Task & Motion Planning

Fabien Lagriffoul

Centre for Applied Autonomous Sensor Systems (AASS) Örebro University, Sweden MRPC Lab

Outline

- Problem definition(s)
- What makes it difficult?
- 3 approaches to TAMP
- Future directions

Outline

- Problem definition(s)
 - What makes it difficult?
 - 3 approaches to TAMP
 - Future directions

<u>TAMP</u>: computing, given a symbolic goal description, a sequence of symbolic actions **and** motion paths for one or several robots to achieve that goal.

in (box1, cup1) in (box1, cup2)

<u>TAMP</u>: computing, given a symbolic goal description, a sequence of symbolic actions **and** motion paths for one or several robots to achieve that goal.

in (box1, cup1) in (box1, cup2)

<u>TAMP</u>: computing, given a symbolic goal description, a sequence of symbolic actions **and** motion paths for one or several robots to achieve that goal.

Task Planning

Motion Planning

<u>TAMP</u>: computing, given a symbolic goal description, a sequence of symbolic actions **and** motion paths for one or several robots to achieve that goal.

<u>TAMP</u>: computing, given a symbolic goal description, a sequence of symbolic actions **and** motion paths for one or several robots to achieve that goal.

$$q = (x, \theta_1, \theta_2)$$

<u>TAMP</u>: computing, given a symbolic goal description, a sequence of symbolic actions **and** motion paths for one or several robots to achieve that goal.

q = (x,
$$\theta_1$$
, θ_2) q = (θ_1 , θ_2 , θ_3 , θ_4 , θ_5 , θ_6)

<u>TAMP</u>: computing, given a symbolic goal description, a sequence of symbolic actions **and** motion paths for one or several robots to achieve that goal.

$$q = (x, \theta_1, \theta_2) \qquad q = (\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6) \qquad q = (x, y, z, \theta, \phi, \psi)$$

Courtesy Bob Trenwith

Courtesy Bob Trenwith

Algorithms for Motion planning:

Algorithms for Motion planning:

• PRM (Probabilistic Roadmaps)

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. *Probabilistic roadmaps for path planning in high-dimensional configuration spaces*. IEEE Transactions on Robotics & Automation, 12(4):566–580, June 1996.

Algorithms for Motion planning:

• PRM (Probabilistic Roadmaps)

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. *Probabilistic roadmaps for path planning in high-dimensional configuration spaces*. IEEE Transactions on Robotics & Automation, 12(4):566–580, June 1996.

Algorithms for Motion planning:

• PRM (Probabilistic Roadmaps)

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. *Probabilistic roadmaps for path planning in high-dimensional configuration spaces*. IEEE Transactions on Robotics & Automation, 12(4):566–580, June 1996.

RRT (Rapidly exploring Random Trees)

S. M. LaValle and J. J. Kuffner. *Randomized kinodynamic planning*. In Proceedings IEEE International Conference on Robotics and Automation, pages 473–479, 1999.

45 iterations

2345 iterations

Algorithms for Motion planning:

probabilistically complete

• PRM (Probabilistic Roadmaps)

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. *Probabilistic roadmaps for path planning in high-dimensional configuration spaces*. IEEE Transactions on Robotics & Automation, 12(4):566–580, June 1996.

RRT (Rapidly exploring Random Trees)

S. M. LaValle and J. J. Kuffner. *Randomized kinodynamic planning*. In Proceedings IEEE International Conference on Robotics and Automation, pages 473–479, 1999.

45 iterations

2345 iterations

Motion Planning

Given free configuration space C_{free} , initial configuration $q_I \in C_{\text{free}}$, and goal configurations $G \subseteq C_{\text{free}}$, a motion plan is defined as $\tau : [0, 1] \rightarrow C_{\text{free}}$ $\tau(0) = q_I \text{ and } \tau(1) \in G.$

Motion Planning

Given free configuration space C_{free} , initial configuration $q_I \in C_{\text{free}}$, and goal configurations $G \subseteq C_{\text{free}}$, a motion plan is defined as $\tau : [0, 1] \rightarrow C_{\text{free}}$

 $\tau(0) = q_I \text{ and } \tau(1) \in G.$

Task Planning

 $\boldsymbol{\Sigma} = (S, A, \gamma, s_0, S_g)$ where,

- S is a finite set of states
- A is a finite set of actions
- $\gamma: S \times A \rightarrow S$ is a deterministic state-transition function,

 $\gamma(s,a) = s'.$

- $s_0 \in S$ is the start state
- $S_g \subseteq S$ is the set of goal states

Motion Planning

Given free configuration space C_{free} , initial configuration $q_I \in C_{\text{free}}$, and goal configurations $G \subseteq C_{\text{free}}$, a motion plan is defined as $\tau : [0, 1] \rightarrow C_{\text{free}}$

 $\tau(0) = q_I \text{ and } \tau(1) \in G.$

TAMP

 $\phi: S \to 2^C$ which maps states to configurations; $\xi: A \to 2^C$ which maps actions to motion plans.

