize the learning
task into several successive subtasks indispensable for the
agent to complete the entire complex learning procedure.
The customized reward function in each subtask implic-
itly captures the corresponding subgoal. Importantly, these
successive subgoals are determined so that they are gradu-
ally more difficult to improve learning efficiency (Bengio
et al. 2009; Justesen et al. 2018). With defined subgoals,
we use the Experience Replay technique to construct the
experiences to further improve the empirical sample effi-
ciency (Andrychowicz et al. 2017; Bakker and Schmidhu-
ber 2004; Levy et al. 2019). Furthermore, adopting clearly
defined subtasks and subgoals enhances the interpretabil-
ity of the agent’s learning progress. In implementation, we
customize SC2 minigames to embed human expertise on
subgoal information and the criteria to identify and se-
lect subgoals during learning. Therefore, the agent learns

90

the subpolicies and combines them in a hierarchical way.
By following a well-defined decomposition of the original
minigame into subtasks, we can choose the desired state of
a previous subtask to be the starting conditions of the next
subtask, thus completing the connection between subtasks.

Hierarchy: Subgoals and Subtasks
Our proposed hierarchy is composed of subgoals, which col-
lectively divide the problem into simpler subtasks that can
be solved easily and efficiently. Each subgoal is implicitly
captured as the desired state in its corresponding subtask,
and we refer to the agent’s skills to reach a subgoal its cor-
responding subpolicy. The rationale behind this is as fol-
lows. First, the advantages of human expertise and the agents
are complementary to each other in terms of learning and
mastering the task. Human players are good at seeing the
big picture and thus identifying the essential and distinct
steps/skills very quickly. On the other hand, agents are pro-
ficient in honing learned skills and maneuvers to a high de-
gree of precision. Second, a hierarchy helps reduce the com-
plexity of search space via divide-and-conquer. Lastly, this
method enhances the interpretability of the subgoals (and
subpolicies).

Figure 1 illustrates the concept of subgoals and subpoli-
cies with a simple navigation agent. The agent is learning to
navigate to the flag post from the initial state s0. One possi-
ble sequence of the states is s1, . . . , s5. Therefore, the entire
trajectory can be decomposed into subgoals; for instance,
Levy et al. (2019) used heuristic-based subgoal selection cri-
teria (in Figure 1 these selected subgoals, g0, . . . , g4, are de-
noted by orange circles). On the other hand, the sequence
of red nodes denote subgoals of our method. We highlight
that this sequence would constitute a better guided and more
efficient exploration path. In addition this sequence is better
aligned with the game where some states are the prerequi-
sites for other states (illustrated as the black dashed arrows).

Figure 1: Navigation Agent

Subgoals Selection and Experience Replays
Subgoal Design and Selection. We use the similar method
for constructing experiences with a goal space as previous
works (Andrychowicz et al. 2017; Levy et al. 2019). How-
ever, our method introduces human expertise in construct-
ing the hierarchy and subgoals selection. In (Andrychow-
icz et al. 2017), the hindsight experience replay buffer is

Figure 2: Collect Minerals and Gas. From left to right, top to
bottom:(1)-(4): (1) to build refineries; (2) to collect gas with
built refineries; (3) both tasks in (1) and (2); (4) all three
tasks in (1), (2), (3) and collect minerals.

Figure 3: Build Marines. From left to right, top to
bottom:(1)-(4): (1) to build supply depots; (2) to build bar-
racks; (3) to build marines with (1) and (2) already built; (4)
all three tasks in (1), (2), (3).

constructed via random sampling from the goal space and
concatenating the sampled goals to an already executed se-
quence {s1, . . . , sT }, hence the name hindsight. The sub-
goals are initialized with heuristic-based selection and up-
dated according to hindsight actions. For example, in Fig-
ure 1, given a predetermined subgoal g0, the agent might not
successfully reach it, and instead ends up in s1. In this case,
the subgoal set in hindsight is s1 (updated from g0).

Our method distinguishes in that the (sub)goals selection
strategy is designed with human expertise, to give a fixed but
suitable decomposition of the learning task. Furthermore,
we exploit the underlying sequential relationship among the
subgoals as in the game some states are the prerequisites for
others. Hence, certain actions are required to be performed
in order. Furthermore, another reason for introducing hu-
man expertise rather than using end-to-end learning alone
is that compared with the environments investigated in pre-
vious HRL works, SC2 encompasses a significantly larger
state-action space that prohibits a sample-efficient end-to-
end learning strategy. As a result, our method enjoys an
added advantage of interpretability of the selected subgoals.

Subtasks Implementations. We leverage the customizabil-

91

ity of SC2 minigames to carefully design subtasks to en-
able training of the corresponding subpolicies, as suggested
in (Barto and Mahadevan 2003). We illustrate with the Col-
lect Minerals and Gas (CMAG) minigame, as shown and
described in Figure 2. There are several distinct and sequen-
tial actions the player has to perform to score well: 1. com-
manding the Space Construction Vehicles (SCVs) - basic
units of the game, to collect minerals; 2. having collected
sufficient minerals, selecting SCVs to build the gas refinery
(a prerequisite building for collecting vespene gas) on spe-
cific locations with existing gas wells; 3. commanding the
SCVs to collect vespene gas from the constructed gas refin-
ery; 4. producing additional SCVs (at a fixed cost) to opti-
mize the mining efficiency. And there is a fixed time dura-
tion of 900 seconds. The challenge of CMAG is that all these
actions/subpolicies should be performed in an optimized se-
quence for best performance. The optimality depends on the
order, timing, and the number of repetitions of these ac-
tions. For instance, it is important not to under/over-produce
SCVs at a mineral site for optimal efficiency. Hence, we
implemented the following subtasks: BuildRefinery, Collect-
GasWithRefineries and BuildRefinieryAndCollectGas. In the
first two subtasks, the agent learns the specific subpolicies to
build refineries and to collect gas (from built refineries), re-
spectively, while in the last subtask the agent learns to com-
bine them. Based on the same idea, the complete decomposi-
tion for CMAG is given by [CMAG, BuildRefinery, Collect-
GasWithRefineries, BuildRefineryAndCollectGas, CMAG]
where the first CMAG trains the agent to collect minerals,
and the last CMAG trains it to combine all subpolicies and
also ‘re-introduces’ the reward signal for collecting miner-
als to avoid forgetting (Zaremba and Sutskever 2014). Sim-
ilarly, for the BuildMarines (BM) minigame, shown in Fig-
ure 3, the sequential steps/actions are: 1. commanding the
SCVs to collect minerals; 2. having collected sufficient min-
erals, selecting SCVs to build a supply depot (a prerequi-
site building for barracks and to increase the supplies limit);
3. having both sufficient minerals and a supply depot, se-
lecting SCVs to build barracks; 4. having minerals, a sup-
ply depot and barracks and with current unit count less than
the supplies limit, selecting the barracks to train marines.
The fixed time duration for BM is 450 seconds. Therefore,
we implemented the corresponding subtasks: BuildSupply-
Depots, BuildBarracks, BuildMarinesWithBarracks and the
complete decomposition for BM is [BuildSupplyDepots,
BuildBarracks, BuildMarinesWithBarracks, BM]. Note we
do not set BM as a first subtask as for CMAG because
CMAG contains both reward signals for minerals and gas,
so it is an adequate simple task for the agent to learn to col-
lect minerals. However, BM has only the reward signals for
training marines, thus too difficult as the first subtask.

Construct Experience Replay for Each Subtask. With
the designed subtasks represented by our customized
minigames, constructing experience replays is straightfor-
ward. For a subtask, a predetermined subgoal gi is implicitly
captured in its customized minigame (e.g., to build barracks,
to manufacture SCVs, etc.) using a corresponding reward
signal, so that the agent learns to reach gi. For the immedi-
ate subsequent subtask, we set its initial conditions to be the

completed subgoal gi. So, the agent learns to continue on
the basis of a completed gi. It is an implicit process because,
when learning to reach subgoal gi+1, the agent does not see
or interact directly with the reward signal corresponding to
gi. For example, between two ordered subtasks CollectMin-
erals and BuildRefinery, the agent learns to collect minerals
first and starts with some collected minerals in the latter with
the sole objective of learning to build refineries.

Off-policy learning and PPO. Off-policy learning is a
learning paradigm where the exploration and learning are
decoupled and take place separately. Exploration is mainly
used by the agent to collect experiences or ‘data points’ for
its policy function or model. Learning is then conducted on
these collected experiences, and Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017) is one such method. Its
details are not the focus of this work and omitted here.

Algorithm. We describe the HRL algorithm with human
expertise in subgoal selection here. The pseudo-code is
given in Algorithm 1. For a learning task, a sequence of sub-
tasks is designed with human expertise to implicitly define
the subgoals and we refer to our customized SC2 minigames
as subtasks Γi, 0 ≤ i < m for the learning task. We pre-
define reward thresholds thresholds ∈ Rm, for all sub-
tasks. As the agent’s running average reward is higher than
a threshold, this agent is considered to have learnt the corre-
sponding subtask well and will move to the subsequent sub-
task. We use learner L to denote the agent and to describe
how it makes decisions and takes actions. It can be repre-
sented by a deep neural network, and parametrized by ~wL.
In addition, we define a sample count c and sample limit n.
Sample count c refers to the number of samples the agent has
used for learning a subtask. Sample limit n refers to the total
number of samples allowed for the agent for the entire learn-
ing task, i.e., for all subtasks combined. c and n together are
used to demonstrate empirical sample efficiency.

With these definitions and initializations, the algorithm
takes the defined sequence of subtasks Γ with correspond-
ing thresholds and initiates learning on these subtasks in
the same sequence. During the process, a running average
of the agent’s past achieved rewards is kept for each sub-
task, represented by the API call test(). For each subtask
Γi, either the agent completely exhausts its assigned sample
limit b nmc or it successfully reaches the thresholdsi. If the
running average of past rewards ≥ thresholdsi, the agent
completes learning on Γi and starts with Γi+1; the process
continues until all subtasks are learned. We follow the explo-
ration policy in preliminaries and adopt an ε-greedy policy,
represented by explore() in Algorithm 1.

Related Work
Experience Replay RL has achieved impressive develop-
ments in robotics (Singh et al. 2019), strategic games such
as Go (Silver et al. 2017), real-time strategy games (Zam-
baldi et al. 2019; Vinyals et al. 2019) etc. Researchers have
attempted in various ways to address the challenge of goal-
learning, reward shaping to get the ‘agent’ to learn to mas-
ter the task, and yet not overfit to the particular instances of
the goals or reward signals. Experience Replay (Lin 1993)
is a technique to store and re-use past records of executions

92

Algorithm 1 HRL with Human Expertise in Subgoal Selec-
tion
Input: subtasks Γi, 0 ≤ i < m
Input: reward thresholds thresholds ∈ Rm

Input: learner L, parametrized by ~wL
Input: sample count c, sample limit n.

for 0 ≤ i < m do
c← 0
while c <= b n

m
c do

experiences← explore(L,Γi)
c← c+ |experiences|
~w′L ←PPO(~wL, experiences) . off-policy
if test(~w′L) ≥ thresholdsi then

Break . Go to next subtask
end if

end while
end for

(along with the signals from the environment) to train the
‘agent’, achieving efficient sample usage. Mnih et al. (2013)
employed this technique together with Deep-Q-Learning to
produce state-of-the-art results in Atari, and subsequently
Mnih et al. (2015) confirmed the effectiveness of such ap-
proach under the stipulation that the ‘agent’ only sees what
human players would see, i.e., the pixels from the screen and
some scoring indices.

Curriculum Learning Bengio et al. (2009) hypothesized
and empirically showed that introducing gradually more
difficult examples speeds up the online learning, using a
manually designed task-specific curriculum. Zaremba and
Sutskever (2014) experimentally showed that it is important
to mix in easy tasks to avoid forgetting. Justesen et al. (2018)
demonstrated that training an RL agent over a simple cur-
riculum with gradually increasing difficulty can effectively
prevent overfitting and lead to better generalization.

Hierarchical Reinforcement Learning (HRL) HRL and
its related concepts such as options (Sutton, Precup, and
Singh 1999) macro-actions (Hauskrecht et al. 1998), or
tasks (Li, Narayan, and Leong 2017) were introduced to
decompose the problem, usually a Markov decision pro-
cess (MDP), into smaller sub-parts to be efficiently solved.
We refer the readers to (Barto and Mahadevan 2003; Hengst
2010) for more comprehensive treatments. We describe two
tracks of related works most relevant to our problem. Bakker
and Schmidhuber (2004) proposed a two-level hierarchy, us-
ing subgoal and subpolicy to describe the learning taking
place at the lower level of the hierarchy. Levy et al. (2019)
further articulated these ideas, and explicitly combined them
with Hindsight Experience Replay (Andrychowicz et al.
2017) for better sample efficiency and performance. Another
similarly inspired approach called context sensitive rein-
forcement learning (CSRL) introduced by Li, Narayan, and
Leong (2017) employed the hierarchical structure to enable
effective re-use of learnt knowledge of similar (sub)tasks
in a probabilistic way. In CSRL, instead of Experience Re-
play, efficient simulations over constructed states are used
in learning, able to learn both the tasks, and the environment
(the transition and reward functions). CSRL scales well with

state space, and is relatively easily parallelizable.
StarCraft II In addition to (Zambaldi et al. 2019), sev-

eral works addressed some of the challenges presented by
SC2. In a real-time strategy (RTS) game such as SC2, the
hierarchical architecture is an intuitive solution concept, for
its efficient representation and interpretability. Similar but
different hierarchies were employed in two other works,
where Lee et al. (2018) designed the hierarchy with seman-
tic meaning and from a operational perspective while Pang
et al. (2019) forewent explicit semantic meanings for higher
flexibility. Both provided promising empirical results on the
full-length games against built-in AIs. Instead of full-length
SC2 games, our investigation targets the minigames and we
propose a way to integrate human expertise, the Curriculum
Learning paradigm and the Experience Replay technique
into the learning process.

Different from related works, our work adopts a principle-
driven HRL approach with human expertise in the subgoal
selection and thus an implicit formulation of a curriculum
for the agent, on SC2 minigames in order to achieve empiri-
cal sample efficiency and to enhance interpretability.

Experiments
In the experiments, we specifically focus on two minigames,
viz., BM and CMAG to investigate the effectiveness of
our method. We choose these two because, the discrepan-
cies in the performance between trained RL agents and hu-
man experts are the most significant as reported in (Vinyals
et al. 2017), suggesting these two are the most challeng-
ing for non-hierarchical end-to-end learning approaches. For
both CMAG and BM, we have implemented our customized
SC2 minigames (subtasks) as described in the proposed
methodology section, and we pair them with pre-defined
reward thresholds. In our experiments, the decompositions
for BM and CMAG are [BuildSupplyDepots, BuildBar-
racks, BuildMarinesWithBarracks, BM], and [CMAG, Buil-
dRefinery, CollectGasWithRefineries, BuildRefineryAndCol-
lectGas, CMAG], respectively.

Experimental Setup
• Model Architecture and Hyperparameters. We follow

the model architecture of Fully Convolutional agent in
(Vinyals et al. 2017) by utilizing an open-source imple-
mentation by Ring (2018). We use the hyperparameters
listed in Table 1.

• Training & Testing. In order to evaluate the empirical
sample efficiency of our method, we restrict the total num-
ber of training samples to be 10 million. Note this is
still significantly fewer than 600 million in (Vinyals et
al. 2017) or 10 billion in (Zambaldi et al. 2019). Further-
more, we adopt their practice of training multiple agents
to report the best results attained. After training, on the
trained model, average and maximum scores over 30 in-
dependent episodes are reported.

• Computing Resource. CPU: Intel(R) Core(TM) i9-
10920X CPU @ 3.50GHz, RAM:64 GB, GPU: GeForce
RTX 2080 SUPER 8GB. The training time for a single

93

model initialization: approximately 1.66 hours for CMAG
and 1.5 hours for BM.

Table 1: Hyperparameters
BM CMAG

Learning rate 0.0007 0.0007
Batch size 32 32

Trajectory length 40 40
Off-policy learning algorithm PPO PPO

Reward thresholds [7,7,7,2] [300,5,5,5,500]

Table 2: Average Rewards Achieved
Minigame SC2LE DRL Ours Human Expert

CMAG 3,978 5,055 478.5(527) 7,566
BM 3 123 6.7(6.24) 133

Table 3: Maximum Rewards Achieved
Minigame SC2LE DRL Ours Human Expert

CMAG 4,130 unreported 1825 7,566
BM 42 unreported 22 133

Table 4: Training Samples Required
Minigame SC2LE DRL Ours Human Expert

CMAG 6e8 1e10 1e7 N.A
BM 6e8 1e10 3.4e6 N.A

Discussion
Our experimental results demonstrate similar trends to those
shown in (Vinyals et al. 2017). The variance observed in
final performance achieved can be quite large, over differ-
ent hyperparameter sets, different or same model parameter
initializations and other stochasticity involved in learning.
For Tables 2 and 3, the higher the values the better. For Ta-
ble 4, the lower the values the better. Among the 5 agents
for BM, the best performing agent can achieve an average
reward of 6.7 during testing, while the worst performing
agent can barely achieve 0.1. Note that the average reward
of 6.7 is twice more than the average reward of the best per-
forming agent (3) reported in (Vinyals et al. 2017) for BM.
In addition, our method allows for an in-depth investiga-
tion into the agent’s learning curves to identify which part
of the learning was not effective and led to the sub-optimal
final performance. We compare the best (average 6.7) and
worst (average 0.1) agents based on their subgoal learning
curves, and we find that the best agent is learning effectively
across all subgoals. From Figure 5, the learning curves in
all subtasks show consistent progress with more samples,
where the learning curves of the worst agent show substan-
tially less progress, often flat at zero with very rare spikes,
as shown in Figure 6. Especially for the BuildBarracks sub-
task, the agent’s learning is ineffective and it only occasion-
ally stumbles upon the correct actions of building barracks

Figure 4: Collect Minerals And Gas learning curve.

at random and receives a corresponding reward signal. Al-
ternatively, the comparison between the running average re-
wards for these two agents clearly demonstrates that learn-
ing for the best agent on the BuildBarracks subtask is signif-
icantly more effective. The performance on this subtask also
affects the final subtask BuildMarines since without know-
ing how to build barracks, the agent cannot take the action
of producing marines even if it has learnt this subpolicy. We
believe such interpretability and explainability provided by
our method are helpful in understanding and improving the
learning process and the behavior of the agent.

On the other hand, the experimental results in CMAG
show slightly less success. We believe this can be attributed
to the difference in the setting of learning. In BM, the agent
has to learn distinct skills and how to execute them in se-
quence in order to perform well, with relatively less em-
phasis on the degree of mastery of these skills. However,
in CMAG the agent’s mastery of the skills including min-
ing minerals and gas directly and critically affects its final
score, viz., total amount of minerals and gas collected. It
means that the agent has to be able to perform the skills well,
i.e., optimize with respect to time and manufacturing cost,
which in itself can be a separate and more complex learn-
ing task. Another experimental difficulty for CMAG lies in
the reward scales because the subtasks for collecting min-
erals and gas have high reward ceilings (as high as several
thousand), while those for building the gas refineries have
comparatively low reward ceilings (less than one hundred).
Due to this large difference in the scales of the reward sig-
nals between subtasks, the learning on the subtasks is even
more difficult and can be unbalanced.

94

Figure 5: Build Marines learning curve (best agent).

Figure 6: Build Marines learning curve (worst agent).

Conclusion & Future Work
In this work, we examined the SC2 minigames and proposed
a way to introduce human expertise to an HRL framework.
By designing customized minigames to facilitate learning
and leveraging the effectiveness of hierarchical structures in
decomposing complex and large problems, we empirically
showed that our approach is sample-efficient and enhances

interpretability. This initial work invites several exploration
directions: developing more efficient and effective ways of
introducing human expertise; a more formal and principled
state representation to further reduce the complexity of the
state space (goal space) with theoretical analysis on its com-
plexity; and a more efficient learning algorithm to pair with
the HRL architecture, Experience Replay and Curriculum
Learning.

Acknowledgments
This work was partially supported by an Academic Research
Grant T1 251RES1827 from the Ministry of Education in
Singapore and a grant from the Advanced Robotics Center
at the National University of Singapore.

References
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.;
and Zaremba, W. 2017. Hindsight experience replay. In
Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fer-
gus, R.; Vishwanathan, S.; and Garnett, R., eds., Advances
in Neural Information Processing Systems 30. Curran Asso-
ciates, Inc. 5048–5058.
Andrychowicz, M.; Baker, B.; Chociej, M.; Józefowicz, R.;
McGrew, B.; Pachocki, J.; Petron, A.; Plappert, M.; Powell,
G.; Ray, A.; Schneider, J.; Sidor, S.; Tobin, J.; Welinder, P.;
Weng, L.; and Zaremba, W. 2020. Learning dexterous in-
hand manipulation. International Journal of Robotics Re-
search 39(1):3–20.
Bakker, B., and Schmidhuber, J. 2004. Hierarchical rein-
forcement learning based on subgoal discovery and subpol-
icy specialization. In Proceedings of the 8-th Conference on
Intelligent Autonomous Systems, IAS-8, 438–445.
Barto, A. G., and Mahadevan, S. 2003. Recent advances
in hierarchical reinforcement learning. Discrete Event Dy-
namic Systems 13(1–2):41–77.
Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J.
2009. Curriculum learning. In Proceedings of the 26th An-
nual International Conference on Machine Learning, ICML
’09, 41–48. New York, NY, USA: Association for Comput-
ing Machinery.
Buch, V.; Ahmed, I.; and Maruthappu, M. 2018. Artificial
intelligence in medicine: Current trends and future possibil-
ities. British Journal of General Practice 68:143–144.
Cath, C. 2018. Governing artificial intelligence: Ethical, le-
gal and technical opportunities and challenges. Philosophi-
cal Transactions of The Royal Society A Mathematical Phys-
ical and Engineering Sciences 376:20180080.
Hauskrecht, M.; Meuleau, N.; Kaelbling, L. P.; Dean, T.; and
Boutilier, C. 1998. Hierarchical solution of markov decision
processes using macro-actions. In Proceedings of the Four-
teenth Conference on Uncertainty in Artificial Intelligence,
UAI’98, 220–229. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc.
Hengst, B. 2010. Hierarchical reinforcement learning. In
Sammut, C., and Webb, G. I., eds., Encyclopedia of Machine
Learning. Boston, MA: Springer US. 495–502.

95

Justesen, N.; Torrado, R. R.; Bontrager, P.; Khalifa, A.; To-
gelius, J.; and Risi, S. 2018. Illuminating generalization in
deep reinforcement learning through procedural level gener-
ation. In NeurIPs Workshop on Deep Reinforcement Learn-
ing.
Lee, D.; Tang, H.; Zhang, J. O.; Xu, H.; Darrell, T.; and
Abbeel, P. 2018. Modular architecture for starcraft II with
deep reinforcement learning. In Rowe, J. P., and Smith, G.,
eds., Proceedings of the Fourteenth AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment,
AIIDE 2018, November 13-17, 2018, Edmonton, Canada,
187–193. AAAI Press.
Levy, A.; Konidaris, G. D.; Jr., R. P.; and Saenko, K. 2019.
Learning multi-level hierarchies with hindsight. In 7th In-
ternational Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019.
Li, Z.; Narayan, A.; and Leong, T. Y. 2017. An efficient ap-
proach to model-based hierarchical reinforcement learning.
31st AAAI Conference on Artificial Intelligence, AAAI 2017
3583–3589.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous
control with deep reinforcement learning. In 4th Interna-
tional Conference on Learning Representations, ICLR 2016
- Conference Track Proceedings.
Lin, L.-J. 1993. Reinforcement learning for robots using
neural networks. Ph.D. Dissertation, Carnegie Mellon Uni-
versity.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. In NIPS Deep
Learning Workshop.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.
Pang, Z.-J.; Liu, R.-Z.; Meng, Z.-Y.; Zhang, Y.; Yu, Y.; and
Lu, T. 2019. On Reinforcement Learning for Full-Length
Game of StarCraft. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, 4691–4698.
Ring, R. 2018. Reaver: Modular deep reinforcement learn-
ing framework. https://github.com/inoryy/reaver.
Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Uni-
versal value function approximators. In Proceedings of the
32nd International Conference on International Conference
on Machine Learning - Volume 37, ICML’15, 1312–1320.
JMLR.org.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
CoRR abs/1707.06347.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.;
Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T. P.;

Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of go with deep neural networks
and tree search. Nature 529:484–489.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; Chen, Y.; Lillicrap, T.; Hui, F.; Sifre, L.; van den Driess-
che, G.; Graepel, T.; and Hassabis, D. 2017. Master-
ing the game of go without human knowledge. Nature
550(7676):354–359.
Singh, A.; Yang, L.; Finn, C.; and Levine, S. 2019. End-to-
end robotic reinforcement learning without reward engineer-
ing. In Bicchi, A.; Kress-Gazit, H.; and Hutchinson, S., eds.,
Robotics: Science and Systems XV, University of Freiburg,
Freiburg im Breisgau, Germany, June 22-26, 2019.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. A Bradford Book55 Hayward Street
Cambridge MA United States, second edition.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Be-
tween mdps and semi-mdps: A framework for temporal ab-
straction in reinforcement learning. Artificial Intelligence
112(1–2):181–211.
Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhn-
evets, A. S.; Yeo, M.; Makhzani, A.; Küttler, H.; Agapiou,
J. P.; Schrittwieser, J.; Quan, J.; Gaffney, S.; Petersen, S.;
Simonyan, K.; Schaul, T.; van Hasselt, H.; Silver, D.; Lilli-
crap, T. P.; Calderone, K.; Keet, P.; Brunasso, A.; Lawrence,
D.; Ekermo, A.; Repp, J.; and Tsing, R. 2017. Star-
craft II: A new challenge for reinforcement learning. CoRR
abs/1708.04782.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P.; Oh, J.; Horgan, D.; Kroiss, M.; Danihelka, I.;
Huang, A.; Sifre, L.; Cai, T.; Agapiou, J. P.; Jaderberg, M.;
Vezhnevets, A. S.; Leblond, R.; Pohlen, T.; Dalibard, V.;
Budden, D.; Sulsky, Y.; Molloy, J.; Paine, T. L.; Gulcehre,
C.; Wang, Z.; Pfaff, T.; Wu, Y.; Ring, R.; Yogatama, D.;
Wünsch, D.; McKinney, K.; Smith, O.; Schaul, T.; Lillicrap,
T.; Kavukcuoglu, K.; Hassabis, D.; Apps, C.; and Silver, D.
2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575(7782):350–354.
Weng, L. 2020. Curriculum for reinforcement learning.
lilianweng.github.io/lil-log.
Zambaldi, V. F.; Raposo, D.; Santoro, A.; Bapst, V.; Li, Y.;
Babuschkin, I.; Tuyls, K.; Reichert, D. P.; Lillicrap, T. P.;
Lockhart, E.; Shanahan, M.; Langston, V.; Pascanu, R.;
Botvinick, M.; Vinyals, O.; and Battaglia, P. W. 2019. Deep
reinforcement learning with relational inductive biases. In
7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
Zaremba, W., and Sutskever, I. 2014. Learning to execute.
CoRR abs/1410.4615.

96

Symbolic Network: Generalized Neural Policies for Relational MDPs

Sankalp Garg1, Aniket Bajpai1, Mausam1

1Indian Institute of Technology Delhi
{sankalp262199, quantum.computing96}@gmail.com, mausam@cse.iitd.ac.in

Abstract

A Relational Markov Decision Process (RMDP) is a first-
order representation to express all instances of a single proba-
bilistic planning domain with possibly unbounded number of
objects. Early work in RMDPs outputs generalized (instance-
independent) first-order policies or value functions as a means
to solve all instances of a domain at once. Unfortunately, this
line of work met with limited success due to inherent limi-
tations of the representation space used in such policies or
value functions. Can neural models provide the missing link
by easily representing more complex generalized policies, thus
making them effective on all instances of a given domain?
We present SYMNET, the first neural approach for solving
RMDPs that are expressed in the probabilistic planning lan-
guage of RDDL. SYMNET trains a set of shared parameters for
an RDDL domain using training instances from that domain.
For each instance, SYMNET first converts it to an instance
graph and then uses relational neural models to compute node
embeddings. It then scores each ground action as a function
over the first-order action symbols and node embeddings re-
lated to the action. Given a new test instance from the same
domain, SYMNET architecture with pre-trained parameters
scores each ground action and chooses the best action. This
can be accomplished in a single forward pass without any
retraining on the test instance, thus implicitly representing a
neural generalized policy for the whole domain. Our experi-
ments on nine RDDL domains from IPPC demonstrate that
SYMNET policies are significantly better than random and
sometimes even more effective than training a state-of-the-art
deep reactive policy from scratch.

1 Introduction
A Relational Markov Decision Process (RMDP) (Boutilier,
Reiter, and Price 2001) is a first-order, predicate calculus-
based representation for expressing instances of a probabilis-
tic planning domain with a possibly unbounded number of
objects. An RMDP domain has object types, relational state
predicate and action symbols that are applied over objects,
first order transition templates that specify probabilistic ef-
fects associated with action symbols, and a first-order reward
structure. A domain instance additionally specifies a set of

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

objects and a start state, thus defining a ground MDP with a
known start state (Kolobov, Mausam, and Weld 2012)). Rela-
tional planners aim to produce a single generalized policy that
can yield a ground policy for all instances of the domain, with
little instance-specific computation. Domain-independent
planners are representation-specific, but domain-agnostic,
making them applicable to all domains expressible in the
language. In this paper, we design a domain-independent
relational planner.

RMDP planners, in their vision, expect to scale to very
large problem sizes by exploiting the first-order structures
of a domain – thereby reducing the curse of dimensionality.
Traditional RMDP planners attempted to find a generalized
first-order value function or policy using symbolic dynamic
programming (Boutilier, Reiter, and Price 2001), or by ap-
proximating them via a function over first-order basis func-
tions (e.g., (Guestrin et al. 2003; Sanner and Boutilier 2009)).
Unfortunately, these methods met with rather limited success,
for e.g., no relational planner participated in International
Probabilistic Planning Competition (IPPC)1 after 2006, even
though all competition domains were relational. We believe
that this lack of success may be due to the inherent limita-
tions in the representation power of a basis function-based
representation. Through this work, we wish to revive the re-
search thread on RMDPs and explore if neural models could
be effective in representing these first-order functions.

We present Symbolic NetWork (SYMNET), the first
domain-independent neural relational planner that computes
generalized policies for RMDPs that are expressed in the
symbolic representation language of RDDL (Sanner 2010).
SYMNET outputs its generalized policy via a neural model
whose all parameters are specific to a domain, but tied among
all instances of that domain. So, on a new test instance, the
policy can be applied out of the box using pre-trained parame-
ters, i.e., without any retraining on the test instance. SYMNET
is domain-independent because it converts an RDDL domain
file (and instance files) completely automatically into neural
architectures, without any human intervention.

SYMNET architecture uses two key ideas. First, it visual-
izes each state of each domain instance as a graph, where

1http://www.icaps-conference.org/index.php/Main/
Competitions

97

nodes represent the object tuples that are valid arguments
to some relational predicate. An edge between two nodes
indicates that an action causes predicates over these two
nodes to interact in the instance. The values of predicates
in a state act as features for corresponding nodes. SYMNET
then learns node (and state) embeddings for these graphs
using graph neural networks. Second, SYMNET learns a neu-
ral network to represent the policy and value function over
this graph-structured state. To learn these in an instance-
independent way, we recognize that most ground actions
are a first-order action symbol applied over some object tu-
ple. SYMNET scores such ground actions as a function over
the action symbol and the relevant embeddings of object tu-
ples. After training all model parameters using reinforcement
learning over training instances of a domain, SYMNET ar-
chitecture can be applied on any new (possibly larger) test
problem without any further retraining.

We perform experiments on nine RDDL domains from
IPPC 2014 (Grzes, Hoey, and Sanner 2014). Since no planner
exists that can run without computation on a given instance,
we compare SYMNET to random policies (lower bound) and
policies trained from scratch on the test instance. We find
that SYMNET obtains hugely better rewards than random,
and is quite close to the policies trained from scratch – it
even outperforms them in 28% instances. Overall, we believe
that our work is a step forward for the difficult problem of
domain-independent RMDP planning. We release the code
of SYMNET for future research.2

2 Background and Related Work
2.1 Probabilistic Planning
Markov Decision Process (MDP): A (ground) finite-
horizon MDP (Bellman 1957; Puterman 1994) with a known
start state is formalized as a tuple < S,A, T,R,H, s0, γ >,
where S is the set of states, A is the set of actions, T is the
transition model S ×A× S → [0, 1], R is the reward model
S × A × S → R, H is the horizon and s0 is the start state,
and γ, the discount factor.
Relational Markov Decision Process (RMDP): An RMDP
< C,SP,A, O, T ,R, H, s0, γ > is a first-order representa-
tion of a factored MDP (Boutilier, Reiter, and Price 2001),
expressed via objects, predicates and functions. Here, C is a
set of classes (types), SP is the set of state predicate symbols.
A is a set of action predicate symbols, O represents a set of
domain objects, each associated with single type from C. It
is a first order representation because different sets of objects
O can construct different ground MDPs.

Each predicate symbol is declared to take as argument a
tuple of object types. A predicate symbol (action symbol)
applied over a type-consistent tuple of object variables forms
a state variable (respectively, ground action). A ground-state
s is, thus, a complete assignment of all predicate symbols
SP applied on all type-consistent object tuples from O (also
denoted by SPO). Similarly, the set of all ground actions
(A) can be defined as AO – all-action symbols applied on
all type-consistent object tuples. We also denote the ground

2https://github.com/dair-iitd/symnet

state space S by P(SPO)), where P denotes the powerset.
Transition and reward models for an RMDP are defined at
the schema level through different languages, e.g., PPDDL
(Younes et al. 2005) and, our focus, RDDL (Sanner 2010).

Research in Relational MDPs explores ways to represent
and construct first-order (generalized) value functions or
policies, which can be used directly on a new test instance.
Example representations for these include regression trees
(Mausam and Weld 2003), decision lists (Fern, Yoon, and Gi-
van 2006), extensions of algebraic decision diagrams (Joshi
and Khardon 2011), and linear combinations of basis func-
tions (Guestrin et al. 2003; Sanner and Boutilier 2005). We
believe a reason for limited success of RMDP algorithms is
the inherent limitation of these representations. We study the
use of deep neural models for representing such generalized
functions. To the best of our knowledge, we are the first to
develop relational planners for domains expressed in RDDL.

Relational Dynamic Decision Language (RDDL): RDDL
has been the language of choice for the last three IPPCs. It
divides SP into non-fluent (NF) and fluent (F) symbols.
Non-fluents are the state variables that do not change with
time in a given instance, but may be different across problem
instances. Fluents represent state variables that change with
time (due to actions or natural dynamics). RDDL splits an
RMDP into two separate files, one for the whole domain
(that has types, predicates, transitions, and rewards), and the
other for the instance (that has objects, non-fluent values, and
fluent values for initial state). RDDL uses additive rewards,
total reward is sum of local rewards collected for satisfying
different properties in a state. It factors transition function via
an underlying DBN semantics. There exist algorithms that
convert an RDDL instance into ground DBN (Sanner 2010).

Running Example: We use a simplified Wildfire domain
as our example. It has a grid where each cell may have fuel,
causing it to burn. The goal is to have the least damage to
the grid by either putting out the fire or cutting out the fuel
supply. The DBN for the domain is show in Figure 1.

There are two classes, C = {xpos, ypos}: x and y
coordinate of the grid cell. Domain has two fluent
symbols F = {burning, out-of -fuel}, representing
the current burning state and the fuel state of the cell.
Both fluent symbols take a cell (x, y) as its arguments.
The non-fluents represent costs and topology, NF =
{CostTgtBurn,CostNTgtBurn,Neighbour, Target}.
The non fluent symbol Neighbour takes four arguments
(x, y, x′, y′), since it defines the topology of the grid. Target
has arguments (x, y). A = {put-out, cut-out, finisher}.
First two action symbols take arguments (x, y) – they
put out fire and cut out fuel supply at a cell. There is
one global action finisher, which puts out fire in all the
cells simultaneously. Reward (negative) in each time step
adds CostTgtBurn for each target cell that is burning
and CostNTgtBurn for each non-target cell that is
burning. In a problem instance, say there are three objects
O = {x1, x2, y1}. This implies a problem with two cells
(x1, y1), and (x2, y1). Say the target cell is (x1, y1) and that
these are connected, i.e., Neighbour(x1, y1, x2, y1) = 1.

98

2.2 Reinforcement Learning
Reinforcement Learning (RL) refers to planning problems
without known transition and rewards, necessitating learning
from experience. State of the art approaches for RL are neu-
ral, which approximate policy and value functions through
deep neural models. We use the Asynchronous Advantage
Actor-Critic (A3C) (Mnih et al. 2016) as our underlying RL
algorithm. A3C uses two neural networks 1) θπ to represent
the policy (mapping from a state to distribution over actions)
and 2) θV to estimate the state value (long term discounted
reward starting in a state). Policy parameters are optimized
to prefer an action that increases a state’s advantage function
– difference between its value when taking that action and
its overall value. Value parameters optimize the MSE loss
between observed and predicted long-term rewards.

2.3 Graph Neural Networks
Graph Neural Networks input a graph and learn latent
space embeddings for each node, based on the its indi-
vidual features and the local connectivity structure. Exam-
ples include Graph Convolution Networks (GCN) (Kipf
and Welling 2017), and Graph Attention Networks (GAT)
(Velickovic et al. 2017). We use GAT, which computes a
node embedding by using a weighted attention for each of
neighbouring nodes. Specifically output node embedding
vi
′ = σ(1

K

∑K
k=1

∑
j∈Ni

αkijW
kvj), where vi is the input

feature of node vi, Ni are its neighbours, Wk is a train-
able weight matrix, k is the multi-head hyperparameter and
αkij = softmaxj(f(W

kvi,W
kvj)) is the normalized self

attention coefficient for any non-linear function (f), which
in our implementation is LeakyReLU (Xu et al. 2015).

2.4 Transfer Learning for Probabilistic Planning
There having been several classical (Taylor and Stone 2009;
Sorg and Singh 2009; Atkeson and Schaal 1997) and neural
(Parisotto, Ba, and Salakhutdinov 2015; Matiisen et al. 2017;
Garnelo, Arulkumaran, and Shanahan 2016; Higgins et al.
2017) approaches for transfer learning in RL. Recent work
studies transfer learning for symbolic planning problems, e.g.,
Groshev et al. (2018) for deterministic planning problems.
ASNets, Action-Schema Networks (Toyer et al. 2018; Shen
et al. 2019), tackle a problem similar to ours but for goal-
oriented subset of PPDDL. While an RDDL instance can
be converted automatically into propositional PPDDL, an
RDDL domain cannot always be converted into relational
PPDDL – hence we cannot directly compare against ASNets.
Issakkimuthu et al. (2018) devise a neural framework to
learn a policy for (ground) RDDL MDPs from scratch. Their
constraint on non-transferability is due to the fixed size of
fully connected layers in the neural network. TORPIDO
achieves transfer across RDDL problem instances of the
same domain (Bajpai, Garg, and Mausam 2018); it can only
transfer over equi-sized problems due to its fixed size decoder.

Our previous work TRAPSNET is closest to SYMNET, as
it can transfer to different-sized instances of an RMDP (Garg,
Bajpai, and Mausam 2019). It constructs a graph, which uses
single object as nodes, and non-fluent based edge. It encodes
each node in embedding space and computes the score for a

ground action based on the applied action template, and ob-
ject embedding. However, TRAPSNET makes the restrictive
assumptions that the domains have exactly one binary non-
fluent, and all the rest are unary fluents or non-fluents, and
each action symbol is parameterized by exactly one object.
These assumptions don’t hold in several RDDL domains.

3 Problem Formulation
Given an RMDP domain D =< C,SP,A, T ,R, H, γ > ex-
pressed in RDDL, we wish to learn a generalized policy πD,
which can be applied to all instances of D and maximizes
the discounted sum of expected rewards over a finite horizon
H . Given a test problem instance It =< O, s0 > from D,
this generalized policy can yield an instance-specific policy
πD(It) : P(SPO) → AO, without any training on It. The
RMDP learning problem can be seen in terms of multi-task
learning over several problem instances in D: given N ran-
domly selected problem instances I1, I2, ..., IN (possibly of
different sizes) from D, we wish to learn the weights φ of a
neural network, such that πD(Ii;φ) is a good (high-reward)
policy for problem instance Ii. A good generalized policy is
one which, without training, achieves high reward values on
the new instance It.

4 The SYMNET Framework
We now present SYMNET’s architecture for training a gener-
alized policy for a given RMDP domain. We follow existing
research to hypothesize that for any instance of a domain, we
can learn a representation of the current state in a latent space
and then output a policy in latent space, which is decoded
into a ground action. To achieve this, SYMNET uses three
modules: (1) problem representation, which constructs an
instance graph for every problem instance, (2) representation
learning, which learns embeddings for every node in the in-
stance graph, and for the state, and (3) policy decoder, which
computes a value for every ground action, outputting a mixed
policy for a given state. All parameters of representation
learning and policy learning modules are shared across all
instances of a domain. SYMNET’s full architecture is shown
in Figure 2.

