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Akbari, A., Lagriffoul, F. & Rosell, J. Combined heuristic task and motion planning for 
bi-manual robots. Autonomous Robot 43, 1575–1590 (2019).
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domain and 

problem

CNF

SAT Solver Model

Plan

Blocks world 3D

NOT (on (X, Y)

AND on (Y, Z)

AND on (Z, table)

AND block (X)

AND block (Y)

AND block (Z))

F. Lagriffoul, B. Andres, Combining Task and Motion Planning: a 
culprit detection problem. The International Journal of Robotics 
Research, 2016.
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3 approaches to TAMP
● AsyMov   Roadmaps + task planner as heuristic

● FFRob      Task planner + CRG as heuristic

● ASP + failure explanation Geometric reasoner pruning
the search space of the task planner
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Future directions
● Learning

A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, Learning Feasibility for Task and Motion Planning in 
Tabletop Environments, IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1255–1262, Apr. 2019.

Kim B, Wang Z, Kaelbling LP, Lozano-Pérez T. Learning to guide task and motion planning using score-space 
representation. The International Journal of Robotics Research. 2019;38(7):793-812.
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A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, Learning Feasibility for Task and Motion Planning in 
Tabletop Environments, IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1255–1262, Apr. 2019.

Kim B, Wang Z, Kaelbling LP, Lozano-Pérez T. Learning to guide task and motion planning using score-space 
representation. The International Journal of Robotics Research. 2019;38(7):793-812.

● Theory
William Vega-Brown, Nicholas Roy, Task and Motion Planning Is PSPACE-Complete. AAAI 2020: 10385-10392.

● Culprit detection
Hauser K. The minimum constraint removal problem with three robotics applications. The International Journal of 
Robotics Research. 2014;33(1):5-17.

● You guys!
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