Task Planning

 $\Sigma = (S, A, \gamma, s_0, S_g)$ where,

- S is a finite set of states
- A is a finite set of actions
- $\gamma: S \times A \rightarrow S$ is a deterministic state-transition function,

 $\gamma(s,a) = s'.$

- $s_0 \in S$ is the start state
- $S_g \subseteq S$ is the set of goal states

Motion Planning

Given free configuration space C_{free} , initial configuration $q_I \in C_{\text{free}}$, and goal configurations $G \subseteq C_{\text{free}}$, a motion plan is defined as $\tau : [0, 1] \rightarrow C_{\text{free}}$

 $\tau(0) = q_I \text{ and } \tau(1) \in G.$

Task Planning

- $\Sigma = (S, A, \gamma, s_0, S_g)$ where,
 - S is a finite set of states
 - A is a finite set of actions
 - $\gamma: S \times A \to S$ is a deterministic state-transition function,

 $\gamma(s,a) = s'.$

- $s_0 \in S$ is the start state
- $S_g \subseteq S$ is the set of goal states

SSSP [edit]

The surfaces supporting stable placements are specified by 6 values (*xmin, xmax, ymin, ymax, zmin, zmax*) representing a rectangular region **in the reference frame of the object**.

1 <sssp>

- 2 <xmin>-0.25<xmax><xmin>0.25<xmax>
- 3 <ymin>-0.25<ymax><ymin>0.25<ymax>
- 4 <zmin>0.5<zmax><zmin>0.5<zmax>

5 </sssp>

Alternatively, SSSP can be represented by polygonal regions. Then, the tag **<pssp>** (polygon supporting stable placements) is used and a polygonal region is specified as a list of 3D coordinates **in the reference frame of the object**, assumed to lie in a plane:

1 <pssp>

- 2 <point><x>-0.15</x><y>0.33</y><z>0.5</z></point>
- 3 <point><x>-0.22</x><y>0.25</y><z>0.5</z></point>
- 4 <point><x>0.25</x><y>0.12</y><z>0.5</z></point>
- 5 ...
- 6 </pssp>

Remarks:

- In stacking problems, the SSSP is defined by a single point centred on top of the object (i.e., *xmin=xmax*, *ymin=ymax*) therefore objects will be aligned on top of each other (e.g., *disc2* and *disc3* in the example below).
- The number of SSSP per object is currently limited to one. This assumes that if an object is rotated about the x or y axis, it is no longer possible to place something on it. This assumption is sufficient for the current set of benchmark problems, but it may be relaxed later, i.e., by allowing lists of SSOP.

SOP [edit]

The stable object poses are defined similarly to continuous grasps: a template rotation and a rotation axis (both expressed **in the world frame of reference**, plus the *distance* parameter, which is the distance between the centre of the object and the SSSP.

1 <sop>
2 <template>1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0</template>
3 <axis>0.0 0.0 1.0</axis>
4 <distance>0.08</distance>
5 </sop>

- $s_0 \in S$ is the start state
- $S_q \subseteq S$ is the set of goal states

ĺΡ

Space of grasps and placements

states to configurations; actions to motion plans.

Motion Planning

Given free configuration space C_{free} , initial configuration $q_I \in C_{\text{free}}$, and goal configurations $G \subseteq C_{\text{free}}$, a motion plan is defined as $\tau : [0, 1] \rightarrow C_{\text{free}}$

 $\tau(0) = q_I \text{ and } \tau(1) \in G.$

Task Planning

 $\Sigma = (S, A, \gamma, s_0, S_g)$ where,

• S is a finite set of states

- A is a finite set of actions
- $\gamma: S \times A \rightarrow S$ is a deterministic state-transition function,