4.1 Problem Representation
We follow TRAPSNET, in that we continue the general idea
of converting an instance into an instance graph and then
learning a graph encoder to handle different-sized domains.
However, the main challenge for a general RMDP, one that
does not satisfy the restricted assumptions of TRAPSNET,
is in defining a coherent graph structure for an instance. The
first key question is what should be a node in the instance
graph. TRAPSNET’s approach was to use a single object
as nodes, as all fluents (and actions) in its domains took
single objects as arguments. This may not work for a general
RMDP since it’s fluents and actions may take several objects
as arguments. Secondly, how should edges be defined. Edges
represent the interaction between nodes. TRAPSNET defined
them based on the one binary non-fluent in its domain. A
general RMDP may not have any non-fluent symbol or may
have many (possibly higher-order) non-fluents.

99

Figure 1: DBN for a modified wildfire problem.

Last but not least, the real domain-independence for SYM-
NET can be achieved only when it parses an RDDL domain
file without any human intervention. This leads to a novel
challenge of reconciling multiple different ways in RDDL to
express the same domain. In our running example, connectiv-
ity structure between cells may be defined using non-fluents
y-neighbour(y, y′), x-neighbour(x, x′), or using a quar-
ternary non-fluent neighbour(x, y, x, y′). Since both these
representations represent the same problem, an ideal desider-
atum is that the graph construction algorithm leads to the
same instance graph in both cases. But, this is a challenge
since the corresponding RDDL domains may look very differ-
ent. While, in general, this problem seems too hard to solve,
since it is trying to judge logical equivalence of two domains,
SYMNET attempts to achieve the same instance graphs in
case the equivalence is within non-fluents.

To solve these problems, we make the observation that dy-
namics of an RDDL instance ultimately compile to a ground
DBN with nodes as state variables (fluent symbols applied
on object tuples) and actions (action symbols applied on
object tuples).3 DBN exposes a connectivity structure that
determines which state variables and actions directly affect
another state variable. It additionally has conditional prob-
ability tables (CPTs) for each transition. Figure 1 shows an
example of a DBN for our running example instance. Here,
left column is for current time step, and right for the next one.
The edges represent which state and action variables affect
the next state-variable. We note that the ground DBN does
not expose non-fluents since its values are fixed, and their
dependence can be compiled directly into CPTs.

SYMNET converts a ground DBN to an instance graph. It
constructs a node for every unique object tuple that appears
as an argument in any state variable in the DBN. Moreover,
two nodes are connected if the state variables associated
with two nodes influence each other in the DBN through
some action. This satisfies all our challenges. First, it goes
beyond an object as a node, but only defines those nodes
that are likely important in the instance. Second, it defines
a clear semantics of edges, while maintaining its intuition

3done automatically using code from https://github.com/ssanner/
rddlsim

of “directly influences.” Finally, it can handles some variety
of non-fluent representations for the same domain. Since
the DBN does not even expose non-fluent state variables,
and compiles them away, the same instancs encoded with
different non-fluent representations often yield yield same
ground DBNs and thus the same instance graphs.
Construction of Instance Graph: We now formally de-
scribe the conversion of a DBN into a directed instance graph,
G = (V,E), where V is the set of vertices and E is the set
of edges. G is composed of K = |A|+ 1 disjoint subgraphs
Gj = (Vj , Ej). Intuitively, each graph Gj has information
about influence of each individual action symbol aj ∈ A.
GK represents the influence of the full set A, and also the
natural dynamics. In our example K = 4 since we have three
action symbols: put-out, cut-out and finisher.

To describe the formal process, we define three analogous
sets: Of , Onf and Oa. Of represents the set of all object
tuples that act as a valid argument for any fluent symbol.Onf
and Oa are analogous sets for non-fluent and action symbols.
In our running example, Of = {(x1, y1), (x2, y1)}, Onf =
{(x1, y1), (x2, y1), (x1, y1, x2, y1), (x2, y1, x1, y1)}, and
Oa = {(x1, y1), (x2, y1)}. Nodes in the instance graph as-
sociate with object tuples. We use ov to denote the object
tuple associated with node v. SYMNET converts a DBN into
an instance graph as follows:

1. The distinct object tuples in fluents form the nodes of the
graph, i.e. Vj = {v|ov ∈ Of},∀j. For the example, each
Vj = different copies of {(x1, y1), (x2, y1)}.

2. We add an edge between two nodes in Gj if some state
variables corresponding to them are connected in the DBN
through aj . Formally, Ej(u, v) = 1, if ∃f, g ∈ F,∃oa ∈
Oa, j ∈ {1, . . . , |A|} s.t. the transition dynamics (T f) for
state variable g′(ov) and action aj(oa) depend on state
variable f(ou) or f ′(ou).For the running example, there
is no edge between (x1, y1) and (x2, y1) since cut-out,
put-out or finisher’s effects on one cell do not depend on
any other cell.

3. We add an edge between two nodes in GK if some
state variables corresponding to them are connected
in the DBN (possibly through natural dynamics). I.e.,
EK(u, v) = 1, if ∃f, g ∈ F s.t. there is an edge from
f(ou) (or f ′(ou)) and g′(ov) in the DBN. For the exam-
ple, E4((x1, y1), (x2, y1)) = 1 as there is an edge be-
tween burning(x1, y1) and burning′(x2, y1) since fire
propagates to neighboring cells through natural dyanamics.
Similarly, E4((x2, y1), (x1, y1)) = 1.

4. As every node influences itself, self loops are added on
each node. E(v, v) = 1,∀v ∈ V .
For each node v ∈ V , we additionally construct a fea-

ture vector (h(v)) which consists of fluent feature vector
(hf (v)) and non-fluent feature vector (hnf (v)), such that
h = concat(hf , hnf). The feature vector for all nodes for
the same object tuple is the same. The feature vector is con-
structed as follows:

1. The fluent features for each node are obtained from the
state of the problem instance. The values of state vari-
ables corresponding to a node are added as feature to that
node. Whenever a fluent symbol cannot take a node as
an argument, we add zero as the feature for it. Formally,

100

Figure 2: Policy network for SYMNET demonstrated on 2 × 1 wildfire domain. Fully Connected Network is used in Action
Decoder.

hf (v)i = gi(ov) if gi ∈ F , v ∈ V and ov is an argu-
ment of gi, otherwise, hf (v)i = 0,∀i = 1 . . . |F|. For
the running example, we have two state-fluents. Hence,
hf ((x1, y1)) = [burning(x1, y1), out-of -fuel(x1, y1)].

2. The non-fluent feature vector for each node is obtained
from the RDDL file. The values of non-fluents defined on
the node, and additionally any unary non-fluents where the
argument intersects the node are added as the features for
the node. The default value is obtained from the domain
file while the specific value (if available) is obtained from
the instance file. Formally, hnf (v)i = gi(onf) if gi ∈
NF , v ∈ V, onf ∈ Onf , ((ov = onf) ∨ (|onf | = 1 ∧
onf ⊂ ov)), otherwise, hf (v)i = 0,∀i = 1 . . . |NF|. In
our example, hnf ((x1, y1)) = [target(x1, y1)].
We note that the size of feature vector on each node de-

pends on the domain, but is independent of the number of
objects in the instance – there are a constant number of feature
values per state predicate symbol. This allows variable-sized
instances of the same domain to use the same representation.

4.2 Representation Learning
SYMNET runs GAT on the instance graph to obtain node
embeddings v for each node v ∈ V , It then constructs
tuple embedding for each object tuple by concatenating
node embeddings of all associated nodes. Formally, let
OV = {ov|v ∈ V }. For o ∈ OV , the tuple embedding
o = concat(v), over all v s.t. ov = o. SYMNET also com-
putes a state embedding s by taking a dimension-wise max
over all tuple embeddings, i.e., s =MaxPoolo∈OV

(o).

4.3 Policy Decoder
SYMNET maps latent representations o and s into a state
value V (s) (long-term expected discounted reward starting
in state s) and mixed policy π(s) (probability distribution

over all ground actions). This is done using a value decoder
and a policy decoder, respectively.

There are several challenges in designing a (generalized)
policy decoder. First, the action symbols may take multiple
objects as arguments. Second, and more importantly, action
symbols may even take those object tuples as arguments that
do not correspond to any node in the instance graph. This will
happen if an object tuple (in Oa) is not an argument to any
fluent symbol, i.e., ∃oa s.t. oa ∈ Oa∧oa /∈ Of . Adding these
object tuples as nodes in the instance graph may not work,
since we won’t have any natural features for those nodes.

In response, we design a novel framework for policy and
value decoders. The decoders consist of fully connected lay-
ers, the input to which are a subset of the tuple embeddings
o. SYMNET uses the following rules to construct decoders:

1. The number of decoders is constant for a given domain
and is equal to the number of distinct action symbols
(|A|). For the running example, three different decoders for
each policy and value decoding are constructed, namely
cut-out, put-out and finisher.

2. The input to a decoder is the state embedding s concate-
nated with embeddings of object tuples corresponding to
the state variables affected by the action in the DBN. In
running example, put-out(x1, y1) action takes only the
tuple embedding of (x1, y1) as input. However, the num-
ber of state-variables being affected by a ground action
might vary across instances of the same domain. For ex-
ample, the finisher action affects all cells. To alleviate
this, we use size-independent max pool aggregation over
the embeddings of all affected tuple embeddings to create
a fixed-sized input.

3. Decoder parameters are specific to action symbols and not
to ground actions. In running example, put-out(x1, y1)
will be scored using embedding of (x1, y1); similarly, for
(x2, y1). But, both scorings will use a single parameter set
specific to put-out.

101

Table 1: αsymnet(0) values of SYMNET. Bold values represent over 90% the score of max performance.

Instance 5 6 7 8 9 10

D
om

ai
n

AA 0.93 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.92 ± 0.02 0.95 ± 0.03 0.91 ± 0.05
CT 0.87 ± 0.16 0.78 ± 0.14 1.00 ± 0.07 0.98 ± 0.13 0.99 ± 0.04 1.00 ± 0.05

GOL 0.96 ± 0.06 1.00 ± 0.05 0.65 ± 0.05 0.83 ± 0.03 0.95 ± 0.04 0.64 ± 0.08
Nav 0.99 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.02 1.00 ± 0.02
ST 0.91 ± 0.05 0.84 ± 0.02 0.86 ± 0.05 0.85 ± 0.05 0.81 ± 0.02 0.89 ± 0.03
Sys 0.96 ± 0.03 0.98 ± 0.02 0.98 ± 0.02 0.97 ± 0.02 0.99 ± 0.01 0.96 ± 0.03
Tam 0.92 ± 0.07 1.00 ± 0.12 0.98 ± 0.06 1.00 ± 0.12 1.00 ± 0.12 0.95 ± 0.06
Tra 0.85 ± 0.18 0.93 ± 0.06 0.88 ± 0.21 0.74 ± 0.17 0.94 ± 0.12 0.87 ± 0.13

Wild 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.01

4. The policy decoder computes scores of all ground actions,
which are normalized using softmax to output the final
policy in a state. For It, the highest probability action is
selected as the final action.

5. All value outputs are summed to give the final value for
that state. This modeling choice reflects the additive reward
aspect of many RDDL domains.

4.4 Learning

While construction of SYMNET architecture is heavily depen-
dent on the RDDL domain and instance files, actual training
is done via model-free reinforcement learning approach of
A3C (Mnih et al. 2016). RL learns from interactions with
environment – SYMNET simulates the environment using
RDDL-specified dynamics. Use of model-based planning al-
gorithms for this purpose is left as future work. We formulate
training of SYMNET as a multi-task learning problem (see
Section 3), so that it generalizes well and does not overfit
on any one problem instance. The parameters for the state
encoder, policy decoder, and value decoder are learned using
updates similar to that in A3C. SYMNET’s loss function for
the policy and value network is the same as that in the A3C
paper (summed over the multi-task problem instances).

As constructed, SYMNET’s number of parameters is inde-
pendent of the size of the problem instance. Hence, the same
network can be used for problem instances of any size. After
the learning is completed, the network represents a general-
ized policy (or value), since it can be directly used on a new
problem instance to compute policy in a single forward pass.

5 Experiments

Our goal is to estimate the effectiveness of SYMNET out-of-
the-box policy for a new problem in a domain. Unfortunately,
there are no available transfer algorithms for general RDDL
RMDPs. So, we first compare it against a random policy,
because that is the best we can do currently with no time to
train. To further understand the overall quality of the general-
ized policy, we also compare it against several neural models
that train from scratch on the test instance. We also compare
it against state-of-the-art online planner PROST (Keller and
Eyerich 2012).

5.1 Domains and Experimental Setting
We show all our results on nine RDDL domains used IPPC
2014: Academic Advising (AA), Crossing Traffic (CT),
Game of Life (GOL), Navigation (NAV), Skill Teaching (ST),
Sysadmin (Sys), Tamarisk (Tam), Traffic (Tra), and Wildfire
(Wild). We describe the domains, number of state fluents &
non-fluents, action fluents in supplementary material. The
RL agent is trained to learn the generalized policy on smaller
sized instances. We use IPPC problem instances 1, 2, and 3 of
each domain for the multi-task training of SYMNET network.
A3C uses a discounted parameter of 0.99. In the spirit of
domain-independent planning, we use the same hyperparam-
eters for each domain. The embedding module for GAT uses
a neighborhood of 1 and an output feature size of 6. We then
use a fully connected layer of output 20 dimensions to get
an embedding from each of the tuple embedding outputs by
GAT. All layers use a leaky ReLU activation and a learning
rate of 10−3. We train the network using RMSProp (Ruder
2016) on a single Nvidia K40 GPU. SYMNET is trained for
each domain for twelve hours (4 hours for each instance).

5.2 Comparison Algorithms and Metrics
As there does not exist any previous method for learning
over Relational RDDL MDPs, we can only compare against
a random policy. However, this experiment can only show
the difference from a random policy, but cannot evaluate the
overall goodness of the generalized policy. For that, we com-
pare against several (potentially upper bound) policies that
are not directly comparable to SYMNET in their experimental
settings. For our first such experiment, we use TORPIDO as
the state-of-the-art deep reactive policy. Note that we do not
use their transfer method, but train the network from scratch
on the problem instance. This is because it can only trans-
fer across equi-sized instances. Still, it is an upper bound as
TORPIDO trained on the test instance is compared against
SYMNET trained on other smaller instances, but not the test
instance. Similarly, we also compare against SYMNET archi-
tecture itself, trained from scratch on the test instance (named
SYMNET-s). The main difference between TORPIDO and
SYMNET architectures is that TORPIDO has a much higher
capacity since it models each ground action explicitly. On
three domains where TRAPSNET is applicable, we also com-
pare against TRAPSNET policies out of the box. Finally,
we also compare against the state-of-the-art online planner,

102

Table 2: Comparison of SYMNET against SYMNET-s (SYM) architecture trained from scratch and TORPIDO (TOR) architecture
trained from scratch. We compare out-of-the-box SYMNET to others after 12 hours of training. INF is used when SYM or TOR
achieved minimum possible reward and hence SYMNET was infinitely better.

Domain SYM TOR Domain SYM TOR Domain SYM TOR Domain SYM TOR

AA 5 1.09 0.99 GOL 5 1.35 1.49 ST 5 1.11 0.94 Tam 5 INF 2.33
AA 6 1.78 0.95 GOL 6 1.57 1.69 ST 6 1.21 0.90 Tam 6 27.71 8.13
AA 7 1.21 0.98 GOL 7 1.08 0.76 ST 7 1.10 0.87 Tam 7 17.81 4.83
AA 8 1.31 0.97 GOL 8 2.22 0.87 ST 8 1.14 0.90 Tam 8 2.74 15.56
AA 9 1.39 0.95 GOL 9 1.86 1.31 ST 9 1.13 0.81 Tam 9 24.94 13.07

AA 10 1.32 0.93 GOL 10 1.25 0.68 ST 10 1.30 0.95 Tam 10 2.35 7.99
CT 5 1.34 1.39 Nav 5 10.84 INF Sys 5 1.03 2.89 Tra 5 1.78 0.86
CT 6 INF 1.56 Nav 6 INF INF Sys 6 1.33 1.20 Tra 6 1.56 1.39
CT 7 1.13 1.12 Nav 7 INF INF Sys 7 1.56 2.45 Tra 7 3.28 1.13
CT 8 1.55 1.23 Nav 8 INF INF Sys 8 1.46 1.60 Tra 8 1.13 0.81
CT 9 1.35 1.16 Nav 9 INF INF Sys 9 1.38 1.17 Tra 9 2.50 1.08

CT 10 1.22 4.99 Nav 10 INF INF Sys 10 1.18 1.50 Tra 10 1.53 1.86
Wild 5 1.03 1.13 Wild 7 1.03 1.13 Wild 9 1.01 13.14
Wild 6 1.01 1.01 Wild 8 1.00 1.09 Wild 10 34.80 11.19

Table 3: Comparison of TRAPSNET with SYMNET on three
domains as published in (Garg, Bajpai, and Mausam 2019).
Label: AA - Academic Advising, GOL - Game Of Life, Sys -
Sysadmin

Instance 5 6 7 8 9 10

D
om

ai
n AA 1.12 1.17 1.12 1.27 1.26 1.40

GOL 0.96 1.04 0.69 1.00 0.97 1.50
Sys 1.01 1.55 1.33 1.39 1.21 1.17

PROST.
After training algorithm alg for t hours, we simulate its

output policy 200 times (for H steps each) from the start
state. We average the discounted rewards to estimate the
expected long term discounted reward of that policy, de-
noted by Valg(t). To be able to compare across domains and
problems and reward ranges, we report a normalized met-
ric αalg(t) =

Valg(t)−Vmin

Vmax−Vmin
where Vmin and Vmax are the

minimum, and the maximum expected discounted rewards
obtained at any time by any of the four comparison algorithms
on a given instance. This number lies between 0 and 1, with 1
being the best-found reward, and 0 being the random policy’s
reward. All algorithms are trained independently 5 times and
the average result is reported. During training from scratch,
all networks start with a random policy and hence have their
α(0) values as 0. However, that is not true for SYMNET as it
is pre-trained on the domain. To compare against other train-
ing approaches directly, we compute βalg(t) =

αsymnet(0)
αalg(t)

.
A value higher than 1 suggests that SYMNET out-of-the-box
outperformed alg trained for t hours, and less than 1 implies
SYMNET performed worse.

5.3 Results
Comparison against Random Policy: We report the val-

ues of αsymnet(0) in Table 1. Since the random policy is 0,
we notice that on all six problem instances from the nine
domains, SYMNET performs enormously better than random.
We highlight the instances where our method achieves over
90% of the max reward obtained by any algorithm for that
instance. We see that SYMNET with no training achieves over
90% the max reward on 40 instances and over 80% in 50 out
of 54 instances. We also show that our method performs the
best out-of-the-box in 28 instances. This is our main result,
and it highlights that SYMNET takes a major leap towards the
goal of computing generalized policies for the whole RMDP
domain, and can work on a new instance out of the box.
Comparison against Training from Scratch: We now
compare SYMNET against the expected discounted rewards
obtained by TORPIDO and SYMNET-s, when they are
trained from scratch for 12 hours on the test problem. We
note that these numbers are not directly comparable, since in
one case, the model has been trained on other instances of
the domain, but not trained on the test problem at all, and in
the other case the models are trained from scratch on the test.
That said, this comparison is likely a good indicator of the
absolute performance of SYMNET.

Table 2 reports the values for βtorpido(12) and
βsymnet−s(12). We notice that, surprisingly, SYMNET pol-
icy with no training is better than both methods on several
instances. Against SYMNET trained from scratch, it is better
on all instances, although its edge over TORPIDO is limited
to 37 out of 54. We hypothesize that this excellent perfor-
mance is due to the multi-task learning aspect of SYMNET,
where it is able to reach some generalized policy of a domain
that is not found on the specific instance even after training
for 12 hours.

In 17 out of 54 instances, SYMNET lags behind TOR-
PIDO , which is not surprising, since TORPIDO has much
higher capacity, as discussed earlier. We also notice that the
performance of TORPIDO is no better than random for

103

Table 4: Comparison of PROST with SYMNET. INF is used when PROST returned a policy equal to or worse than a random
policy.

Domain AA CT GOL Nav ST Sys Tam Tra Wild

In
st

an
ce

5 2.13 0.76 0.48 1.16 0.95 1.13 0.61 0.60 1.39
6 2.14 0.44 0.57 1.87 0.86 1.24 0.96 0.65 INF
7 2.18 0.62 0.33 6.42 0.86 1.13 0.70 0.61 INF
8 1.79 0.37 0.39 45.46 0.90 1.50 0.79 0.51 INF
9 1.46 0.74 0.44 101.23 0.78 1.21 0.83 0.75 INF

10 1.46 0.37 0.30 INF 0.93 1.42 0.84 0.64 1.49

Navigation. We attribute this to the sparse and late reward
obtained in large instances of this domain, which makes it
difficult for TORPIDO to learn a good policy. Because of
the late rewards, TORPIDO is not able to reach the goal
state at all in 12 hours of training, and hence is not able to
improve on the random policy. SYMNET trains well on small
instances where path to goal is short and generalizes well.
In GOL, SYMNET performs worse, because the nature of
policy changes significantly in large instances (e.g. requiring
new patterns to survive) which cannot be learned in smaller
instances at all.
Comparison against TRAPSNET: While TRAPSNET is
not applicable in many RMDPs, still, we can compare it with
SYMNET on some domains. We compare these on three do-
mains that follow the unary fluents and binary non-fluents
constraint: Academic Advising, Game of Life, and SysAdmin.
We report βtrapsnet(0) in Table 3. It shows that SYMNET
outperforms TRAPSNET on 15 out of 18 instances, is compa-
rable on 2 instances and worse on 1 instance. We attribute the
success of SYMNET over TRAPSNET to the action-symbol
specific graphs (Gj), which likely help learn better action
dependencies in the embeddings.
Comparison against ASNets: Even after significant efforts,
we were not able to compare against ASNets, which solves a
similar problem for PPDDL domains. Converting an RDDL
domain to PPDDL enumerates all the ground state-variables
and loses the RMDP structure. This leads to different domain
files for different instances for the same problem domain,
due to which ASNets is unable to train. We also tried writing
a domain file manually for a few domains, but were not
successful due to the unavailability of floating non-fluent
values, and due to non-additive reward structure in PPDDL.
Comparison against PROST: Finally, we compare against
PROST. PROST is a state-of-the-art online planner, i.e., it
performs interleaved planning and execution, as it builds
a new search tree before taking every action, based on the
specific state reached. On the other hand, SYMNET outputs
an offline policy, which does not need much computation
for deciding the next action. Offline and online policies are
two very different settings, and these results are not directly
comparable. Nonetheless, we report Vsymnet(0)−Vmin

Vprost−Vmin
. The

code of PROST is obtained from the official repository and
we use its default settings for this comparison.4

We compare our policy with PROST on all 9 domains,

4https://github.com/prost-planner/prost

shown in Table 4. We see that on four domains SYMNET
achieves a much better performance than PROST. This is
rather surprising to us that even after substantial lookahead
from the current state, PROST is still not able to compute a
good policy. For example, in both Navigation and Wildfire,
the rewards are sparse and distant, and PROST is often unable
to reach the goal in its planning horizon. In other five domains,
PROST is substantially better than SYMNET. This suggests
that SYMNET policies are not close to optimal, and further
research is needed for making them even stronger. This also
points to the future possibility of applying a combination of
SYMNET and PROST for the offline setting, not unlike the
use of Monte-Carlo Tree Search with deep neural networks
in AlphaGo (Silver et al. 2016).

Overall, we find that SYMNET’s generalized policies out-
of-the-box are enormously better than random, and can fre-
quently beat other deep neural models trained from scratch on
the test instance. However, comparison with PROST suggests
that SYMNET policies are not close to optimal and further
research is needed to make them even better.

6 Conclusion and Future Work
We present the first neural-method for obtaining a gener-
alized policy for Relational MDPs represented in RDDL.
Our method, named SYMNET, converts an RDDL problem
instance into an instance graph, on which a graph neural
network computes state embeddings and embeddings for im-
portant object tuples. These are then decoded into scores for
each ground action. All parameters are tied and size-invariant
such that the same model can work on problems of varying
sizes. In our experiments, we train SYMNET on small prob-
lems of a domain and test them on larger problems to find
that they out-of-the-box perform hugely better than random.
Even when compared against training deep reactive policies
from scratch, SYMNET without training perform better or at
par in over half the problem instances.

Our work is an attempt to revive the thread on Relational
MDPs and the attractive vision of generalized policies for
a domain. However, ours is only one of the first steps. Fur-
ther investigation is needed to assess how far are SYMNET’s
generalized policies from optimal. We strongly believe that
there may be even better architectures that could learn near-
optimal generalized policies, and the need for retraining or
interleaving planning and execution could be rendered un-
necessary. We release all our software for use by the research
community at https://github.com/dair-iitd/symnet.

104

Acknowledgements
We would like to thank Scott Sanner for an extremely in-
sightful discussion on DBNs, which enabled us to work out
a solution to convert an RMDP into a graph using DBNs.
We also thank Vishal Sharma, Gobind Singh, Parag Singla
and the anonymous reviewers for their comments on various
drafts of the paper. This work is supported by grants from
Google, Bloomberg, IBM and 1MG, Jai Gupta Chair Fellow-
ship, and a Visvesvaraya faculty award by Govt. of India. We
thank Microsoft Azure sponsorships, and the IIT Delhi HPC
facility for computational resources.

References
Atkeson, C. G., and Schaal, S. 1997. Robot learning
from demonstration. In Proceedings of the Fourteenth In-
ternational Conference on Machine Learning (ICML 1997),
Nashville, Tennessee, USA, July 8-12, 1997, 12–20.
Bajpai, A.; Garg, S.; and Mausam. 2018. Transfer of deep re-
active policies for mdp planning. In Bengio, S.; Wallach, H.;
Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett,
R., eds., Advances in Neural Information Processing Systems
31. Curran Associates, Inc. 10965–10975.
Bellman, R. 1957. A Markovian Decision Process. Indiana
University Mathematics Journal.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic dy-
namic programming for first-order mdps. In Proceedings of
the Seventeenth International Joint Conference on Artificial
Intelligence, IJCAI 2001, Seattle, Washington, USA, August
4-10, 2001, 690–700.
Fern, A.; Yoon, S. W.; and Givan, R. 2006. Approximate pol-
icy iteration with a policy language bias: Solving relational
markov decision processes. J. Artif. Intell. Res. 25:75–118.
Garg, S.; Bajpai, A.; and Mausam. 2019. Size independent
neural transfer for rddl planning. In Proceedings of the Inter-
national Conference on Automated Planning and Scheduling,
631–636.
Garnelo, M.; Arulkumaran, K.; and Shanahan, M. 2016.
Towards deep symbolic reinforcement learning. CoRR
abs/1609.05518.
Groshev, E.; Tamar, A.; Goldstein, M.; Srivastava, S.; and
Abbeel, P. 2018. Learning generalized reactive policies using
deep neural networks. In ICAPS.
Grzes, M.; Hoey, J.; and Sanner, S. 2014. International
Probabilistic Planning Competition (IPPC) 2014. In ICAPS.
Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N. 2003.
Generalizing plans to new environments in relational mdps.
In IJCAI, 1003–1010.
Higgins, I.; Pal, A.; Rusu, A. A.; Matthey, L.; Burgess, C.;
Pritzel, A.; Botvinick, M.; Blundell, C.; and Lerchner, A.
2017. DARLA: improving zero-shot transfer in reinforce-
ment learning. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, 1480–1490.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
deep reactive policies for probabilistic planning problems. In
ICAPS.

Joshi, S., and Khardon, R. 2011. Probabilistic relational plan-
ning with first order decision diagrams. Journal of Artificial
Intelligence Research 41:231–266.
Keller, T., and Eyerich, P. 2012. PROST: probabilistic plan-
ning based on UCT. In Proceedings of the Twenty-Second In-
ternational Conference on Automated Planning and Schedul-
ing, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19,
2012.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classifi-
cation with graph convolutional networks. In ICLR.
Kolobov, A.; Mausam; and Weld, D. S. 2012. A theory
of goal-oriented mdps with dead ends. In Proceedings of
the Twenty-Eighth Conference on Uncertainty in Artificial
Intelligence, Catalina Island, CA, USA, August 14-18, 2012,
438–447.
Matiisen, T.; Oliver, A.; Cohen, T.; and Schulman, J. 2017.
Teacher-student curriculum learning. CoRR abs/1707.00183.
Mausam, and Weld, D. S. 2003. Solving relational MDPs
with first-order machine learning. In ICAPS’03 Workshop on
Planning under Uncertainty and Incomplete Information.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T. P.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In Pro-
ceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24,
2016, 1928–1937.
Parisotto, E.; Ba, L. J.; and Salakhutdinov, R. 2015. Actor-
mimic: Deep multitask and transfer reinforcement learning.
CoRR abs/1511.06342.
Puterman, M. 1994. Markov Decision Processes. John Wiley
& Sons, Inc.
Ruder, S. 2016. An overview of gradient descent optimization
algorithms.
Sanner, S., and Boutilier, C. 2005. Approximate linear
programming for first-order mdps. In UAI ’05, Proceedings of
the 21st Conference in Uncertainty in Artificial Intelligence,
Edinburgh, Scotland, July 26-29, 2005, 509–517.
Sanner, S., and Boutilier, C. 2009. Practical solution tech-
niques for first-order mdps. Artif. Intell. 173(5-6):748–788.
Sanner, S. 2010. Relational Dynamic Influence Diagram
Language (RDDL): Language Description.
Shen, W.; Trevizan, F.; Toyer, S.; Thiébaux, S.; and Xie,
L. 2019. Guiding Search with Generalized Policies for
Probabilistic Planning. In Proc. of 12th Annual Symp. on
Combinatorial Search (SoCS).
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T. P.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of go with deep neural networks
and tree search. Nature 529(7587):484–489.
Sorg, J., and Singh, S. P. 2009. Transfer via soft homomor-
phisms. In 8th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Budapest,
Hungary, May 10-15, 2009, Volume 2, 741–748.

105

Taylor, M. E., and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research 10:1633–1685.
Toyer, S.; Trevizan, F. W.; Thiébaux, S.; and Xie, L. 2018.
Action schema networks: Generalised policies with deep
learning. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, New Orleans, Louisiana, USA,
February 2-7, 2018.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2017. Graph attention networks. CoRR
abs/1710.10903.
Xu, B.; Wang, N.; Chen, T.; and Li, M. 2015. Empirical
evaluation of rectified activations in convolutional network.
CoRR abs/1505.00853.
Younes, H. L. S.; Littman, M. L.; Weissman, D.; and Asmuth,
J. 2005. The first probabilistic track of the international
planning competition. J. Artif. Intell. Res. 24:851–887.

106

Appendix
A Domain Description

We describe the details of the domains presented in the IPPC
2011 and IPPC 2014. The statistics for state fluents (F), non-
fluents (NF) and Action (A) for all the domains are show in
the Table 5 and Table 6. UP represent F ,NF and A without
parameters, Unary represents F , NF and A with a single
parameter and multiple represents F , NF and A with more
than one parameter. Table 7 lists the instance specific number
of objects, state variables and action variables for the domain.
The domains 1, 2, 3 are used for training, 4 for validation and
5, 6, 7, 8, 9, 10 for testing.

Academic Advising
The academic advising domain represents a student at a uni-
versity trying to complete his/her degree. Some courses are
required to be completed to obtain the final degree. Each
course is either a basic course or may have prerequisites. The
probability of passing a course depends on the number of pre-
requisites completed (a fixed probability if no prerequisite).
The goal is to complete the degree as soon as possible.

Crossing Traffic
Crossing Traffic is represents a robot in a grid, with obstacles
at a random grid cell at any time. The obstacles (car) start at
any cell randomly and move left. The robot aims to plan its
path from the starting grid cell to the goal cell while avoiding
obstacles.

Game of Life
Game of Life domain is represented as a grid where each cell
can either be dead or alive. The goal is to keep as many cells
alive as possible. The probability of cell death depends on
the number of neighbors alive at a particular time, which is
non-linear in the number of neighbors alive.

Navigation
Navigation represents a robot in a grid world where the aim
is to reach a goal cell as quickly as possible. The probability
of the robot dying in a particular cell is different, which is
specified in the instance file.

Skill Teaching
Skill Teaching domain represents a teacher trying to teach a
skill to students. Each student has a mastery level in a particu-
lar skill. Some skills have pre-conditions, which increase the
probability of learning a particular skill. The skill is taught
using either hints or multiple-choice questions. The goal is
to answer as many questions as possible by the student by
learning the required skill.

Sysadmin
Sysadmin domain represents computers connected in a net-
work. The probability of a computer shutting down on its
own depends on the number of turned-on neighboring com-
puters. The agent can either turn on a computer or leave it as
it is. The goal is to maximize the number of computers at a
particular time.

Table 5: The statistics related to the domains listing the num-
ber of UP (Un-Paramataried), Unary and Muiltiple Action
(A) for each domain.

Domain UP-A Unary-A Multiple-A
Academic Advising 0 1 0

Crossing Traffic 4 0 0
Game of Life 0 0 1
Navigation 4 0 0

Skill Teaching 0 2 0
Sysadmin 0 1 0
Tamarisk 0 2 0

Traffic 0 1 0
Wildfire 0 0 2

Tamarisk
Tamarisk domain represents invasive species of plants
(Tamarisk) trying to take over native plant species. The plants
spread in any direction and try to destroy the native plant
species. The agent can either eradicate Tamarisk in a cell
or restore the native plant species, each having a different
reward. The goal is to minimize the cost of eradication and
restoration of the native plant species.

Traffic
Traffic domain models the traffic on the road with roads
connecting at various intersections. Each road intersection
has two traffic light signals combinations of which yield
different traffic movement. The agent aims to control the
traffic signal (only on the forward sequence) to control the
traffic.

Wildfire
The wildfire domain represents a forest catching fire. The
direction of fire spreading depends on the direction of the
wind and also the type of fuel at that point (e.g., grass or
wood, etc.). The agent can either choose to put down the fire
or cut off the fuel even before the fire happens. The goal
is to prevent as many cells as possible, and more reward is
provided to protect high priority cells.

B Variation of αSYMNET(0) with
neighbourhood

To inspect the importance of the neighborhood information in
learning a generalized policy for the domains, we perform the
study of the neighborhood parameter variation. In the Figure
3, we show the variation of αSYMNET(0) with neighbourhood.
From the Figure, we observe that message passing for the
neighborhood of size 1 yields the best results for most do-
mains, and hence we reported the results with neighborhood
1 in the main paper. In general, we observe that the value of
αSYMNET(0) first increases and then decreases.

For most instances, the αSYMNET(0) is less for neighbor-
hood 0 compared to neighborhood 1, showing that the in-
formation regarding the neighbors is necessary for learning
a better policy. For example, in domain academic advising,

107

Table 6: The statistics related to the domains listing the number of UP (Un-Paramataried), Unary and Multiple State Fluents (F)
and Non-Fluents (NF) for each domain.

Domain UP-F UP-NF Unary-F Unary-NF Multiple-F Multiple-NF
Academic Advising 0 1 2 5 0 1

Crossing Traffic 0 1 0 4 2 5
Game of Life 0 0 0 0 1 2
Navigation 0 0 0 4 1 6

Skill Teaching 0 0 6 7 0 1
Sysadmin 0 2 1 0 0 1
Tamarisk 0 17 2 0 0 2

Traffic 0 0 3 3 0 3
Wildfire 0 4 0 0 2 2

the neighborhood 1 aggregates information about the pre-
requisites for the courses and then prioritizes the courses
to take. A similar trend is observed in domain skill teach-
ing, where the information about the pre-condition for the
skill plays an important role in learning the skills. For some
domains like navigation, neighborhood information is ab-
solutely critical for planning the next move which can be
observed from very low values of αSYMNET(0) from Figure
3(d). Other domains like wildfire are not affected a lot by
neighborhood a lot. This is because the margin between the
minimum and maximum rewards is large, and the generalized
policy outputs rewards close to the maximum value, which
decreases the variation in the value of αSYMNET(0). As we
increase the value of neighborhood to 2 and 3, the value of
αSYMNET(0) tends to fall down for most instances. We hypoth-
esize that the agent overfits to instance-specific policies for
the instances it is trained on and hence fails to generalize.

108

Table 7: The statistics related to the domain instances listing the number of Objects, State Variables and Action Variables for all
the instances of the domains. We also give the number of node and edges in the instance graph GK (i.e. the graph constructed
from the DBN). Domain 1, 2, 3 are used for training, 4 for validation and 5, 6, 7, 8, 9, 10 for testing.

Domain #Objects #State #Action #Nodes #Edges Domain #Objects #State #Action #Nodes #Edges
Vars Vars Vars Vars

AA 1 10 20 11 10 26 ST 1 2 12 5 2 4
AA 2 10 20 11 10 32 ST 2 2 12 5 2 4
AA 3 15 30 16 15 38 ST 3 4 24 9 4 16
AA 4 15 30 16 15 51 ST 4 4 24 9 4 16
AA 5 20 40 21 20 53 ST 5 6 36 13 6 36
AA 6 20 40 21 20 63 ST 6 6 36 13 6 36
AA 7 25 50 26 25 63 ST 7 7 42 15 7 49
AA 8 25 50 26 25 93 ST 8 7 42 15 7 49
AA 9 30 60 31 30 75 ST 9 8 48 17 8 64

AA 10 30 60 31 30 101 ST 10 8 48 17 8 64

CT 1 9 12 5 9 39 Sys 1 10 10 11 10 24
CT 2 9 12 5 9 39 Sys 2 10 10 11 10 38
CT 3 16 24 5 16 77 Sys 3 20 20 21 20 58
CT 4 16 24 5 16 77 Sys 4 20 20 21 20 77
CT 5 25 40 5 25 127 Sys 5 30 30 31 30 86
CT 6 25 40 5 25 127 Sys 6 30 30 31 30 111
CT 7 36 60 5 36 189 Sys 7 40 40 41 40 118
CT 8 36 60 5 36 189 Sys 8 40 40 41 40 156
CT 9 49 84 5 49 263 Sys 9 50 50 51 50 150

CT 10 49 84 5 49 263 Sys 10 50 50 51 50 196

GOL 1 9 9 10 9 49 Tam 1 12 16 9 8 40
GOL 2 9 9 10 9 49 Tam 2 16 24 9 12 90
GOL 3 9 9 10 9 49 Tam 3 15 20 11 10 52
GOL 4 16 16 17 16 100 Tam 4 20 30 11 15 117
GOL 5 16 16 17 16 100 Tam 5 18 24 13 12 64
GOL 6 16 16 17 16 100 Tam 6 24 36 13 18 144
GOL 7 25 25 26 25 169 Tam 7 21 28 15 14 76
GOL 8 25 25 26 25 169 Tam 8 28 42 15 21 171
GOL 9 25 25 26 25 169 Tam 9 24 32 17 16 88
GOL 10 30 30 31 30 196 Tam 10 32 48 17 24 198

Nav 1 12 12 5 12 55 Tra 1 28 32 5 28 84
Nav 2 15 15 5 15 71 Tra 2 28 32 5 28 84
Nav 3 20 20 5 20 99 Tra 3 40 44 5 40 120
Nav 4 30 30 5 30 155 Tra 4 40 44 5 40 120
Nav 5 30 30 5 30 151 Tra 5 52 56 5 52 156
Nav 6 40 40 5 40 209 Tra 6 52 56 5 52 156
Nav 7 50 50 5 50 267 Tra 7 64 68 5 64 192
Nav 8 60 60 5 60 311 Tra 8 64 68 5 64 192
Nav 9 80 80 5 80 429 Tra 9 76 80 5 76 228

Nav 10 100 100 5 100 547 Tra 10 76 80 5 76 228

Wild 1 9 18 19 9 48 Wild 6 25 50 51 25 156
Wild 2 9 18 19 9 43 Wild 7 30 60 61 30 180
Wild 3 16 32 33 16 87 Wild 8 30 60 61 30 172
Wild 4 16 32 33 16 97 Wild 9 36 72 73 36 238
Wild 5 25 50 51 25 156 Wild 10 36 72 73 36 230

109

(a) AA (b) CT (c) GOL

(d) Nav (e) ST (f) Sys

(g) Tam (h) Tra (i) Wild

Figure 3: Variation of αSYMNET(0) with neighbourhood. [Larger is better]

110

Safe Learning of Lifted Action Models

Brendan Juba1, Hai S. Le1, Roni Stern2,3

1Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA, {bjuba,hsle}@wustl.edu
2Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA, USA, rstern@parc.com

3Ben Gurion University of the Negev, Be’er Sheva, Israel, sternron@post.bgu.ac.il

Abstract
Creating a domain model, even for classical, domain-
independent planning, is a notoriously hard knowledge-
engineering task. A natural approach to solve this problem
is to use learning, but learning approaches frequently do not
provide guarantees of safety: variously, actions may fail or
may not lead to the desired outcome. In some domains such
failures are not acceptable, due to the cost of failure or inabil-
ity to replan online after failure. In such settings, all learning
must be done offline, based on some observations collected,
e.g., by some other agents or a human. Through this learn-
ing, the task is to generate a plan that is guaranteed to be
successful. This is called the model-free planning problem.
Prior work proposed an algorithm for solving the model-free
planning problem in classical planning. However, they were
limited to learning grounded domains, and thus they could not
scale. We generalize this prior work and propose the first safe
model-free planning algorithm for lifted domains. We prove
the correctness of our approach, and provide a statistical anal-
ysis showing that the number of trajectories needed to solve
future problems with high probability is linear in the poten-
tial size of the domain model. We also present experiments
demonstrating that our approach scales favorably in practice.

Introduction
In classical domain-independent planning, a domain model
is a model of the environment and how the acting agent
can interact with it. The domain model is given in a formal
planning description language such as STRIPS (Fikes and
Nilsson 1971) or the Planning Domain Definition Language
(PDDL) (McDermott et al. 1998). Domain-independent
planning algorithms (planners) use the domain model to
generate a plan for achieving a given goal condition from
a given initial state. Creating a domain model, however, is a
notoriously hard knowledge-engineering task.

To overcome this modeling problem, a variety of learning
methods have been proposed. The best-known formulation
is Reinforcement Learning (RL). In RL, an agent collects
observations about the world by performing actions and ob-
serving their outcomes. The RL agent then uses these ob-
servations to decide how to act in the future. RL techniques
have proven to be effective in a variety of domains, espe-
cially for low-level control tasks. However, RL generally

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

does not consider the possibility of “failing,” except inso-
far as the reward is sub-optimal. Similarly, most offline ap-
proaches that aim to learn a world model from past obser-
vations allow generating failing actions (Amir and Chang
2008).1 In some domains, this is not a problem and the agent
simply incorporates such experiences and updates its inter-
nal model to improve future executions. In other domains,
however, execution failure must be avoided and only safe
actions are allowed. This occurs when execution failure is
too costly, or the agent cannot replan due to limited compu-
tational capabilities. The problem of finding a safe plan, i.e.,
a plan that will not fail, without having a domain model, is
called safe model-free planning (Stern and Juba 2017). In-
stead of a domain model, in safe model-free planning the
planning agent is given a set of trajectories from plans that
were executed in the past in the same domain (e.g., by a dif-
ferent agent or a human).

Stern and Juba (2017) proposed a sound algorithm for safe
model-free planning, i.e., an algorithm that generates plans
that do not fail, provided that the environment is actually
captured by a (grounded) STRIPS model. However, their al-
gorithm is not complete, i.e., it may not return a plan for a
solvable planning problem. Nevertheless, they bounded the
probability of encountering such problems given a number
of trajectories quasi-linear in the number of actions.

Their positive result is limited to grounded domain mod-
els, that is, domains that are not defined by lifted, i.e., pa-
rameterized, actions and fluents. It is possible to generate a
grounded domain model from a given lifted domain model
and problem. But, the size of the resulting grounded domain
model can be arbitrarily larger than the lifted domain model.
In particular, a single lifted action can yield a number of
grounded actions that grow polynomially with the number
of objects in the domain, with the number of parameters of
the lifted action as its exponent. This significantly limits the
applicability of Stern and Juba’s algorithm.

In this work, we generalize their approach and propose
an algorithm that efficiently solves safe model-free planning
problems for lifted domains. The key component of this ap-
proach is an algorithm that learns a safe action model, which
is a model of the agent’s possible actions that is consistent
with the underlying, unknown, domain model. We call this

1They also did not consider lifted action models as we do.

111

algorithm Safe Action Model (SAM) Learning.
Two versions of SAM learning are presented. The first

may be used when the mapping from lifted fluents to
grounded fluents can be inverted. We prove that this version
is sound, and when the actions and fluents have bounded ar-
ity, we can guarantee that the action model is sufficient with
high probability after observing a number of trajectories that
is linear in the possible size of the lifted model. Importantly,
the number of trajectories needed depends only on the size
of this lifted model, and is independent of the number of ob-
jects in the domain, in contrast to Stern and Juba’s algorithm.
We also observed efficient learning experimentally on small
planning benchmarks. Finally, we discuss a more general
version of SAM learning, for the case where the mapping
from lifted fluents to grounded fluents cannot be inverted.

Background and Problem Definition
We define a classical planning domain by a tuple
〈T,O,F ,A,M〉 where T is a set of types, O is a set of ob-
jects, F is a set of lifted fluents, A is a set of lifted actions,
and M is an action model for A.

Every object o ∈ O is associated with a type t ∈ T de-
noted type(o). For example, in the logistics domain from
the International Planning Competition (IPC) (McDermott
2000) there are types truck and location and there may be
objects t1 and t2 that represent two different trucks and two
objects l1 and l2 that represent two different locations.

Lifted and Grounded Literals
A lifted fluent F is a relation over a list of types. These types
are called the parameters of F and denoted by params(F).
For example, in the logistics domain at(?truck, ?location)
is a lifted fluent that represents some truck (?truck) is at
some location (?location). A binding of a lifted fluent F is
a function b : params(F)→ O mapping every parameter of
F to an object in O of the same type. A grounded fluent f
is a pair 〈F, b〉 where F is a lifted fluent and b is a binding
for F. To ground a lifted fluent F with a binding b means to
create a relation over the objects in the image of b that match
the relation over the corresponding parameters. We call this
relation a grounded fluent or simply a fluent, and denote it by
f . In our logistics example, for F = at(?truck, ?location)
and b = {?truck : truck1, ?location : loc1} the corre-
sponding grounded fluent f is at(truck1, loc1). A state of
the world is a set of grounded fluents. The term literal refers
to either a fluent or its negation. The definitions of binding,
lifted, and grounded fluent transfer naturally to literals.

Lifted and Grounded Actions
A lifted action A ∈ A is a pair 〈name, params〉 where name
is a string and params is a list of types, denoted name(A)
and params(A), respectively. The action model M for a set
of actions A is a pair of functions preM and effM that map
every action in A to its preconditions and effects. To define
the preconditions and effects of a lifted action, we first de-
fine the notion of a parameter-bound literal. A parameter
binding of a lifted literal L and an action A is a function
bL,A : params(L)→ params(A) that maps every parameter

of l to a parameter in A. A parameter-bound literal l for the
lifted action A is a pair of the form 〈L, bL,A〉 where b is a
parameter binding of L and A. preM (A) and effM (A) are
sets of parameter-bound literals for A.

A binding of a lifted action A is defined like a binding
of a lifted fluent, i.e., a function b : params(A) → O.
A grounded action a is a tuple 〈A, b〉 where A is a lifted
action and bA is a binding of A. The preconditions of a
grounded action a according to the action model M , de-
noted preM (a), is the set of grounded literals created by tak-
ing every parameter-bound literal 〈L, bL,A〉 ∈ preM (A) and
grounding L with the binding bA ◦ bL,A. The effects of a
grounded action a, denoted effM (a), are defined in a simi-
lar manner. The grounded action a can be applied in a state
s iff preM (a) ⊆ s. The outcome of applying a to a state s
according to action model M , denoted aM (s), is a new state
that contains all literals in effM (a) and all the literals in s
such that their negation is not in effM (a). Formally:

aM (s) = {l|l ∈ s ∧ ¬l /∈ effM (a) ∨ l ∈ effM (a)} (1)

We omit M from aM (s) when it is clear from the con-
text. The outcome of applying a sequence of grounded
actions π = (a1, . . . an) to a state s is the state s′ =
an(· · · a1(s) · · ·). A sequence of actions a1, . . . , an can be
applied to a state s if for every i ∈ 1, . . . , n the action ai is
applicable in the state ai−1(· · · a1(s) · · ·).

Definition 1 (Trajectory). A trajectory T =
〈s0, a1, s1, . . . an, sn〉 is an alternating sequence of
states (s0, . . . , sn) and actions (a1, . . . , an) that starts and
ends with a state.

The trajectory created by applying π to a state s is the
sequence

〈
s0, a1, . . . , a|π|, s|π|

〉
such that s0 = s and for

all 0 < i ≤ |π|, si = ai(si−1). In the literature on
learning action models (Wang 1994, 1995; Stern and Juba
2017; Walsh and Littman 2008), it is common to repre-
sent a trajectory

〈
s0, a1, . . . , a|π|, s|π|

〉
as a set of triples

{
〈si−1, ai, si〉

}|π|
i=1

. Each triple 〈si−1, ai, si〉 is called an
action triplet, and the states si−1 and si are referred to as
the pre- and post- state of action ai. We denote by T (a) the
set of all action triplets in the trajectories in T that include
the action a. T (A) is similarly defined for all action triplets
that contain actions that are groundings of A.

A classical planning problem is a tuple 〈D, sI , sg〉 where
D is a classical planning domain, sI is the start state, i.e.,
the state of the world before planning, and sg is a set of
grounded literals that define when the goal has been found.
A solution to a planning problem is a sequence of grounded
actions that can be applied to sI and if applied to sI results in
a state s′ that contains all the grounded literals in sg . Such a
sequence of grounded actions is called a plan. The trajectory
of a plan starts with sI and ends with a goal state sG (where
sg ⊆ sG). The safe model-free planning problem (Stern and
Juba 2017) is defined as follows.

Definition 2 (Safe model-free planning). Let Π =
〈〈T,O,F ,A,M∗〉 , sI , sg〉 be a classical planning problem
and let T = {T 1, . . . , T m} be a set of trajectories for other
planning problems in the same domain. The input to a safe

112

model-free planning algorithm is the tuple 〈T,O, sI , sg, T 〉
and the desired output is a plan π that is a solution to Π. We
denote this safe model-free planning problem as ΠT .

The main challenge in this problem is that the problem-
solver – the agent – needs to find a sound plan for a plan-
ning problem but it is not given the set of fluents, actions,
and action model of the domain (F , A, and M∗, respec-
tively). We assume that when the agent observes a grounded
action a = 〈A, ba〉, it is able to discern that a is the result
of grounding A with ba. Similarly, if it observes a state with
a grounded fluent f = 〈F, bf 〉, it is able to discern that f is
the result of grounding F with bf .

Conservative Planning in Grounded Domains
Our approach for solving the model-free planning problem
in lifted domains builds on the conservative planning ap-
proach proposed by Stern and Juba (2017) for grounded do-
mains. Thus, we first recall their approach.

Inference Rules for Grounded Domains
In a grounded domain, a state is a set of literals, and so are
the preconditions and effects of all actions. That is, there is
no notion of lifted literals of actions.

First, we define the notion of a consistent action model
following the semantics of classical planning.
Definition 3 (Consistent Action Model). An action model
M is consistent with a set of trajectories T if for every action
triplet 〈s, a, s′〉 ∈ T (a) it holds that:
1. All preconditions are satisfied: ∀l ∈ pre(a)∀s : l ∈ s
2. All effects are satisfied: ∀l ∈ eff(a)∀s′ : l ∈ s′
3. Frame axioms hold: ∀(l /∈ eff(a) ∧ l /∈ s)→ l /∈ s′
The contrapositives of the conditions in the above definition
can be interpreted as inference rules as follows.
Observation 1 (Inference rules for grounded domains). For
any action triplet 〈s, a, s′〉 it holds that:
• Rule 1 [not a precondition]. ∀l /∈ s : l /∈ pre(a)
• Rule 2 [not an effect]. ∀l /∈ s′ : l /∈ eff(a)
• Rule 3 [must be an effect]. ∀l ∈ s′ \ s : l ∈ eff(a)

So, Rule 1 states that a literal that is not in a pre-state cannot
be a precondition. Rule 2 states that a literal that is not in a
post-state cannot be an effect. Rule 3 states that a literal that
is in the post-state but not in the pre-state, must be an effect.
Since this is just a restatement of the definition of a con-
sistent action model, these rules precisely characterize the
action models that are consistent with a given set of traces.
Definition 4 (Safe Action Model). An action model M ′ is
safe with respect to an action model M iff for every state s
and grounded action a it holds that

preM′(a) ⊆ s→
(

preM (a) ⊆ s ∧ aM′(s) = aM (s)
)

(2)

Definition 4 says that if a is applicable in s according to a
safe action model (M ′), then (1) a is also applicable in s ac-
cording to the action modelM , and (2) the state resulting by
applying a to s is the same according to both action models.

We say that an action model is safe if it is a safe action
model w.r.t. the real action modelM∗. Observe that any plan

generated by a planner given a safe action model must also
be a sound plan according toM∗. The conservative planning
algorithm (Stern and Juba 2017) for model-free planning is
based on this observation. In conservative planning, we first
learn from the given set of trajectories an action model M
that is safe w.r.t. M∗, and then apply an off-the-shelf plan-
ner to generate plans usingM . To implement this algorithm,
Stern and Juba (2017) proposed an algorithm for learning a
safe action model, that we refer to as the Safe Action-Model
(SAM) Learning algorithm.

SAM Learning for Grounded Domains
SAM Learning works as follows. First, it assumes every ac-
tion a has all literals as its preconditions and no literals as
its effects. Then, it iterates over every action triplet in T (a)
and applies the rules in Observation 1 to remove incorrect
preconditions and to add effects.
Theorem 1 (SAM Learning is sound (Stern and Juba 2017)).
SAM learning produces a safe action model.

The main limitation of using a safe action model to gen-
erate plans is that it may be more restrictive than the real
action model (M∗). That is, there may be states in which an
action a is applicable according to M , but not according to
the safe action model. Consequently, there may be planning
problems that are solvable with M , but not with the safe ac-
tion model. Thus, if an action modelM ′ is safe w.r.t. another
action model M then in some sense it is weaker. Next, we
complement Theorem 1 by showing that every safe action
model that is consistent with the given trajectories must be
weaker than the action model returned by SAM learning.

Clearly, in the fully observable deterministic world of
classical planning, every action model that is not consistent
with the given set of trajectories is false. Moreover, there
exists a trajectory in the domain in which using such a false
action model will yield a failure. Thus, the set of consistent
action models must contain the real action model.
Theorem 2 (SAM Learning is complete). Let MSAM be
the action model created by SAM learning given the set of
trajectories T . Every action modelM ′ that is consistent with
T and safe w.r.t. the real action model M∗ is also safe with
respect to MSAM .

Proof. Consider an action model M ′ that is consistent with
T and safe w.r.t.M∗. Let a be an action and s be a state such
that a is applicable in s according to M ′, i.e., preM ′(a) ∈ s.
Since M ′ is safe w.r.t. M∗,

(
preM∗(a) ⊆ s ∧ aM ′(s) =

aM∗(s)
)

By construction of MSAM, if a literal l is a precon-
dition of a according to MSAM, then it has appeared in the
pre-state of all action triplets in T (a). Thus, there exists a
consistent action model in which l is a precondition of a and
this action model may be the real model. Therefore, since
M ′ is safe it follows that preM ′(a) ⊆ preMSAM

(a), and thus
a is applicable in s according to MSAM, i.e., preMSAM

(a) ∈ s.
Since MSAM is safe, aMSAM(s) = aM∗(s) = a′M (s).

Theorem 2 says that every action-model learning algo-
rithm is bound to either return an unsafe action model or

113

return a action model model that is weaker than the ac-
tion model returned by SAM learning. However, the action
model returned by SAM may still be weaker than the real
action model, and consequently, conservative planning for
model-free planning is bound to be sound but incomplete –
it generates plans that are sound but it may fail to generate
plans for some solvable planning problems.

A statistical analysis showed that under some assump-
tions, the number of trajectories SAM learning needs to
learn a safe action model that can solve most problems is
quasilinear in the number of actions in the domain (Stern
and Juba 2017). However, the number of grounded actions
in a lifted domain can be quite large: the number of grounded
actions that are groundings of a single lifted action grows
polynomially with the number of objects in the domain (ex-
ponentially in the number of parameters). However, in a
lifted domain, the real action model is assumed to be de-
fined only over lifted actions. This enables us to generalize
SAM learning across multiple groundings of the same lifted
action, eliminating the dependence on the number of objects
in the number of trajectories needed to learn a useful safe
action model. We describe this in the next section.

Conservative Planning for Lifted Domains
In this section, we describe a conservative planning ap-
proach for safe model-free planning in lifted domains, which
is based on a novel generalization of SAM learning to lifted
domains. To describe our SAM learning algorithm for lifted
domains, we denote by bindings(bA, bL) the set of all pa-
rameter bindings bL,A that satisfy the following

bA ◦ bL,A = bL. (3)

Inference Rules for Lifted Domains
The core of our algorithm is the following generalization of
Observation 1, defining what observing an action triplet with
a grounded action 〈A, bA〉 entails for the lifted action A.
Observation 2. For any action triplet 〈s, 〈A, bA〉 , s′〉
• Rule 1 [not a precondition]. ∀ 〈L, bL〉 /∈ s :

∀b ∈ bindings(bA, bL) : 〈L, b〉 /∈ pre(A) (4)

• Rule 2 [not an effect]. ∀ 〈L, bL〉 /∈ s′:
∀b ∈ bindings(bA, bL) : 〈L, b〉 /∈ eff(A) (5)

• Rule 3 [an effect]. ∀ 〈L, bL〉 ∈ s′ \ s :

∃b ∈ bindings(bA, bL) : 〈L, b〉 ∈ eff(A) (6)

For much of this paper, we make the following assumption:
Definition 5 (Injective Action Binding). In every grounded
action 〈A, bA〉, the binding bA is an injective function, i.e.,
every parameter of A is mapped to a different object.

Under this assumption, for every pair of bindings bL and
bA there exists a unique bL,A that satisfies Eq. 3. This bind-
ing is obtained by inverting bA, i.e.,

bindings(bA, bL) = {(bA)−1 ◦ bL}. (7)

This simplifies the inference rules given in Observation 2. In
particular, the “an effect” rule (Rule 1) becomes

∀ 〈L, bL〉 ∈ s′ \ s :
〈
L, (bA)−1 ◦ bL

〉
∈ eff(A). (8)

Algorithm 1: Safe Action-Model (SAM) Learning
Input : ΠT = 〈T,O, sI , sg, T 〉
Output: An action model that is safe w.r.t. the action

model that generated T
1 A′ ← all lifted actions observed in T
2 foreach lifted action A ∈ A′ do
3 eff(A)← ∅
4 pre(A)← all parameter-bound literals
5 foreach (s, 〈A, bA〉 , s′) ∈ T (A) do
6 foreach 〈L, bL,A〉 ∈ pre(A) do
7 if 〈L, bA ◦ bL,A〉 /∈ s then
8 Remove 〈L, bL,A〉 from pre(A)

9 foreach 〈L, bL〉 ∈ s′ \ s do
10 bL,A ←

〈
L, (bA)−1 ◦ bL

〉)

11 Add 〈L, bL,A〉 to eff(A)

12 return (pre, eff)

SAM Learning for Lifted Domains
We now present our SAM Learning algorithm for lifted do-
mains in Algorithm 1. For every lifted action A observed in
some trajectory, we initially assume that A has no effects
and all possible parameter-bound literals are its precondi-
tions (line 4 in Algorithm 1).2 Then, for every action triplet
(s, 〈A, bA〉 , s′) with this lifted action, we remove from the
preconditions of A every parameter-bound literal 〈L, bL,A〉
that is not satisfied in the current pre-state (Rule 2 in Ob-
servation 2). Then, for every grounded literal 〈L, bL〉 that
holds in the post-state s′ and not in s, we add a correspond-
ing effect to A (Rule 1 in Observation 2). Note that Rule 3
in Observation 2 is not needed since we initialize the set of
effects of every action to be an empty set.

Safety Property
We extend the notion of a safe action model to lifted domains
as follows. An action model M in a lifted domain is safe iff
every grounded action defined by M satisfies Eq. 2. This
definition preserves the property that a safe action model is
an action model that enables generating plans that are guar-
anteed to be sound w.r.t.M∗. We show next that SAM Learn-
ing for lifted domains indeed returns a safe action model.

Theorem 3. Given the injective action binding assumption,
SAM Learning (Algorithm 1) creates a safe action model.

Proof. We first show by induction on the iterations of the
loop in lines 5–11 that on every iteration

preM∗(A) ⊆ pre(A) and eff(A) ⊆ effM∗(A) (9)

where M∗ is the correct action model. Prior to the first iter-
ation, the preconditions of all lifted actions A are all pos-
sible parameter-bound literals, so pre(A) must be a sub-
set of preM∗(A). (Note that this includes every parameter-
bounded fluent and its negation.) Similarly, the effects are

2It is possible to initialize the preconditions of every lifted ac-
tion to the pre-state of one of the action triplets in which it is used.

114

Action Params Precond. Effects
Move ?tr - truck at(tr, from) at(tr, to),

?from - location not(at(tr, from))
?to - location

Load ?pkg - package at(tr, loc) on(pkg, tr),
?tr - truck at(pkg, loc) not(at(pkg, loc))
?loc - location

Unload ?pkg - package at(tr, loc), not(on(pkg,tr),
?tr - truck on(pkg, tr) at(pkg, loc)
?loc - location

Table 1: The parameters, preconditions, and effects of the
actions in our simple logistics example.

set to ∅, which is surely a subset of effM∗(A). The changes
made to pre(A) and eff(A) in subsequent iterations are en-
capsulated in lines 8 and 11 in Algorithm 1. Line 8 is a direct
application of Rule 1 (“not a precondition”) from Observa-
tion 2, and thus pre(A) is still a subset of preM∗ . Similarly,
line 11 is an application of Rule 3 (“an effect”) in the same
observation, given that bindings(bA, bL) consists of a single
parameter binding due to the injective binding assumption.
This completes the induction.

Let (pre, eff) be the action model returned by Algorithm 1
(line 12). From the induction above (Eq. 9) it immediately
follows that for every grounded action 〈A, bA〉 and state s,
if pre(〈A, bA〉) ⊆ s then preM∗(〈A, bA〉) ⊆ s. From the in-
duction above, all the parameter-bound literals in eff(A) are
indeed effects of A. Finally, consider any parameter-bound
literal 〈L, bL,A〉 that is an effect of A but is absent from
eff(A), i.e., every 〈L, bL,A〉 ∈ effM∗(A) \ eff(A). By con-
struction of eff, this can only occur if this parameter-bound
literal was true in all pre-states of groundings of A in all
the available trajectories. Consequently, 〈L, bL,A〉 must be
in pre(A). Therefore, every grounded literal in the post-state
of applying 〈A, bA〉 in s (i.e., 〈A, bA〉M∗ (s)) is either in
eff(〈A, bA〉) or pre(〈A, bA〉).

Consider the following simple logistics problem. There
are five objects: one truck object (tr), one package object
(pkg), and three locations objects (A, B, and C). at(?truck,
?location) and on(?truck, ?package) are lifted fluents repre-
senting that the truck is in the location and the package is
on the track, respectively. There are three possible actions:
Move, Load, and Unload. Table 1 lists the parameters, pre-
conditions, and effects of these actions. Now, assume we are
given three trajectories T1, T2, and T3. T1 starts with the
truck and the package at location A, and performs two move
actions: Move(tr, A, B) and Move(tr, B, C). T2 starts in the
same state, but performs Load(pkg, tr, A) and Move(tr, A,
B). T3 starts with the truck at location A and the package at
location B, and performs Move(tr, A, B), Load(pkg, tr, B),
Move(tr, B, C), and Unload(pkg, tr, C). Given only the first
trajectory T1, the action model returned by SAM Learning
already contains the correct action model for the lifted Move
action, since the only grounded fluents that can be bound to
the parameters of the grounded action Move(tr, A, B) are
at(tr, A) and not(at(tr, B)) in the pre-state, and at(tr, B) and
not(at(tr, A)) in the post-state. In contrast, SAM Learning for

grounded domains will not know anything about the precon-
ditions and effects of the grounded action Move(tr, B, C) un-
less it is also given the trajectory T3. Similarly, given the sec-
ond trajectory T2, the action model returned by SAM Learn-
ing contains the correct action model for the lifted Load ac-
tion, since the only grounded fluents that can be bound to
the parameters of the grounded action Load(pkg, tr, A) are
at(tr, A), at(pkg, A), and not(on(pkg, tr)) in the pre-state and
at(tr, A), not(at(pkg, A)), and on(pkg, tr)) in the post-state.
In fact, given T1, T2, and T3, SAM Learning is able to learn
the correct action model for this domain. Note that since
there are 10 grounded actions in this domain (four Move
actions and three Load and Unload actions), SAM Learning
for grounded domains will require at least 10 trajectories to
learn an action model with all of the actions.

Sample Complexity Analysis
Planning with a safe action model is a sound approach for
safe model-free planning, since every plan it outputs is a
sound plan according to the real action model. However, it is
not complete: a planning problem may be solvable with the
real action model, but not the learned one. As in prior work
on safe model-free planning (Stern and Juba 2017), we can
bound the likelihood of facing such a problem as follows.

Let PD be a probability distribution over solvable plan-
ning problems in a domain D. Let TD be a probability dis-
tribution over pairs 〈P, T 〉 given by drawing a problem P
from P(D), using a sound and complete planner to generate
a plan for P , and setting T to be the trajectory from follow-
ing this plan.3 Let arity(F, t) and arity(A, t) be the number
of type-t parameters of the lifted fluent F and action A.
Theorem 4. Under the injective binding assumption, given
m ≥ 1

ε (2 ln 3
∑
F∈F
A∈A

∏
t∈T arity(A, t)arity(F,t)+ln 1

δ) tra-

jectories sampled from TD, with probability at least 1 − δ
SAM learning for lifted domains (Algorithm 1) returns a safe
action model MSAM such that a problem is drawn from PD
that is not solvable with MSAM with probability at most ε.

Theorem 4 guarantees that with high probability (≥ 1−δ)
SAM Learning returns an action model that will only fail
to solve a given problem with low probability (≤ ε), given
a number of example trajectories linear in the size of the
models. Indeed, there are arity(A, t)arity(F,t) ways to bind
the parameters of F of type t to the parameters of A, and
hence

∏
t∈T arity(A, t)arity(F,t) ways of binding all of the

parameters of F to parameters of A. The preconditions and
effects are sets of these parameter-bound fluents. For exam-
ple, in our simple logistics example with two binary fluents
and three ternary actions, the load and unload actions have
a single argument of each type; only the move action has
two arguments of the same type (location). The only flu-
ents that have location arguments are the at fluents, which
have arity one with respect to locations. Thus, guaranteeing
ε = δ = 5% requires only 324 trajectories. The rest of this
section is devoted to establishing Theorem 4.
Definition 6 (Adequate). An action model M is ε-adequate
if, with probability at most ε, a trajectory T sampled from TD

3The planner need not be deterministic.

115

contains an action triplet 〈s, a, s′〉 where s does not satisfy
preM (a).4

Lemma 1. The action model returned by SAM Learning (Al-
gorithm 1) given m trajectories (as specified in Theorem 4)
is ε-adequate with probability at least 1− δ.

Proof. Consider any action model MB that may be returned
by SAM Learning but is not ε adequate. By definition, the
probability of drawing a trajectory from TD that is inconsis-
tent with MB is at least ε. Thus, the probability of drawing
m samples that are consistent with MB is at most

(1− ε)m ≤ e−m·ε. (10)

MB can only be returned if this occurs. For our choice ofm,

e−m·ε ≤ e−(ln 3L+ln 1
δ) =

δ

3L
(11)

where
L = 2

∑

F∈F
A∈A

∏

t∈T
arity(A, t)arity(F,t)

LetB be the set of action models that are not ε-adequate. By
a union bound over B, the probability that SAM Learning
will return an action model that is not ε-adequate is at most
|B|δ
3L

. For each parameter-bound fluent, each precondition or
effect will either contain that fluent, or its negation, or nei-
ther of them. Hence, the number of possible action models
is 3L. Since B is a set of action models, we have that the
size of B is at most 3L. Therefore, the probability that SAM
Learning will return an action model that is not ε-adequate
is at most δ.

Proof of Theorem 4. Let M be an action model returned by
SAM Learning given m samples. Thus, M is a safe action
model (Theorem 3) and it is ε adequate (Lemma 1). Consider
a problem P drawn from P(D), and its corresponding pair
〈P, T 〉 from T (D). Since M is ε-adequate, with probability
at least 1 − ε, for every action triplet 〈s, a, s′〉 ∈ T a is
applicable in s, that is, preM (a) ⊆ s. Since M is a safe
action model, we have that aM (s) = aM∗(s) = s′. Thus,
with probability at least 1 − ε the trajectory T is consistent
with the learned action model M , and therefore P can be
solved with M

Multiple Action Bindings
When the injective action-binding assumption does not hold,
multiple action parameters are bound to the same object and
thus (bA)−1 is not defined. As a result, when SAM Learning
infers an effect (Rule 1 in Observation 2) it cannot generalize
it to be a unique effect of the corresponding lifted action, as
done in line 10 in Algorithm 1. This poses a challenge to
learning a safe action model, as the information that can be
inferred from observing action triplets can be complex.

For example, consider a lifted action A(x, y). Suppose x
and y are associated with the same type and o is an object

4An action model may not contain any information about some
action a. For the purpose of safe planning this is equivalent to an
action model in which the precondition to a can never be satisfied.

of that type. Given the action triplet 〈{ }, A(o, o), {L(o)}〉,
the agent can infer that L(o) is an effect of the grounded ac-
tion A(o, o). However, the agent cannot accurately infer the
effect of the lifted action A(x, y): it can be either {L(x)},
{L(y)}, or both. Concretely, if o1 and o2 are two different
objects from the same type as o, the agent cannot determine
if applying A(o1, o2) will result in a state with {L(o1)},
{L(o2)}, or {L(o1), L(o2)}. Consequently, any safe action
model must not enable groundings of A that bind x and y to
different objects, unless L(x) and L(y) both already hold.

Now, assume the agent is also given the action triplet
〈{L(o1)}, A(o1, o2), {L(o1)}〉. The pre- and post-state are
the same, so in Algorithm 1 we cannot learn any new effects
of A from this triplet. However, we can infer that L(o2) is
not an effect of the grounded action in this triplet. Conse-
quently, the parameter-bound literalL(y) cannot be an effect
of the lifted action A. Thus, this second action triplet does
provide useful information: it allow us to infer that the lifted
action A(x, y) has a parameter-bound effect L(x). Next, we
describe Extended SAM Learning, which is able to capture
the above form of inference and is applicable to cases where
the injective action-binding assumption does not hold.

Extended SAM Learning
Extended SAM (E-SAM) learning works in two stages.
First, it creates for every lifted action A two Conjunc-
tive Normal Form (CNF) formulas, denoted CNFpre(A) and
CNFeff(A), that describe a set of constraints for a safe action
model. Then E-SAM learning generates a safe action model
based on these CNFs.

Safe Action Model Constraints CNFpre(A) uses atoms of
the form IsPre(〈L, bL,A〉), which specify that 〈L, bL,A〉 is a
precondition L in a safe action model. Similarly, CNFeff(A)
uses atoms of the form IsEff(〈L, bL,A〉), which specify that
〈L, bL,A〉 is an effect of L in a safe action model.

Initially, CNFpre(A) and CNFeff(A) represent that all pos-
sible parameter-bound literals are preconditions and there
are no effects. Then, E-SAM learning iterates over every ac-
tion triplet (s, a, s′) in the given set of trajectories in which
a is a grounding of A. For every such triplet, it applies the
inference rules in Observation 2 as follows.

Every parameter-bound literal 〈L, bL,A〉 such that
〈L, bA ◦ bL,A〉 is not in the pre-state cannot be a pre-
condition (Rule 1). So, we remove IsPre(〈L, bL,A〉) from
CNFpre for such parameter-bound literals. Similarly, every
parameter-bound literal 〈L, bL,A〉 such that 〈L, bA ◦ bL,A〉
is not in the post-state cannot be an effect (Rule 2). So, we
add ¬IsEff(〈L, bL,A〉) to CNFeff for such parameter-bound
literals. Finally, every grounded literal 〈L, bL〉 in s′ \ s
must be an effect. So, we add to CNFeff the disjunction
over all parameter-bound literals 〈L, bA ◦ bL,A〉 that satisfy
〈L, bA ◦ bL,A〉 = 〈L, bL〉 (Rule 3). Once the given trajecto-
ries have been processed by the algorithm, we simplify both
CNFs by applying unit propagation and removing subsumed
clauses.

Proxy Actions The main challenge in creating a safe ac-
tion model from the generated CNFs is the disjunction in
CNFeff, which represents uncertainty w.r.t to the effects of

116

action. To address this, we create a safe action model with a
set of proxy actions that ensure every action is only applica-
ble when we know its effects. This is done as follows.

If an action has only unit clauses, we have a single action
with the effects indicated by the positive literals. Otherwise,
we create a proxy action for all subsets of the non-subsumed
non-unit clauses. (The number of proxy actions is thus ex-
ponential in the number of non-unit clauses.) In this proxy
action, we identify all of the parameters that appear together
in a clause in the subset; if multiple clauses share any vari-
ables, we identify all of the parameters across the clauses.
Each proxy action has the following set of preconditions and
effects: every unit clause in the CNF and every clause in the
corresponding subset specifies an effect of the proxy action.
For the subset of clauses not chosen for this proxy action,
the proxy action has the corresponding literals as additional
preconditions, in addition to the preconditions of the orig-
inal SAM Learning action model. Every plan generated by
the action model created by the resulting action model is
translated to a plan without proxy actions by replacing them
with the actions for which they were created. Algorithm 2
lists the complete pseudocode of E-SAM learning.

Theoretical Properties The E-SAM Learning action
model satisfies the same properties as the original model (as-
suming injective bindings), captured in Theorems 3 and 2:

Theorem 5. The E-SAM Learning action model is safe.

Proof. For each of the proxy actions, for every effect, at
least one of the parameter-bound literals for the identified
parameters is an effect of the true action. Furthermore, the
preconditions ensure that the rest of the uncertain effects are
already present in the pre-state. The post-state of the proxy
action is thus identical to that of the true action when its
precondition is satisfied. Likewise, the proxy actions have
preconditions that are only stronger than the actual precon-
dition. Eq. 2 therefore holds. The rest of the claim now fol-
lows from the argument in Theorem 3.

Recall that a prime implicate is a clause that is entailed
by a formula for which no subclause is also entailed. CNFeff
consists of precisely these prime implicates.

Lemma 2. All prime implicates of CNFeff are derived by
unit propagation.

Proof. Note that the clauses created by Rule 3 contain only
positive literals, and negative literals are only created by
Rule 1 and 2, which create unit clauses. Hence, unit propaga-
tion is sufficient to capture all possible cut inferences (a.k.a.,
resolution inferences) from these clauses. By the complete-
ness of resolution for prime implicates (see, e.g., (Brach-
man and Levesque 2004, Chapter 13, Exercise 1)), all of the
prime implicates of CNFeff can be derived by applications of
cut. In turn, therefore, unit propagation can also derive all of
the prime implicates of CNFeff.

Theorem 6. Every action model M ′ that is consistent with
T and safe w.r.t. the real action model M∗ is also safe with
respect to the extended SAM Learning action model.

Algorithm 2: Extended SAM Learning
Input : ΠT = 〈T,O, sI , sg, T 〉
Output: (pre, eff) for a safe action model

1 A′ ← all lifted actions observed in T
2 foreach lifted action A ∈ A′ do
3 (CNFpre,CNFeff)← ExtractClauses(A, T (A))
4 CNF1

eff ← all unit clauses in CNFeff

5 SurelyEff← {l | IsEff(l) ∈ CNF1
eff}

6 SurelyPre← {l | IsPre(l) ∈ CNFpre}
/* Create proxy actions for non-unit effects clauses */

7 CNFeff ← CNFeff \ CNF1
eff

8 foreach S ∈ Powerset(CNFeff) do
9 pre(AS)← SurelyPre; eff(AS)← SurelyEff

10 foreach Ceff ∈ CNFeff \ S do
11 foreach IsEff(l) ∈ Ceff do
12 Add l to pre(AS)

13 MergeObjects
(
S, pre(AS), eff(AS)

)

14 return (pre, eff)

Proof. Let M ′ be an action model that is consistent with T
and safe w.r.t.M∗, and consider any transition 〈s, 〈A, b〉 , s′〉
permitted by M ′. Consider the set S of literals in s′ \ s that
do not correspond to unit clauses in the CNF created by E-
SAM Learning, and the set S̄ of literals that are the ground-
ings under b of the effects in the non-unit clauses created by
E-SAM learning that are not in s′ \ s. Recall, Observation 2
characterizes the set action models consistent with T and
by Lemma 2, no sub-clause of the CNF created by E-SAM
learning is entailed by the rules of Observation 2. Therefore,
for every literal of every non-unit clause of this CNF, there
exists an action model consistent with T in which that literal
is the only satisfied literal of the clause. (Otherwise, a strictly
smaller clause would be entailed.) Therefore, for each literal
l ∈ S, since M ′ is safe w.r.t. M∗, all of the parameters of
A in some clause for this effect must be bound to the ob-
jects necessary to obtain l as the corresponding effect. Thus,
b must be consistent with at least one of the proxy actions
Aproxy . Furthermore, since the literals in S̄ may be effects
of 〈A, b〉, if they are not in s′\s, they must be in s, so the pre-
conditions of Aproxy are satisfied as well. Since the E-SAM
Learning action model is safe by Theorem 5, the post-state
of Aproxy is therefore equal to that obtained by the true ac-
tion model, which is in turn also equal to s′ since M ′ is also
safe.A is therefore an application ofAproxy, and we see that
the use of A in M ′ is safe with respect to the set of proxy
actions in the E-SAM Learning action model.

Experiments
To evaluate the performance of SAM Learning for lifted
domains (Algorithm 1), we performed experiments on two
simple IPC domains: N-Puzzle (3×3, 3 predicates, 1 action)
and Blocksworld (8 blocks, 5 predicates, 4 actions). For each
domain, we generated 10 trajectories with 10 actions each
by taking random actions (all distinct lifted actions of a do-
main appear at least once in each trajectory). Then, we ran

117

SAM Learning on these trajectories and obtained a safe ac-
tion model. As a baseline, we used FAMA (Aineto, Celorrio,
and Onaindia 2019), which is a modern algorithm for learn-
ing an action model from trajectories. Note that FAMA has
no safety guarantee. For N-Puzzle, both methods correctly
learned the action model after observing a single 〈s, a, s′〉
triple in all 10 trials. For Blocksworld, Table 2 lists the num-
ber of state-action-state triples needed to learn a correct ac-
tion model over 10 runs, where each run processed the tra-
jectories in a random order.

〈s, a, s′〉 6 7 8 9 · · · 13 14 15 16 17
SAM 1 1 6 2 0 0 0 0 0 0
FAMA 0 0 0 0 0 3 1 3 1 2

Table 2: # trials in which SAM Learning and FAMA learned
the true Blocksworld action model with a given # of triples.

In all cases, SAM learning was able to recover a correct
action model using fewer (s, a, s′) triplets than FAMA. Note
that once SAM Learning finds a correct model, it will not
add more literals to the preconditions or effects, since SAM
only removes literals that are not satisfied in the pre-state
and adds literals that switch values between pre and post-
states. Meanwhile, FAMA might add irrelevant literals to the
preconditons or effects as it processes more transitions.

The code for SAM learning implementation and experi-
ments is available at https://github.com/hsle/sam-learning.

Related Work
A variety of notions of safety have been considered in RL,
for example capturing the ability to reliably return to a home
state (Moldovan and Abbeel 2012) or avoiding undesirable
states (which are often identified with negative “reward”)
(Turchetta, Berkenkamp, and Krause 2016; Wachi et al.
2018) while learning about the environment.

But, these approaches to safe exploration require some
kind of strong prior knowledge, either in the form of beliefs
about the transition model or knowledge that the safety lev-
els follow a Gaussian process model. Such assumptions are
reasonable in the low-level motion planning tasks where RL
excels, but they do not suit the kind of discrete, high-level
problems typically considered in domain-independent plan-
ning. In addition, in these works safety is soft constraint that
an algorithm aims to maximize, while in our case safety is a
hard constraint.

Conclusion and Future Work
In this work, we presented the Safe Action Model Learn-
ing algorithm for lifted domains. SAM Learning for lifted
domains is guaranteed to return an action model that pro-
duces sound plans, even without knowledge of the domain.
A theoretical analysis shows that the number of trajectories
needed to learn an action model that will solve a given prob-
lem with high probability is linear in the potential size of the
action model. This approach is suitable for most domains
in current planning benchmarks, where the effects of actions
are trivial unless the action parameters are bound to different

objects. We also discussed how to adapt our algorithm to the
case where this assumption does not hold. In the future, we
aim to extend safe action-model learning to domains with
partial observability and stochasticity. We will also examine
its performance on more complicated IPC domains.

Acknowledgments
This research is partially funded by NSF award IIS-1908287
and BSF grant #2018684 to Roni Stern.

References
Aineto, D.; Celorrio, S.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence 275. doi:10.1016/j.artint.2019.05.003.
Amir, E.; and Chang, A. 2008. Learning Partially Ob-
servable Deterministic Action Models. J. Artif. Intell. Res.
(JAIR) 33: 349–402.
Brachman, R. J.; and Levesque, H. J. 2004. Knowledge Rep-
resentation and Reasoning. Elsevier.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence 2(3-4): 189–208.
McDermott, D. 2000. The 1998 AI Planning Systems Com-
petition. AI Magazine 21(2): 13.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-
the planning domain definition language. Technical report,
AIPS ’98 - The Planning Competition Committee.
Moldovan, T. M.; and Abbeel, P. 2012. Safe exploration in
Markov decision processes. In Proceedings of the 29th In-
ternational Conference on Machine Learning, 1451–1458.
Stern, R.; and Juba, B. 2017. Efficient, Safe, and Probably
Approximately Complete Learning of Action Models. In
the International Joint Conference on Artificial Intelligence
(IJCAI), 4405–4411.
Turchetta, M.; Berkenkamp, F.; and Krause, A. 2016. Safe
exploration in finite markov decision processes with gaus-
sian processes. In Advances in Neural Information Process-
ing Systems, 4312–4320.
Wachi, A.; Sui, Y.; Yue, Y.; and Ono, M. 2018. Safe explo-
ration and optimization of constrained mdps using gaussian
processes. In Thirty-Second AAAI Conference on Artificial
Intelligence.
Walsh, T. J.; and Littman, M. L. 2008. Efficient learning
of action schemas and web-service descriptions. In AAAI,
volume 8, 714–719.
Wang, X. 1994. Learning planning operators by observa-
tion and practice. In Proceedings of the Second Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems, 335–340.
Wang, X. 1995. Learning by observation and practice: an
incremental approach for planning operator acquisition. In
Proceedings of the Twelfth International Conference on In-
ternational Conference on Machine Learning, 549–557.