 $\gamma(s,a) = s'.$

- $s_0 \in S$ is the start state
- $S_g \subseteq S$ is the set of goal states

TAMP

 $\phi: S \to 2^C$ which maps states to configurations; $\xi: A \to 2^C$ which maps actions to motion plans.

find a sequence of actions $\langle a_0, a_1, \ldots, a_{n-1} \rangle$ following a sequence of task states $\langle s_0, s_1, \ldots, s_n \rangle$ such that

> $s_n \in S_g$ and $s_{i+1} = \gamma(s_i, a_i)$

and to find a sequence of motion plans $\langle \tau_0, \tau_1, \ldots, \tau_{n-1} \rangle$ such that $\forall i = 0 \ldots n - 1$:

$$au_i(0) \in \phi(s_i) \text{ and } au_i(1) \in \phi(s_{i+1})$$

 $au_i \in \xi(a_i), \text{ and}$
 $au_i(1) = au_{i+1}(0)$
TAMP

 $\phi: S \to 2^C$ which maps states to configurations; $\xi: A \to 2^C$ which maps actions to motion plans.

find a sequence of actions $\langle a_0, a_1, \ldots, a_{n-1} \rangle$ following a sequence of task states $\langle s_0, s_1, \ldots, s_n \rangle$ such that

$$s_n \in S_g$$
 and
 $s_{i+1} = \gamma(s_i, a_i)$

and to find a sequence of motion plans $\langle \tau_0, \tau_1, \ldots, \tau_{n-1} \rangle$ such that $\forall i = 0 \ldots n - 1$:

$$au_i(0) \in \phi(s_i) \text{ and } \tau_i(1) \in \phi(s_{i+1})$$

 $au_i \in \xi(a_i), \text{ and}$
 $au_i(1) = au_{i+1}(0)$

TAMP

Goal state Initial state On(C, Table) On(B, Table) On(B, C)On(A, Table) q_{init} On(A, B)On(C, A)Plan Pick(C) Place(C, Table) \mathcal{C}_{obs} \mathcal{C}_{obs} Pick(B) Place(B, C) \mathcal{C}_{free} Pick(A) Place(A, B) \mathcal{C}_{obs} $\Phi(S_{n})$ • Fully observable • Deterministic

 $\phi: S \to 2^C$ which maps states to configurations; $\xi: A \to 2^C$ which maps actions to motion plans.

find a sequence of actions $\langle a_0, a_1, \ldots, a_{n-1} \rangle$ following a sequence of task states $\langle s_0, s_1, \ldots, s_n \rangle$ such that

$$s_n \in S_g$$
 and
 $s_{i+1} = \gamma(s_i, a_i)$

and to find a sequence of motion plans $\langle \tau_0, \tau_1, \ldots, \tau_{n-1} \rangle$ such that $\forall i = 0 \ldots n - 1$:

> $au_i(0) \in \phi(s_i) \text{ and } \tau_i(1) \in \phi(s_{i+1})$ $au_i \in \xi(a_i), \text{ and}$ $au_i(1) = au_{i+1}(0)$

TAMP's siblings:

Manipulation Planning

Siméon T, Laumond J-P, Cortés J, Sahbani A. *Manipulation Planning with Probabilistic Roadmaps*. The International Journal of Robotics Research. 2004;23(7-8):729-746.

NAMO (Navigation Among Movable Obstacles)

Mike Stilman. 2007. *Navigation among movable obstacles*. Ph.D. Dissertation. Carnegie Mellon University, USA. Advisor(s) James J. Kuffner.

Rearrangement Planning

G. Havur, et al., *Geometric rearrangement of multiple movable objects on cluttered surfaces: A hybrid reasoning approach,* 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014, pp

Multimodal Motion Planning

Hauser K, Latombe J-C. *Multi-modal Motion Planning in Non-expansive Spaces*. The International Journal of Robotics Research. 2010;29(7):897-915.

TAMP's siblings:

Manipulation Planning

Siméon T, Laumond J-P, Cortés J, Sahbani A. *Manipulation Planning with Probabilistic Roadmaps*. The International Journal of Robotics Research. 2004;23(7-8):729-746.

• NAMO (Navigation Among Movable Obstacles)

Mike Stilman. 2007. Navigation among movable obstacles. Ph.D. Dissertati J. Kuffner.

Rearrangement Planning

G. Havur, et al., *Geometric rearrangement of multiple movable objects on* (IEEE International Conference on Robotics and Automation (ICRA), Hong Ko

Multimodal Motion Planning

Hauser K, Latombe J-C. *Multi-modal Motion Planning in Non-expansive Spac* 2010;29(7):897-915.