118

Reinforcement Learning for Planning Heuristics

Patrick Ferber1,2 and Malte Helmert1 and Jörg Hoffmann2

University of Basel1 Saarland Informatics Campus, Saarland University2

Switzerland Saarbrücken, Germany
{firstname}.{lastname}@unibas.ch {lastname}@cs.uni-saarland.de

Abstract

Informed heuristics are essential for the success of heuristic
search algorithms. But, it is difficult to develop a new heuris-
tic which is informed on various tasks. Instead, we propose
a framework that trains a neural network as heuristic for the
tasks it is supposed to solve.
We present two reinforcement learning approaches to learn
heuristics for fixed state spaces and fixed goals. Our first
approach uses approximate value iteration, our second ap-
proach uses searches to generate training data. We show that
in some domains our approaches outperform previous work,
and we point out potentials for future improvements.

Introduction
A key component in classical planning is heuristic search
(Bonet and Geffner 2001). A search algorithm like A* (Hart,
Nilsson, and Raphael 1968) or greedy best-first search uses
an heuristic as guidance to the goal. The heuristic esti-
mates for every visited state its distance to the goal. The
closer those estimates are to the true goal distance, the
faster we expect the search algorithm to find a solution.
Countless researchers designed heuristics for optimal (e.g.,
Helmert and Domshlak 2009; Helmert et al. 2014; Haslum
et al. 2007) and satisficing (e.g., Hoffmann and Nebel 2001;
Richter and Westphal 2010; Domshlak, Hoffmann, and Katz
2015) planning or invented ways to combine the power of
multiple heuristics (e.g., Röger and Helmert 2010; Seipp
2017).

Instead of designing search algorithms or heuristics in-
dependently of the tasks to solve, another line of research
develops algorithms that can be adapted for different tasks.

For example, offline portfolio algorithms learn a sched-
ule which describes a planner order and a time limit per
planner. To solve a new task, the planners are executed in
their order with their time limits (e.g., Helmert et al. 2011;
Seipp 2018). Online portfolio algorithms learn a mapping
that decides for a given task which planner to use (Sievers
et al. 2019; Ma et al. 2020). Gomoluch et al. (2020) apply
reinforcement learning to learn how to modify a running
search algorithm depending on some statistics. Their algo-
rithm switches among others between best-first search, local
search, random walks.

We also use reinforcement learning, but we do not change
the behavior of the search algorithm. Instead, we learn a
heuristic. Arfaee, Zilles, and Holte (2010) learn to combine
multiple feature heuristics into a new heuristic. Iteratively,
they use the feature heuristics and their learned heuristics
to solve a set of task. From every solved task, the states
along the solution together with their estimates of the fea-
ture heuristics and their estimated goal distance are saved.
These estimates are used to improve the learned heuristic. If
they are not able to solve sufficiently many new task, they
generate training tasks by regressing from the goal. This is
possible, because in their domains regression produce com-
plete assignments and quickly leads to random states.

Agostinelli et al. (2019) learn heuristic functions using re-
inforcement learning with approximate value iteration. They
also generate training states using random walks from the
goal. They evaluate training states by minimizing over the
heuristic estimates of the states’ successors. Like previously,
in their domains regression produces complete states and
random walks quickly lead to random states (especially in
the Rubik’s Cube domain).

Ferber, Helmert, and Hoffmann (2020b) take another
route. They use progression from some seed task to gen-
erate training states. They use an arbitrary heuristic search
algorithm to solve sampled states and every state encoun-
tered along a plan is stored for training. The authors train
their heuristics using supervised learning. Contrary to the
previous two approaches they evaluate their technique on
domains for which regression does not produce complete as-
signments.

Like Agostinelli et al. (2019) and Ferber, Helmert, and
Hoffmann (2020b), we learn heuristics for fixed state spaces
and fixed goals. We present two approaches that use rein-
forcement learning to train heuristics on tasks of the Inter-
national Planning Competition (IPC). On some domains we
already outperform previous approaches, and we identified
important future steps that will further improve our perfor-
mance. The paper is organized as follows. First, we provide
some background on planning and reinforcement learning.
Next, we present how we train our heuristics. Then, we eval-
uate our approach on IPC tasks. And finally, we resume our
results and present our next steps.

119

Background
We work on planning tasks in Finite-Domain Representa-
tion (FDR) (Bäckström and Nebel 1995). An FDR task Π
is defined as a quad-tuple 〈V,A, I,G〉. V is a set of finite-
domain variables. Every variable v has a domain dom(v)
that contains all values assignable to it. A state assigns to
every variable exactly one value. A fact is a 〈var , val〉 pair
with val ∈ dom(var). Two facts can be mutually exclusive
(mutex), i.e. they cannot be part of the same state. A is a
set of actions. Every action a ∈ A is defined as 〈prea , effa〉
and has a cost associated. Both, prea and effa are partial
assignments to V . An action a is applicable in a state s if
prea ⊆ s. Applying action a in state s leads to a new state
s′ with s′ = {v 7→ effa [v] | v ∈ V and v ∈ effa} ∪ {v 7→
s[v] | v ∈ V and v 6∈ effa}. This is also called progression.
I is the initial state and G is a partial assignment which de-
scribes the goal of the task. A state s is a goal state if s ⊆ G.
A plan is a sequence of actions 〈a1, a2, . . . , an〉 such that
applying one action after another leads from the initial state
to a goal state.

In this paper we do not only use progression, but also re-
gression. A partial state p is regressable with an action a if,
firstly, effa ∩ p 6= ∅, secondly, there is no v ∈ V such that
v ∈ effa and v ∈ p and effa [v] 6= p[v], and thirdly, there is
no v ∈ V such that v 6∈ effa and v ∈ prea and v ∈ p and
prea [v] 6= p[v]. The result of regressing the partial state p
with the action a is defined as {var 7→ val | var 7→ val ∈
p and var 6∈ effa} ∪ {var 7→ val | var 7→ val ∈ prea}
(Alcázar et al. 2013).

Sometimes planning and machine learning use the same
notations, but with different meanings. We annotate vari-
ables with ˜, if we use their machine learning meaning.
We use reinforcement learning to learn a value function
Ṽ : S 7→ R that assigns every state a value. One technique
to learn this function is approximate value iteration (AVI)
(Bertsekas and Tsitsiklis 1996). We start with an arbitrary
function Ṽ0 and iteratively improve it using Equation 1.

Ṽn+1 = ÃT Ṽn (1)
T denotes the Bellman operator and is defined in Equation 2.

T (s) = max
a

[
Ra

s + δ
∑

s′∈S
Pa
s,s′ Ṽ (s′)

]
(2)

For a given state the Bellman operator provides an esti-
mation of the expected total reward given the current value
function Ṽi. We use the simplification of Agostinelli et al.
(2019) shown in Equation 3. Our rewardsR depend only on
the action and can be replaced by the negated action cost.
We do not need a weighted sum over possible successors,
because our actions produce exactly one successor. We set
δ to 1 such that the value function learns to estimate the re-
maining cost to the goal. All our rewards are negative (as-
suming planning tasks with non-negative costs). Therefore,
we change the maximization to a minimization of negative
rewards.

T (s) = min
a

[
cost(a) + Ṽ (s′)

]
(3)

Ã represents an approximation method that incorporates
the sampled states and their values estimated by T and re-
turns a new value function.

Training
We use reinforcement learning to train value functions that
approximate the optimal heuristic for an FDR task Π. As ap-
proximation method Ã we use supervised learning. Our net-
works are residual network (He et al. 2016) with two dense
layers followed by one residual block containing two dense
layers and a single output neuron. Each dense layer contains
250 neurons. All neurons use the ReLU activation function.
The inputs of our networks are states represented as fixed
size Boolean vectors. We associate every entry of the input
vector with a fact of Π. For all facts that are part of the input
state we set their vector entries to 1. All other entries are set
to 0. We train the network using the mean squared error as
loss function and the adam optimizer with its default param-
eters (Kingma and Ba 2015). To prevent performance insta-
bilities during training, we update the model for the sample
generation after at least 50 epochs have passed and the mean
squared error is below 0.1.

Because generating a training batch of 250 samples takes
longer than training on that batch, we use experience replay.
The data generating process pushes all samples into a first-
in-first-out buffer with a maximum size of 25,000. In each
training epoch we choose uniformly 250 samples from the
buffer. This allows us to train multiple times on the same -
recent - samples and to decouple the training from the data
generation.

We run the data generation in four independent processes.
Algorithm 1 provides an overview of them. Each process
calls GENERATE DATA and samples 〈state, value〉 pairs
until we terminate it. First the process checks if a new
value function is available. If yes, it loads the new value
function. Then, the process samples a new state from the
state space of Π using either SAMPLE PROGRESSION or
SAMPLE REGRESSION. It evaluates the state using either
EVALUATE LOOKAHEAD or EVALUATE SEARCH. EVAL-
UATE SEARCH can return multiple 〈state, value〉 pairs for
each sampled state. Each 〈state, value〉 pair will be stored
for training. Depending on some conditions, the process up-
dates the parameters for the sampling methods.

SAMPLE PROGRESSION starts at the initial state of the
task Π, and performs a random walk for walk length steps
using progression. At each step it chooses a random appli-
cable action which does not undo the previous action. SAM-
PLE REGRESSION starts at the goal of Π, and performs a
random walk for walk length steps using regression. At each
step it chooses a random regressable action which again does
not undo the previous action. Unlike the progression walk,
the regression walk ends with a partial assignment. We ran-
domly complete the partial assignment to a state. Therefore,
we assign every unassigned variable a value of its domain.
We use the translator of Fast Downward (Helmert 2009) to

120

Algorithm 1 Generate Training Data

1: function SAMPLE PROGRESSION(Π,walk length)
2: s, s′ ← Π.I,None
3: for i = 1..walk length do
4: a← choose({a | a ∈ A, applicable(s, a) ∧

s′ 6= apply(s, a)})
5: s, s′ ← apply(s, a), s

6: return s
7: function SAMPLE REGRESSION(Π,walk length)
8: p, p′ ← Π.G,None
9: for i← 1..walk length do

10: a← choose({a | a ∈ A, regressable(p, a) ∧
p′ 6= regress(p, a)})

11: p, p′ ← regress(p, a), p

12: return make complete assignment(p)

13: function EVALUATE LOOKAHEAD(Π, s, Ṽ , lookahead)
14: curr , succs ← [〈s, 0〉], []
15: for i← 1..lookahead do
16: for s ′, c′ ∈ curr do
17: if is goal(Π , s ′) then
18: succs.insert(〈s′, c′〉)
19: continue
20: for a ∈ {a | a ∈ A, applicable(Π, s′, a)} do
21: s′′ ← apply(s ′, a)
22: c′′ ← c′ + cost(Π, a)
23: succs.insert(〈s′′, c′′〉)
24: curr , succs ← succs, []

25: c← min({c′ + (0 if is goal(s ′) else Ṽ (s′)) |
s′, c′ ∈ curr})

26: return [〈s, c〉]
27: function EVALUATE SEARCH(Π, s, Ṽ , search)
28: try
29: plan ← search(Π, s, Ṽ)
30: c← sum([cost(a) | a ∈ plan])
31: evals← [〈s, c〉]
32: for a ∈ plan do
33: s, c← apply(s, a), c− cost(Π, a)
34: evals.insert(〈s, c〉)
35: return evals
36: exceptTIMEOUT, UNSOLVABLE
37: return []

38: function GENERATE DATE(Π,min walk ,max walk , ls)
39: while true do
40: if value function outdated() then
41: Ṽ ← load value function()

42: s← sample X (Π, rnd(min walk ,max walk))

43: evals ← evaluate Y (Π, s, Ṽ , ls)
44: if s, v ∈ evals then
45: store(s, v)

46: if CONDITION (s, v) then
47: min walk ← update min walk length()
48: max walk ← update max walk length()

49:

identify some mutexes of the task Π and enforce that none
of them are violated.

To label the sampled state, we use either EVALU-
ATE LOOKAHEAD or EVALUATE SEARCH. EVALU-
ATE LOOKAHEAD is an adaption of the simplified Bellman
operator in Equation 3. Instead of considering only the
direct successors of the current state, the function considers
the n-step successors. If it finds a goal state during the
n-step successor exploration, then it will not further explore
the successors of this state. This is possible, because we
want to learn the distance to the closest goal. Any successor
of a goal state is further afar from us than the goal state
itself. Every n-step successor is evaluated by adding up the
action cost to reach it with its estimate of the value function.
If a successor is a goal state, then the optimal value function
would assign it to 0. Thus, we evaluate goal states with their
action costs only. EVALUATE SEARCH evaluates a state by
executing a - potentially suboptimal - search on the state. If
the search finds a plan, then it stores all states along the plan
for training. Their associated values are the summed action
costs from their position in the plan to the goal.

We use 2 different configuration to generate training
data in our experiments. The first configuration samples
all states using SAMPLE REGRESSION and a random walk
length between 0 and 300. It evaluates states using EVAL-
UATE LOOKAHEAD with a lookahead of 2. We call this
configuration approximate value iteration (AVI). The sec-
ond configuration samples for the first 10 hours with
SAMPLE REGRESSION and afterwards uses both SAM-
PLE REGRESSION and SAMPLE PROGRESSION. To eval-
uate the sampled states it uses EVALUATE SEARCH. As
search engine we use greedy best-first search with a time-
out of 10s. In the beginning the value function is not good
enough to solve sampled states far away from the goal.
Therefore, the sampling starts with a walk length between
0 and 5. We double the maximum random walk length, if
EVALUATE SEARCH finds a plan for more than 95% of the
sampled states. We observed that at some point further in-
creasing the random walk length does not sample states fur-
ther away from the goal, but just wastes computational time.
Thus, we double at most 8 times the maximum walk length.
We call this configuration sampling search (SaSe).

We run the training - including data generation - for 28
hours on 4 cores of an Intel Xeon E5-2600 processor with
3.8 GB of memory. For training the neural networks we used
the Keras framework (Chollet 2015) with Tensorflow (Abadi
et al. 2015) as back-end. We implemented the data genera-
tion and all searches in Fast Downward (Helmert 2006), and
used Lab (Seipp et al. 2017) to setup our experiments.

Experiments
We train neural networks as heuristics to solve different
tasks from the same state space and with the same goal.
We evaluate our training procedure on the domains Ferber,
Helmert, and Hoffmann (2020b) used. They selected a sub-
set of tasks which they deemed hard enough to be interest-
ing, but also easy enough for them to generate training data.
We call their task selection moderate tasks. Because the data

121

Domain AVI SaSe SL Lama

blocks 0.0 0.0 98.0 96.8
depots 17.7 39.7 64.3 98.7
grid 51.0 86.0 74.0 97.0
npuzzle 1.0 1.5 0.0 97.8
pipesworld-notankage 29.8 50.4 92.8 97.2
rovers 25.8 35.8 12.5 98.0
scanalyzer-opt11-strips 83.3 33.3 77.7 97.7
storage 47.5 71.5 22.0 37.5
transport-opt14-strips 69.0 70.5 98.0 97.5
visitall-opt14-strips 13.0 30.7 0.7 95.0
Average 33.8 41.9 54.0 91.3

Table 1: Coverage of LAMA and greedy best-first search
with heuristics trained using approximate value iteration
(AVI), sampling search (SaSe), or supervised learning (SL)
on the moderate tasks.

generation is not a bottleneck in our method, we also con-
sider the harder tasks they skipped. We call these hard tasks.
For every task selected, we have 50 different initial states
for testing. We use the test states provided for the moder-
ate tasks by Ferber, Helmert, and Hoffmann (2020b). For
the other tasks, we generate new test states in the same way
they did. We start at the initial state of the original task and
perform a 200 step forward random walk.

For every task, we train a network using the approxi-
mate value iteration (AVI) configuration and a network us-
ing the sampling search (SaSe) configuration. To solve the
test tasks, we use our neural networks as heuristics in an ea-
ger greedy best-first search. Exploratory experiments have
shown that the eager version of greedy best-first search per-
forms better with our heuristic than the lazy version. We run
each search for 10 hours with a memory limit of 3.8 GB on
a single core of an Intel Xeon Silver 4114. We use the first
iteration of LAMA (Richter and Westphal 2010) as baseline.
On the moderate tasks we also compare to the networks of
Ferber, Helmert, and Hoffmann (2020b) used in a greedy
best-first search. Because they used supervised learning, we
call this baseline supervised learning (SL).

All code, benchmarks, and experimental results are online
available (Ferber, Helmert, and Hoffmann 2020a).

Moderate Tasks
Table 1 shows the coverage of our configurations (AVI,
SaSe) against the supervised learning (SL) and the LAMA
baseline on the moderate tasks. On average LAMA outper-
forms all other techniques. Given enough time to generate its
training data (400 hours) the supervised training approach
solves more tasks than our current approach. From our two
approaches, the sampling search configuration outperforms
the approximate value iteration approach.

A more detailed view shows that whether an approach
works well or not depends on the domain. There are some
domains on which the supervised learning approach works
well, but our reinforcement learning approach does not work

Domain AVI SaSe Lama

depots 15.1 6.9 80.6
grid 0.0 0.0 90.0
npuzzle 0.0 0.0 84.0
pipesworld-notankage 1.4 25.1 68.7
rovers 0.1 0.8 97.7
scanalyzer-opt11-strips 34.0 3.3 98.7
storage 18.8 26.5 11.0
visitall-opt14-strips 0.0 36.0 98.0
Average 8.7 12.3 78.6

Table 2: Coverage of LAMA and greedy best-first search
with heuristics trained using approximate value iteration
(AVI), sampling search (SaSe) on the hard tasks.

at all (e.g. Blocksworld) and some domains where the rein-
forcement learning works better than the supervised learn-
ing(e.g. VisitAll). In Storage we outperform not only the su-
pervised learning approach, but also LAMA.

Figure 1 shows for each domain how the coverage in-
creases over time. We see that LAMA quickly reaches its
coverage limit. The supervised learning approach takes a bit
longer. The two reinforcement learning approaches require
the most time until they converge to their final coverage.

Hard Tasks
Table 2 shows the coverage on the hard tasks. The
Blocksworld and Transport domains have no tasks in this
category. The hard tasks show a similar picture than the
moderate tasks. All techniques solve fewer tasks, but LAMA
is still the best technique, and the sampling search configura-
tion is still better than the approximate value iteration tech-
nique. Furthermore, in the Storage domain reinforcement
learning outperforms LAMA.

Robustness
We observe that for some tasks within a domain our ap-
proaches solve either almost none or almost all states (see
Table 3, columns x1). We speculate that the randomness dur-
ing training sometimes produces good and sometimes bad
models. To verify this, we train for the domains Depots and
Scanalyzer four additional models per task. We run each of
our five models on a fifth of the test states. If our assumption
is correct, then we expect for the same task some models
which solve almost all test states, and some models which
solve almost no test states. Column x5 of Table 3 shows for
each of the five models how many test states they solves. As
expected, most of the trained models solve either all or none
of their test states and for the same task it is possible to ob-
tain good and bad models. We also see that for some tasks it
is more likely to train a good model than for other tasks.

This raises the question of what would be our perfor-
mance if we could detect which models are good? For every
task we select the model with the highest coverage out of
the five models in column x5 and use those on all test states.
Columns x1’ shows that this greatly increases our coverage.

122

10 1 100 101 102 103 104

total time

0

50

100

150

200

250

co
ve

ra
ge

LAMA
SL

(a) Blocks

10 1 100 101 102 103 104

total time

0

50

100

150

200

250

300

co
ve

ra
ge

AVI
LAMA
SL
SaSe

(b) Depots

10 1 100 101 102 103 104

total time

0

20

40

60

80

100

co
ve

ra
ge

AVI
LAMA
SL
SaSe

(c) Grid

101 102 103 104

total time

0

50

100

150

200

250

300

350

400

co
ve

ra
ge

AVI
LAMA
SaSe

(d) NPuzzle

10 1 100 101 102 103 104

total time

0

100

200

300

400

500

co
ve

ra
ge

AVI
LAMA
SL
SaSe

(e) Pipesworld-NoTankage

10 2 10 1 100 101 102 103 104

total time

0

50

100

150

200

250

300

350

400

co
ve

ra
ge

AVI
LAMA
SL
SaSe

(f) Rovers

10 1 100 101 102 103 104

total time

0

50

100

150

200

250

300

co
ve

ra
ge

AVI
LAMA
SL
SaSe

(g) Scanalyzer-opt11-strips

10 1 100 101 102 103 104

total time

0

20

40

60

80

100

120

140

co
ve

ra
ge

AVI
LAMA
SL
SaSe

(h) Storage

10 1 100 101 102 103 104

total time

0

50

100

150

200

250

300

350

400
co

ve
ra

ge

AVI
LAMA
SL
SaSe

(i) Transport-opt14-strips

10 1 100 101 102 103 104

total time

0

50

100

150

200

250

co
ve

ra
ge

AVI
LAMA
SL
SaSe

(j) Visitall-opt14-strips

Figure 1: Cumulative coverage of LAMA and greedy best-first search with the heuristic trained using approximate value itera-
tion (AVI), sampling search (SaSe), and the supervised learning (SL) baseline on the moderate tasks.

123

10 1 100 101 102 103 104

total time

0

50

100

150

200

250

co
ve

ra
ge

AVI
LAMA
SaSe

(a) Depots

1006 × 10 1

total time

0

10

20

30

40

co
ve

ra
ge

LAMA

(b) Grid

102 103 104

total time

0

50

100

150

200

250

300

350

co
ve

ra
ge

LAMA

(c) NPuzzle

10 1 100 101 102 103 104

total time

0

100

200

300

400

500

600

700

co
ve

ra
ge

AVI
LAMA
SaSe

(d) Pipesworld-NoTankage

10 1 100 101 102 103 104

total time

0

100

200

300

400

500

600

700

co
ve

ra
ge

AVI
LAMA
SaSe

(e) Rovers

10 1 100 101 102 103 104

total time

0

20

40

60

80

100

120

140

co
ve

ra
ge AVI

LAMA
SaSe

(f) Scanalyzer-opt11-strips

10 1 100 101 102 103 104

total time

0

20

40

60

80

100

co
ve

ra
ge

AVI
LAMA
SaSe

(g) Storage

100 101 102 103 104

total time

0

10

20

30

40

50

co
ve

ra
ge LAMA

SaSe

(h) Visitall-opt14-strips

Figure 2: Cumulative coverage of LAMA and greedy best-first search with the heuristic trained using approximate value itera-
tion (AVI), sampling search (SaSe), and the supervised learning (SL) baseline on the hard tasks.

124

AVI SaSe

Depots x1 x5 x1’ x1 x5 x1’

p05 50 10 10 10 9 9 50 0 10 10 0 0 0 41
p06 0 0 0 0 0 0 0 0 1 1 1 0 0 10
p08 1 7 5 2 0 0 28 19 10 10 6 6 0 47
p09 0 8 0 0 0 0 32 50 10 1 0 0 0 44
p11 2 10 1 1 0 0 50 0 10 7 0 0 0 49
p12 0 0 0 0 0 0 0 5 0 0 0 0 0 3
p14 11 10 10 9 9 3 50 1 0 0 0 0 0 0
p15 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p16 0 9 7 0 0 0 45 50 10 10 10 0 0 50
p18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p19 42 7 2 2 0 0 42 18 6 3 1 0 0 23
p20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p22 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sum 106 150 297 143 123 267

AVI SaSe

Scanalyzer x1 x5 x1’ x1 x5 x1’

p07 0 2 0 0 0 0 16 0 0 0 0 0 0 0
p10 50 10 9 3 0 0 50 0 0 0 0 0 0 0
p13 50 10 9 9 9 9 50 50 10 10 10 10 10 50
p15 50 10 10 10 9 8 50 50 10 10 10 10 10 50
p16 50 10 10 10 10 10 50 0 0 0 0 0 0 0
p17 50 10 10 9 8 1 50 0 0 0 0 0 0 0
p18 1 8 8 3 0 0 49 0 0 0 0 0 0 0
p19 0 0 0 0 0 0 0 5 2 0 0 0 0 11
p20 50 10 9 9 9 9 50 0 10 0 0 0 0 50

Sum 301 288 365 105 112 161

Table 3: Absolute coverage for greedy best-first search using heuristics trained by the approximate value iteration (AVI) con-
figuration and by the sampling search (SaSe) configuration. x1 uses one model for all test states. x5 uses five models (10 states
per model). x1’ uses the best model from x5 on all test states. (Top) Shows the results for Depots. (Bottom) Shows the results
for Scanalyzer.

Moderate Tasks Hard Tasks

Domain AVI SaSe SL AVI SaSe

depot 68.8 77.0 64.3 26.3 10.3
scanalyzer 88.7 50.0 77.7 66.0 7.3

Table 4: Coverage on Depots and Scanalyzer if the best mod-
els from Table 3 column x5 are used to solve all test states.

The performance of a model on a subset of test states ap-
proximates well the performance of the model on all test
states. Table 4 shows how this increases the coverage frac-
tions. For the moderate tasks of Depots this increases the
coverage by 50% (AVI) resp. 40% (SaSe) and our approach
would outperform the supervised learning baseline.

A followup question is, how can we detect whether a
model will be good on the test states? We saw that a subset
of test states approximates well the performance of model
on all test states. Thus, a first approach could be to create
an additional set of validation states which is independent

of the test states. The performance of every trained model is
evaluated on the validation states, and we select the model
with the best performance on the validation states.

Conclusion
We presented two approaches to learn heuristics for fixed
state spaces and goals using reinforcement learning. The first
one uses approximate value iteration the other one uses a
search in its data generation. We showed that our approaches
can outperform the previous state of the art on some domains
while requiring only 1/16 of the time for training. Further-
more, our approach can easily be applied to hard planning
tasks.

We observed that most of our trained models are either
very good or very bad at solving the test states. We presented
a naive test to detect good models and showed that this can
drastically improve our coverage. In our next steps, we plan
to examine how we can detect during training if a model is
on its way to become a good or bad model. We expect to
see the performance boost shown for Depots and Scanalyzer
also on the other domains.

125

We also observed that increasing the random walk length
to sample states farther away from the goal suffers from di-
minishing returns. Adding 10 additional steps to the walk
does not lead us 10 steps farther away from the goal. We
started preliminary experiments which use a known heuris-
tic or the current value function as bias. We believe that bias-
ing the random walk, especially with the trained value func-
tion, is an essential step for learning the heuristic estimates
of large state spaces.

Acknowledgments
Patrick Ferber was funded by DFG grant 389792660 as part
of TRR 248 (see https://perspicuous-computing.science).
This work was supported by the Swiss National Science
Foundation (SNSF) as part of the project “Certified Correct-
ness and Guaranteed Performance for Domain-Independent
Planning” (CCGP-Plan).

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard,
M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Lev-
enberg, J.; Man’e, D.; Monga, R.; Moore, S.; Murray, D.;
Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.;
Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Fern;
a Vi’egas; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke,
M.; Yu, Y.; and Zheng, X. 2015. TensorFlow: Large-scale
machine learning on heterogeneous systems.
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence 1:356–
363.
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting regression in planning. In Proc. IJCAI
2013, 2254–2260.
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2010. Bootstrap
learning of heuristic functions. In Proc. SoCS 2010, 52–60.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5–33.
Chollet, F. 2015. Keras. https://keras.io.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black
planning: A new systematic approach to partial delete relax-
ation. AIJ 221:73–114.
Ferber, P.; Helmert, M.; and Hoffmann, J. 2020a. Code,
benchmarks and experiment data for the PRL 2020 work-
shop paper “Reinforcement Learning for Planning Heuris-
tics”. https://doi.org/10.5281/zenodo.4049617.
Ferber, P.; Helmert, M.; and Hoffmann, J. 2020b. Neural
network heuristics for classical planning: A study of hyper-
parameter space. In Proc. ECAI 2020.

Gomoluch, P.; Alrajeh, D.; Russo, A.; and Bucchiarone, A.
2020. Learning neural search policies for classical planning.
In Proc. ICAPS 2020, 522–530.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proc. AAAI
2007, 1007–1012.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 770–
778.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS 2009, 162–169.
Helmert, M.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011.
Fast Downward Stone Soup. In IPC 2011 planner abstracts,
38–45.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for generat-
ing lower bounds in factored state spaces. JACM 61(3):16:1–
63.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. AIJ 173:503–535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Kingma, D. P., and Ba, J. 2015. Adam: A method for
stochastic optimization. In Proc. ICLR 2015.
Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M. 2020. On-
line planner selection with graph neural networks and adap-
tive scheduling. In Proc. AAAI 2020, 5077–5084.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
Proc. ICAPS 2010, 246–249.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Seipp, J. 2017. Better orders for saturated cost partitioning
in optimal classical planning. In Proc. SoCS 2017, 149–153.
Seipp, J. 2018. Fast Downward Remix. In IPC-9 planner
abstracts, 74–76.
Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Fer-
ber, P. 2019. Deep learning for cost-optimal planning: Task-
dependent planner selection. In Proc. AAAI 2019, 7715–
7723.

126

Bridging the gap between Markowitz planning and deep reinforcement learning

Eric Benhamou 1,2, David Saltiel 1,3, Sandrine Ungari 4, Abhishek Mukhopadhyay 5

1 AI Square Connect, France, {eric.benhamou,david.saltiel}@aisquareconnect.com
2MILES, LAMSADE, Dauphine university, France, eric.benhamou@lamsade.dauphine.fr

3 LISIC, ULCO, France, david.saltiel@univ-littoral.fr
4 Societe Generale, Cross Asset Quantitative Research, UK,

5 Societe Generale, Cross Asset Quantitative Research, France,
{sandrine.ungari,abhishek.mukhopadhyay}@sgcib.com

Abstract

While researchers in the asset management industry have
mostly focused on techniques based on financial and risk
planning techniques like Markowitz efficient frontier, min-
imum variance, maximum diversification or equal risk par-
ity, in parallel, another community in machine learning has
started working on reinforcement learning and more partic-
ularly deep reinforcement learning to solve other decision
making problems for challenging task like autonomous driv-
ing, robot learning, and on a more conceptual side games
solving like Go. This paper aims to bridge the gap be-
tween these two approaches by showing Deep Reinforcement
Learning (DRL) techniques can shed new lights on portfolio
allocation thanks to a more general optimization setting that
casts portfolio allocation as an optimal control problem that
is not just a one-step optimization, but rather a continuous
control optimization with a delayed reward. The advantages
are numerous: (i) DRL maps directly market conditions to
actions by design and hence should adapt to changing envi-
ronment, (ii) DRL does not rely on any traditional financial
risk assumptions like that risk is represented by variance, (iii)
DRL can incorporate additional data and be a multi inputs
method as opposed to more traditional optimization methods.
We present on an experiment some encouraging results using
convolution networks.

Introduction
In asset management, there is a gap between mainstream
used methods and new machine learning techniques around
reinforcement learning and in particular deep reinforcement
learning. The former methods rely on financial risk opti-
mization and solve the planning problem of the optimal
portfolio as a single step optimization question. The lat-
ter do not make any assumptions about risk, do a more
involving multi-steps optimization and solve complex and
challenging tasks like autonomous driving (Wang, Jia, and
Weng 2018), learning advanced locomotion and manipula-
tion skills from raw sensory inputs (Levine et al. 2015; 2016;
Schulman et al. 2015a; 2017; Lillicrap et al. 2015) or on a
more conceptual side for reaching supra human level in pop-
ular games like Atari (Mnih et al. 2013), Go (Silver et al.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2016; 2017), StarCraft II (Vinyals et al. 2019), etc ... One of
the reasons often put forward for this situation is that asset
management researchers have mostly been trained with an
econometric and financial mathematics background, while
the deep reinforcement learning community has been mostly
trained in computer science and robotics, leading to two dis-
tinctive research communities that do not interact much be-
tween each other. In this paper, we aim to present the various
approaches to show similarities and differences to bridge the
gap between these two approaches. Both methods can help
solving the decision making problem of finding the optimal
portfolio allocation weights.

Related works
As this paper aims at bridging the gap between traditional
asset management portfolio selection methods and deep re-
inforcement learning, there are too many works to be cited.

On the traditional methods side, the seminal work is
(Markowitz 1952) that has led to various extensions like
minimum variance (Chopra and Ziemba 1993; Haugen and
Baker 1991), (Kritzman 2014), maximum diversification
(Choueifaty and Coignard 2008; Choueifaty, Froidure, and
Reynier 2012), maximum decorrelation (Christoffersen et al.
2010), risk parity (Maillard, Roncalli, and Teı̈letche 2010;
Roncalli and Weisang 2016). We will review these works in
the section entitled Traditional methods.

On the reinforcement learning side, the seminal book is
(Sutton and Barto 2018). The field of deep reinforcement
learning is growing every day at an unprecedented pace,
making the citation exercise complicated. But in terms of
breakthroughs of deep reinforcement learning, one can cite
the work around Atari games from raw pixel inputs (Mnih
et al. 2013; 2015), Go (Silver et al. 2016; 2017), StarCraft II
(Vinyals et al. 2019), learning advanced locomotion and ma-
nipulation skills from raw sensory inputs (Levine et al. 2015;
2016) (Schulman et al. 2015a; 2015b; 2017; Lillicrap et al.
2015), autonomous driving (Wang, Jia, and Weng 2018) and
robot learning (Gu et al. 2017).

On the application of deep reinforcement learning meth-
ods to portfolio allocations, there is already a growing in-
terest as recent breakthroughs has put growing emphasis on
this method. Hence, the field is growing very rapidly and

127

survey like (Fischer 2018) are already out dated. Driven ini-
tially mostly by applications to crypto currencies and Chi-
nese financial markets (Jiang and Liang 2016; Zhengyao et
al. 2017; Liang et al. 2018; Yu et al. 2019; Wang and Zhou
2019; Saltiel et al. 2020; Benhamou et al. 2020b; 2020a;
2020c), the field is progressively taking off on other as-
sets (Kolm and Ritter 2019; Liu et al. 2020; Ye et al. 2020;
Li et al. 2019; Xiong et al. 2019). More generally, DRL has
recently been applied to other problems than portfolio al-
location. For instance, (Deng et al. 2016; Zhang, Zohren,
and Roberts 2019; Huang 2018; Théate and Ernst 2020;
Chakraborty 2019; Nan, Perumal, and Zaiane 2020; Wu et
al. 2020) tackle the problem of direct trading strategies (Bao
and yang Liu 2019) handles the one of multi agent trading
while (Ning, Lin, and Jaimungal 2018) examine optimal ex-
ecution.

Traditional methods
We are interested in finding an optimal portfolio which
makes the planning problem quite different from standard
planning problem where the aim is to plan a succession
of tasks. Typical planning algorithms are variations around
STRIPS (Fikes and Nilsson 1971), that starts by analysis
ending goals and means, builds the corresponding graph and
finds the optimal graph. Indeed we start from the goals to
achieve and try to find means that can lead to them. New
work like Graphplan as presented in (Blum and Furst 1995)
uses a novel planning graph, to reduce the amount of search
needed, while hierarchical task network (HTN) planning
leverages the classification to structure networks and hence
reduce the number of graph searches. Other algorithms like
search algorithm as A∗, B∗, weighted A∗ or for full graph
search, branch and bound and its extensions, as well as evo-
lutionary algorithms like particle swarm, CMA-ES are also
used widely in AI planning etc.. However, when it comes to
portfolio allocation, standard methods used by practitioners
rely on more traditional financial risk reward optimization
problems and follows rather the Markowitz approach as pre-
sented below.

Markowitz
The intuition of Markowitz portfolio is to be able to com-
pare various assets and assemble them taking into account
both return and risk. Comparing just returns of some finan-
cial assets would be too naive. One has to take into account
in her/his investment decision returns with associated risk.
Risk is not an easy concept. in Modern Portfolio Theory
(MPT), risk is represented by the variance of the asset re-
turns. If we take various financial assets and display their
returns and risk as in figure 1, we can find an efficient fron-
tier. Indeed there exists an efficient frontier represented by
the red dot line.

Mathematically, if we denote by w = (w1, ..., wl) the al-
location weights with 1 ≥ wi ≥ 0 for i = 0...l, summarized
by 1 ≥ w ≥ 0, with the additional constraints that these
weights sum to 1:

∑l
i=1 wi = 1, we can see this portfolio

allocation question as an optimization.
Let µ = (µ1, ..., µl)

T be the expected returns for our l strate-

Figure 1: Markowitz efficient frontier for the GAFA: returns
taken from 2017 to end of 2019

gies and Σ the matrix of variance covariances of the l strate-
gies’ returns. Let rmin be the minimum expected return. The
Markowitz optimization problem to solve is to minimize the
risk given a target of minimum expected return as follows:

Minimize
w

wTΣw (1)

subject to µTw ≥ rmin,
∑

i=1...l

wi = 1, 1 ≥ w ≥ 0

It is solved by standard quadratic programming. Thanks
to duality, there is an equivalent maximization with a given
maximum risk σmax for wich the problem writes as follows:

Maximize
w

µTw (2)

subject to wTΣw ≤ σmax,
∑

i=1...l

wi = 1, 1 ≥ w ≥ 0

Minimum variance portfolio
This seminal model has led to numerous extensions where
the overall idea is to use a different optimization objective.
As presented in (Chopra and Ziemba 1993; Haugen and
Baker 1991), (Kritzman 2014), we can for instance be in-
terested in just minimizing risk (as we are not so much in-
terested in expected returns), which leads to the minimum
variance portfolio given by the following optimization pro-
gram:

Minimize
w

wTΣw (3)

subject to
∑

i=1...l

wi = 1, 1 ≥ w ≥ 0

Maximum diversification portfolio Denoting by σ the
volatilities of our l strategies, whose values are the diagonal
elements of the covariance matrix Σ: σ = (Σi,i)i=1..l, we

128

can shoot for maximum diversification with the diversifica-
tion of a portfolio defined as follows: D = wTσ√

wT
∑
w

. We

then solve the following optimization program as presented
in (Choueifaty and Coignard 2008; Choueifaty, Froidure,
and Reynier 2012)

Maximize
w

wTσ√
wT
∑
w

(4)

subject to
∑

i=1...l

wi = 1, 1 ≥ w ≥ 0

The concept of diversification is simply the ratio of the
weighted average of volatilities divided by the portfolio
volatility.

Maximum decorrelation portfolio Following (Christof-
fersen et al. 2010) and denoting by C the correlation ma-
trix of the portfolio strategies, the maximum decorrelation
portfolio is obtained by finding the weights that provide the
maximum decorrelation or equivalently the minimum corre-
lation as follows:

Minimize
w

wTCw (5)

subject to
∑

i=1...l

wi = 1, 1 ≥ w ≥ 0

Risk parity portfolio Another approach following risk
parity (Maillard, Roncalli, and Teı̈letche 2010; Roncalli and
Weisang 2016) is to aim for more parity in risk and solve the
following optimization program

Minimize
w

1

2
wTΣw − 1

n

l∑

i=1

ln(wi) (6)

subject to
∑

i=1...l

wi = 1, 1 ≥ w ≥ 0

All these optimization techniques are the usual way to solve
the planning question of getting the best portfolio allocation.
We will see in the following section that there are many
alternatives leveraging machine learning that remove cog-
nitive bias of risk and are somehow more able to adapt to
changing environment.

Reinforcement learning
Previous financial methods treat the portfolio allocation
planning question as a one-step optimization problem, with
convex objective functions. There are multiple limitations to
this approach:

• they do not relate market conditions to portfolio allocation
dynamically.

• they do not take into account that the result of the portfolio
allocation may potentially be evaluated much later.

• they make a strong assumptions about risk.

What if we could cast this portfolio allocation planning
question as a dynamic control problem where we have some
market information and needs to decide at each time step the
optimal portfolio allocation problem and evaluate the result
with delayed reward? What if we could move from static
portfolio allocation to optimal control territory where we
can change our portfolio allocation dynamically when mar-
ket conditions changes. Because the community of portfolio
allocation is quite different from the one of reinforcement
learning, this approach has been ignored for quite some time
even though there is a growing interest for the use of rein-
forcement learning and deep reinforcement learning over the
last few years. We will present here in greater details what
deep reinforcement is in order to suggest more discussions
and exchanges between these two communities.

Contrary to supervised learning, reinforcement learning
do not try to predict future returns. It does not either try to
learn the structure of the market implicitly. Reinforcement
learning does more: it directly learns the optimal policy for
the portfolio allocation in connection with the dynamically
changing market conditions.

Deep Reinforcement Learning Intuition
As it name stands for, Deep Reinforcement Learning (DRL)
is the combination of Reinforcement Learning (RL) and
Deep (D). The usage of deep learning is to represent the pol-
icy function in RL. In a nutshell, the setting for applying RL
to portfolio management can be summarized as follows:

• current knowledge of the financial markets is formalized
via a state variable denoted by st.

• Our planning task which is to find an optimal portfolio
allocation can be thought as taking an action at on this
market. This action is precisely the decision of the current
portfolio allocation (also called portfolio weights).

• once we have decided the portfolio allocation, we observe
the next state st+1.

• we use a reward to evaluate the performance of our ac-
tions. In our particular setting, we can compute this re-
ward only at the the final time of our episode, making it
quite special compared to standard reinforcement learn-
ing problem. We denote this reward byRT where T is the
final time of our episode. This reward RT is in a sense
similar to our objective function in traditional methods.
A typical reward is the final portfolio net performance. It
could be obviously other financial performance evaluation
criteria like Sharpe, Sortino ratio, etc..

Following standard RL, we model our problem to solve
with a Markov Decision Process (MDP) as in (Sutton and
Barto 2018). MDP assumes that the agent knows all the
states of the environment and has all the information to make
the optimal decision in every state. The Markov property im-
plies in addition that knowing the current state is sufficient.
MDP assumes a 4-tuple (S,A,P,R) where S is the set of
states, A is the set of actions, P is the state action to next
state transition probability function P : S ×A×S → [0, 1],
and R is the immediate reward. The goal of the agent is
to learn a policy that maps states to the optimal action

129

π : S → A and that maximizes the expected discounted
reward E[

∑∞
t=0 γ

tRt].
The concept of using deep network is to represent the

function that relates dynamically the states to the action
called in RL the policy and denoted by ~at = π(st). This
function is represented by deep network because of the uni-
versal approximation theorem that states that any function
can be represented by a deep network provided we have
enough layers and nodes. Compared to traditional methods
that only solve a one step optimization, we are solving the
following dynamic control optimization program:

Maximize
π(.)

E[RT] (7)

subject to at = π(st)

Note that we maximize the expected value of the cumu-
lated reward E[RT] because we are operating in a stochastic
environment. To make things simpler, let us assume that the
cumulated reward is the final portfolio net performance. Let
us write Pt the price at time t of our portfolio, and its re-
turn at time t: rPt and the portfolio assets return vector at
time t: ~rt. The final net performance writes as PT /P0− 1 =∏T
t=1(1 + rPt)− 1. The returns rPt is a function of our plan-

ning action at as follows: (1+rPt) = 1+〈~at, ~rt〉where 〈·, ·〉
is the standard inner product of two vectors. In addition if we
recall that the policy is parametrized by some deep network
parameters, θ: at = πθ(st), we can make our optimization
problem slightly more detailed as follows:

Maximize
θ

E

[
T∏

t=1

(1 + 〈~at, ~rt〉)
]

(8)

subject to at = πθ(st).

It is worth noticing that compared to previous traditional
planning methods (optimization 1, 3, 4, 5 or 5), the underly-
ing optimization problem in RL 7 and its rewritting in terms
of deep network parameters θ as presented in 8 have many
differences:

• First, we are trying to optimize a function π and not sim-
ple weights wi. Although this function at the end is rep-
resented by a deep neural network that has admittely also
weights, this is conceptually very different as we are op-
timizing in the space of functions π : S → A , that is a
much bigger space than simply Rl.

• Second, it is a multi time step optimization at it involves
results from time t = 1 to t = T , making it also more
involving.

Partially Observable Markov Decision Process
If there is in addition some noise in our data and we are not
able to observe the full state, it is better to use Partially Ob-
servable Markov Decision Process (POMDP) as presented
initially in (Astrom 1969). In POMDP, only a subset of
the information of a given state is available. The partially-
informed agent cannot behave optimally. He uses a window
of past observations to replace states as in a traditional MDP.

Mathematically, POMDP is a generalization of MDP.
POMPD adds two more variables in the tuple, O and Z
where O is the set of observations and Z is the observation
transition function Z : S × A × O → [0, 1]. At each time,
the agent is asked to take an action at ∈ A in a particular
environment state st ∈ S , that is followed by the next state
st+1 withP(st+1|st, at). The next state st+1 is not observed
by the agent. It rather receives an observation ot+1 ∈ O on
the state st+1 with probability Z(ot+1|st+1, at).

From a practical standpoint, the general RL setting is
modified by taking a pseudo state formed with a set of
past observations (ot−n, ot−n−1, . . . , ot−1, ot). In practice
to avoid large dimension and the curse of dimension, it is
useful to reduce this set and take only a subset of these
past observations with j < n past observations, such that
0 < i1 < . . . < ij and ik ∈ N is an integer. The set
δ1 = (0, i1, . . . , ij) is called the observation lags. In our ex-
periment we typically use lag periods like (0, 1, 2, 3, 4, 20,
60) for daily data, where (0, 1, 2, 3, 4) provides last week ob-
servation, 20 is for the one-month ago observation (as there
is approximately 20 business days in a month) and 60 the
three-month ago observation.

Observations
Regular observations There are two types of observa-
tions: regular and contextual information. Regular observa-
tions are data directly linked to the problem to solve. In the
case of an asset management framework, regular observa-
tions are past prices observed over a lag period δ = (0 <
i1 < . . . < ij). To normalize data, we rather use past returns

computed as rkt =
pkt
pkt−1

− 1 where pkt is the price at time t
of the asset k. To give information about regime changes,
our trading agent receives also empirical standard devia-
tion computed over a sliding estimation window denoted by

d as follows σkt =
√

1
d

∑t
u=t−d+1 (ru − µ)

2, where the

empirical mean µ is computed as µ = 1
d

∑t
u=t−d+1 ru.

Hence our regular observations is a three dimensional ten-
sor At =

[
A1
t , A

2
t

]

with A1
t =

r1t−ij ... r
1
t

...
rmt−ij r

m
t

, A2

t =

σ1
t−ij ... σ

1
t

...
σmt−ij σ

m
t

This setting with two layers (past returns and past volatili-
ties) is quite different from the one presented in (Jiang and
Liang 2016; Zhengyao et al. 2017; Liang et al. 2018) that
uses different layers representing closing, open high low
prices. There are various remarks to be made. First, high
low information does not make sense for portfolio strate-
gies that are only evaluated daily, which is the case of all the
funds. Secondly, open high low prices tend to be highly cor-
related creating some noise in the inputs. Third, the concept
of volatility is crucial to detect regime change and is surpris-
ingly absent from these works as well as from other works
like (Yu et al. 2019; Wang and Zhou 2019; Liu et al. 2020;
Ye et al. 2020; Li et al. 2019; Xiong et al. 2019).

Context observation Contextual observations are addi-
tional information that provide intuition about current con-

130

text. For our asset manager, they are other financial data
not directly linked to its portfolio assumed to have some
predictive power for portfolio assets. Contextual observa-
tions are stored in a 2D matrix denoted by Ct with stacked
past p individual contextual observations. Among these ob-
servations, we have the maximum and minimum portfo-
lio strategies return and the maximum portfolio strategies
volatility. The latter information is like for regular obser-
vations motivated by the stylized fact that standard devi-
ations are useful features to detect crisis. The contextual

state writes as Ct =

c1t ... c

1
t−ik

...
cpt c

p
t−ik

. The matrix nature

of contextual states Ct implies in particular that we will use
1D convolutions should we use convolutional layers. All in
all, observations that are augmented observations, write as
Ot = [At, Ct], with At = [A1

t , A
2
t] that will feed the two

sub-networks of our global network.

Action
In our deep reinforcement learning the augmented asset
manager agent needs to decide at each period in which hedg-
ing strategy it invests. The augmented asset manager can in-
vest in l strategies that can be simple strategies or strategies
that are also done by asset management agent. To cope with
reality, the agent will only be able to act after one period.
This is because asset managers have a one day turn around
to change their position. We will see on experiments that this
one day turnaround lag makes a big difference in results.
As it has access to l potential hedging strategies, the out-
put is a l dimension vector that provides how much it invest
in each hedging strategy. For our deep network, this means
that the last layer is a softmax layer to ensure that portfolio
weights are between 0 and 100% and sum to 1, denoted by
(p1t , ..., p

l
t). In addition, to include leverage, our deep net-

work has a second output which is the overall leverage that
is between 0 and a maximum leverage value (in our experi-
ment 3), denoted by lvgt. Hence the final allocation is given
by lvgt × (p1t , ..., p

l
t).

Reward
In terms of reward, we are considering the net performance
of our portfolio from t0 to the last train date tT computed as
follows: PtT

Pt0
− 1.

Multi inputs and outputs
We display in figure 2 the architecture of our network. Be-
cause we feed our network with both data from the strate-
gies to select but also contextual information, our network is
a multiple inputs network.

Additionally, as we want from these inputs to provide
not only percentage in the different hedging strategies (with
a softmax activation of a dense layer) but also the overall
leverage (with a dense layer with one single output neurons),
we also have a multi outputs network. Additional hyperpa-
rameters that are used in the network as L2 regularization
with a coefficient of 1e-8.

Figure 2: network architecture obtained via tensorflow plot-
model function. Our network is very different from standard
DRL networks that have single inputs and outputs. Contex-
tual information introduces a second input while the lever-
age adds a second output

Convolution networks
Because we want to extract some features implicitly with a
limited set of parameters, and following (Liang et al. 2018),
we use convolution network that perform better than simple
full connected layers. For our so called asset states named
like that because there are the part of the states that relates to
the asset, we use two layers of convolutional network with
5 and 10 convolutions. These parameters are found to be
efficient on our validation set. In contrast, for the contextual
states part, we only use one layer of convolution networks
with 3 convolutions. We flatten our two sub network in order
to concatenate them into a single network.

Adversarial Policy Gradient
To learn the parameters of our network depicted in 2, we
use a modified policy gradient algorithm called adversarial
as we introduce noise in the data as suggested in (Liang et
al. 2018).. The idea of introducing noise in the data is to
have some randomness in each training to make it more ro-
bust. This is somehow similar to drop out in deep networks
where we randomly perturb the network by randomly re-
moving some neurons to make it more robust and less prone
to overfitting. Here, we are perturbing directly the data to
create this stochasticity to make the network more robust. A
policy is a mapping from the observation space to the action
space, π : O → A. To achieve this, a policy is specified by a
deep network with a set of parameters ~θ. The action is a vec-
tor function of the observation given the parameters: ~at =

131

π~θ(ot). The performance metric of π~θ for time interval [0, t]
is defined as the corresponding total reward function of the
interval J[0,t](π~θ) = R

(
~o1, π~θ(o1), · · · , ~ot, π~θ(ot), ~ot+1

)
.

After random initialization, the parameters are continuously
updated along the gradient direction with a learning rate λ:
~θ −→ ~θ + λ∇~θJ[0,t](π~θ). The gradient ascent optimization
is done with standard Adam (short for Adaptive Moment Es-
timation) optimizer to have the benefit of adaptive gradient
descent with root mean square propagation (Kingma and Ba
2014). The whole process is summarized in algorithm 1.

Algorithm 1 Adversarial Policy Gradient
1: Input: initial policy parameters θ, empty replay bufferD
2: repeat
3: reset replay buffer
4: while not terminal do
5: Observe observation o and select action a = πθ(o)

with probability p and random action with proba-
bility 1− p,

6: Execute a in the environment
7: Observe next observation o′, reward r, and done

signal d to indicate whether o′ is terminal
8: apply noise to next observation o′
9: store (o, a, o′) in replay buffer D

10: if Terminal then
11: for however many updates in D do
12: compute final reward R
13: end for
14: update network parameter with Adam gradient

ascent ~θ −→ ~θ + λ∇~θJ[0,t](π~θ)
15: end if
16: end while
17: until convergence

In our gradient ascent, we use a learning rate of 0.01,
an adversarial Gaussian noise with a standard deviation of
0.002. We do up to 500 maximum iterations with an early
stop condition if on the train set, there is no improvement
over the last 50 iterations.

Experiments
Goal of the experiment
We are interested in planing a hedging strategy for a risky
asset. The experiment is using daily data from 01/05/2000
to 19/06/2020 for the MSCI and 4 SG-CIB proprietary sys-
tematic strategies. The risky asset is the MSCI world index
whose daily data can be found on Bloomberg. We choose
this index because it is a good proxy for a wide range of
asset manager portfolios. The hedging strategies are 4 SG-
CIB proprietary systematic strategies further described be-
low. Training and testing are done following extending walk
forward analysis as presented in (Benhamou et al. 2020b;
2020c; 2020a) with initial training from 2000 to end of 2006
and testing in a rolling 1 year period. Hence, there are 14
training and testing periods, with the different testing pe-
riod corresponding to all the years from 2007 to 2020 and

training done for period starting in 2000 and ending one day
before the start of the testing period.

Data-set description
Systematic strategies are similar to asset managers that in-
vest in financial markets according to an adaptive, pre-
defined trading rule. Here, we use 4 SG CIB proprietary
’hedging strategies’, that tend to perform when stock mar-
kets are down:

• Directional hedges - react to small negative return in eq-
uities,

• Gap risk hedges - perform well in sudden market crashes,

• Proxy hedges - tend to perform in some market config-
urations, like for example when highly indebted stocks
under-perform other stocks,

• Duration hedges - invest in bond market, a classical diver-
sifier to equity risk in finance.

The underlying financial instruments vary from put op-
tions, listed futures, single stocks, to government bonds.
Some of those strategies are akin to an insurance contract
and bear a negative cost over the long run. The challenge
consists in balancing cost versus benefits.

In practice, asset managers have to decide how much of
these hedging strategies are needed on top of an existing
portfolio to achieve a better risk reward. The decision mak-
ing process is often based on contextual information, such
as the economic and geopolitical environment, the level of
risk aversion among investors and other correlation regimes.
The contextual information is modeled by a large range of
features :

• the level of risk aversion in financial markets, or market
sentiment, measured as an indicator varying between 0 for
maximum risk aversion and 1 for maximum risk appetite,

• the bond equity historical correlation, a classical ex-
post measure of the diversification benefits of a duration
hedge, measured on a 1 month, 3 month and 1 year rolling
window,

• The credit spreads of global corporate - investment grade,
high yield, in Europe and in the US - known to be an early
indicator of potential economic tensions,

• The equity implied volatility, a measure if the ’fear factor’
in financial market,

• The spread between the yield of Italian government bonds
and the German government bond, a measure of potential
tensions in the European Union,

• The US Treasury slope, a classical early indicator for US
recession,

• And some more financial variables, often used as a gauge
for global trade and activity: the dollar, the level of rates
in the US, the estimated earnings per shares (EPS).

A cross validation step selects the most relevant features.
In the present case, the first three features are selected. The

132

rebalancing of strategies in the portfolio comes with trans-
action costs, that can be quite high since hedges use op-
tions. Transactions costs are like frictions in physical sys-
tems. They are taken into account dynamically to penalise
solutions with a high turnover rate.

Evaluation metrics
Asset managers use a wide range of metrics to evaluate the
success of their investment decision. For a thorough review
of those metrics, see for example (Cogneau and Hübner
2009). The metrics we are interested in for our hedging prob-
lem are listed below:

• annualized return defined as the average annualized com-
pounded return,

• annualized daily based Sharpe ratio defined as the ratio
of the annualized return over the annualized daily based
volatility µ/σ,

• Sortino ratio computed as the ratio of the annualized re-
turn overt the downside standard deviation,

• maximum drawdown (max DD) computed as the max-
imum of all daily drawdowns. The daily drawdown is
computed as the ratio of the difference between the run-
ning maximum of the portfolio value defined as RMT =
maxt=0..T (Pt) and the portfolio value over the running
maximum of the portfolio value. Hence the drawdon at
time T is given by DDT = (RMT − PT)/RMT while
the maximum drawdown MDDT = maxt=0..T (DDt).
It is the maximum loss in return that an investor will incur
if she/he invested at the worst time (at peak).

Results and discussion
Overall, the DRL approach achieves much better results than
traditional methods as shown in table 1, except for the max-
imum drawdown (max DD). Because time horizon is impor-
tant in the comparison we provide risk measures for the last
2 and 5 years to emphasize that the DRL approach seems
more robust than traditional portfolio allocation methods.

When plotting performance results from 2007 to 2020 as
shown in figure 3, we see that DRL model is able to devi-
ate upward from the risky asset continuously, indicating a
steady performance. In contrast, other financial models are
not able to keep their marginal over-performance over time
with respect to the risky asset and end slightly below the
risky asset.

Allocation chosen by models
The reason of the stronger performance of DRL comes from
the way it chooses its allocation. Contrarily to standard fi-
nancial methods that play the diversification as shown in fig-
ure 4, DRL aims at choosing a single hedging strategy most
of the time and at changing it dynamically, should the fi-
nancial market conditions change. In a sense, DRL is doing
some cherry picking by selecting what it thinks is the best
hedging strategy.

In contrast, traditional models like Markowitz, minimum
variance, maximum diversification, maximum decorrelation

Table 1: Models comparison over 2 and 5 years
2 Years

return Sortino Sharpe max DD
Risky asset 8.27% 0.39 0.36 - 0.34
DRL 20.64% 0.94 0.96 - 0.27
Markowitz -0.25% - 0.01 - 0.01 - 0.43
MinVariance -0.22% - 0.01 - 0.01 - 0.43
MaxDiversification 0.24% 0.01 0.01 - 0.43
MaxDecorrel 14.42% 0.65 0.63 - 0.21
RiskParity 14.17% 0.73 0.72 -0.19

5 Years
return Sortino Sharpe max DD

Risky asset 9.16% 0.57 0.54 - 0.34
DRL 16.95% 1.00 1.02 - 0.27
Markowitz 1.48% 0.07 0.06 - 0.43
MinVariance 1.56% 0.08 0.06 - 0.43
MaxDiversification 1.77% 0.08 0.07 - 0.43
MaxDecorrel 7.65% 0.44 0.39 - 0.21
RiskParity 7.46% 0.48 0.43 -0.19

Figure 3: performance of all models

133

Figure 4: weights for all models

and risk parity provides non null weights for all our hedg-
ing strategies and do not do cherry picking at all. They are
neither able to change the leverage used in the portfolio as
opposed to DRL model.

Adaptation to the Covid Crisis

The DRL model can change its portfolio allocation should
the market conditions change. This is the case from 2018
onwards, with a short deleveraging window emphasized by
the small blank disruption during the Covid crisis as shown
in figure 5. We observe in this figure where we have zoomed
over year 2020, that the DRL model is able to reduce lever-
age from 300 % to 200 % during the Covid crisis (end of
February 2020 to start of April 2020). This is a unique fea-
ture of our DRL model compared to traditional financial
planning models that do not take leverage into account and
keeps a leverage of 300 % regardless of market conditions.

Benefits of DRL

As illustrated by the experiment, the advantages of DRL are
numerous: (i) DRL maps directly market conditions to ac-
tions by design and hence should adapt to changing envi-
ronment, (ii) DRL does not rely on any traditional financial
risk assumptions, (iii) DRL can incorporate additional data
and be a multi inputs method as opposed to more traditional
optimization methods.

Figure 5: disallocation of DRL model

Future work
As nice as this work is, there is room for improvement as
we have only tested a few scenarios and only a limited set of
hyper-parameters for our convolutional networks. We should
do more intensive testing to confirm that DRL is able to bet-
ter adapt to changing financial environment. We should also
investigate the impact of more layers and other design choice
in our network.

Conclusion
In this paper, we discuss how a traditional portfolio alloca-
tion problem can be reformulated as a DRL problem, trying
to bridge the gaps between the two approaches. We see that
the DRL approach enables us to select fewer strategies, im-
proving the overall results as opposed to traditional methods
that are built on the concept of diversification. We also stress
that DRL can better adapt to changing market conditions and
is able to incorporate more information to make decision.

Acknowledgments
We would like to thank Beatrice Guez and Marc Pantic for
meaningful remarks. The views contained in this document
are those of the authors and do not necessarily reflect the
ones of SG CIB.

References
Astrom, K. 1969. Optimal control of markov processes with
incomplete state-information ii. the convexity of the loss-
function. Journal of Mathematical Analysis and Applica-
tions 26(2):403–406.
Bao, W., and yang Liu, X. 2019. Multi-agent deep rein-
forcement learning for liquidation strategy analysis.
Benhamou, E.; Saltiel, D.; Ohana, J.-J.; and Atif, J. 2020a.
Detecting and adapting to crisis pattern with context based
deep reinforcement learning. ICPR 2020.
Benhamou, E.; Saltiel, D.; Ungari, S.; and Mukhopadhyay,
A. 2020b. Aamdrl: Augmented asset management with deep
reinforcement learning. arXiv.
Benhamou, E.; Saltiel, D.; Ungari, S.; and Mukhopadhyay,
A. 2020c. Bridging the gap between markowitz planning
and deep reinforcement learning. ICAPS FinPlan workshop.

134

Blum, A., and Furst, M. 1995. Fast Planning Through Plan-
ning Graph Analysis. In IJCAI, 1636–1642.
Chakraborty, S. 2019. Capturing financial markets to apply
deep reinforcement learning.
Chopra, V. K., and Ziemba, W. T. 1993. The effect of errors
in means, variances, and covariances on optimal portfolio
choice. Journal of Portfolio Management 19(2):6–11.
Choueifaty, Y., and Coignard, Y. 2008. Toward maximum
diversification. Journal of Portfolio Management 35(1):40–
51.
Choueifaty, Y.; Froidure, T.; and Reynier, J. 2012. Proper-
ties of the most diversified portfolio. Journal of Investment
Strategies 2(2):49–70.
Christoffersen, P.; Errunza, V.; Jacobs, K.; and Jin, X. 2010.
Is the potential for international diversification disappear-
ing? Working Paper.
Cogneau, P., and Hübner, G. 2009. The 101 ways to measure
portfolio performance. SSRN Electronic Journal.
Deng, Y.; Bao, F.; Kong, Y.; Ren, Z.; and Dai, Q. 2016. Deep
direct reinforcement learning for financial signal representa-
tion and trading. IEEE Transactions on Neural Networks
and Learning Systems 28:1–12.
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2:189.
Fischer, T. G. 2018. Reinforcement learning in financial
markets - a survey. Discussion Papers in Economics 12.
Gu, S.; Holly, E.; Lillicrap, T.; and Levine, S. 2017. Deep
reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates. In IEEE International Confer-
ence on Robotics and Automation (ICRA), 3389–3396.
Haugen, R., and Baker, N. 1991. The efficient market inef-
ficiency of capitalization-weighted stock portfolios. Journal
of Portfolio Management 17:35–40.
Huang, C. Y. 2018. Financial trading as a game: A deep
reinforcement learning approach.
Jiang, Z., and Liang, J. 2016. Cryptocurrency Portfolio
Management with Deep Reinforcement Learning. arXiv e-
prints.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization.
Kolm, P. N., and Ritter, G. 2019. Modern perspective on
reinforcement learning in finance. SSRN.
Kritzman, M. 2014. Six practical comments about asset
allocation. Practical Applications 1(3):6–11.
Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2015. End-
to-end training of deep visuomotor policies. Journal of Ma-
chine Learning Research 17.
Levine, S.; Pastor, P.; Krizhevsky, A.; and Quillen, D. 2016.
Learning hand-eye coordination for robotic grasping with
deep learning and large-scale data collection. The Interna-
tional Journal of Robotics Research.
Li, X.; Li, Y.; Zhan, Y.; and Liu, X.-Y. 2019. Optimistic bull
or pessimistic bear: Adaptive deep reinforcement learning
for stock portfolio allocation. In ICML.

Liang et al. 2018. Adversarial deep reinforcement learning
in portfolio management.
Lillicrap, T.; Hunt, J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa,
Y.; Silver, D.; and Wierstra, D. 2015. Continuous control
with deep reinforcement learning. CoRR.
Liu, Y.; Liu, Q.; Zhao, H.; Pan, Z.; and Liu, C. 2020. Adap-
tive quantitative trading: an imitative deep reinforcement
learning approach. In AAAI.
Maillard, S.; Roncalli, T.; and Teı̈letche, J. 2010. The prop-
erties of equally weighted risk contribution portfolios. The
Journal of Portfolio Management 36(4):60–70.
Markowitz, H. 1952. Portfolio selection. Journal of Finance
7:77–91.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013.
Playing atari with deep reinforcement learning. NIPS Deep
Learning Workshop.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.; Veness,
J.; Bellemare, M.; Graves, A.; Riedmiller, M.; Fidjeland,
A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518:529–33.
Nan, A.; Perumal, A.; and Zaiane, O. R. 2020. Sentiment
and knowledge based algorithmic trading with deep rein-
forcement learning.
Ning, B.; Lin, F. H. T.; and Jaimungal, S. 2018. Double deep
q-learning for optimal execution.
Roncalli, T., and Weisang, G. 2016. Risk parity portfolios
with risk factors. Quantitative Finance 16(3):377–388.
Saltiel, D.; Benhamou, E.; Ohana, J. J.; Laraki, R.; and Atif,
J. 2020. Drlps: Deep reinforcement learning for portfolio
selection. ECML PKDD Demo track.
Schulman, J.; Levine, S.; Moritz, P.; Jordan, M.; and Abbeel,
P. 2015a. Trust region policy optimization. In ICML.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and Abbeel,
P. 2015b. High-dimensional continuous control using gen-
eralized advantage estimation. ICLR.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
CoRR.
Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.;
Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneer-
shelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham,
J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.;
Kavukcuoglu, K.; Graepel, T.; and Hassabis, D. 2016. Mas-
tering the game of go with deep neural networks and tree
search. Nature 529:484–489.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; Chen, Y.; Lillicrap, T.; Hui, F.; Sifre, L.; van den Driess-
che, G.; Graepel, T.; and Hassabis, D. 2017. Mastering the
game of go without human knowledge. Nature 550:354–.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition.

135

Théate, T., and Ernst, D. 2020. Application of deep re-
inforcement learning in stock trading strategies and stock
forecasting.
Vinyals, O.; Babuschkin, I.; Czarnecki, W.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D.; Powell, R.; Ewalds, T.;
Georgiev, P.; Oh, J.; Horgan, D.; Kroiss, M.; Danihelka, I.;
Huang, A.; Sifre, L.; Cai, T.; Agapiou, J.; Jaderberg, M.;
and Silver, D. 2019. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature 575.
Wang, H., and Zhou, X. Y. 2019. Continuous-Time Mean-
Variance Portfolio Selection: A Reinforcement Learning
Framework. arXiv e-prints.
Wang, S.; Jia, D.; and Weng, X. 2018. Deep reinforcement
learning for autonomous driving. ArXiv abs/1811.11329.
Wu, X.; Chen, H.; Wang, J.; Troiano, L.; Loia, V.; and
Fujita, H. 2020. Adaptive stock trading strategies with
deep reinforcement learning methods. Information Sciences
538:142–158.
Xiong, Z.; Liu, X.-Y.; Zhong, S.; Yang, H.; and Walid, A.
2019. Practical deep reinforcement learning approach for
stock trading.
Ye, Y.; Pei, H.; Wang, B.; Chen, P.-Y.; Zhu, Y.; Xiao, J.; and
Li, B. 2020. Reinforcement-learning based portfolio man-
agement with augmented asset movement prediction states.
In AAAI.
Yu, P.; Lee, J. S.; Kulyatin, I.; Shi, Z.; and Dasgupta, S.
2019. Model-based deep reinforcement learning for finan-
cial portfolio optimization. RWSDM Workshop, ICML 2019.
Zhang, Z.; Zohren, S.; and Roberts, S. 2019. Deep rein-
forcement learning for trading.
Zhengyao et al. 2017. Reinforcement learning framework
for the financial portfolio management problem. arXiv.

136

Planning From Pixels in Atari With Learned Symbolic Representations

Andrea Dittadi∗
Technical University of Denmark

Copenhagen, Denmark
adit@dtu.dk

Frederik K. Drachmann∗
Technical University of Denmark

Copenhagen, Denmark
fdrachmann@hotmail.dk

Thomas Bolander
Technical University of Denmark

Copenhagen, Denmark
tobo@dtu.dk

Abstract

Width-based planning methods have been shown to yield
state-of-the-art performance in the Atari 2600 video game
playing domain using pixel input. One approach consists in
an episodic rollout version of the Iterated Width (IW) al-
gorithm called RolloutIW, and uses the B-PROST boolean
feature set to represent states. Another approach, π-IW, aug-
ments RolloutIW with a learned policy to improve how ac-
tions are picked in the rollouts. This policy is implemented as
a neural network, and the feature set is derived from an inter-
mediate representation learned by the policy network. Results
suggest that learned features can be competitive with hand-
crafted ones in the context of width-based search. This pa-
per introduces a new approach, where we leverage variational
autoencoders (VAEs) to learn features for the domains in a
principled manner, directly from pixels, and without supervi-
sion. We use the inference network (or encoder) of the trained
VAEs to extract boolean features from screen states, and use
them for planning with RolloutIW. The trained model in com-
bination with RolloutIW outperforms the original RolloutIW
and human professional play on the Atari 2600 domain and
reduces the size of the feature set from 20.5 million to 4,500.

Introduction
Width-based search algorithms have in the last few years
become among the state-of-the-art approaches to auto-
mated planning, e.g. the original Iterated Width (IW) algo-
rithm (Lipovetzky and Geffner 2012). As in propositional
STRIPS planning, states are represented by a set of proposi-
tional literals, also called boolean features. The state space is
searched with breadth-first search (BFS), but the state space
explosion problem is handled by pruning states based on
their novelty. First a parameter k is chosen, called the width
parameter of the search. Searching with width parameter k
essentially means that we only consider k literals/features at
a time. A state s generated during the search is called novel
if there exists a set of k literals/features not made true in
any earlier generated state. Unless a state is novel, it is im-
mediately pruned from the search. Clearly, we then reduce
the size of the searched state space to be exponential in k.
It has been shown that many classical planning problems,

∗Equal contribution.

ICAPS 2020 Workshop on Bridging the Gap Between AI Planning
and Reinforcement Learning.

e.g. problems from the International Planning Competition
(IPC) domains, can be solved efficiently using width-based
search with very low values of k.

The essential benefit of using width-based algorithms is
the ability to perform semi-structured (based on feature
structures) exploration of the state space, and reach deep
states that may be important for achieving the planning
goals. In classical planning, width-based search has been in-
tegrated with heuristic search methods, leading to Best-First
Width Search (Lipovetzky and Geffner 2017) that performed
well at the 2017 International Planning Competition. Width-
based search has also been adapted to reward-driven prob-
lems where the algorithm uses a simulator for interacting
with the environment (Francès et al. 2017). This has enabled
the use of width-based search in reinforcement learning en-
vironments such as the the Atari 2600 video game suite,
through the Arcade Learning Environment (ALE) (Belle-
mare et al. 2013). There have been several implementa-
tions of width-based search directly using the RAM states
of the Atari computer as features (Lipovetzky, Ramirez,
and Geffner 2015; Shleyfman, Tuisov, and Domshlak 2016;
Jinnai and Fukunaga 2017).

Motivated by the fact that humans do not have access to
the internal RAM states of a computer when playing video
games, methods for using the algorithms based on the raw
screen pixels have been developed. Bandres, Bonet, and
Geffner (2018) propose a modified version of IW, called
RolloutIW, that uses pixel-based features and achieves re-
sults comparable to learning methods in almost real-time on
the ALE. The combination of Reinforcement Learning (RL)
and RolloutIW in the pixel domain is explored by Junyent,
Jonsson, and Gómez (2019), who propose to train a policy
to guide the action selection in rollouts.

Regardless of different efforts, width-based algorithms
are highly exploratory and, not surprisingly, significantly de-
pendent on the quality of the features defined. The original
RolloutIW paper (Bandres, Bonet, and Geffner 2018) uses a
set of features called B-PROST (Liang et al. 2015). These
are features extracted from the screen pixels by splitting
the screen into tiles and keeping track of which colors are
present in which tiles. These features have been designed by
humans to achieve good performance in ALE. Integrating
learning of features efficient for width-based search into the
algorithms themselves rather than using hand-crafted fea-

137

tures is an interesting challenge—and a challenge that will
bring the algorithms more on a par with humans trying to
learn to play those video games. In Junyent, Jonsson, and
Gómez (2019), the features used were the output features of
the last layer of the policy network, improving the perfor-
mance of IW. With the attempt to learn efficient features for
width-based search, and inspired by the results of Junyent,
Jonsson, and Gómez (2019), this paper investigates the pos-
sibility of a more structured approach to generate features
for width-based search using deep generative models.

More specifically, in this paper we use variational autoen-
coders (VAE)—latent variable models that have been widely
used for representation learning (Kingma and Welling 2019)
as they allow for approximate inference of the latent vari-
ables underlying the data—to learn propositional symbols
directly from pixels and without any supervision. We then
investigate whether the learned symbolic representation can
be successfully used for planning in the Atari 2600 domain.

We compare the planning performance of RolloutIW us-
ing our learned representations with RolloutIW using the
handcrafted B-PROST features, and report human scores
as baseline. Our results show that our learned representa-
tions lead to better performance than B-PROST on Roll-
outIW (and often outperform human players). This is despite
the fact that the B-PROST features also contain temporal
information (how the screen image dynamically changes),
whereas we only extract static features from individual
frames. Apart from improving scores in the Atari 2600 do-
main, we also significantly reduce the number of features
(by a factor of more than 103). We also investigate in more
detail (with ablation studies) which factors seems to lead to
good performance on games in the Atari domain.

The main contributions of our paper are hence:
• We train generative models to learn propositional symbols

for planning, from pixels and without any supervision.
• We run a large-scale evaluation on Atari 2600 where we

compare the performance of RolloutIW with our learned
representations to RolloutIW with B-PROST features.

• We investigate with ablation studies the effect of various
hyperparameters in both learning and planning.

• We show that our learned representations lead to higher
scores than using B-PROST, even though our features
don’t have any temporal information, and our models are
trained from data collected by RolloutIW with B-PROST,
limiting the richness of the dataset.

Below, we provide the required background, present the
original approach of this paper, discuss our experimental re-
sults, and conclude.

Background
In this section, we revise the relevant background on Iter-
ated Width (IW), RolloutIW, planning with pixels, and vari-
ational autoencoders (VAEs).

Iterated Width
Iterated Width (IW) (Lipovetzky and Geffner 2012) is a
blind-search planning algorithm in which the states are rep-

resented by sets of boolean features (sets of propositional
atoms). The set of all features/atoms is the feature set, de-
noted F . IW is an algorithm parametrized by a width pa-
rameter k. We use IW(k) to denote IW with width pa-
rameter k. Given an initial state s0, IW(k) is similar to
a standard breadth-first search (BFS) from s0 except that,
when a new state s is generated, it is immediately pruned
if it is not novel. A state s generated during search is de-
fined to be novel if there is a k-tuple of features (atoms)
t = (f1, . . . , fk) ∈ F k such that s is the first generated
state making all of the fi true (s making fi true of course
simply means fi ∈ s, and the intuition is that s then “has”
the feature fi). In particular, in IW(1), the only states that
are not pruned are those that contain a feature f ∈ F for the
first time during the search. The maximum number of gen-
erated states is exponential in the width parameter (IW(k)
generates O(|F |k) states), whereas in BFS it is exponential
in the number of features/atoms.

Rollout IW

RolloutIW(k) (Bandres, Bonet, and Geffner 2018) is a
variant of IW(k) that searches via rollouts instead of do-
ing a breadth-first search, hence making it more akin to
a depth-first search. A rollout is a state-action trajectory
(s0, a0, s1, a1, . . .) from the initial state s0 (a path in the
state space), where actions ai are picked at random. It con-
tinues until reaching a state that is not novel. A state s is
novel if it satisfies one of the following: 1) it is distinct from
all previously generated states and there exists a k-tuple of
features (f1, . . . , fk) that are true in s, but not in any other
state of the same depth of the search tree or lower; 2) it is an
already earlier generated state and there exists a k-tuple of
features (f1, . . . , fk) that are true in s, but not in any other
state of lower depth in the search tree. The intuition behind
case 1 is that in this case the new state s comes with a com-
bination of k features occurring at a lower depth than earlier
encountered, which makes it relevant to explore further. In
case 2, s is an existing state already containing the lowest
occurrence of one of the combinations of k features, again
making it relevant to explore further. When a rollout reaches
a state that is not novel, the rollout is terminated, and a new
rollout is started from the initial state. The process continues
until all possible states are explored, or a given time limit
is reached. After the time limit has been reached, an action
with maximal expected reward is chosen (the method was
developed in the context of the Atari 2600 domain, making
use of a simulator to compute action outcomes and rewards).
The chosen action is executed, and the algorithm is repeated
with the new state as initial state.

RolloutIW is an anytime algorithm that will return an ac-
tion independently of the time budget. In principle, IW could
also be used as an anytime algorithm in the context of the
Atari 2600 domain, but it will be severely limited by the
breadth-first search strategy that will in practice prevent it
from reaching nodes of sufficient depth in the state space,
and hence prevent it from discovering rewards that only oc-
cur later in the game (Bandres, Bonet, and Geffner 2018).

138

Planning With Pixels
The Arcade Learning Environment (ALE) (Bellemare et al.
2013) provides an interface to Atari 2600 video games, and
has been widely used in recent years as benchmark for re-
inforcement learning and planning algorithms. In the visual
setting, the sensory input consists of a pixel array of size
210×160, where each pixel can have 128 distinct colors.
Although in principle the set of 210×160×128 booleans
could be used as features, we will follow Bandres, Bonet,
and Geffner (2018) and focus on features that capture mean-
ingful structures from the image.

An example of a visual feature set that has proven suc-
cessful is B-PROST (Liang et al. 2015), which consists of
Basic, B-PROS, and B-PROT features. The screen is split
into 14× 16 disjoint tiles of size 15× 10. For each tile (i, j)
and color c, the basic feature fi,j,c is 1 iff c is present in
(i, j). A B-PROS feature fi,j,c,c′ is 1 iff color c is present
in tile t, color c′ in tile t′, and the relative offsets between
the tiles are i and j. Similarly, a B-PROT feature fi,j,c,c′ is
1 iff color c is present in tile t in the previous decision point,
color c′ is present in tile t′ in the current one, and the relative
offsets between the tiles are i and j. The number of features
in B-PROST is the sum of the number of features in these 3
sets, in total 20,598,848.

Variational Autoencoders
Latent variable models. Latent variable models (LVMs)
are a type of probabilistic models in which some variables
are unobserved. For one datapoint, the marginal distribution
over the observed variables x is:

pθ(x) =

∫

z

pθ(x, z)dz (1)

where z are the unobserved latent variables and θ denotes
the model parameters. This quantity is typically referred
to as marginal likelihood or model evidence. A simple and
rather common structure for LVMs is:

pθ(x, z) = pθ(x | z)pθ(z) (2)

where both pθ(x | z) and pθ(z) are specified.
If the model’s distributions are parameterized by neural

networks, the marginal likelihood is typically intractable for
lack of an analytical solution or a practical estimator. Since
pθ(z |x) = pθ(x, z)/pθ(x) and pθ(x, z) is tractable to com-
pute, it follows that the intractability of pθ(x) derives in fact
from that of the posterior pθ(z |x).

Amortized variational inference. Variational inference
(VI) is a common approach to approximating this intractable
posterior, where we define a distribution qφ(z |x) with vari-
ational parameters φ, and optimize it to be “close” to the
exact posterior. In the LVM above, for any choice of qφ:

log pθ(x) = logEqφ(z |x)
[
pθ(x | z)pθ(z)
qφ(z |x)

]
(3)

≥ Eqφ(z |x)
[
log

pθ(x | z)pθ(z)
qφ(z |x)

]
(4)

= Lθ,φ(x) (5)

where Lθ,φ(x) is a lower bound on the marginal log likeli-
hood also known as Evidence Lower BOund (ELBO).

In contrast to traditional VI methods, where per-datapoint
variational parameters are optimized separately, amortized
variational inference utilizes function approximators like
neural networks to share variational parameters across dat-
apoints and improve learning efficiency. In this setting,
qφ(z |x) is typically called inference model or encoder.

Variational Autoencoders (VAEs) (Kingma and Welling
2013; Rezende, Mohamed, and Wierstra 2014) are a frame-
work for amortized VI, in which the ELBO is maximized by
jointly optimizing the inference model and the LVM (i.e., φ
and θ, respectively) with stochastic gradient ascent.

VAE optimization. The ELBO, the objective function to
be maximized, can be decomposed as follows:

Lθ,φ(x) = Eqφ [log pθ(x | z)]− Eqφ
[
log

qφ(z |x)
pθ(z)

]
(6)

= Eqφ [log pθ(x | z)]−DKL(qφ(z |x) || pθ(z))
where the first term can be interpreted as negative expected
reconstruction error, and the second term is the KL diver-
gence from the prior pθ(z) to the approximate posterior.
Minimizing the reconstruction error (i.e., maximizing the
first term) pushes 1) the decoder to accurately reconstruct
the input (in expectation over the encodings of x), and 2)
the inference model to encode x in such a way that the de-
coder can do so more effectively.

One of the major challenges in the optimization of VAEs
is that the gradients of some terms of the objective func-
tion cannot be backpropagated through the sampling step.
However, for a rather wide class of probability distributions,
a random variable following such distribution can be ex-
pressed as a differentiable, deterministic transformation of
an auxiliary variable with independent marginal distribution.
For example, if z is a sample from a Gaussian random vari-
able with mean µφ(x) and standard deviation σφ(x), then
z = σφ(x) ε + µφ(x), where ε ∼ N (0, 1). Thanks to this
reparameterization, z can be differentiated with respect to
φ by standard backpropagation. This approach, called path-
wise gradient estimator, typically exhibits lower variance
than the alternatives, and is widely used in practice.

From an information theory perspective, optimizing the
variational lower bound (6) involves a tradeoff between rate
and distortion (Alemi et al. 2017) or, equivalently, between
how much the data is compressed (more compression cor-
responds to a lower KL divergence) and how much infor-
mation we retain (more information corresponds to a lower
reconstruction loss). A straightforward way to control the
rate–distortion tradeoff is to use the β-VAE framework (Hig-
gins et al. 2017), in which the training objective (6) is mod-
ified by scaling the KL term:

Lθ,φ,β(x) = Eqφ [log pθ(x | z)] (7)

− βDKL(qφ(z |x) || pθ(z))

VAEs with discrete variables. Since the categorical dis-
tribution is not reparameterizable, training VAEs with cate-
gorical latent variables is generally impractical. A solution

139

to this problem is to replace samples from a categorical dis-
tribution with samples from a Gumbel-Softmax distribution
(Jang, Gu, and Poole 2016; Maddison, Mnih, and Teh 2016),
which can be smoothly annealed into a categorical distri-
bution by making the temperature parameter τ tend to 0.
Because Gumbel-Softmax is reparameterizable, the path-
wise gradient estimator can be used to get a low-variance—
although in this case biased—estimate of the gradient. In this
work, we use Bernoulli latent variables (categorical with 2
classes) and their Gumbel-Softmax relaxations.