TAMP's siblings:

Manipulation Planning

Siméon T, Laumond J-P, Cortés J, Sahbani A. *Manipulation Planning with Probabilistic Roadmaps*. The International Journal of Robotics Research. 2004;23(7-8):729-746.

NAMO (Navigation Among Movable Obstacles)

Mike Stilman. 2007. *Navigation among movable obstacles*. Ph.D. Dissertation. Carnegie Mellon University, USA. Advisor(s) James J. Kuffner.

Rearrangement Planning

G. Havur, et al., *Geometric rearrangement of multiple movable objects on cluttered su* IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014, g

Multimodal Motion Planning

Hauser K, Latombe J-C. *Multi-modal Motion Planning in Non-expansive Spaces*. The Int 2010;29(7):897-915.

TAMP's siblings:

Manipulation Planning

Siméon T, Laumond J-P, Cortés J, Sahbani A. *I* Robotics Research. 2004;23(7-8):729-746.

NAMO (Navigation Among Mov

Mike Stilman. 2007. *Navigation among mova* J. Kuffner.

Rearrangement Planning

G. Havur, et al., *Geometric rearrangement of multiple movable objects on cluttered surfaces: A hybrid reasoning approach,* 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014, pp

Multimodal Motion Planning

Hauser K, Latombe J-C. *Multi-modal Motion Planning in Non-expansive Spaces*. The International Journal of Robotics Research. 2010;29(7):897-915.

TAMP's siblings:

Manipulation Planning

Siméon T, Laumond J-P, Cortés J, Sahbani A. *Manipulation* Robotics Research. 2004;23(7-8):729-746.

NAMO (Navigation Among Movable Obst

Mike Stilman. 2007. *Navigation among movable obstacles*. J. Kuffner.

Rearrangement Planning

G. Havur, et al., *Geometric rearrangement of multiple movable objects on cluttered surfaces: A hybrid reasoning approach,* 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014, pp

Multimodal Motion Planning

Hauser K, Latombe J-C. *Multi-modal Motion Planning in Non-expansive Spaces*. The International Journal of Robotics Research. 2010;29(7):897-915.

Outline

- Problem definition(s)
 - What makes it difficult?
 - 3 approaches to TAMP
 - Future directions

Outline

- Problem definition(s)
- What makes it difficult?
 - 3 approaches to TAMP
 - Future directions

- Coupling between S and C
- Geometric Backtracking
- Large search space, different metrics

Coupling between S and C

Coupling between S and C

In(Bottle, Box)
Plan #1
Pick(Bottle, Right) Place(Bottle, Box)

Coupling between S and C

• the **bottle** is not reachable by the **right arm**

Coupling between S and C

• the **bottle** is not reachable by the **right arm**

Coupling between S and C

- the bottle is not reachable by the right arm
- the box is not reachable by the left arm

Coupling between S and C

- the bottle is not reachable by the right arm
- the box is not reachable by the left arm

Coupling between S and C

- the **bottle** is not reachable by the **right arm**
- the box is not reachable by the left arm

Coupling between S and C

→ **Interleaving** symbolic and geometric search enables efficient pruning!

Coupling between S and C

Coupling between S and C

- Coupling between S and C
 - Geometric Backtracking
 - Large search space, different metrics

- Coupling between S and C
- Geometric Backtracking
- Large search space, different metrics

Geometric Backtracking

The process of reconsidering choices at the geometric level.

Geometric Backtracking

The process of reconsidering choices at the geometric level.

https://i.redd.it/p2m17shrhjuz.jpg

Geometric Backtracking

The process of reconsidering choices at the geometric level.

https://i.redd.it/p2m17shrhjuz.jpg

Geometric Backtracking

Geometric Backtracking

Geometric Backtracking

Goal state In(Bottle, Box) Plan #1 Plan #2 Plan #3 Plan #3 Pick(Bottle, Left) Place(Bottle, Table) Pick(Bottle, Right) Place(Bottle, Box)

- Coupling between S and C
- Geometric Backtracking
- Large search space, different metrics

- Coupling between S and C
- Geometric Backtracking
- Large search space, different metrics

- Coupling between S and C
- Geometric Backtracking
- Large search space, different metrics

- Coupling between S and C
- Geometric Backtracking
- Large search space, different metrics