VAE-IW
Although width-based planning has been shown to be gener-
ally very effective for classical planning domains (Lipovet-
zky and Geffner 2012; 2017; Francès et al. 2017), its perfor-
mance in practice significantly depends on the quality of the
features used. Features that better capture meaningful struc-
ture in the environment typically translate to better planning
results (Junyent, Jonsson, and Gómez 2019). Here we pro-
pose VAE-IW, in which representations extracted by a VAE
are used as features for RolloutIW. The main advantages are
the following:
• The number of features can be orders of magnitude

smaller than B-PROST, leading to faster planning and a
smaller memory footprint.

• Autoencoders, in particular VAEs, are a natural approach
for learning meaningful, compact representations from
data (Bengio, Courville, and Vincent 2013; Tschannen,
Bachem, and Lucic 2018; Kingma and Welling 2019).

• No additional preprocessing is needed, such as back-
ground masking (Junyent, Jonsson, and Gómez 2019).

On the planning side, we follow Junyent, Jonsson, and
Gómez (2019) and use RolloutIW(k) with width k = 1 to
keep planning efficient even with a small time budget. For
example, with a budget of 0.5s per planning phase Roll-
outIW(2) generates only a few nodes per step, whereas Roll-
outIW(1) generates hundreds. Width 1 is sufficient to get
good results, and this choice makes it easier to compare our
experimental results with the aforementioned paper. In the
remainder of this section, we detail the two main compo-
nents of the proposed method: feature learning and planning.

Unsupervised Feature Learning
For feature learning we use a variational autoencoder with a
discrete latent space:

pθ(x) =
∑

z

pθ(x, z) =
∑

z

pθ(x | z)p(z) (8)

where the prior is a product of independent Bernoulli distri-
butions with a fixed parameter:

p(z) =
K∏

i=1

p(zi) =
K∏

i=1

Bernoulli(µ) . (9)

Given an image x, we would like to retrieve the binary la-
tent factors z that generated it, and use them as propositional
representation for planning. Since the likelihood function

pθ(x | z) is parameterized by a neural network, and there-
fore highly nonlinear with respect to the latent variables, in-
ference of the latent variables is intractable (it would require
the computation of the sum in (8), which has a number of
terms exponential in the number of latent variables).

We define an inference model:

qφ(z |x) =
K∏

i=1

qφ(zi |x) =
K∏

i=1

Bernoulli((µφ(x))i)

to approximate the true posterior pθ(z |x). The encoder µφ
is a deep neural network with parameters φ that outputs
the approximate posterior probabilities of all latent vari-
ables given an image x. Using stochastic amortized varia-
tional inference, we train the inference and generative mod-
els end-to-end by maximizing the ELBO with respect to
the parameters of both models. We approximate the discrete
Bernoulli distribution of z with the Gumbel-Softmax relax-
ation (Jang, Gu, and Poole 2016; Maddison, Mnih, and Teh
2016), which is reparameterizable. This allows us to esti-
mate the gradients of the inference network with the path-
wise gradient estimator. Alternatively, the approximate pos-
terior could be optimized directly using a score-function es-
timator (Williams 1992) with appropriate variance reduction
techniques or alternative variational objectives (Bornschein
and Bengio 2014; Mnih and Rezende 2016; Le et al. 2018;
Masrani, Le, and Wood 2019; Liévin et al. 2020).

Note that we are not necessarily interested in the best gen-
erative model—e.g. in terms of marginal log likelihood of
the data or visual quality of the generated samples—as much
as in representations that are useful for planning. In order
to control the tradeoff between the competing terms in (6),
we use the β-VAE framework, and following Burgess et al.
(2018) we decrease β until good quality reconstructions are
obtained.

Planning With Learned Features
After training, the inference model qφ(z |x) yields approx-
imate posterior distributions of the latent variables. The bi-
nary features for downstream planning can be obtained by
sampling from the approximate posteriors or by directly
thresholding their probabilities:

fi =

{
1 if µφ(x)i ≥ λ
0 otherwise

(10)

where λ ∈ (0, 1) is the threshold. In this work we choose
to deterministically threshold the probabilities, as it empiri-
cally yields more stable features for planning. Overall, this
approach provides a way of efficiently computing a com-
pact, binary representation of an image, which can in turn
be interpreted as a set of propositional features to be used in
symbolic reasoning systems like IW or RolloutIW.

The planning phase in VAE-IW is based on RolloutIW,
but uses the features extracted by the inference network
instead of the B-PROST features. Note that while the B-
PROST features include temporal information (specifically
in the B-PROT subset), the VAE features are computed inde-
pendently for each frame. This should, everything else being
equal, give an advantage to planners that rely on B-PROST
features.

140

Experiments
We evaluate the proposed approach on a suite of 47 Atari
2600 games. We separately trained a VAE for each domain
by maximizing (7) using stochastic gradient ascent. As re-
construction loss we used the binary cross-entropy. We used
the Adam optimizer (Kingma and Ba 2014) with default
parameters and learning rate 10−4. To train the VAEs, we
collected 15,000 frames by running RolloutIW(1) with B-
PROST features, and split them into a training and valida-
tion set of 14,250 and 750 images, respectively. The RGB
images of size 210 × 160 are grayscaled and downsampled
to 128 × 128. VAE-IW experiments were performed with
4GB of RAM on one core of a Xeon Gold 6126 CPU, and a
Tesla V100 GPU. The GPU was used both to train the mod-
els and to evaluate the encoder in the planning phase.

The encoder consists of 3 convolutional layers interleaved
with residual blocks. The single convolutional layers down-
sample the feature map by a factor of 2, and each residual
block includes 2 convolutional layers, resulting in 7 con-
volutional layers in total. The decoder mirrors such archi-
tecture, and performs upsampling with transposed convolu-
tional layers. Further architectural details are provided in the
Appendix. The inference network outputs a feature map of
shape H ×W × C which represents the approximate pos-
terior probabilities of the latent variables. Thus, unlike in
traditional VAEs where latent variables do not carry any spa-
tial meaning, in our case they are spatially arranged (Vahdat
and Kautz 2020). As outlined in the previous section, the
Bernoulli probabilities computed by the encoder are thresh-
olded, and the resulting binary features are used as propo-
sitional representations for planning in RolloutIW(1), in-
stead of the B-PROST features. For the planning phase of
VAE-IW, we use RolloutIW(1) with partial caching and risk
aversion (RA) as described by Bandres, Bonet, and Geffner
(2018). With partial caching, after each iteration of Roll-
outIW the branch of the chosen action is kept in memory.
Risk aversion is attained by multiplying all negative rewards
by a factor α� 1 when they are propagated up the tree.

Because of their diversity, Atari games vary widely in
complexity. We empirically chose a set of hyperparame-
ters that performed reasonably well on a small subset of the
games, assuming this would generalize well enough to other
games. Following previous work (Lipovetzky and Geffner
2012; Bandres, Bonet, and Geffner 2018), we used a frame
skip of 15 and a planning budget of 0.5s per time step. We
set an additional limit of 15,000 executed actions for each
run, to prevent runs from lasting too long. Note that this
constraint is only applied to our method. Table 1 summa-
rizes the main hyperparameters used in our experiments. We
expect that better results can be obtained by performing an
extensive hyperparameter search on the whole suite of Atari
2600 games.

Main Results
In Table 2, we compare the planning performance of our RA
VAE-IW(1) to IW(1) with B-PROST features (Lipovetzky
and Geffner 2012) and RA RolloutIW(1) (Bandres, Bonet,
and Geffner 2018) with B-PROST features. In Figure 1, we

Parameter Value

Batch size 64
Learning rate 10−4

Latent space size 15× 15× 20 = 4500
τ 0.5
β 10−4

µ 0.5
α 50000
γ 0.99
λ 0.9
Frame skip 15
Planning budget 0.5s

Table 1: Hyperparameters in VAE-IW experiments unless
specified otherwise.

normalize the scores of width-based planning methods using
scores from random and human play, as in Bandres, Bonet,
and Geffner (2018). Note, however, that human play is only
meant as a baseline: since humans do not have access to a
simulator, a direct comparison cannot be made. Following
the literature, we report the average score over 5 runs, with
each run ending when the game is over. These results show
that learning binary features purely from images, without
any supervision, can be beneficial for width-based planning.
In particular, using the learned representations in RolloutIW
leads to generally higher scores in the Atari 2600 domain.

Note that the performance of VAE-IW depends on the
quality and expressiveness of the features extracted by the
VAE, which in turn depend on the images the VAE is trained
on. Crucially, since we collect data by running RolloutIW(1)
with B-PROST features, the performance of VAE-IW is
constrained by the effectiveness of the data collection al-
gorithm. The VAE features will not necessarily be mean-
ingful on parts of the game that are significantly different
from those in the training set. Surprisingly, however, our
method significantly outperforms the baseline that was used
for data collection, providing even stronger evidence that
the compact set of features learned by a VAE can be suc-
cessfully utilized for width-based planning algorithms. This
form of bootstrapping can be iterated: images collected by
VAE-IW could be used for re-training or fine-tuning VAEs,
potentially leading to further performance improvements.
Although in principle the first iteration of VAEs could be
trained from images collected via random play, this is not a
viable solution in hard-exploration problems such as many
Atari games (Ecoffet et al. 2019).

In addition, there appears to be a significant negative cor-
relation between the average number of true features and
the average number of expanded nodes per planning phase
(Spearman rank correlation of −0.51, p-value < 0.001). In
other words, in domains where the VAE extracts on average
more true features, the planning algorithm tends to expand
fewer nodes. Thus, it could be potentially fruitful to further
investigate the interplay between the average number of true
features, the meaningfulness and usefulness of the features,
and the efficiency of width-based planning algorithm.

141

Algorithm Human IW RA Rollout IW RA VAE-IW
Features B-PROST B-PROST VAE 15× 15× 20
Planning budget 0.5s 0.5s 0.5s

Alien 6,875.0 1,316.0 7,170.0 8,144.0
Amidar 1,676.0 48.0 1,049.2 1,551.0
Assault 1,496.0 268.8 336.0 1,250.0
Asterix 8,503.0 1,350.0 46,100.0 999,500.0*
Asteroids 13,157.0 840.0 4,698.0 14,816.0
Atlantis 29,028.0 33,160.0 122,220.0 1,955,280.0*
Battle zone 37,800.0 6,800.0 74,600.0 191,000.0
Beam rider 5,775.0 715.2 2,552.8 3,432.0
Berzerk 280.0 1,208.0 828.0
Bowling 154.0 30.6 44.2 63.0
Breakout 31.8 1.6 86.2 50.8
Centipede 11,963.0 88,890.0 56,328.0 113,369.2*
Crazy climber 35,411.0 16,780.0 40,440.0 941,660.0*
Demon attack 3,401.0 106.0 6,958.0 276,586.0*
Double dunk -15.5 -22.0 3.2 10.4
Elevator action 1,080.0 0.0 38,940.0*
Fishing derby 5.5 -83.8 -77.0 -19.6
Freeway 29.6 0.6 2.0 4.8
Frostbite 4,335.0 106.0 146.0 254.0
Gopher 2,321.0 1,036.0 8,388.0 7,968.0
Gravitar 2,672.0 380.0 1,660.0 2,360.0
Ice hockey 0.9 -13.6 -12.4 37.6
James bond 007 406.7 40.0 10,760.0 5,280.0
Krull 2,395.0 3,206.8 2,091.8 3,455.2
Kung-fu master 22,736.0 440.0 2,620.0 5,300.0
Ms. Pac-man 15,693.0 2,578.0 15,115.0 16,200.6
Name this game 4,076.0 7,070.0 6,558.0 18,526.0
Phoenix 1,266.0 6,790.0 6,160.0
Pitfall! -8.6 -302.8 -5.8
Pong 9.3 -20.8 -4.2 10.4
Private eye 69,571.0 2,690.8 -480.0 60.0
Q*bert 13,455.0 515.0 15,970.0 2,070.0
River raid 13,513.0 664.0 6,288.0 6,818.0
Road Runner 7,845.0 200.0 31,140.0 2,740.0
Robotank 11.9 3.2 31.2 30.8
Seaquest 20,182.0 168.0 2,312.0 560.0
Skiing -16,511.0 -16,006.8 -10,443.8
Space invaders 1,652.0 280.0 1,149.0 2,943.0
Stargunner 10,250.0 840.0 14,900.0 1,040.0
Tennis -8.9 -23.4 -5.4 -0.6
Time pilot 5,925.0 2,360.0 3,540.0 32,440.0
Tutankham 167.7 71.2 135.6 180.6
Up’n down 9,082.0 928.0 34,668.0 764,264.0*
Video pinball 17,298.0 28,706.4 216,468.6 149,284.6
Wizard of wor 4,757.0 5,660.0 43,860.0 199,900.0
Yars’ revenge 6,352.6 7,848.8 105,637.0
Zaxxon 9,173.0 0.0 15,500.0 12,120.0

> Human n/a 4 18 24
> 75% Human n/a 4 21 27

best n/a 1 12 34

Table 2: Score comparison of width-based methods in 47 Atari games in the pixel setting. Scores in bold indicate the best overall
width-based method, and scores with a star indicate that the algorithm reached the limit on executed actions at least once. In the
bottom rows we also report the number of domains in which an algorithm’s score was greater than the human score, or greater
than 75% of the human score. Results for IW and Rollout IW B-PROST are from Bandres, Bonet, and Geffner (2018); human
scores are from Liang et al. (2015).

142

Figure 1: Comparison of the risk-averse variants of VAE-IW (ours, using VAE features) and RolloutIW B-PROST (using B-
PROST features). Following Mnih et al. (2015), the performance of both methods is normalized with respect to a professional
human game tester (100% level) and random play (0%) as: 100 × (VAE − random play)/(human score − random play). RA
VAE-IW obtains the highest score among width-based approaches in most games, and it performs at a level that is superior to
or comparable with professional human play. The reported percentages are for VAE features.

Ablation Studies
The performance of VAE-IW depends on several hyperpa-
rameters related to the planning algorithm and to the prob-
abilistic model. Here we attempt to investigate the effect of
some of these parameters.

Modeling choices. One of the major modeling choices is
the dimensionality of the latent space, and the spatial struc-
tureH×W ×C of the latent variables. Both of these factors
are tightly coupled with the neural architecture underlying
the inference and generative networks. As there is no clear
heuristic, we explored different neural architectures and la-

tent space sizes. Based on the performance on a few selected
domains, we chose two different settings, with latent space
size 15 × 15 × 20 and 4 × 4 × 200 (see the Appendix for
further details). In Table 12 we compare the performance of
RA VAE-IW on these two configurations, keeping the rest of
the hyperparameters fixed as the ones used in Table 2. While
overall the 15×15×20 configuration leads to a higher score
in most domains, the effect of this modeling choice seems to
significantly depend on the domain.

As previously mentioned, we consider the framework of
β-VAEs in which β controls the trade-off between recon-
struction accuracy and amount of information encoded in

143

the latent space. For our purposes, β has to be small enough
that the model can capture all relevant details in an im-
age. In practice, we decreased β until the model generated
sufficiently accurate reconstructions on a selection of Atari
games (Burgess et al. 2018). Table 13 reports the perfor-
mance of VAE-IW when varying β ∈ {10−4, 10−3}, and
shows that the effect of varying β depends on the domain.
Intuitively, while a stronger regularization (i.e. higher β)
can be detrimental for the reconstructions and thus also for
the informativeness of the learned features, it may lead to
better representations in less visually challenging domains.
In practice, one could for example train VAEs with dif-
ferent regularization strengths, and do unsupervised model
selection separately for each domain by using the “elbow
method” (Ketchen and Shook 1996) on the reconstruction
loss or other relevant metrics.

Planning parameters. Regardless of the features used for
planning, the performance of VAE-IW depends on the vari-
ant of RolloutIW being used, and on its parameters. In Ta-
ble 8 we compare the average score of VAE-IW with and
without risk aversion, and observe that the risk-averse vari-
ant achieves an equal or higher average score in 33 of the 47
domains.

Table 9 shows the results of VAE-IW and RolloutIW with
B-PROST features, similarly to Table 2, except that both
methods are run without risk aversion. With this modifica-
tion, our method still obtains a higher average score in the
majority of domains (32/47).

Another crucial planning parameter is the time budget
for planning at each time step. While the main results are
based on a 0.5s budget, we also consider a 32s budget, fol-
lowing Bandres, Bonet, and Geffner (2018). In Table 10 we
observe that, not surprisingly, the high time budget outper-
forms the low budget in most domains (34/47). However, in
some of them the shorter planning budget yields a signifi-
cantly higher score (e.g. in Asterix, CrazyClimber, and El-
evatorAction). Interestingly, increasing the planning budget
seems to leave the average rollout depth unaffected, while
the average number of expanded nodes in each planning
phase grows significantly. This behaviour is consistently ob-
served in all tested domains (see Figures 2 and 3) and points
to the fact that increasing the planning budget improves re-
sults mostly by allowing more rollouts.

In Table 11 we compare the average scores obtained by
VAE-IW and RolloutIW with B-PROST features, using a
32s planning budget for both methods. Once again, using
the compact features learned by a VAE seems to be benefi-
cial, as VAE-IW obtains the highest average score in 29 of
the 47 domains.

Related Work
Variational Autoencoders (VAEs) have been extensively
used for representation learning (Kingma and Welling 2019)
as their amortized inference network lends itself naturally
to this task. In the context of automated planning, Asai and
Fukunaga (2017) proposed the State Autoencoder (SAE) for
propositional symbolic grounding. An SAE is in fact a VAE

with Bernoulli latent variables. It is trained by maximizing a
modified ELBO that includes an additional entropy regular-
izer, defined as twice the negative KL divergence. Thus, the
objective function being maximized is the ELBO (6) with
the sign of the KL flipped. Although unintentional (Asai and
Kajino 2019), this proved to be fundamental for the mitiga-
tion of the issue of representation instability. A variation of
SAE, the zero-suppressed state autoencoder (Asai and Ka-
jino 2019), adds a further regularization term to the proposi-
tional representation (features), leading to more stable rep-
resentations (Asai and Kajino 2019).

Zhang et al. (2018) take a supervised approach to repre-
sentation learning for planning, and learn a transition graph
for planning in the representation space with Dijkstra’s algo-
rithm. Konidaris, Kaelbling, and Lozano-Perez (2018) spec-
ify a set of skills for a task, and then automatically extract
state representations from raw observations. Kurutach et al.
(2018) use generative adversarial networks to learn struc-
tured representations of images and a deterministic dynam-
ics model, and plan with graph-search methods.

Junyent, Jonsson, and Gómez (2019) proposed π-IW, a
variant of RolloutIW(1) where a neural network guides the
action selection process in the rollouts, which would other-
wise be random. This is reminiscent of AlphaZero (Silver
et al. 2018), where a policy network guides the rollouts of
Monte Carlo Tree Search (MCTS). Moreover, π-IW plans
using features obtained from the last hidden layer of the pol-
icy network, instead of B-PROST.

Conclusion
We have introduced a novel combination of width-based
planning with learning techniques. The learning employs
a VAE to learn relevant features in video games from the
Atari 2600 suite, given raw images of screen states as train-
ing data. The planning is done with RolloutIW(1) using the
features learned by the VAE. Our approach reduces the size
of the feature set from the 20.5 million B-PROST features
used in previous work in connection with RolloutIW, to only
4,500. Our algorithm, VAE-IW, outperforms the previous
methods, proving that VAEs can learn meaningful represen-
tations that can be effectively used for width-based planning.

In VAE-IW, the symbolic representations are learned from
data collected by RolloutIW using B-PROST features. In-
creasing the diversity and quality of the training data could
potentially lead to better representations, and thus better
planning results. One possible way to achieve this could be
to iteratively retrain or fine-tune the VAEs on data collected
by the current iteration of VAE-IW: The planner would pro-
duce new images to retrain the VAE, which could again be
used in combination with RolloutIW, resulting in a new gen-
eration of VAE-IW. The quality of the representations could
also be improved by using more expressive discrete mod-
els, for example with a hierarchy of discrete latent vari-
ables (Van Den Oord, Vinyals, and Kavukcuoglu 2017;
Razavi, van den Oord, and Vinyals 2019). Finally, we can
expect further improvements orthogonal to this work, by
learning a rollout policy for more effective action selection,
as investigated by Junyent, Jonsson, and Gómez (2019).

144

References
Alemi, A. A.; Poole, B.; Fischer, I.; Dillon, J. V.; Saurous,
R. A.; and Murphy, K. 2017. Fixing a broken elbo. arXiv
preprint arXiv:1711.00464.
Asai, M., and Fukunaga, A. 2017. Classical planning in deep
latent space: Bridging the subsymbolic-symbolic boundary.
arXiv preprint arXiv:1705.00154.
Asai, M., and Kajino, H. 2019. Towards stable sym-
bol grounding with zero-suppressed state autoencoder. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 29, 592–600.
Bandres, W.; Bonet, B.; and Geffner, H. 2018. Planning
with pixels in (almost) real time. In Thirty-Second AAAI
Conference on Artificial Intelligence.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research 47:253–279.
Bengio, Y.; Courville, A.; and Vincent, P. 2013. Repre-
sentation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence
35(8):1798–1828.
Bornschein, J., and Bengio, Y. 2014. Reweighted wake-
sleep. arXiv preprint arXiv:1406.2751.
Burgess, C. P.; Higgins, I.; Pal, A.; Matthey, L.; Watters, N.;
Desjardins, G.; and Lerchner, A. 2018. Understanding dis-
entangling in beta-vae. arXiv preprint arXiv:1804.03599.
Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2019. Go-explore: a new approach for hard-
exploration problems. arXiv preprint arXiv:1901.10995.
Francès, G.; Ramı́rez Jávega, M.; Lipovetzky, N.; and
Geffner, H. 2017. Purely declarative action descriptions
are overrated: Classical planning with simulators. In IJCAI
2017. Twenty-Sixth International Joint Conference on Arti-
ficial Intelligence.
Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.;
Botvinick, M.; Mohamed, S.; and Lerchner, A. 2017. beta-
vae: Learning basic visual concepts with a constrained vari-
ational framework. In ICLR 2017.
Jang, E.; Gu, S.; and Poole, B. 2016. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144.
Jinnai, Y., and Fukunaga, A. 2017. Learning to prune dom-
inated action sequences in online black-box planning. In
Thirty-First AAAI Conference on Artificial Intelligence.
Junyent, M.; Jonsson, A.; and Gómez, V. 2019. Deep poli-
cies for width-based planning in pixel domains. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling, volume 29, 646–654.
Ketchen, D. J., and Shook, C. L. 1996. The application of
cluster analysis in strategic management research: an analy-
sis and critique. Strategic management journal 17(6):441–
458.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Kingma, D. P., and Welling, M. 2019. An introduction to
variational autoencoders. arXiv preprint arXiv:1906.02691.
Konidaris, G.; Kaelbling, L. P.; and Lozano-Perez, T. 2018.
From skills to symbols: Learning symbolic representations
for abstract high-level planning. Journal of Artificial Intelli-
gence Research 61:215–289.
Kurutach, T.; Tamar, A.; Yang, G.; Russell, S. J.; and
Abbeel, P. 2018. Learning plannable representations with
causal infogan. In Advances in Neural Information Process-
ing Systems, 8733–8744.
Le, T. A.; Kosiorek, A. R.; Siddharth, N.; Teh, Y. W.; and
Wood, F. 2018. Revisiting reweighted wake-sleep. arXiv
preprint arXiv:1805.10469.
Liang, Y.; Machado, M. C.; Talvitie, E.; and Bowling, M.
2015. State of the art control of atari games using shallow
reinforcement learning. arXiv preprint arXiv:1512.01563.
Liévin, V.; Dittadi, A.; Christensen, A.; and Winther, O.
2020. Optimal variance control of the score function gra-
dient estimator for importance weighted bounds. arXiv
preprint arXiv:2008.01998.
Lipovetzky, N., and Geffner, H. 2012. Width and serializa-
tion of classical planning problems. In Proceedings of the
20th European Conference on Artificial Intelligence (ECAI
2012).
Lipovetzky, N., and Geffner, H. 2017. Best-first width
search: Exploration and exploitation in classical planning.
In AAAI, 3590–3596.
Lipovetzky, N.; Ramirez, M.; and Geffner, H. 2015. Clas-
sical planning with simulators: Results on the atari video
games. In Twenty-Fourth International Joint Conference on
Artificial Intelligence.
Maddison, C. J.; Mnih, A.; and Teh, Y. W. 2016. The con-
crete distribution: A continuous relaxation of discrete ran-
dom variables. arXiv preprint arXiv:1611.00712.
Masrani, V.; Le, T. A.; and Wood, F. 2019. The thermody-
namic variational objective. In Advances in Neural Informa-
tion Processing Systems, 11521–11530.
Mnih, A., and Rezende, D. J. 2016. Variational inference for
monte carlo objectives. arXiv preprint arXiv:1602.06725.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.
Razavi, A.; van den Oord, A.; and Vinyals, O. 2019. Gen-
erating diverse high-fidelity images with VQ-VAE-2. In Ad-
vances in Neural Information Processing Systems, 14866–
14876.
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014.
Stochastic backpropagation and approximate inference in
deep generative models. arXiv preprint arXiv:1401.4082.
Shleyfman, A.; Tuisov, A.; and Domshlak, C. 2016. Blind

145

search for atari-like online planning revisited. In IJCAI,
3251–3257.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018. A
general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419):1140–
1144.
Tschannen, M.; Bachem, O.; and Lucic, M. 2018. Re-
cent advances in autoencoder-based representation learning.
arXiv preprint arXiv:1812.05069.
Vahdat, A., and Kautz, J. 2020. Nvae: A deep hierarchical
variational autoencoder. arXiv preprint arXiv:2007.03898.
Van Den Oord, A.; Vinyals, O.; and Kavukcuoglu, K. 2017.
Neural discrete representation learning. In Advances in Neu-
ral Information Processing Systems, 6306–6315.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning 8(3-4):229–256.
Zhang, A.; Sukhbaatar, S.; Lerer, A.; Szlam, A.; and Fergus,
R. 2018. Composable planning with attributes. In Interna-
tional Conference on Machine Learning, 5842–5851.

146

Appendix

BatchNorm
LeakyReLU(0.01)
Conv 3× 3, padding=1
Dropout(0.2)
BatchNorm
LeakyReLU(0.01)
Conv 3× 3, padding=1
Dropout(0.2)
Residual connection
LeakyReLU(0.01)

Table 3: Residual block. The number of channels is always
64. The residual connection consists of summing the activa-
tion to the block’s input.

Conv 3× 3, stride=2
Residual block
Conv 3× 3, stride=2
Residual block
Conv 3× 3, stride=2
Residual block
Conv 3× 3, stride=2
Residual block
Conv 3× 3, stride=2, padding=1

Table 4: Encoder with output of spatial size 4× 4. The num-
ber of channels is always 64 except for the last convolution,
in which the number of output channels controls the latent
space size.

ConvT 3× 3, stride=2
Residual block
ConvT 4× 4, stride=2
Residual block
ConvT 4× 4, stride=2
Crop 128× 128
Sigmoid activation

Table 5: Decoder with input of spatial size 15×15. The num-
ber of channels is always 64 except for the last convolution,
in which the number of output channels is 1. ConvT denotes
transposed convolutional layers.

....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................

Conv 4× 4, stride=2
Residual block
Conv 4× 4, stride=2
Residual block
Conv 3× 3, stride=2, padding=1

Table 6: Encoder with output of spatial size 15 × 15. The
number of channels is always 64 except for the last convo-
lution, in which the number of output channels controls the
latent space size.

ConvT 3× 3, stride=2
Residual block
ConvT 3× 3, stride=2
Residual block
ConvT 3× 3, stride=2
Residual block
ConvT 3× 3, stride=2
Residual block
ConvT 3× 3, stride=2
Crop 128× 128
Sigmoid activation

Table 7: Decoder with input of spatial size 4×4. The number
of channels is always 64 except for the last convolution, in
which the number of output channels is 1. ConvT denotes
transposed convolutional layers.

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

147

Algorithm VAE-IW RA VAE-IW
β 10−4 10−4

Planning horizon 0.5s 0.5s
Features VAE 15× 15× 20 VAE 15× 15× 20

Alien 5,576.0 8,144.0
Amidar 1,093.2 1,551.0
Assault 826.4 1,250.0
Asterix 999,500.0* 999,500.0*
Asteroids 772.0 14,816.0
Atlantis 40,620.0 1,955,280.0*
Battle zone 91,200.0 191,000.0
Beam rider 3,179.6 3,432.0
Berzerk 566.0 828.0
Bowling 64.6 63.0
Breakout 13.0 50.8
Centipede 22,020.2 113,369.2
Crazy climber 661,460.0 941,660.0*
Demon attack 9,656.0 276,586.0*
Double dunk 7.2 10.4
Elevator action 76,160.0* 38,940.0*
Fishing derby -20.2 -19.6
Freeway 6.2 4.8
Frostbite 248.0 254.0
Gopher 6,084.0 7,968.0
Gravitar 2,770.0 2,360.0
Ice hockey 36.0 37.6
James bond 007 640.0 5,280.0
Krull 3,543.2 3,455.2
Kung-fu master 5,160.0 5,300.0
Ms. Pac-man 20,161.0 16,200.6
Name this game 13,332.0 18,526.0
Phoenix 5,328.0 6,160.0
Pitfall! 0.0 -5.8
Pong 9.2 10.4
Private eye 139.0 60.0
Q*bert 1,890.0 2,070.0
River raid 4,884.0 6,818.0
Road Runner 4,720.0 2,740.0
Robotank 21.4 30.8
Seaquest 596.0 560.0
Skiing -9,664.8 -10,443.8
Space invaders 1,962.0 2,943.0
Stargunner 1,120.0 1,040.0
Tennis 5.2 -0.6
Time pilot 24,840.0 32,440.0
Tutankham 167.4 180.6
Up’n down 35,964.0 764,264.0*
Video pinball 462,619.4 149,284.6
Wizard of wor 89,380.0 199,900.0*
Yars’ revenge 85,800.6 105,637.0
Zaxxon 7,320.0 12,120.0

best 15 33

Table 8: Score comparison of VAE-IW with and without risk
aversion. Scores in bold indicate the best method, and scores
with a star indicate that the algorithm reached the limit on
executed actions at least once. Ties are counted as won for
both methods.

Algorithm Rollout IW VAE-IW
β 10−4

Planning horizon 0.5s 0.5s
Features B-PROST VAE 15× 15× 20

Alien 4,238.0 5,576.0
Amidar 659.8 1,093.2
Assault 285.0 826.4
Asterix 45,780.0 999,500.0
Asteroids 4,344.0 772.0
Atlantis 64,200.0 40,620.0
Battle zone 39,600.0 91,200.0
Beam rider 2,188.0 3,179.6
Berzerk 644.0 566.0
Bowling 47.6 64.6
Breakout 82.4 13.0
Centipede 36,980.2 22,020.2
Crazy climber 39,220.0 661,460.0*
Demon attack 2,780.0 9,656.0
Double dunk 3.6 7.2
Elevator action 0.0 76,160.0*
Fishing derby -68.0 -20.2
Freeway 2.8 6.2
Frostbite 220.0 248.0
Gopher 7,216.0 6,084.0
Gravitar 1,630.0 2,770.0
Ice hockey -6.0 36.0
James bond 007 450.0 640.0
Krull 1,892.8 3,543.2
Kung-fu master 2,080.0 5,160.0
Ms. Pac-man 9,178.4 20,161.0
Name this game 6,226.0 13,332.0
Phoenix 5,750.0 5,328.0
Pitfall! -81.4 0.0
Pong -7.4 9.2
Private eye -322.0 139.0
Q*bert 3,375.0 1,890.0
River raid 6,088.0 4,884.0
Road Runner 2,360.0 4,720.0
Robotank 31.0 21.4
Seaquest 980.0 596.0
Skiing -15,738.8 -9,664.8
Space invaders 2,628.0 1,962.0
Stargunner 13,360.0 1,120.0
Tennis -18.6 5.2
Time pilot 7,640.0 24,840.0
Tutankham 128.4 167.4
Up’n down 36,236.0 35,964.0
Video pinball 203,765.4 462,619.4
Wizard of wor 37,220.0 89,380.0
Yars’ revenge 5,225.4 85,800.6
Zaxxon 9,280.0 7,320.0

best 15 32

Table 9: Score comparison between RolloutIW B-PROST
and VAE-IW. Scores in bold indicate the best method, and
scores with a star indicate that the algorithm reached the
limit on executed actions at least once. Ties are counted as
won for both methods.

148

Algorithm VAE-IW VAE-IW
β 10−4 10−4

Planning horizon 0.5s 32s
Features VAE 15× 15× 20 VAE 15× 15× 20

Alien 5,576.0 8,536.0
Amidar 1,093.2 1,955.8
Assault 826.4 1,338.4
Asterix 999,500.0 417,100.0
Asteroids 772.0 1,158.0
Atlantis 40,620.0 49,500.0
BattleZone 91,200.0 234,200.0
BeamRider 3,179.6 5,580.0
Berzerk 566.0 554.0
Bowling 64.6 46.8
Breakout 13.0 72.4
Centipede 22,020.2 166,244.8
CrazyClimber 661,460.0 129,840.0
DemonAttack 9,656.0 5,397.0
DoubleDunk 7.2 5.2
ElevatorAction 76,160.0 0.0
FishingDerby -20.2 20.6
Freeway 6.2 29.4
Frostbite 248.0 280.0
Gopher 6,084.0 17,604.0
Gravitar 2,770.0 2,640.0
IceHockey 36.0 44.2
Jamesbond 640.0 650.0
Krull 3,543.2 6,664.0
KungFuMaster 5,160.0 20,960.0
MsPacman 20,161.0 25,759.0
NameThisGame 13,332.0 15,276.0
Phoenix 5,328.0 5,960.0
Pitfall 0.0 -0.4
Pong 9.2 12.0
PrivateEye 139.0 157.8
Qbert 1,890.0 4,760.0
Riverraid 4,884.0 5,372.0
RoadRunner 4,720.0 8,540.0
Robotank 21.4 24.2
Seaquest 596.0 324.0
Skiing -9,664.8 -9,705.0
SpaceInvaders 1,962.0 2,972.0
StarGunner 1,120.0 1,180.0
Tennis 5.2 12.6
TimePilot 24,840.0 24,220.0
Tutankham 167.4 197.2
UpNDown 35,964.0 91,592.0
VideoPinball 462,619.4 833,518.4
WizardOfWor 89,380.0 76,460.0
YarsRevenge 85,800.6 188,551.2
Zaxxon 7,320.0 30,200.0

best 13 34

Table 10: Score comparison of VAE-IW with planning bud-
get of 0.5 or 32 seconds. Scores in bold indicate the best
method, and scores with a star indicate that the algorithm
reached the limit on executed actions at least once. Ties are
counted as won for both methods.

Algorithm RolloutIW VAE-IW
β 10−4

Planning horizon 32s 32s
Features B-PROST VAE 15× 15× 20

Alien 6,896.0 8,536.0
Amidar 1,698.6 1,955.8
Assault 319.2 1,338.4
Asterix 66,100.0 417,100.0
Asteroids 7,258.0 1,158.0
Atlantis 151,120.0 49,500.0
BattleZone 414,000.0 234,200.0
BeamRider 2,464.8 5,580.0
Berzerk 862.0 554.0
Bowling 45.8 46.8
Breakout 36.0 72.4
Centipede 65,162.6 166,244.8
CrazyClimber 43,960.0 129,840.0
DemonAttack 9,996.0 5,397.0
DoubleDunk 20.0 5.2
ElevatorAction 0.0 0.0
FishingDerby -16.2 20.6
Freeway 12.6 29.4
Frostbite 5,484.0 280.0
Gopher 13,176.0 17,604.0
Gravitar 3,700.0 2,640.0
IceHockey 6.6 44.2
Jamesbond 22,250.0 650.0
Krull 1,151.2 6,664.0
KungFuMaster 14,920.0 20,960.0
MsPacman 19,667.0 25,759.0
NameThisGame 5,980.0 15,276.0
Phoenix 7,636.0 5,960.0
Pitfall -130.8 -0.4
Pong 17.6 12.0
PrivateEye 3,157.2 157.8
Qbert 8,390.0 4,760.0
Riverraid 8,156.0 5,372.0
RoadRunner 37,080.0 8,540.0
Robotank 52.6 24.2
Seaquest 10,932.0 324.0
Skiing -16,477.0 -9,705.0
SpaceInvaders 1,980.0 2,972.0
StarGunner 15,640.0 1,180.0
Tennis -2.2 12.6
TimePilot 8,140.0 24,220.0
Tutankham 184.0 197.2
UpNDown 44,306.0 91,592.0
VideoPinball 382,294.8 833,518.4
WizardOfWor 73,820.0 76,460.0
YarsRevenge 9,866.4 188,551.2
Zaxxon 22,880.0 30,200.0

best 19 29

Table 11: Score comparison between RolloutIW B-PROST
and VAE-IW with planning budget of 32 seconds. Scores in
bold indicate the best method, and scores with a star indicate
that the algorithm reached the limit on executed actions at
least once. Ties are counted as won for both methods.

149

Algorithm RA VAE-IW RA VAE-IW
β 10−4 10−4

Planning horizon 0.5s 0.5s
Features VAE 15× 15× 20 VAE 4× 4× 200

Alien 8,144.0 7,592.0
Amidar 1,551.0 1,526.6
Assault 1,250.0 1,308.6
Asterix 999,500.0* 999,500.0*
Asteroids 14,816.0 8,852.0
Atlantis 1,955,280.0* 1,912,700.0*
Battle zone 191,000.0 228,000.0
Beam rider 3,432.0 3,450.0
Berzerk 828.0 752.0
Bowling 63.0 47.6
Breakout 50.8 28.4
Centipede 113,369.2 253,823.6
Crazy climber 941,660.0* 930,420.0*
Demon attack 276,586.0* 292,099.0*
Double dunk 10.4 6.0
Elevator action 38,940.0* 109,680.0*
Fishing derby -19.6 -31.2
Freeway 4.8 2.0
Frostbite 254.0 244.0
Gopher 7,968.0 8,504.0
Gravitar 2,360.0 1,560.0
Ice hockey 37.6 37.2
James bond 007 5,280.0 11,000.0
Krull 3,455.2 3,219.0
Kung-fu master 5,300.0 3,600.0
Ms. Pac-man 16,200.6 15,066.8
Name this game 18,526.0 13,670.0
Phoenix 6,160.0 9,210.0
Pitfall! -5.8 -9.6
Pong 10.4 3.6
Private eye 60.0 115.4
Q*bert 2,070.0 4,935.0
River raid 6,818.0 6,790.0
Road Runner 2,740.0 2,320.0
Robotank 30.8 45.2
Seaquest 560.0 1,084.0
Skiing -10,443.8 -11,906.4
Space invaders 2,943.0 2,753.0
Stargunner 1,040.0 1,200.0
Tennis -0.6 -6.6
Time pilot 32,440.0 23,460.0
Tutankham 180.6 158.4
Up’n down 764,264.0* 627,706.0*
Video pinball 149,284.6 248,101.2
Wizard of wor 199,900.0* 111,580.0
Yars’ revenge 105,637.0 97,004.6
Zaxxon 12,120.0 17,360.0

best 31 17

Table 12: Score comparison of VAE-IW with latent space
size 15× 15× 20 and 4× 4× 200. Scores in bold indicate
the best method, and scores with a star indicate that the al-
gorithm reached the limit on executed actions at least once.
Ties are counted as won for both methods.

Algorithm RA VAE-IW RA VAE-IW
β 10−3 10−4

Planning horizon 0.5s 0.5s
Features VAE 15× 15× 20 VAE 15× 15× 20

Alien 4,902.0 8,144.0
Amidar 1,186.2 1,551.0
Assault 1,468.2 1,250.0
Asterix 999,500.0* 999,500.0*
Asteroids 7,204.0 14,816.0
Atlantis 1,978,540.0* 1,955,280.0*
Battle zone 406,600.0 191,000.0
Beam rider 4,377.6 3,432.0
Berzerk 774.0 828.0
Bowling 35.0 63.0
Breakout 53.4 50.8
Centipede 296,791.4 113,369.2
Crazy climber 976,580.0* 941,660.0*
Demon attack 301,886.0 276,586.0
Double dunk 7.4 10.4
Elevator action 68,920.0 38,940.0
Fishing derby -15.6 -19.6
Freeway 4.0 4.8
Frostbite 262.0 254.0
Gopher 5,420.0 7,968.0
Gravitar 2,300.0 2,360.0
Ice hockey 34.0 37.6
James bond 007 630.0 5,280.0
Krull 3,486.4 3,455.2
Kung-fu master 4,960.0 5,300.0
Ms. Pac-man 17,483.0 16,200.6
Name this game 15,120.0 18,526.0
Phoenix 5,524.0 6,160.0
Pitfall! -6.8 -5.8
Pong -2.2 10.4
Private eye 40.0 60.0
Q*bert 8,040.0 2,070.0
River raid 6,078.0 6,818.0
Road Runner 2,080.0 2,740.0
Robotank 44.6 30.8
Seaquest 316.0 560.0
Skiing -11,027.6 -10,443.8
Space invaders 2,721.0 2,943.0
Stargunner 1,100.0 1,040.0
Tennis -16.6 -0.6
Time pilot 30,920.0 32,440.0
Tutankham 165.8 180.6
Up’n down 682,080.0* 764,264.0*
Video pinball 445,085.8 149,284.6
Wizard of wor 184,260.0 199,900.0*
Yars’ revenge 77,950.8 105,637.0
Zaxxon 10,520.0 12,120.0

best 18 30

Table 13: Score comparison of RA VAE-IW with different
values of β. Scores in bold indicate the best method, and
scores with a star indicate that the algorithm reached the
limit on executed actions at least once. Ties are counted as
won for both methods.

150

Figure 2: We calculate the mean number of expanded nodes of after each planning phase for each domain. The data is collected
with one run for each domain. The comparison is between the 0.5 second RA VAE-IW and 32 second RA VAE-IW.

151

Figure 3: We calculate the mean of the max depth nodes in the planning tree after each planning phase for each domain. The
data is collected with one run for each domain. The comparison is between the 0.5 second RA VAE-IW and 32 second RA
VAE-IW.

152

Offline Learning for Planning: A Summary

Giorgio Angelotti,1,2 Nicolas Drougard,2 Caroline P. C. Chanel2

1ANITI - Artificial and Natural Intelligence Toulouse Institute, Université de Toulouse,
41 Allées Jules Guesde, 31013 Toulouse - CEDEX 6, France

2ISAE-SUPAERO, Université de Toulouse,
10 Avenue Edouard Belin, 31055 Toulouse - CEDEX 4, France

{name.surname}@isae-supaero.fr

Abstract

The training of autonomous agents often requires expensive
and unsafe trial-and-error interactions with the environment.
Nowadays several data sets containing recorded experiences
of intelligent agents performing various tasks, spanning from
the control of unmanned vehicles to human-robot interaction
and medical applications are accessible on the internet. With
the intention of limiting the costs of the learning procedure it
is convenient to exploit the information that is already avail-
able rather than collecting new data. Nevertheless, the inca-
pability to augment the batch can lead the autonomous agents
to develop far from optimal behaviours when the sampled ex-
periences do not allow for a good estimate of the true dis-
tribution of the environment. Offline learning is the area of
machine learning concerned with efficiently obtaining an op-
timal policy with a batch of previously collected experiences
without further interaction with the environment. In this pa-
per we adumbrate the ideas motivating the development of the
state-of-the-art offline learning baselines. The listed methods
consist in the introduction of epistemic uncertainty dependent
constraints during the classical resolution of a Markov Deci-
sion Process, with and without function approximators, that
aims to alleviate the bad effects of the distributional mismatch
between the available samples and real world. We provide
comments on the practical utility of the theoretical bounds
that justify the application of these algorithms and suggest
the utilization of Generative Adversarial Networks to esti-
mate the distributional shift that affects all of the proposed
model-free and model-based approaches.

Learning using a single batch of collected experiences is a
statistical challenge of crucial importance for the develop-
ment of intelligent agents, specially in scenarios where the
interaction with the environment can be expensive, risky or
unpractical. There are countless examples that fall in these
categories: the training of unmanned aerial vehicles (Baek
et al. 2013), self-driving cars (Mirchevska et al. 2018), med-
ical applications (Jonsson 2018), Human-Robot interaction
(Chanel et al. 2020). Several environments are so complex
that a direct formulation of a model based on mere intuition
is inappropriate and unsafe because, depending on the task,
any mistake made by the agent can lead to catastrophic after-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

maths. It is therefore necessary to infer the world dynamics
from a batch of previously collected experiences. The said
data set should be large and diverse enough for allowing
useful information extraction.

The process of learning an optimal policy can be mathe-
matically formalized as the resolution of a Markov Decision
Process (MDP) if the state of the system can be considered
as fully observable and the action effects are non necessarily
deterministic. This paper addresses the problems linked to
the resolution of MDPs starting from a single batch of col-
lected experiences by writing up a summary of the state-of-
the-art methods on offline learning and planning, and out-
lining their pros and cons. When the data set is fixed the
distributional shift between the true, unknown, underlying
MDP and its best data-driven estimate can be non negligi-
ble and lead, on resolution, to bad performing policies. This
discrepancy can be seen tightly linked to the uncertainty we
possess about the model. Several offline learning baselines
try to handle this issue or by constraining the policy or by
reshaping the reward taking into account a local quantifica-
tion of the said epistemic uncertainty and hence adapting the
classical resolution paradigms (Levine et al. 2020).
The document will be structured as follows:

1. Firstly, a recap of MDP resolution with MDP planning
algorithms, but also with reinforcement learning (RL) al-
gorithms is proposed.

2. Then, an intuitive description of offline model learning
and batch RL is presented.

3. And finally, a discussion is provided with comments on
the theoretical guarantees for the performance of the listed
baselines and suggestions for further improvements in this
field, like resorting to Generative Adversarial Networks
(GANs) to better estimate the underlying distributions.

1 A Review of MDPs
An MDP is formally defined as a tuple M

def
=

(S,A, T, r, γ, µ0) where S is the set of states, A the set
of actions, T : A × S × S → [0, 1] is the state transi-
tion function defining the probability that dictates the evo-
lution from s ∈ S to s′ ∈ S after taking the action a ∈ A,
R : A × S → [Rmin, Rmax] with Rmax, Rmin ∈ R and

153

Rmax > Rmin is the reward function that indicates what
the agent gains when it selects action a ∈ A and the system
state is s ∈ S, γ ∈ [0, 1) is called the discount factor and
µ0 : S → [0, 1] is the initial probability distribution over
states s ∈ S at time t = 0. A policy is defined as a func-
tion that maps states to actions, such as π : A× S → [0, 1];
π(a|s) can be interpreted as the probability of taking action
a ∈ A when being in the state s ∈ S. Time evolution is dis-
crete and at every time step the agent observes the system,
acts on the environment and earns a reward. The following
definitions refer to an MDP with discrete A and S but they
can be straightforwardly rearranged to address MDP with
continuous states and actions spaces.

Solving an MDP amounts to finding a policy π∗ which,
∀s ∈ S, maximizes the value function:

V πM (s)
def
= E at∼π(·|st)

st+1∼T (·|st,at)

[∞∑

t=0

γtR(st, at)

∣∣∣∣∣ s0 = s

]
.

The value function can also be expressed recursively as the
fixed point of the Bellman operator:

V πM (s) =
∑

a∈A
π(a|s)

(
R(s, a) + γ

∑

s′∈S
T (s′|s, a)V πM (s′)

)
.

We define also the Q-value function:

Qπ(s, a)
def
= R(s, a) + γ

∑

s′∈S
T (s′ | s, a)V πM (s′)

and we notice that V πM (s) = Ea∼π(·|s) [Qπ(s, a)].

Resolution Schemes
With basic planning algorithms like Value or Policy Iteration
where the contraction property of the Bellman operator is
exploited, one can compute a value V and a policy π that
iteratively converge to V ∗ and π∗, respectively (Sutton and
Barto 1998; Mausam and Kolobov 2012). These algorithms
require to store in memory the whole state space. However,
the application of the Bellman operator demands that all the
functions that compose the MDP are known. What can we
do, for instance, if the transition function is unknown?

Model-free Approaches In such scenarios, temporal dif-
ference (TD) schemes like Q-learning (Watkins and Dayan
1992) can be applied. In Q-learning the Q-function is com-
puted iteratively by minimizing the TD error using sampled
transitions (s, a, r, s′). Q-learning is a model free RL algo-
rithm because 1) it does not require an a-priori knowledge
of the model, 2) it exploits a growing batch of sampled ex-
periences. Another popular model free approach is based on
Policy Gradients (Williams 1992) which maximizes an esti-
mate of the value function with respect to the policy where
the expected value over the transition distribution is replaced
by sampled transitions.

Policy Gradients methods serve as the base for the Actor-
Critic architecture by which the variance of the gradient with
respect to the policy is reduced either by replacing the cumu-
lative reward with an estimate of the Q-value or by subtract-
ing from it an estimate of the value function (Sutton et al.

1999). The module that compute Q-value and value func-
tion estimates is called the Critic and the one that computes
π thanks to the Policy Gradient method is named the Actor.

Model-based Approaches Another route to follow is that
of first using a batch of previously sampled experiences to
obtain both T̂ and R̂ which are respectively estimates of the
transition function T and of the reward function R of the
unknown MDP. And then, to directly execute a planning al-
gorithm or to use T̂ as a generative model of new fictitious
experiences (s, a, r, s′) and subsequently apply a model-free
technique using the new data set augmented with the artifi-
cial transitions. Such a scheme was first mentioned in the
Dyna-Q algorithm (Sutton and Barto 1998), even though
it was prescribed to be used in combination with periodi-
cal further explorations of the environment. Regarding the
MDP planning literature, techniques which exploit heuristic
guided trial-based solving have been created to address large
finite state spaces. Amongst all Upper Confidence bounds
applied to Trees (UCT) and more recently, PROST (Kocsis
and Szepesvári 2006; Keller and Eyerich 2012). Such algo-
rithms could be applied to the estimated MDP generative
model, using T̂ and R̂.

Notice that when new data is generated the optimal policy
of the MDP defined by T̂ can be different from the one of
the original MDP since they really define two different deci-
sion processes. The authors of the work (van Hasselt, Hes-
sel, and Aslanides 2019) questioned the advantage of using a
model to generate fictitious data over working directly on the
batch with model free algorithms. Model-based techniques
are normally more data efficient than model free competitors
since probably the model learning stage can capture more
easily the characteristics needed to estimate the Q-value and
value function. However, in that paper it is empirically dis-
played that an appropriately fine-tuned model-free algorithm
can achieve a superior data efficiency performance.

Function Approximators
When the state or the action space has the cardinality of
the continuum a tabular representation of policies and value
functions is unfeasible. If the states are characterized by con-
tinuous feature vectors, planning algorithms are not applica-
ble without a preliminary discretization. (Munos and Moore
2002) proposes a variable resolution discretization of S as-
suming that a perfect generative model is available. The lat-
ter enables to split recursively the feature space where more
control is required preventing an unforgivable loss of reso-
lution in the transition function of the aggregate MDP. Even
though the variable resolution scheme provides a more ef-
ficient splitting criterion than an uniform grid, it does not
manage to escape from the curse of dimensionality. Con-
versely, some promising attempts have been fulfilled in the
case of a continuous action space and finite state space
(Mansley, Weinstein, and Littman 2011). Resorting to the
Universal Approximation Theorem (Csáji 2001) it has been
found practical to use function approximators in order to es-
timate the policy and the value functions. The increase in
computational power of the last decade gave birth to a rich

154

community of scientists and engineers who use function ap-
proximators with thousands of parameters such as neural
networks. Model-free algorithms using neural networks are
Deep Q-learning Networks (Mnih et al. 2015), Policy Gradi-
ents (Williams 1992; Sutton et al. 1999) and their subsequent
improvements (Hessel et al. 2018) (Schulman et al. 2015;
Mnih et al. 2016; Barth-Maron et al. 2018; Haarnoja et al.
2018) that led to development of agents which achieved bet-
ter than human performances in games like Go (Silver et al.
2016), Chess (Silver et al. 2017), and also some video games
of the ATARI suite.

In model-based settings, approximators usually need the
specification of a prior distribution for T which is often cho-
sen Gaussian since these algorithms are usually applied to
problems driven by a deterministic dynamics or to problems
whose intrinsic stochasticity can be thought being induced
by a Gaussian distribution in some latent space (Deisenroth
and Rasmussen 2011; Chua et al. 2018; Hafner et al. 2019;
Kaiser et al. 2020; Hafner et al. 2020). The latter is a strong
limitation of these approaches since, more often than not,
taking decisions under uncertainty amounts to deal with
multi-modal transition distributions that would be poorly de-
scribed by a normal distribution.

2 Single Batch Learning
As we have stated in the introduction, learning from a single
batch of collected experiences is a necessity of compelling
importance for a safe, cost limited and data efficient devel-
opment of intelligent agents. We will see that several algo-
rithms which constrain the optimal policy obtained with RL
or planning tools to one that does not drive the agent to re-
gions of S × A that have been poorly sampled in the data
set lead to more effective policies than the one used to col-
lect the batch. Usually the results are also better than the one
obtained with a policy that has been calculated by straight-
forwardly applying the schemes listed in Section 1.

The utilization of function approximators to estimate the
value functions using a single batch requires theoretical deli-
cacy since many convergence guarantees do not stand. In the
paper (Chen and Jiang 2019) the authors realized that usu-
ally two fundamental assumptions are implicitly required in
order for the following algorithms to work:

1. mild shifts between the distributions of the real world and
the one inferred from the data in the batch,

2. conditions on the class of candidate value-functions
stronger than just the membership of the optimal Q-value
to this function class.

Related to those points, (Chen and Jiang 2019) explores the
notion of concentratability coefficient (Munos 2003), which
is hereafter recalled.
∀(s, a) ∈ S ×A and ∀h ≥ 0,∀π:

P (sh = s, ah = a|s0 ∼ µ0, π)

µB(s, a)
≤ C,

where µB is the probability distribution that generated the
batch assuming that the transitions are independent and
identically distributed. The existence of C ensures that any

attainable distribution of state-action pairs is not too far
away from µB. The main result reported in (Chen and Jiang
2019) is that not constraining C precludes sampled efficient
learning even with “the most favourable” data distribution
µB.

Rather than focusing on the practical implementation of
the different methodologies, which as we will see is often
approximate due to the intractability of the terms present in
the derived theoretical bounds, we aim to perform a sim-
ple yet comprehensible adumbration of the ideas that sup-
port their development. With this in mind we are going to
neglect implementation related technicalities and sketch the
theoretical foundations of single batch learning algorithms.

Constraints for Model-free Algorithms
The first successful applications of offline learning for plan-
ning and control with function approximators are very re-
cent (Fujimoto, Meger, and Precup 2019; Fujimoto et al.
2019). In these works the authors showed that performing
Q-learning to solve a finite state MDP using a fixed batch
B leads to the optimal policy π∗B for the MDP MB whose
transition function is the most likely one with respect to the
transitions (s, a, r, s′) ∈ B. More often than not, the optimal
policy for MB performs poorly in the true environment. The
discrepancy between the transition function of the original
process and the one learnt from the batch will be the key
element of the following discussion.

Indeed, the extrapolation error for a given policy π:

ε(s, a)
def
= Qπ(s, a)−QπB(s, a)

defined as the difference between the Q-value function of the
real MDP and the Q-value function of the most likely MDP
learnt from the batch could be computed with an operator
similar to the Bellman’s one:

ε(s, a) = γ
∑

s′∈S

[(
T (s′|s, a)− TB(s′|s, a)

)
V πB (s′)

+T (s′|s, a)
∑

a′∈A
π(a′|s′)ε(s′, a′)

]

The authors noticed that the extrapolation error is a func-
tion of divergence between the true transition distribution
and the one estimated from the batch along with the error at
succeeding states. Their idea is then to minimize the error by
constraining the policy to visit regions of S × A where the
transition distributions are similar. Henceforth, they modi-
fied Q-Learning and Deep Q-Learning algorithms to force
the new “optimal” policy to be not so distant from the one
that was used during the collection of the batch. They train a
generator network that gets as an input a state s to estimate
the batch generating policy and then allow for a small per-
turbation around it. The magnitude of the perturbation is an
hyperparameter. In this way, they obtain a policy that always
achieves better performance than the one used during the
batch collection. This algorithm is called Batch Constrained
Q-Learning (BCQ).

In a subsequent work, it has been shown that the error in
the estimation of the Q-value with neural networks is gen-
erated by the back-up of poor estimates of the Q-value that

155

comes from regions S×A that were badly sampled inB (Ku-
mar et al. 2019). To contrast the accumulation of the error,
the authors developed the Bootstrapping Error Accumula-
tion Reduction (BEAR) algorithm which, exploiting the no-
tion of distribution concentratability, manages to constrain
the improved policy to the support of the one that generated
the batch. Strictly speaking, they blame the back-up of Q-
value estimates of states with Out Of Distribution (OOD)
actions for increasing the extrapolation error. They should
blame for OOD state-action transitions, but in offline Q-
learning the Q function is computed only at states that are
in the replay buffer. This constraint is softer than the one
imposed by BCQ and it has been showed to provide better
results.

When BEAR and BCQ are applied on batches generated
with a random policy, they can eventually perform worse
than Deep Q-learning naively applied using the batch as
a fixed replay buffer. In these cases, if the data set is big
enough, there are not many OOD actions (Kumar et al.
2019). Probably, enforcing a constraint as done in BEAR
and BCQ will provide a too little window for policy im-
provement.

In the same year, yet another inspiring paper about of-
fline reinforcement learning was published (Wu, Tucker, and
Nachum 2019). The authors of the latter showed that any
policy constraining approach like BCQ, BEAR and KL-
Control (Jaques et al. 2019) can be obtained as a special
case of their Behaviour Regularized Actor Critic (BRAC)
algorithm.

The general idea is to either 1) penalize the value function
estimated by the actor or 2) regularize the policy generated
by the critic by a distance in probability space between the
batch collector policy πB and the currently evaluated one,
as:

V πD(s) =

∞∑

t=0

γtE at∼π(·|st)
st+1∼T (·|st,at)

[
r(st, at)

−αD
(
π(·|st), πB(·|st)

)
|s = s0

]

whereD is a distance function in probability space (e.g. Ker-
nel MMD, Kullback-Leibler, Total Variation, Wasserstein,
etc) and α is an hyperparameter. While the policy regular-
ized learning objective of the actor maximizes the following
criterion:

E
(s,a,r,s′)∼B

[
E

a∼π(·|s)
[Q(s, a)]− αD

(
π(·|s), πB(·|s)

)]

Their results showed that overall value penalization works
better than policy regularization and the distanceD that pro-
vides the best performing policy is the Kullback-Leibler di-
vergence.

In their practical implementation both BCQ and BEAR
use an average Q-value over an ensemble of Q-value net-
works to reduce the prediction error. In BRAC, the minimum
Q-value over an ensemble of Q-value networks is used.

Extrapolation Error Reduction with Random
Ensembles of Q-value Networks
In parallel to the previous studies, the authors of (Agarwal,
Schuurmans, and Norouzi 2019) empirically demonstrated
that the stabilization of Deep Q-learning networks using a
single data set can be achieved by training at the same time
a multitude of different Deep Q-value Networks with their
weights differently initialized. During training the final es-
timate of the Q-value will be a normalized random linear
combination of the output of the intermediate Q-functions,
while in the end they will just consider as the final Q-value
estimate their average. The linear combination step is equiv-
alent to a Dropout layer in a neural network. By doing so the
final output will be stabler and if a network will be more af-
fected than another by an OOD action back-up, the final av-
erage over the random ensemble will likely mitigate this er-
ror. The authors called this neural network architecture Ran-
dom Ensemble Mixture (REM).

Generative model learning for Model-based
approaches
Steps forward in the development of model based RL using
a single batch have been done respectively in MOPO and
MOReL (Yu et al. 2020; Kidambi et al. 2020). In both cases,
a generative model is first learnt from the batch and then
used to create new transitions. On the augmented data set
then a model-free algorithm is applied. In this fashion, since
we can use the generative model to “explore” the S × A
space, the error in the Bellman back-up will not be induced
directly by ill sampled regions but by the epistemic error of
the model.

Intuitively, the more chaotic is the underlying system, the
greater will a trajectory generated by the learnt model di-
verge from a real one given the very same starting state
distribution and an identical sequence of actions to ap-
ply. Broadly speaking, as described below, the two meth-
ods build a penalized (MOPO) and pessimistic (MOReL)
MDP whose optimal policies are encouraged to visit regions
of S × A where the epistemic error is expected to be lit-
tle (MOPO), or areas that would be likely to be sampled
by the same distribution dynamics that generated the batch
(MOReL).

Model Error Penalized MDP In MOPO, defining as
ηM [π]

def
= Es∼µ0 [V πM (s)] as the performance of a policy

for the MDP M , a theoretical bound for ηM [π] − ηM̂ [π] is
recovered. In particular, they show that:

ηM [π] ≥ E(s,a)∼ρπ
M̂

[
r(s, a)− γ

1− γ max
s′

(
V πM (s′)

)

·DTV

(
T (·|s, a), T̂ (·|s, a)

)]
= ηM̃ [π] (1)

where ρπ
M̂

is the discounted state-action distribution of tran-

sitions along the Markov Chain induced by T̂ and π starting
from the initial state distribution µ0.

The right hand side is the performance of the MDP M̃

whose dynamics is driven by T̂ , but with reward function
penalized by a term which is directly proportional to the

156

total variation distance between the true and the inferred
transition functions. Since both DTV and maxs′ V

π
M (s′)

are unknown, in the practical implementation the penalty
is replaced by λu(s, a) where λ is an hyperparameter
and u : S × A → [0,+∞) such that u(s, a) ≥
DTV (T (·|s, a), T̂ (·|s, a)) ∀(s, a) ∈ S × A. Therefore find-
ing the optimal policy for the penalized MDP amounts to
obtaining the policy that maximizes the lower bound on ηM .

Notwithstanding, we believe that their bound is greatly
dependent on the choice of a proper hyperparameter λ and
function u, which is not trivial for stochastic MDPs while
it can be appropriately approximated by the covariance of
a Gaussian Process for deterministic environments like the
one used as test-cases in their paper. Moreover, if the penal-
ization is too big the lower threshold will be likely of little
use. Imagine the extreme situation where ∀(s, a) ∈ S × A,
r > 0 and r − λu < 0. In this case ηM [π] > 0 ∀π trivially,
while, calling M̃ the reward penalized MDP with dynamics
driven by T̂ , ηM̃ [π] < 0. Therefore, maximizing the bound
will not necessarily lead to a policy that works better than
chance on the real MDP.

In (Yu et al. 2020) the performance of a policy is defined
as the expected value of V πM over the starting state distri-
bution µ0. This starting state distribution is then interpreted
as the distribution of states in the batch. However, the latter
could be much different from the true starting state distribu-
tion if the batch is of modest size.

Therefore a more robust definition could be
ηM [µπM , π]

def
= Es∼µπM [V πM (s)], where µπM is the sta-

tionary distribution of states (if it exists) for the MDP M
with dynamics dictated by the policy π. Using this new defi-
nition, the lower bound on ηM [µM , π] acquires an extra term
dependent on the difference ∆π

M̂,M
(s) = µπ

M̂
(s) − µπM (s).

Indeed, the performance of a policy in the true MDP can be
expressed as:
ηM [µπM , π] = Es∼µπM [V πM (s)]

= EµπM [V πM (s)]−
∫

S

dµ(s)∆π
M̂,M

(s)V πM (s)

where, dµ(s) is a measure over the state space. It is then
possible to obtain the same bound of Equation (1) but with
the extra term dependent on the integral over the state space
of the discrepancy between the stationary distributions:

ηM̂
[
µπ
M̂
, π
]
− ηM [µπM , π] =

= Es∼µπ
M̂

[
V π
M̂

(s)
]
− Es∼µπM [V πM (s)] =

= Es∼µπ
M̂

[
V π
M̂

(s)− V πM (s)
]

+

∫

S

dµ(s)∆π
M̂,M

(s)V πM (s)

where the expected value over the distribution µπ
M̂

is similar
to the one computed in (Yu et al. 2020) but with µ0 = µπ

M̂
.

Therefore the right hand side can be bounded from below:

ηM̂
[
µπ
M̂
, π
]
− ηM [µπM , π] ≤ γ

1− γ max
s′

(V πM (s′))

·E(s,a)∼ρπ
M̂

[
DTV

(
T (·|s, a), T̂ (·|s, a)

)]

+

∫

S

dµ(s)∆π
M̂,M

(s)V πM (s)

where ρπ
M̂

now is the discounted state-action distribution

of transitions along the Markov Chain induced by T̂ and π
starting from the stationary distribution µπ

M̂
.

Exploiting the definition of penalized MDP M̃ :

ηM [µπM , π] ≥ ηM̃
[
µπ
M̂
, π
]
−
∫

S

dµ(s)∆π
M̂,M

(s)V πM (s)

The latter can again be bounded from above by plugging
in the absolute value of ∆ and the max of V over the state
space:

ηM [µπM , π] ≥ ηM̃ [µπ
M̂
, π]

−max
s′

V πM (s′)
∫

S

dµ(s)|∆π
M̂,M

(s)|

It is remarkable that now the optimal policy for M̃ does
not necessarily maximizes the bound. Assuming that our al-
gorithm is monotonically improving the policy, it could be
then convenient to stop it earlier and settle for a sub-optimal
policy which in turn maximizes the bound. It’s all about bal-
ancing the trade-off between the optimality condition for M̃
and the discrepancy within the stationary distributions. The
newly added term is unfortunately intractable due to the lack
of knowledge about the MDP.

In the implementation of MOPO new trajectories are gen-
erated starting from states already present in the batch up
to h following time steps. Ablation experiments have shown
that the roll-out horizon h is indeed required to obtain good
results. We suspect that the state distributional shift that
was neglected is to be blamed for the occurrence of the be-
haviour. Generating data that are not so far away from ones
in the batch prevents the accumulation of model error, but
this theoretical aspect, even if already mentioned in (Janner
et al. 2019), should not affect the bound that aims to be valid
on any uncertainty penalized MDP independently of other
factors.

Pessimistic MDP The authors of MOReL define an MDP
with an extra absorbing state y. The state space of the pes-
simistic MDP is S̃ = S ∪ {y}, while the transition function

T̃ (s′|s, a) =

δs′,y if DTV

(
T̂ (·|s, a), T (·|s, a)

)
> θ,

δs′,y else if s = y,
T̂ (s′|s, a) otherwise.

The reward function R is identical to the original one except
for y: R (y, a) = −κ ∀a ∈ A.
θ is a freely chosen threshold and κ >> 0 is a penalty. Es-
sentially if the model error is greater than θ the agent will
end up for sure in the strongly penalized absorbing state.
Therefore any optimal policy for the pessimistic MDP will
try to avoid transitions for which the model error is high.
The optimal policy π̂ when applied on the real MDP bounds
from above the performance of the optimal policy of the true
MDP.

4Rmax
1− γ

(
ζ(µ0, µ̂0, T, T̂) + E

[
γT

π∗
U
])

≥ ηM [µ0, π
∗]− ηM [µ0, π̂]

157

with,

ζ(µ0, µ̂0, T, T̂) = DTV (µ0, µ̂0) +
γ

1− γ max
s,a

DTV (T̂ , T)

The two performances are similar if theDTV between the
real starting state distribution and the one inferred from the
batch is negligible, if the maximum model error is little, and
also, if the expected value of the first hitting time of the ab-
sorbing state while applying the policy π∗ in the pessimistic
model γT

π∗
U is small.

Again, in a practical implementation the choice of good
estimators of the epistemic error, of the distributional dis-
tance between starting states, and also, of the first hitting
time is of crucial importance. In the large batch regime the
authors neglect the first two terms and focus only on the ex-
pectation of the first hitting time which can be bounded from
the above by the discounted distribution of visits to (s, a) ∈
U , where U represents the unknown state-action pairs that
lead to the absorbing state, when applying a ∼ π∗.The late
distribution can be in turn bounded by a term proportional to
the support mismatch of the distribution of states that were
never sampled in the original data set.

3 Discussion
Theoretical bounds and function approximators
The theoretical bounds which justify the creation of the
previously listed algorithms rely either on a penalty or on
a regularization term proportional to a sort of uncertainty
that obnubilates our knowledge about the underlying sys-
tem. Sometimes the penalty is expressed as an estimate of
the epistemic model error, other times as a difference be-
tween starting or stationary state distributions, finally it can
be quantified as Out Of Distributions (OOD) state-action
pairs with respect to the policy used during the collection
of the data set.

The penalty or regularization term is often proportional
to an upper bound of the value function or to a free hyper-
parameter. As we have seen the latter statement implies that
when this constant is too big the intractable performance of a
policy on the real MDP is bounded by a tractable term which
unfortunately will be of little use.

Only REM stabilizes the accumulation of the error in Q-
learning thanks to a constraintless weighted random ensem-
ble average. Despite its nicety, the stabilization is not prop-
erly a goal-oriented correction to the deviation of the optimal
Q-value estimated using a single batch from the real one.

Model-based approaches also learn a function R̂, however
there is no term linked to the uncertainty in the evaluation
of the reward in the batch penalized resolution scheme for
offline learning algorithms. We believe that such a term pro-
portional to the reward error is not truly necessary since we
expect it to be stemmed from the same regions of S × A
that are badly sampled in the data set B and considering that
the penalization is already applied on the reward or value
functions.

Finding a proper estimator of the errors is not trivial.
The algorithms were often tested on deterministic environ-
ments where a reasonable estimator of the model error can

be achieved by the maximal variance in between an ensem-
ble of different Gaussian models. Since it’s reasonable to
expect that the model error will be high in regions that were
ill-sampled in the batch, another way to measure it could
be getting an estimate of the probability that a given (s, a)
could have been generated by the same process that gave
birth to the batch. Therefore estimating the probability dis-
tribution of (s, a, s′) in the true MDP with policy πB is a
priority.

The most practical way of learning a probability distribu-
tion function without a prior could be to use a GAN (Good-
fellow et al. 2014). A GAN is comprised of a Generator and
a Discriminator. The first is a neural network which receives
random noise as an input and generates an output with the
same shape of the data in a training set. The second gets an
input with the correct shape and provides as output a real
number. While training the Discriminator tries to identify
which data was present in the training batch between sam-
ples that really populate it and the output of the generator.
The higher the output of the Discriminator on a sample will
be, the most likely that sample will be in the batch if the
Discriminator is well trained. At the same time the goal of
the Generator will be that of fooling the Discriminator. The
loss functions minimized during the training are peculiar of
a min-max game. Sophisticated GANs architecture can use
a well trained Generator to build fake samples that could
fool even a human. A striking example is StyleGAN2 by
NVIDIA (Karras et al. 2019) which can generate high qual-
ity dimensional pictures of people that do not really exist.

We believe that the use of a GAN’s Discriminator trained
on B to obtain an estimate of the log-likelihood of a transi-
tion (s, a, r, s′) with respect to the unknown transition dis-
tribution should be a promising venue for penalizing the re-
ward and/or the value functions with a more pertinent esti-
mator of the distance between the true distribution of data
and the one we can infer from a single batch. In this way
we may be able to recover an informative quantity about the
distributional shifts in a non parametric way that is indepen-
dent of any possible prior and might, in principle, also work
for systems driven by a stochastic time evolution. Doing so
we would drop off the Gaussian assumption that has been so
far used in almost all of the model-based techniques.

However, GANs have some weak spots: the training is
unstable because the loss function is not convex, the proce-
dure takes time, and they suffer from mode collapse. The
latter is maybe the most problematic issue since when the
unknown latent distributions is multi-modal the Generator
may focus on building up samples that benefits from char-
acteristics that are typical only of a little slice of the whole
set. Since the Discriminator is trained alongside the Genera-
tor, it will learn to recognize samples that are typical of that
specific mode. Several approaches to mitigate mode collapse
(Ghosh et al. 2018) and training instability (Arjovsky, Chin-
tala, and Bottou 2017) have been attempted so far, but the
issues can be still considered unsolved.

Off-policy Evaluation
It is necessary to find statistically robust methods which are
able of estimating how well an algorithm will run in the real

158

world without interacting with it. Off-policy evaluation is
an active field which would require a summary of its own.
Recent approaches utilize optimized versions of Importance
Sampling to estimate the unknown ratio between stationary
distributions of states under dynamics driven by different
policies. Recent works propose to create a sort of Discrim-
inator and optimize a min-max loss function to serve this
purpose (Liu et al. 2018; Zhang et al. 2020).

The application of a min-max optimization loss function
in the field strengthens our intuition that the implementation
of a GAN anyhow in the estimation of the distributional shift
might be useful.

Batch Quality and Size Scalability
It is of compelling necessity to develop and test the base-
lines in common environments using the same batches to
shine a light onto the change in performance of the differ-
ent paradigms when the quality (and the variety) and the
size of the available data increase. D4RL (Datasets for Deep
Data-Driven Reinforcement Learning) is a collection of data
sets recorded using policies of different qualities (random,
medium, expert) on the typical benchmarking environments
used by the RL community (OpenGym, MuJoCo, Atari etc.)
(Fu et al. 2020). However, the offline learning community
has yet to settle to the use of a common pipeline for bench-
marks. The results achieved by MOReL using D4RL are re-
ported in Table 1, for comparison with different baselines
examine the reference (Kidambi et al. 2020). Independently
of the quality of the batch we notice an improvement in the
performance, expressed as the average cumulative reward
over a sequence of trajectories, of the optimal policy for the
pessimistic MDP when evaluated in the true environment.

The results achieved with MOPO are reported in Table
2. MOPO performs better than all previous baselines on
randomly generated batches and on data sets which con-
sist of the full replay buffer of a Soft-Actor Critic (SAC)
trained partially up to an environmental specific perfor-
mance threshold. Surprisingly, on batches generated with the
sub-optimal trained SAC the best baselines are BRAC with
value function penalty and BEAR. The main difference be-
tween the last two types of data sets is that while the latter
is generated with a fixed policy, the previous one is a collec-
tion of transitions gathered with a mixture of differently per-
forming policies. When the sub-optimal policies are not so
bad, it seems reasonable to just slightly modify them to ob-
tain better results, hence BEAR and BRAC looks like viable
methods. However, when the overall batch policy is not so
good, constraining the reward with respect to the model er-
ror (and the transitions close to the ones present in the batch
up to a roll-out horizon) can be more fulfilling.

As mentioned also by the authors of BRAC, their algo-
rithm when applied to small data sets becomes more suscep-
tible to the choice of the hyperparameters. This is probably
because on small data set the distributional shift / model er-
ror can become significant. It is crystal clear that the field
needs better theoretical foundations and better algorithms in
order to learn more safe and performing policies from small
batches collected with strategies of any quality, even uni-
form random ones.

Environment Pure-Random Pure-Partial
Hopper-v2 2354± 443 (20) 3642± 54 (1376)
HalfCheetah-v2 2698± 230 (−638) 6028± 192 (4198)
Walker2d-v2 1290± 325 (−7) 3709± 159 (1463)
Ant-v2 1001± 3 (−263) 3663± 247 (1154)

Table 1: Average cumulative return of the policy obtained
with MOReL as reported in (Kidambi et al. 2020). A Pure-
Partial policy is a partially trained suboptimal policy. The
number between parentheses is the average cumulative re-
ward with the batch collecting policy. All results are aver-
aged over 5 random seeds.

4 Conclusions
In this paper we have examined the state-of-the-art RL and
planning algorithms motivated by the necessity to exploit
their application to improve offline learning using a single
batch of collected experiences. This is challenging prob-
lem of crucial importance for the development of intelligent
agents. In particular, when the interaction of such agents
with the environment is expensive, risky or unpractical. Our
goal was that of providing to the reader a self-contained
summary of the general ideas that flow behind the main
topic. For simplicity, we focused on MDPs but once the
listed difficulties will be addressed we aim to extend the
discussion to Partially Observable MDPs which are a more
appropriate object to describe the interaction of agents in
partial observable environments. We started with a recap of
MDPs and resolution schemes. Then we presented the sin-
gle batch learning and planning problem. Our main contri-
bution is an outline of model-free and model-based batch
RL algorithms while providing comments on size scalabil-
ity, efficiency and on the usefulness of theoretical bounds. In
particular, we proposed an improvement of the definition of
performance of the value function following a specific pol-
icy that led us to believing that a sub-optimal policy for a re-
ward uncertainty penalized MDP can be better than the opti-
mal one when applied in the true environment. Secondly, we
analyzed the penalization introduced in all sorts of offline-
learning algorithms. We showed that if the coefficients mul-
tiplying the distributional shift estimator are too big then
the theoretical threshold which bounds the performance of
the policy applied in the real world is always respected, and
therefore of little practical utility. We also advised the future
implementation of GANs for a better estimate of distribu-
tional shifts and model errors. Indeed, estimators that opti-
mizes a min-max loss function give hint that this might be a
viable solution.

References
Agarwal, R.; Schuurmans, D.; and Norouzi, M. 2019.
An optimistic perspective on offline reinforcement learning.
arXiv: Learning.
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
gan. ArXiv abs/1701.07875.
Baek, S.; Kwon, H.; Yoder, J.; and Pack, D. 2013. Optimal
path planning of a target-following fixed-wing uav using se-
quential decision processes. 2955–2962.

159

Data set type Environment Batch Mean Batch Max SAC BEAR BRAC-vp MBPO MOPO
random halfcheetah -303.2 -0.1 3502.0 2885.6 3207.3 3533.0 3679.8
random hopper 299.26 365.9 347.7 289.5 370.5 126.6 412.8
random walker2d 0.9 57.3 192.0 307.6 23.9 395.9 596.3
medium halfcheetah 3953.0 4410.7 -808.6 4508.7 5365.3 3230.0 4706.9
medium hopper 1021.7 3254.3 5.7 1527.9 1030.0 137.8 840.9
medium walker2d 498.4 3752.7 44.2 1526.7 3734.3 582.5 645.5
mixed halfcheetah 2300.6 4834.2 -581.3 4211.3 5413.8 5598.4 6418.3
mixed hopper 470.5 1377.9 93.3 802.7 5.3 1599.2 2988.7
mixed walker2d 358.4 1956.5 87.8 495.3 44.5 1021.8 1540.7
med-expert halfcheetah 8074.9 12940.2 -55.7 6132.5 5342.4 926.6 6913.5
med-expert hopper 1850.5 3760.5 32.9 109.8 5.1 1803.6 1663.5
med-expert walker2d 1062.3 5408.6 -5.1 1193.6 3058.0 351.7 2527.1

Table 2: Results for D4RL datasets as reported in (Yu et al. 2020). Each number is the average undiscounted return of the policy
at the last iteration of training, averaged over 3 random seeds. Data set types depend on the policy used to collect the batch:
random (random policy), medium (suboptimally trained agent with a Soft Actor-Critic), mixed (adoperate as batch the replay
buffer use to train a Soft-Actor Critic until an envirnomental specific threshold is reached), medium-expert (mix of an optimal
policy and a random or a partially trained one). SAC column stands for a Soft Actor Critic (model-free) agent. BRAC-vp is the
version of BRAC with the value penalty. MBPO is the vanilla model-based algorithm described in (Janner et al. 2019). Check
the reference (Yu et al. 2020) for details about the hyperparameters.

Barth-Maron, G.; Hoffman, M. W.; Budden, D.; Dabney, W.;
Horgan, D.; Dhruva, T.; Muldal, A.; Heess, N. M. O.; and
Lillicrap, T. P. 2018. Distributed distributional deterministic
policy gradients. ArXiv abs/1804.08617.
Chanel, C. P. C.; Roy, R. N.; Dehais, F.; and Drougard, N.
2020. Towards mixed-initiative human–robot interaction:
Assessment of discriminative physiological and behavioral
features for performance prediction. Sensors 20:296.
Chen, J., and Jiang, N. 2019. Information-theoretic con-
siderations in batch reinforcement learning. In Chaudhuri,
K., and Salakhutdinov, R., eds., Proceedings of the 36th In-
ternational Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, 1042–1051.
PMLR.
Chua, K.; Calandra, R.; McAllister, R.; and Levine, S. 2018.
Deep reinforcement learning in a handful of trials using
probabilistic dynamics models. ArXiv abs/1805.12114.
Csáji, B. C. 2001. Approximation with artificial neural net-
works.
Deisenroth, M. P., and Rasmussen, C. E. 2011. Pilco: A
model-based and data-efficient approach to policy search. In
In Proceedings of the International Conference on Machine
Learning.
Fu, J.; Kumar, A.; Nachum, O.; Tucker, G.; and Levine, S.
2020. D4rl: Datasets for deep data-driven reinforcement
learning. ArXiv abs/2004.07219.
Fujimoto, S.; Conti, E.; Ghavamzadeh, M.; and Pineau, J.
2019. Benchmarking batch deep reinforcement learning al-
gorithms. ArXiv abs/1910.01708.
Fujimoto, S.; Meger, D.; and Precup, D. 2019. Off-policy
deep reinforcement learning without exploration. volume 97
of Proceedings of Machine Learning Research, 2052–2062.
Long Beach, California, USA: PMLR.

Ghosh, A.; Kulharia, V.; Namboodiri, V. P.; Torr, P. H. S.;
and Dokania, P. K. 2018. Multi-agent diverse generative
adversarial networks. 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition 8513–8521.
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A. C.; and Bengio,
Y. 2014. Generative adversarial nets. In NIPS.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In ICML.
Hafner, D.; Lillicrap, T. P.; Fischer, I. S.; Villegas, R.; Ha,
D. R.; Lee, H.; and Davidson, J. 2019. Learning latent dy-
namics for planning from pixels. In ICML.
Hafner, D.; Lillicrap, T. P.; Ba, J.; and Norouzi, M. 2020.
Dream to control: Learning behaviors by latent imagination.
ArXiv abs/1912.01603.
Hessel, M.; Modayil, J.; van Hasselt, H.; Schaul, T.; Ostro-
vski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M. G.; and
Silver, D. 2018. Rainbow: Combining improvements in deep
reinforcement learning. ArXiv abs/1710.02298.
Janner, M.; Fu, J.; Zhang, M.; and Levine, S. 2019. When
to trust your model: Model-based policy optimization. In
NeurIPS.
Jaques, N.; Ghandeharioun, A.; Shen, J. H.; Ferguson, C.;
Lapedriza, À.; Jones, N. J.; Gu, S.; and Picard, R. W. 2019.
Way off-policy batch deep reinforcement learning of im-
plicit human preferences in dialog. ArXiv abs/1907.00456.
Jonsson, A. 2018. Deep reinforcement learning in medicine.
Kidney Diseases 5:1–5.
Kaiser, L.; Babaeizadeh, M.; Milos, P.; Osinski, B.; Camp-
bell, R. H.; Czechowski, K.; Erhan, D.; Finn, C.; Koza-
kowski, P.; Levine, S.; Sepassi, R.; Tucker, G.; and
Michalewski, H. 2020. Model-based reinforcement learning
for atari. ArXiv abs/1903.00374.

160

Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.;
and Aila, T. 2019. Analyzing and improving the image
quality of stylegan. ArXiv abs/1912.04958.
Keller, T., and Eyerich, P. 2012. Prost: Probabilistic plan-
ning based on uct. In McCluskey, L.; Williams, B.; Silva,
J. R.; and Bonet, B., eds., ICAPS. AAAI.
Kidambi, R.; Rajeswaran, A.; Netrapalli, P.; and Joachims,
T. 2020. Morel. ArXiv abs/2005.05951.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. volume 2006, 282–293.
Kumar, A.; Fu, J.; Soh, M.; Tucker, G.; and Levine, S. 2019.
Stabilizing off-policy q-learning via bootstrapping error re-
duction. In Wallach, H.; Larochelle, H.; Beygelzimer, A.;
dAlché-Buc, F.; Fox, E.; and Garnett, R., eds., Advances
in Neural Information Processing Systems 32. Curran As-
sociates, Inc. 11784–11794.
Levine, S.; Kumar, A.; Tucker, G.; and Fu, J. 2020. Offline
reinforcement learning: Tutorial, review, and perspectives on
open problems. ArXiv abs/2005.01643.
Liu, Q.; Li, L.; Tang, Z.; and Zhou, D. 2018. Breaking
the curse of horizon: Infinite-horizon off-policy estimation.
In Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K.;
Cesa-Bianchi, N.; and Garnett, R., eds., Advances in Neural
Information Processing Systems 31. Curran Associates, Inc.
5356–5366.
Mansley, C.; Weinstein, A.; and Littman, M. 2011. Sample-
based planning for continuous action markov decision pro-
cesses. In Twenty-First International Conference on Auto-
mated Planning and Scheduling.
Mausam, and Kolobov, A. 2012. Planning with Markov
Decision Processes: An AI Perspective.
Mirchevska, B.; Pek, C.; Werling, M.; Althoff, M.; and
Boedecker, J. 2018. High-level decision making for safe
and reasonable autonomous lane changing using reinforce-
ment learning. In 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), 2156–2162.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik,
A.; Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.;
Legg, S.; and Hassabis, D. 2015. Human-level control
through deep reinforcement learning. Nature 518:529–533.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap,
T. P.; Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016.
Asynchronous methods for deep reinforcement learning. In
ICML.
Munos, R., and Moore, A. 2002. Variable resolution dis-
cretization in optimal control. Machine Learning 49, Num-
bersâ:291–.
Munos, R. 2003. Error bounds for approximate policy iter-
ation. In ICML.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M. I.; and
Moritz, P. 2015. Trust region policy optimization. In ICML.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,

I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of go with deep neural networks
and tree search. Nature 529:484–503.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T. P.; Simonyan, K.; and Hassabis, D. 2017.
Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm. ArXiv abs/1712.01815.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction. IEEE Transactions on Neural Net-
works 16:285–286.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 1999. Policy gradient methods for reinforcement learning
with function approximation. In NIPS.
van Hasselt, H. P.; Hessel, M.; and Aslanides, J. 2019. When
to use parametric models in reinforcement learning? In Wal-
lach, H.; Larochelle, H.; Beygelzimer, A.; dAlché-Buc, F.;
Fox, E.; and Garnett, R., eds., Advances in Neural Informa-
tion Processing Systems 32. Curran Associates, Inc. 14322–
14333.
Watkins, C., and Dayan, P. 1992. Q-learning. Machine
Learning 8:279–292.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Mach.
Learn. 8(3–4):229–256.
Wu, Y.; Tucker, G.; and Nachum, O. 2019. Behavior regular-
ized offline reinforcement learning. ArXiv abs/1911.11361.
Yu, T.; Thomas, G.; Yu, L.; Ermon, S.; Zou, J.; Levine, S.;
Finn, C.; and Ma, T. 2020. Mopo: Model-based offline pol-
icy optimization. arXiv preprint arXiv:2005.13239.
Zhang, R.; Dai, B.; Li, L.; and Schuurmans, D. 2020. Gen-
dice: Generalized offline estimation of stationary values. In
International Conference on Learning Representations.

161

Real-time Planning as Data-driven Decision-making

Maximilian Fickert*1, Tianyi Gu*2, Leonhard Staut*1, Sai Lekyang2,
Wheeler Ruml2, Jörg Hoffmann1, Marek Petrik2

1Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2Department of Computer Science, University of New Hampshire, USA

{fickert,hoffmann}@cs.uni-saarland.de, {gu, ruml, mpetrik}@cs.unh.edu,
s9ldstau@stud.uni-saarland.de, sai.lekyang@gmail.com

Abstract

If reinforcement learning (RL) is the use of incrementally
gathered data to drive decision-making, then any heuristic
search strategy is fundamentally an RL process. This is per-
haps clearest in real-time planning, where an agent must se-
lect the next action to take within a fixed time bound. Even
in deterministic domains, real-time action selection inher-
ently suffers from uncertainty about those portions of the
state space that have not yet been computed by the looka-
head search. In this paper, we present new results in a line of
research that explores how an agent can benefit from metar-
easoning about this uncertainty. Taking inspiration from prior
work in distributional methods from RL, the Nancy search
framework represents its uncertainty explicitly as beliefs over
cost-to-go. Nancy then expands nodes so as to minimize
the expected regret in case a non-optimal action is chosen.
We present detailed results showing how beliefs can be in-
formed by prior experience and we experimentally compare
Nancy against both conventional real-time search algorithms
like LSS-LRTA* and approaches from RL that exploit un-
certainty, such as Monte Carlo tree search and Kaelbling’s
interval estimation. We find that Nancy generally outper-
forms previous methods, particularly on more difficult prob-
lems. This work illustrates how the distributional perspective
from Bayesian RL can be adapted to deterministic planning
settings, and how deterministic planning can provide useful
testbeds for methods that metareason about uncertainty dur-
ing planning.

Introduction
Some AI applications are subject to real-time constraints,
where the agent must select its next action within a fixed
time bound. Typical examples include user interfaces or the
control of cyber-physical systems, where unbounded pauses
between system actions are undesirable or potentially dan-
gerous. Real-time planning methods tackle this problem set-
ting. Given a forward model of the domain dynamics, the
planning agent incrementally plans toward a goal, trying
to minimize the total cost of the resulting trajectory. (Un-
like some reinforcement learning settings, we assume here

*These authors contributed equally to this work.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that the state transition function can be applied on arbitrary
states.) Many real-time heuristic search methods follow the
basic three-phase paradigm set down in the seminal work of
Korf (1990):

1) starting at the agent’s current state, expand a fixed num-
ber of nodes according to the given time bound to form a
lookahead search space (LSS);

2) use the heuristic values of the frontier nodes in combina-
tion with the path costs incurred to reach them to estimate
the cost-to-goal for each currently-applicable action, and
commit to the action with the lowest estimate;

3) to prevent the agent from cycling if it returns to the same
state in the future, update the heuristic values of one or
more states in the LSS.

For example, in the popular and typical algorithm LSS-
LRTA* (Koenig and Sun 2008), the lookahead in step 1 is
performed using A* (Hart, Nilsson, and Raphael 1968), the
value estimates in step 2 are implicitly calculated for each
node as the minimum f value among its successors (the
‘minimin’ backup), and the learning in step 3 is performed
by updating h values for all nodes in the LSS using a vari-
ant of Dijkstra’s algorithm. Similar methods are used in re-
inforcement learning (RL), such as RTDP (Barto, Bradtke,
and Singh 1995). While elegant and often successful, this
paradigm does not explicitly address the uncertainty inher-
ent in real-time planning. As the search computes only a
miniscule fraction of the state space (up to the LSS fron-
tier), it must commit to action decisions subject to uncer-
tainty about the part of the state space beyond that frontier.
In this paper, we advance a line of research inspired by work
in RL, viewing real-time planning as a form of decision-
making under uncertainty.

For example, as pointed out by Mutchler (1986), A*’s pol-
icy of expanding the frontier node with the lowest f value is
not, in general, the optimal way to make use of a limited
number of node expansions. If we view the agent as facing
a decision under uncertainty, it is sometimes beneficial to
gain knowledge about inferior-looking options. For exam-
ple, consider the situation depicted in Figure 1. The figure
shows the agent’s current beliefs about the expected total
plan cost that would be incurred by committing to the ap-

162

f(α)

belief about α

belief about β

f(β)

Figure 1: Should an agent expand nodes under α or β?

plicable actions α and β respectively. Each such belief is
a probability distribution over possible costs, with the ex-
pected value denoted by f̂(·). In the displayed situation, the
agent is quite certain about the value of α but quite uncer-
tain about the value of β. It is likely that α is better, but
there is a significant possibility that β may be better instead.
Given this, expanding frontier nodes under α can be less
useful than expanding under β, even though β is believed
to have a higher expected cost. It can be more important
to explore the possibility that a poorly-understood option
might in fact be great than to nail down the exact value of
a good-looking option that is already well understood. Note
that this is distinct from the well-known exploration-versus-
exploration dilemma, as we are given the exact amount of
time that we should spend exploring. We also note that this
problem does not arise in off-line optimal search, where ev-
ery node whose f value is less than the optimal solution cost
must be expanded.

Although insights such as this derived from a reasoning
under uncertainty perspective seem powerful, they are not
widely applied in deterministic planning. Recently, a real-
time heuristic search framework called Nancy has been pro-
posed, that uses explicit reasoning about uncertainty to guide
its search (Mitchell et al. 2019; Fickert et al. 2020). Nancy
treats the traditional heuristic estimate of cost-to-go from a
given state as uncertain evidence, inducing beliefs – proba-
bility distributions – over the actual remaining cost. Nancy
uses a node-expansion strategy that minimizes the expected
regret in case a non-optimal action is chosen.

Two alternative methods have been proposed to define the
beliefs at frontier nodes. The first one is assumption-based
(Mitchell et al. 2019), assuming Gaussian distributions as in
prior work (O’Ceallaigh and Ruml 2015) and tuning them
on-line. As these assumptions are not necessarily justified,
the second method relies on data from previous search expe-
rience (Fickert et al. 2020), approximating the beliefs from
data gathered in the same problem family.

In this paper, we provide further experimental results for
Nancy. First, we examine the belief distributions that are
learned from training data, showing in detail for the first
time how heuristic error varies across planning problems.
Second, we provide a comparison to methods previously
proposed in RL for exploiting uncertainty in search. Monte-
Carlo tree search (MCTS) methods (Kocsis and Szepesvári
2006; Keller and Helmert 2013; Feldman and Domshlak
2014; Silver et al. 2018), which originated in probabilistic
planning, maintain node-value averages along with node-
visited counts and use these to give a boost to actions with
uncertain values. The previous work perhaps closest to ours,

Interval Estimation (Kaelbling 1993), explicitly represents
uncertainty and uses it to guide search effort. We adapt these
methods to our setting. Overall, we find that Nancy typi-
cally outperforms previous methods despite its metareason-
ing overhead, suggesting that it makes better use of limited
node expansions. Nancy’s success illustrates the strength of
adopting the reasoning under uncertainty perspective from
RL for resource-bounded decision-making, even in com-
pletely deterministic problem domains. It also provides a
clearly defined setting might interest RL researchers that iso-
lates the uncertainty due to computational resource bounds
from that present in MDPs due to stochastic actions effects.

Previous Work
There have been many proposals for real-time heuristic
search methods. Some, like LSS-LRTA*, are very general
and apply to any state space search problem. Others assume
undirected state spaces in which it is always possible to im-
mediately return to a node’s parent state. Several are spe-
cialized to grid-based pathfinding. In this paper, we choose
LSS-LRTA* as our point of comparison due to its simplicity
and generality.

Mutchler (1986) raises the question of how best to allo-
cate a limited number of expansions. His analysis considers
complete binary trees of uniform depth where each edge is
randomly assigned cost 1 with probability p and cost 0 oth-
erwise. He proves that a minimum f expansion policy is not
optimal for such trees in general, but that it is optimal for
certain values of p and certain numbers of expansions. It is
not clear how to apply these results to more realistic state
spaces.

Pemberton and Korf (1994) point out that it can be use-
ful to use different criteria for action selection versus node
expansion. They use binary trees with random edge costs
uniformly distributed between 0 and 1 and use a computer
algebra package to generate code to compute exact f̂ values
under the assumption that only one or two tree levels remain
until a goal (the ‘last incremental decision problem’). As we
will discuss in more detail below, this requires representing
and reasoning about the distribution of possible values under
child nodes in order to compute the distribution at each par-
ent node. They conclude that a strategy based on expected
values is barely better than the classic minimin strategy and
impractical to compute for state spaces beyond tiny trees.
They also investigate a method in which the nodes with min-
imum f are expanded and the action with minimum f̂ is se-
lected and find that it performs better than using f for both.

Given the pessimism surrounding exact estimates, Pem-
berton (1995) proposes an approximate method called k-
best. Only the k best frontier nodes below a top-level action
are used to compute its value, allowing a fixed inventory of
equations derived in advance to be used to compute expected
values during search. Although this approach did surpass
minimin in experiments on random binary trees, Pemberton
concludes that its complexity makes it impractical. It is also
not clear how to apply these results beyond random binary
trees.

Our problem setting bears a superficial similarity to the

163

exploration/exploitation trade-off examined in reinforce-
ment learning. However, note that our central challenge is
how to make use of a given number of expansions — we
do not have to decide between exploring for more informa-
tion (by expanding additional nodes) or exploiting our cur-
rent estimates (by committing to the currently-best-looking
action). DTA* (Russell and Wefald 1991) and Mo’RTS
(O’Ceallaigh and Ruml 2015) are examples of real-time
search algorithms that directly address that trade-off. Both
are based on estimating the value of the information poten-
tially gained by additional lookahead search and comparing
this to a time penalty for the delay incurred. DTA* expands
the frontier node with minimum f and Mo’RTS expands the
frontier node with minimum f̂ .

MCTS algorithms such as UCT (Kocsis and Szepesvári
2006) share our motivation of recognizing the uncertainty in
the agent’s beliefs and trying to generate relevant parts of
the state space. Tolpin and Shimony (2012) emphasize the
purpose of lookahead as aiding in the choice of the agent’s
next action and, as we will below, they take an approach
motivated by the value of information. Lieck and Tous-
saint (2017) investigate selective sampling for MCTS. How-
ever, unlike most work in MCTS, we focus on determinis-
tic problems and we have no need to sample action transi-
tions or perform roll-outs. Furthermore, real-time planning
can arise in applications where perhaps only a dozen nodes
can be generated per decision, a regime where MCTS algo-
rithms can perform poorly, as a single roll-out may generate
hundreds of nodes.

Work on active learning also emphasizes careful selection
of computations to refine beliefs. For example, Frazier, Pow-
ell, and Dayanik (2008) present an approach they term ‘the
knowledge gradient’ for allocating measurements subject to
noise in order to maximize decision quality. More broadly,
the notion of representing beliefs over values during learn-
ing and decision-making has been pursued in Bayesian rein-
forcement learning (Dearden, Friedman, and Russell 1998;
McMahan, Likhachev, and Gordon 2005; Sanner et al. 2009;
Bellemare, Dabney, and Munos 2017).

The Nancy Framework
A real-time heuristic search algorithm is made up of several
parts that work together to choose the action that is most
reasonable to execute next. The lookahead component deter-
mines in which direction to search, i.e. which node to expand
next, in order to make the best use of the limited time. Suc-
cessive lookahead steps create the local search space. The
backup component runs after each lookahead step and up-
dates the goal distance estimates of each search node based
on its successors, by propagating the information from the
leafs of the search tree up towards the root. In this section we
give a complete description of the Nancy real-time search
algorithm. Its lookahead is based on a the expected regret
of making a non-optimal action choice, that is, α, the ac-
tion with the smallest expected cost, turned out to have a
higher actual cost than one of the alternatives β. This fol-
lows the classical characterization of risk as the sum of ex-
pected losses in a bad event (α had a higher cost than β)

Algorithm 1: Nancy
1 s := sstart
2 πcurr := 〈〉
3 while sJπcurrK is not a goal state do
4 t := risk lookahead(s)
5 πcurr := update path(s, t, πcurr, π)
6 apply next(s, πcurr)
7 backup(lss)
8 while s is not a goal state do
9 apply next(s, πcurr)

10 fn apply next(s, πcurr)
11 let a0, . . . , an be the action sequence of πcurr
12 s := sJa0K
13 πcurr := 〈a1, . . . , an〉
14 fn update path(s, t, πcurr, π)
15 if (πcurr = 〈〉 or
16 t is a goal state or
17 f̂(t) < f̂(sJπcurrK) or
18 f̂(t) = f̂(sJπcurrK) and ĥ(t) < ĥ(sJπcurrK))

then
19 return π
20 return πcurr

weighted by the probability of that event. Nancy’s epony-
mous backup component propagates the belief distributions
of the best-looking child to its parents.

The Components of Nancy
Algorithm 1 shows the pseudo-code for Nancy. The looka-
head uses risk to guide the direction of the lookahead, build-
ing up the local search space (lss) and returning the overall
best frontier node according to f̂ (line 4), breaking ties by ĥ.
The backup function is used to update the beliefs by back-
ing up the beliefs from the frontier of the local search space
towards the root. Fickert et al. (2020) prove that Nancy is
complete and will always reach a goal under certain mild
conditions.

Risk-based Lookahead We now explain Nancy’s looka-
head strategy in more detail. Lookahead is performed to
minimize risk. The idea is to find the optimal action to ex-
ecute next while also becoming more certain about possi-
ble alternative actions. Algorithm 2 shows the pseudo-code
for the risk-based lookahead. In the lookahead phase, Nancy
uses her first expansion to generate the top level actions (line
1). From that point forward, Nancy expands nodes such that
an approximation of risk is minimized, until the expansion
or time limit of the lookahead runs out. Each top-level action
(TLA) has an associated open list (denoted by TLA.open
in the pseudo-code) that is ordered by f̂ . Before each ex-
pansion, Nancy has to pick the open list where the expan-
sion will take place. For this purpose, Nancy estimates Bpost
which denotes the updated belief Nancy expects after per-
forming one expansion. The open list where Nancy expects

164

Algorithm 2: Risk-Based Lookahead
Input: s : state
Output: t : target state with minimal f̂

1 Generate TLAs
2 while lookahead limit is not reached do
3 for tla in TLAs do
4 Swap in Bpost(sJtlaK) for B(sJtlaK)
5 risk[sJtlaK] := risk(TLAs)
6 Restore original B(sJtlaK)
7 chosen := argmin

tla∈TLAs
(risk[tla])

8 t := chosen.open.pop min()
9 if t is goal then

10 return t
11 for a ∈ A(t) do
12 Estimate and cache B(tJaK) and Bpost(tJaK)
13 push(chosen.open, tJaK, f̂(tJaK))
14 u := chosen.open.min()
15 B(sJchosenK) := B(u) + g(u)
16 Bpost(sJchosenK) := Bpost(u) + g(u)

17 best := argmin
tla∈TLAs

(f̂(sJtlaK))
18 return best.open.min()

to arrive at a belief with minimal risk is then selected and
the actual expansion follows, (Alg. 2, line 11). After each
expansion, new information is obtained about the frontier of
the local search space. To make use of this information, the
belief at the top level needs to be updated, such that it agrees
with the new best frontier node.

This lookahead process is repeated until the expansion or
time limit is reached, or a goal state is selected for expan-
sion. Once the lookahead phase ends, the search performs
Nancy backups and executes the TLA with the lowest ex-
pected cost (Algorithm 1, line 12). In the learning phase,
the beliefs B and post-expansion beliefs Bpost of all nodes
within the local search space are updated (Algorithm 1, line
7). This learning process performs a dynamic programming-
like learning step to update the ĥ-values of the expanded
states (like LSS-LRTA*).

Assumption-Based Nancy
Nancy’s risk-based lookahead strategy relies on belief dis-
tributions over the remaining cost to a goal. To model such
distributions, following O’Ceallaigh and Ruml (2015), we
first build Gaussian distributions centered on f̂ with a vari-
ance proportional to the difference between a node’s f̂ and
f values:

B(n) ∼ N
(
f̂(n),

(f̂(n)− f(n)
2

)2)

The mean value f̂(n) is estimated using one-step heuristic
error estimate (Thayer, Dionne, and Ruml 2011). The vari-
ance model reflects the common assumption that heuristics
are more accurate as one approaches a goal, because the

Algorithm 3: Data Collection
1 Pick a set of training problem instances T
2 Pick a search algorithm S
3 for t in T do
4 Solve t with S, while recording all expanded

states
5 for state s expanded by S do
6 Solve s optimally
7 Store pair (h(s), h∗(s))

difference between f(n) and f̂(n) is proportional to d(n),
the estimated remaining search distance (number of steps-
to-go). In this way, search experience is used to continually
adjust the algorithm’s skepticism of its heuristic and inform
its beliefs as the search evolves. Secondly, the Gaussian be-
liefs were truncated from below at the admissible f value
and above at three standard deviations.

Data-Driven Nancy
The assumption-based instantiation of Nancy makes use of
several assumptions about heuristic behavior. We next de-
scribe an alternative approach to obtain these beliefs, which
is based on data. The idea of this method is to use statistics
about heuristic behavior gathered in an offline phase prior to
the search to construct the beliefs. Hence, some or all of the
assumptions to construct beliefs at runtime are replaced with
data. Here we cover the details of the data-driven variant of
Nancy, which we call DDNancy.

Data Generation The purpose of Nancy’s assumptions is
to obtain a better estimate of the possible true goal distances
h∗(s) when only h(s) is available. The approach to replace
these assumptions is to run an offline training phase that
learns the distribution of h∗-values.

Algorithm 3 shows a high-level overview of the data col-
lection process. The h∗ distributions are generated offline
by collecting (h, h∗) pairs from a number of training in-
stances. Each training instance is first solved by an initial
search. Each state that was expanded by that search is then
solved optimally, and its h and h∗ values are stored. By col-
lecting all these pairs, we obtain a set of h∗ values for each
h value, making up the distribution.

In its search, DDNancy uses the heuristic values to look
up the corresponding distribution of h∗ values. It may hap-
pen that DDNancy encounters a state with a heuristic value
h that was not observed in the data gathering process. In that
case, we perform an online extrapolation step on the data.
We pick the largest h′ ≤ h for which we have a distribu-
tion in the data set. The distribution for h is extrapolated by
shifting the distribution of h′ by the difference between h
and h′, i.e., adding (h − h′) to each data point in the dis-
tribution of h′. The newly created distribution is cached to
have it available for the remaining search.

In the learning step, the data-driven instantiation of Nancy
does not change the heuristic values. Instead, the change in
heuristic value is transferred to the distributions, and the data

165

Figure 2: Beliefs in Blocksworld generated with weighted
A* and LSS-LRTA*.

points are shifted accordingly (similar to the extrapolation
procedure). In the implementation, we simply store the cur-
rent shift value and a pointer to the corresponding distribu-
tion for each expanded state.

In the training process, the initial search is used to sam-
ple the states for the data collection (as the expanded states
are then solved optimally). There are two key motivations to
use this strategy instead of training on the entire state space.
The first reason is practical feasibility. For instances above
a certain size (e.g. Blocksworld with more than 10 blocks),
solving the entire state space would require an unreasonable
amount of time and memory. The second reason is that con-
sidering the entire state space may not make the data more
accurate, as most of these states are not seen in the actual
search. Instead, we want the process to focus on states that
are representative for states encountered by Nancy, and in-
form the algorithm how the heuristic typically behaves on
such a state. The initial search algorithm should therefore
have similar behavior to Nancy to generate a good set of
sample states, and improve the accuracy of the resulting dis-
tributions. We generate the data for each domain separately.
While this requires additional work for each new domain
DDNancy is intended to run on, the heuristic behavior can
vary a lot between different domains, and domain-specific
data can capture the behavior more accurately.

Since DDNancy is a suboptimal search algorithm, we also
use a suboptimal search algorithm to sample the states for
the data generation. Figure 2 shows the belief distributions
that result from using weighted A* with a weight of 2 and
LSS-LRTA* for the sampling. The generated beliefs are very
similar, with only minor differences for large heuristic val-
ues where fewer samples have been observed. This is some-
what expected; while the two algorithm expand different sets
of states due to their different expansion strategies, the un-
derlying instances are the same, and the algorithms will find
similar solutions. We conjecture that it is unlikely for them
to observe a very different heuristic behavior over their re-
spective sets of states. For the experiments in the later sec-
tion, we use weighted A* with a weight of 2 to sample the
training states.

A further key concern for any data-driven algorithm is
how to determine the number of examples necessary to en-
sure that the data observed in those examples are representa-
tive for the general case. This is of special importance with

Figure 3: Beliefs in Blocksworld generated on 35 examples
instances and on 17.

Figure 4: Beliefs generated for Blocksworld and Transport
(unit-cost).

our setup, since we only consider a subset of all states for
any given training instance. Figure 3 shows a comparison of
the resulting beliefs on Blocksworld when only using half
of the available training instances as an empirical indication
whether our data is sufficient. As expected, the spread of h∗
values is smaller when reducing the number of sample states.
Overall however, the distributions have similar shapes.

Figure 4 shows an example of the generated data for
Blocksworld and the unit-cost version of Transport to
demonstrate the differences in heuristic behavior on these
domains. The expected value increases roughly monotoni-
cally in both domains, but slightly faster in Transport, where
the expected value makes a jump when going from h = 2
to h = 3. Furthermore, the variance of observed h∗ values
is greater in Transport. In Blocksworld, the training process
encountered states with slightly larger heuristic values than
those in Transport.

A similar comparison of the generated data for the classic
search domains is shown in Figure 5. While the distribu-
tions are very smooth for the pancake puzzle and the race-
track domain, the expected value of the distributions on the
15-puzzle makes a large jump at h = 4. This shows the po-
tential inaccuracy of the Manhattan distance heuristic in the
15-puzzle: there are states where the heuristic value is small,
but an optimal solution still requires a significant number of
moves.

Empirical Comparison
While Nancy is, to our knowledge, the first method for real-
time heuristic graph search that bases its search strategy on

166

Figure 5: Beliefs gathered for the uniform-cost 15-puzzle
(top), 16-pancake (middle), and Barto Racetrack (bottom).

belief distributions, there has been much previous work in
the RL community on search methods that attempt to esti-
mate and exploit value uncertainty. However, most RL do-
mains feature stochastic actions, while in our setting the un-
certainty stems entirely from the bounded computation of
the agent. We consider two prominent approaches: interval
estimation and Monte-Carlo tree search. In each case, we
adapt the previous work to our setting and empirically com-
pare it to Nancy.

Domains
We show experiments on the three classic search domains.
First is the classic 100 15-puzzle instances published by
Korf (1985). We test two variants: uniform-cost, in which
every actions costs one, and heavy, in which the action cost
is equal to the label of the moved tile. We use the Manhattan
distance heuristic for all the real-time search algorithms.

Second is the pancake problem (Kleitman et al. 1975;
Gates and Papadimitriou 1979; Heydari and Sudborough
1997) where the objective is to sort a sequence of pancakes
through a minimal number of prefix reversals. We use the
GAP heuristic (Helmert 2010) for for all the real-time search
algorithms. We test three size of pancakes: 16, 32, and 40.
One hundred instances of each size were tested per experi-
ment.

Figure 6: Barto (left) and uniform (right) Racetrack variants.

Third is the Racetrack domain which is very similar to the
grid pathfinding problem, but features additional actions and
inertia. It is reminiscent of autonomous driving and is a vari-
ant of the popular Racetrack problem (Barto, Bradtke, and
Singh 1995). Figure 6 shows the two maps used in our exper-
iments. The track shown on the left was created by Hansen
and Zilberstein (2001), and the cluttered track on the right by
Cserna et al. (2018). The agent moves in a grid attempting
to reach one of a set of goal locations while avoiding static
obstacles. Each action modifies the acceleration of the agent
by −1, 0, or 1 in both the horizontal and vertical directions,
making for a total of 9 distinct actions. There is no limit
on the agent’s speed. The system state includes the agent’s
location and velocity. The objective is to minimize the num-
ber of time steps until a goal cell is reached. The heuristic
function is the maximum, either horizontally or vertically, of
the distance to the goal divided by an estimate of the maxi-
mum achievable velocity in that dimension. This is admissi-
ble. For each of the two maps, we created 25 instances with
starting positions chosen randomly among those cells that
were at least 90% of the maximum distance from a goal.

Interval Estimation
Interval Estimation (IE) (Kaelbling 1993; Strehl and Littman
2004) applies the philosophy of ‘optimism in the face of un-
certainty’ to the problem of action selection in a two-armed
bandit problem. While the method has previously been in-
vestigated primarily for use in MDPs and RL, we adapt it
here for use in real-time deterministic planning. When de-
ciding under which TLA the next node should be expanded,
given the belief distributions of all the TLAs, IE chooses the
TLA with the lowest lower bound on the 95% confidence in-
terval of the backed up cost-to-goal estimate instead of per-
forming a computationally complex risk analysis. To adapt
IE to the real-time search setting, we need to augment it with
a mechanism for heuristic value updates. For each node in
the LSS, we back up the belief from the child with the lowest
lower confidence bound. Thus, the best frontier distributions
under each TLA are eventually backed up to the TLA. The
interval estimation approach naturally practices the spirit of
uncertainty-based exploration in a very computationally ef-
ficient way.

Figure 7 shows an experimental comparison of Nancy and
LSS-LRTA* to IE (and also to a Monte-Carlo tree search

167

approach, which we discuss in the next subsection). IE per-
forms well in our experiments, and closely matches the per-
formance of Nancy. While Nancy has a slight advantage
on the sliding tile and pancake puzzles, IE works perhaps
marginally better on Racetrack. Overall, IE is very competi-
tive, and yet simple to implement and computationally effi-
cient.

Monte Carlo Tree Search
Monte-Carlo tree search (Browne et al. 2012) approaches
such as UCT (Kocsis and Szepesvári 2006) are popular for
solving stochastic problems such as with MDPs (Keller and
Eyerich 2012) and POMDPs (Silver and Veness 2010). Re-
cently, Schulte and Keller (2014) adopted this to determin-
istic planning problems as trial-based heuristic tree search
(THTS). Like Nancy, THTS also takes the uncertainty about
the heuristic into consideration (though more implicitly).
However, THTS was only described as an offline search
framework. We adapted it to the real-time setting based on
LSS-LRTA*. We replace the A* lookahead in the expansion
phase with the THTS algorithm. More precisely, we use the
THTS-WA* instantiation of the THTS framework since this
variation had the best results for the base setting in the origi-
nal paper (without the preferred operators enhancement that
is specific to domain-independent planning). In the learning
phase, we also use a reversed Dijkstra’s algorithm to update
the heuristic values, working from the uninitialized frontier
tree nodes inwards. In the decision making phase, we use
the identical strategy as LSS-LRTA* and move towards the
node with minimal f -value.

Consider again Figure 7. The real-time variant of THTS
performs poorly on the 15-puzzle (in particular the heavy-
tile version). On the pancake puzzle, it again beaten by most
of the other considered approaches, but it does beat LSS-
LRTA* on the larger instances with small lookahead. On the
Racetrack domain on the other hand, it outperforms all other
algorithms, for all considered lookahead values. Overall, the
uncertainty-aware algorithms (Nancy, IE, and THTS) sur-
pass the conventional LSS-LRTA* baseline, with Nancy and
IE being the most robust.

Discussion
Viewed broadly, reinforcement learning considers how ac-
tion selection should be informed by data that is gath-
ered during execution. This is exactly what heuristic search
strategies do. The states and costs computed during looka-
head are data that inform action selection. As Nancy shows,
a heuristic search can use this data in two ways. Clearly, the
computed lookahead states in a real-time search setting in-
form the selection of the action for the agent to execute. But
more broadly, the problem of designing any heuristic search
strategy, even an off-line one, is an RL problem at the com-
putational level, in that the search space computed so far can
inform the choice of which nodes should be expanded next.
For an optimal off-line search like A*, all nodes whose f
values are less than the optimal solution cost C∗ must be
expanded, so there is little flexibility and less need for a so-
phisticated expansion strategy. But, in contrast, the tight re-
source limitations of real-time search strongly highlight the

need for care in selecting even computational expansion ac-
tions.

This metareasoning problem of heuristic search can be
conceptualized as a POMDP in which each state represents
an entire state space graph, complete with costs on every arc
and h values at every vertex. (To avoid confusion in this dis-
cussion, we will use the term ‘vertex’ for a node in the state
space graph and the term ‘state’ for a state in the POMDP.)
The search does not know which exact state space graph it
is dealing with, thus its situation is captured by a belief dis-
tribution over states. Every node expansion gathers data that
rule out those state space graphs that are inconsistent with
the computed successor nodes, action costs, and h values. A
goal state is a belief that has positive support only on state
spaces that all share the same path from the initial vertex
to a goal vertex, providing a solution to the original prob-
lem but potentially harboring remaining uncertainty about
the unseen portions of the graph. Solving this POMDP for a
policy that, for example, minimizes expected solution length
would give a heuristic search strategy that finds a solution as
quickly as possible by minimizing the expected number of
expansions.

Approaching such a problem in practice depends crucially
on exploiting structure in the h values, the arc costs, and
the distance to the nearest goal. The data-driven version of
Nancy highlights this. However, while Nancy does try to
predict how its beliefs will change with additional search un-
der frontier nodes, note that it is myopic and does not really
plan at the metalevel. For example, if nodes with h = 3 were
to be predicted to have higher expected distance to goal than
nodes with h = 4, due perhaps to a misleading heuristic,
data-driven Nancy will not realize that it must nonetheless
ignore the tempting h = 4 nodes from time to time and try
expanding some h = 3 nodes in order to eventually reach
some h = 2 nodes and eventually the goal.

In related work, Lin et al. (2015) formalize the prob-
lem of metareasoning for an MDP and find that its com-
putational complexity is polynomial in the time required to
solve the MDP itself. This indicates the impracticality of
optimal metareasoning, motivating approximations such as
those used by Nancy.

Conclusion
Inspired by distributional methods from RL, the Nancy
framework reconsiders real-time search as a decision mak-
ing process where limited information creates uncertainty.
Nancy models this uncertainty using belief distributions and
reasons about it to guide the search. In this paper, we pre-
sented further experimental results regarding this approach.
First, we presented detailed results regarding heuristic er-
ror data, which Nancy can use as the basis for its beliefs.
Second, we reported an experimental comparison with ap-
proaches from RL that exploit value uncertainty, such as
Monte Carlo tree search and Kaelbling’s interval estimation.
We find that our approach, Nancy, generally outperforms
previous methods, particularly on more difficult problems.
This work illustrates how distributional methods from RL
can be adapted to deterministic planning settings, and how

168

30 100 300 1000
Node Ex ansion Limit

−150

−100

−50

0

50

100

Al
go
rit
hm

 C
os
t -
 L
SS

-L
RT

A*
 C
os
t

Algorithm
IE
Nancy (DD)
Nancy
THTS-WA*
LSS-LRTA*

30 100 300 1000
Node Ex ansion Limit

−20000

−10000

0

10000

20000

Al
go
rit
hm

 C
os
t -
 L
SS

-L
RT

A*
 C
os
t

Algorithm
IE
Nancy (DD)
Nancy
THTS-WA*
LSS-LRTA*

30 100 300 1000
Node Ex ansion Limit

−1

0

1

2

3

Al
go
rit
hm

 C
os
t -
 L
SS

-L
RT

A*
 C
os
t

Algorithm
IE
Nancy (DD)
Nancy
THTS-WA*
LSS-LRTA*

30 100 300 1000
Node Expansion Li it

−8

−6

−4

−2

0

2

4

Al
go
rit
h
 C
os
t -
 L
SS
-L
RT
A*
 C
os
t

Algorithm
IE
Nancy (DD)
Nancy
THTS-WA*
LSS-LRTA*

30 100 300 1000
Node Expansion Li it

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

Al
go
rit
h
 C
os
t -
 L
SS
-L
RT
A*
 C
os
t

Algorithm
IE
Nancy (DD)
Nancy
THTS-WA*
LSS-LRTA*

30 100 300 1000
Node Expa sio Limit

−200

−175

−150

−125

−100

−75

−50

−25

0

Al
go
rit
hm

 C
os
t -
 L
SS

-L
RT

A*
 C
os
t

Algorithm
IE
Nancy (DD)
Nancy
THTS-WA*
LSS-LRTA*

30 100 300 1000
Node Expansi n Limit

−400

−300

−200

−100

0

Al
g

rit
hm

 C
 s
t -
 L
SS

-L
RT

A*
 C
os
t

Algorithm
IE
Nancy (DD)
Nancy
THTS-WA*
LSS-LRTA*

Figure 7: Comparison to IE and THTS. Top: 15-puzzle (left: unit, right: heavy); Middle: pancake (16, 32, and 40); Bottom:
Racetrack (left: Barto, right: uniform).

169

deterministic planning can provide useful testbeds for ex-
ploring methods that metareason about uncertainty during
planning.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
Intelligence 72(1):81–138.
Bellemare, M. G.; Dabney, W.; and Munos, R. 2017. A dis-
tributional perspective on reinforcement learning. In Pro-
ceedings of ICML-17.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1):1–43.
Cserna, B.; Doyle, W. J.; Ramsdell, J. S.; and Ruml, W.
2018. Avoiding dead ends in real-time heuristic search. In
Thirty-Second AAAI Conference on Artificial Intelligence.
Dearden, R.; Friedman, N.; and Russell, S. 1998. Bayesian
Q-learning. In Proceedings of AAAI-98, 761–768.
Feldman, Z., and Domshlak, C. 2014. Simple regret opti-
mization in online planning for markov decision processes.
Journal of Artificial Intelligence Research 51:165–205.
Fickert, M.; Gu, T.; Staut, L.; Ruml, W.; Hoffmann, J.; and
Patrik, M. 2020. Beliefs we can believe in: Replacing as-
sumptions with data in real-time search. In AAAI-20.
Frazier, P. I.; Powell, W. B.; and Dayanik, S. 2008. A
knowledge-gradient policy for sequential information col-
lection. SIAM J. on Control and Opt. 47(5):2410–2439.
Gates, W. H., and Papadimitriou, C. H. 1979. Bounds for
sorting by prefix reversal. Discrete mathematics 27(1):47–
57.
Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1-2):35–62.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE Trans. Sys. Sci. and Cybernetics SSC-4(2):100–107.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In Proceedings of SoCS-10.
Heydari, M. H., and Sudborough, I. H. 1997. On the diam-
eter of the pancake network. J. Algorithms 25(1):67–94.
Kaelbling, L. P. 1993. Learning in Embedded Systems. MIT
Press.
Keller, T., and Eyerich, P. 2012. Prost: Probabilistic plan-
ning based on uct. In Proceedings of ICAPS-12.
Keller, T., and Helmert, M. 2013. Trial-based heuristic tree
search for finite horizon MDPs. In Proceedings ICAPS-13.
Kleitman, D.; Kramer, E.; Conway, J.; Bell, S.; and
Dweighter, H. 1975. Elementary problems: E2564-e2569.
The American Mathematical Monthly 82(10):1009–1010.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proceedings of ECML-06, 282–293.

Koenig, S., and Sun, X. 2008. Comparing real-time and
incremental heuristic search for real-time situated agents.
J. Auton. Agents and Multi-Agent Sys. 18(3):313––341.
Korf, R. E. 1985. Iterative-deepening-A*: An optimal ad-
missible tree search. In IJCAI-85, 1034–1036.
Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42:189–211.
Lieck, R., and Toussaint, M. 2017. Active tree search. In
ICAPS Workshop on Planning, Search, and Optimization.
Lin, C. H.; Kolobov, A.; Kamar, E.; and Horvitz, E. 2015.
Metareasoning for planning under uncertainty. In Proceed-
ings of IJCAI-15.
McMahan, H. B.; Likhachev, M.; and Gordon, G. J. 2005.
Bounded real-time dynamic programming: Rtdp with mono-
tone upper bounds and performance guarantees. In Proceed-
ings of ICML-05, 569–576.
Mitchell, A.; Ruml, W.; Spaniol, F.; Hoffmann, J.; and
Petrik, M. 2019. Real-time planning as decision-making
under uncertainty. In Proceedings of AAAI-19.
Mutchler, D. 1986. Optimal allocation of very limited search
resources. In Proceedings of AAAI-86.
O’Ceallaigh, D., and Ruml, W. 2015. Metareasoning in
real-time heuristic search. In SoCS-15.
Pemberton, J. C., and Korf, R. E. 1994. Incremental search
algorithms for real-time decision making. In AIPS-94.
Pemberton, J. C. 1995. k-best: A new method for real-time
decision making. In IJCAI-95.
Russell, S., and Wefald, E. 1991. Do the Right Thing: Stud-
ies in Limited Rationality. MIT Press.
Sanner, S.; Goetschalckx, R.; Driessens, K.; and Shani, G.
2009. Bayesian real-time dynamic programming. In Pro-
ceedings of IJCAI-09.
Schulte, T., and Keller, T. 2014. Balancing exploration and
exploitation in classical planning. In SoCS-14.
Silver, D., and Veness, J. 2010. Monte-carlo planning in
large POMDPs. In NIPS, 2164–2172.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018. A
general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419):1140–
1144.
Strehl, A. L., and Littman, M. L. 2004. An empirical eval-
uation of interval estimation for markov decision processes.
In IEEE ICTAI-04.
Thayer, J. T.; Dionne, A.; and Ruml, W. 2011. Learning
inadmissible heuristics during search. In Proceedings of
ICAPS-11.
Tolpin, D., and Shimony, S. E. 2012. MCTS based on simple
regret. In Proceedings of AAAI-12.

170