- 2 equal symbolic states may have very different geometric configurations
- 2 different symbolic states may have very similar geometric configurations

- Coupling between S and C
- Geometric Backtracking
- Large search space, different metrics

- 2 equal symbolic states may have very different geometric configurations
- 2 different symbolic states may have very similar geometric configurations

 \rightarrow no easy "distance to goal" heuristics

Outline

- Problem definition(s)
- What makes it difficult?
 - 3 approaches to TAMP
 - Future directions

Outline

- Problem definition(s)
- What makes it difficult?
- 3 approaches to TAMP
 - Future directions

3 approaches to TAMP

- AsyMov
- FFRob
- ASP + failure explanation

3 approaches to TAMP

Grasp Planning

A Geometrical Approach to Planning Manipulation Tasks. The Case of Discrete Placements and Grasps R. Alami, T. Siméon, and J.-P. Laumond. in International Symposium on Robotics Research, 1989.

Grasp Planning Manipulation Planning

A Geometrical Approach to Planning Manipulation Tasks. The Case of Discrete Placements and Grasps R. Alami, T. Siméon, and J.-P. Laumond. in International Symposium on Robotics Research, 1989.

Siméon T, Laumond J-P, Cortés J, Sahbani A. *Manipulation Planning with Probabilistic Roadmaps*. The International Journal of Robotics Research. 2004;23(7-8):729-746.

Grasp

Planning

Manipulation Planning

TAMP

A Geometrical Approach to Planning Manipulation Tasks. The Case of Discrete Placements and Grasps R. Alami, T. Siméon, and J.-P. Laumond. in International Symposium on Robotics Research, 1989.

Siméon T, Laumond J-P, Cortés J, Sahbani A. *Manipulation Planning with Probabilistic Roadmaps*. The International Journal of Robotics Research. 2004;23(7-8):729-746.

A Hybrid Approach to Intricate Motion, Manipulation and Task Planning. S. Cambon, R. Alami, and F. Gravot, International Journal of Robotics Research, 2009.

AsyMov

Roadmaps (manipulation planning)

AsyMov

Sym Cs

Roadmaps (manipulation planning)

AsyMov

Roadmaps (manipulation planning)

A*

Cost:

Accumulated cost (h)

+ Heuristic cost

+ Cost of the number of failures

AsyMov

Roadmaps (manipulation planning)

current state to goal state (computed with FF planner)

AsyMov

A*

state (computed with FF planner)

AsyMov

Erion Plaku and Gregory D. Hager, *Sampling-based motion and symbolic action planning with geometric and differential constraints*, in ICRA, 2010, p. 5002--5008

- AsyMov
 - FFRob
 - ASP + failure explanation

- AsyMov
- FFRob
 - ASP + failure explanation

 $\operatorname{Pick}(C_1, O, G, P, C_2)$:

pre: HandEmpty, Pose(O, P), Robotconf (C_1) , CanGrasp (O, P, G, C_2) , Reachable (C_1, C_2) add: Holding(O, G), RobotConf (C_2) delete: HandEmpty, RobotConf (C_1)

 $PLACE(C_1, O, G, P, C_2):$

pre: Holding(O, G), $Robotconf(C_1)$, $CanGrasp(O, P, G, C_2)$, $Reachable(C_1, C_2)$ **add:** HandEmpty, Pose(O, P), $RobotConf(C_2)$ **delete:** Holding(O, G), $RobotConf(C_1)$

 $\operatorname{Pick}(C_1, O, G, P, C_2)$:

pre: HandEmpty, Pose(O, P), $Robotconf(C_1)$, $CanGrasp(O, P, G, C_2)$, $Reachable(C_1, C_2)$ add: Holding(O,G), $RobotConf(C_2)$ **delete:** HandEmpty, $RobotConf(C_1)$

 $PLACE(C_1, O, G, P, C_2)$:

pre: Holding(O, G), $Robotconf(C_1)$, $CanGrasp(O, P, G, C_2)$ $Reachable(C_1, C_2)$ add: $HandEmpty, Pose(O, P), RobotConf(C_2)$ **delete:** Holding(O,G), $RobotConf(C_1)$

 $\operatorname{Pick}(C_1, O, G, P, C_2)$: **pre:** HandEmpty, Pose(O, P), $Robotconf(C_1)$, $CanGrasp(O, P, G, C_2)$, $Reachable(C_1, C_2)$ add: Holding(O,G), $RobotConf(C_2)$ **delete:** HandEmpty, $RobotConf(C_1)$

 $PLACE(C_1, O, G, P, C_2):$

pre: Holding(O, G), $Robotconf(C_1)$, $CanGrasp(O, P, G, C_2)$ $Reachable(C_1, C_2)$ **add:** HandEmpty, Pose(O, P), $RobotConf(C_2)$ **delete:** Holding(O,G), $RobotConf(C_1)$

CRG: Conditional Reachability Graph

 $\operatorname{Pick}(C_1, O, G, P, C_2)$:

pre: HandEmpty, Pose(O, P), Robotconf (C_1) , CanGrasp (O, P, G, C_2) , Reachable (C_1, C_2) add: Holding(O, G), RobotConf (C_2) delete: HandEmpty, RobotConf (C_1)

PLACE (C_1, O, G, P, C_2) :

pre: Holding(O, G), $Robotconf(C_1)$, $CanGrasp(O, P, G, C_2)$ **add:** HandEmpty, Pose(O, P), $RobotConf(C_2)$ **delete:** Holding(O, G), $RobotConf(C_1)$

CRG: Conditional Reachability Graph

PICK (C_1, O, G, P, C_2) : **pre:** HandEmpty, Pose(O, P), Robotconf (C_1) , CanGrasp (O, P, G, C_2) , Reachable (C_1, C_2) **add:** Holding(O, G), RobotConf (C_2) **delete:** HandEmpty, RobotConf (C_1)

PLACE (C_1, O, G, P, C_2) :

pre: Holding(O, G), $Robotconf(C_1)$, $CanGrasp(O, P, G, C_2)$ **add:** HandEmpty, Pose(O, P), $RobotConf(C_2)$ **delete:** Holding(O, G), $RobotConf(C_1)$

CRG: Conditional Reachability Graph

Modified FF heuristic

 $H_{_{FF}} = #actions to achieve the goal, ignoring deletions$

PICK (C_1, O, G, P, C_2) :

pre: $HandEmpty, Pose(O, P), Robotconf(C_1), CanGrasp(O, P, G, C_2), Reachable(C_1, C_2)$ **add:** $Holding(O,G), RobotConf(C_2)$ **delete:** $HandEmpty, RobotConf(C_1)$

 $PLACE(C_1, O, G, P, C_2)$:

С

pre: Holding(O, G), $Robotconf(C_1)$, $CanGrasp(O, P, G, C_2)$ **add:** HandEmpty, Pose(O, P), $RobotConf(C_2)$ **delete:** Holding(O, G), $RobotConf(C_1)$

Modified FF heuristic

 $H_{_{FF}} = #actions to achieve the goal, ignoring deletions$

CRG: Conditional Reachability Graph

<h, g, o, p, 0/1>

C₂

When, moving from c_1 to c_2 , holding object *h* with grasp *g*, collision with object *o* at pose *p* → Give a better heuristic value to states from which occluding objects can be moved towards non-occluding positions.

С

Modified FF heuristic

Modified FF heuristic

- AsyMov
- FFRob
 - ASP + failure explanation

- AsyMov
- FFRob
- ASP + failure explanation

ASP + failure explanation

SAT Planning:

ASP + failure explanation

ASP + failure explanation

- AsyMov
- FFRob
- ASP + failure explanation

- ASYMOV Roadmaps + task planner as heuristic
- FFROD Task planner + CRG as heuristic
- ASP + failure explanation

Geometric reasoner pruning the search space of the task planner

Outline

Outline

- Problem definition(s)
- What makes it difficult?
- 3 approaches to TAMP
 - Future directions

Outline

- Problem definition(s)
- What makes it difficult?
- 3 approaches to TAMP
- Future directions

• Learning

A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, *Learning Feasibility for Task and Motion Planning in Tabletop Environments*, IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1255–1262, Apr. 2019.

Kim B, Wang Z, Kaelbling LP, Lozano-Pérez T. *Learning to guide task and motion planning using score-space representation*. The International Journal of Robotics Research. 2019;38(7):793-812.

• Learning

A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, *Learning Feasibility for Task and Motion Planning in Tabletop Environments*, IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1255–1262, Apr. 2019.

Kim B, Wang Z, Kaelbling LP, Lozano-Pérez T. *Learning to guide task and motion planning using score-space representation*. The International Journal of Robotics Research. 2019;38(7):793-812.

Theory

William Vega-Brown, Nicholas Roy, Task and Motion Planning Is PSPACE-Complete. AAAI 2020: 10385-10392.

• Learning

A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, *Learning Feasibility for Task and Motion Planning in Tabletop Environments*, IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1255–1262, Apr. 2019.

Kim B, Wang Z, Kaelbling LP, Lozano-Pérez T. *Learning to guide task and motion planning using score-space representation*. The International Journal of Robotics Research. 2019;38(7):793-812.

• Theory

William Vega-Brown, Nicholas Roy, Task and Motion Planning Is PSPACE-Complete. AAAI 2020: 10385-10392.

Culprit detection

Hauser K. *The minimum constraint removal problem with three robotics applications*. The International Journal of Robotics Research. 2014;33(1):5-17.

• Learning

A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, *Learning Feasibility for Task and Motion Planning in Tabletop Environments*, IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1255–1262, Apr. 2019.

Kim B, Wang Z, Kaelbling LP, Lozano-Pérez T. *Learning to guide task and motion planning using score-space representation*. The International Journal of Robotics Research. 2019;38(7):793-812.

• Theory

William Vega-Brown, Nicholas Roy, Task and Motion Planning Is PSPACE-Complete. AAAI 2020: 10385-10392.

Culprit detection

Hauser K. *The minimum constraint removal problem with three robotics applications*. The International Journal of Robotics Research. 2014;33(1):5-17.

• You guys!

Bibliography

- L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE, Transactions on Robotics & Automation, 12(4):566–580, June 1996.
- S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proceedings IEEE International Conference on Robotics and Automation, pages 473-479, 1999
- Siméon T, Laumond J-P, Cortés J, Sahbani A. Manipulation Planning with Probabilistic Roadmaps. The International Journal of Robotics Research. 2004;23(7-8):729-746.
- Mike Stilman. 2007. Navigation among movable obstacles. Ph.D. Dissertation. Carnegie Mellon University, USA. Advisor(s) James J. Kuffner.
- G. Havur, et al., Geometric rearrangement of multiple movable objects on cluttered surfaces: A hybrid reasoning approach, 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014, pp
- Hauser K, Latombe J-C. Multi-modal Motion Planning in Non-expansive Spaces. The International Journal of Robotics Research. 2010;29(7):897-915.
- R. Alami, T. Siméon, and J.-P. Laumond. A Geometrical Approach to Planning Manipulation Tasks. The Case of Discrete Placements and Grasps. in International Symposium on Robotics Research, 1989.
- Siméon T, Laumond J-P, Cortés J, Sahbani A. Manipulation Planning with Probabilistic Roadmaps. The International Journal of Robotics Research. 2004;23(7-8):729-746.
- S. Cambon, R. Alami, and F. Gravot, A Hybrid Approach to Intricate Motion, Manipulation and Task Planning. International Journal of Robotics Research, 2009.
- Caelan R. Garrett, Tomas Lozano-Perez, Leslie P. Kaelbling. FFRob: An Efficient Heuristic for Task and Motion Planning, International Workshop on the Algorithmic Foundations of Robotics (WAFR), 2014.
- Akbari, A., Lagriffoul, F. & Rosell, J. Combined heuristic task and motion planning for bi-manual robots. Autonomous Robot 43, 1575–1590 (2019).
- F. Lagriffoul, B. Andres, Combining Task and Motion Planning: a culprit detection problem. The International Journal of Robotics Research, 2016.
- Hauser K. The minimum constraint removal problem with three robotics applications. The International Journal of Robotics Research. 2014;33(1):5-17.
- A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, Learning Feasibility for Task and Motion Planning in Tabletop Environments, IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1255–1262, Apr. 2019.
- Kim B, Wang Z, Kaelbling LP, Lozano-Pérez T. Learning to guide task and motion planning using score-space representation. The International Journal of Robotics Research. 2019;38(7):793-812.
- William Vega-Brown, Nicholas Roy, Task and Motion Planning Is PSPACE-Complete. AAAI 2020: 10385-10392.
- Hauser K. The minimum constraint removal problem with three robotics applications. The International Journal of Robotics Research. 2014;33(1):5-17.
- WIKI: http://tampbenchmark.aass.oru.se/

3 approaches to TAM

ASP + failure explanation

SAT Planning:

Formula describing the initial state: $\Lambda\{l_0 \mid l \in s_0\} \land \Lambda\{\neg l_0 \mid l \in L - s_0\}$

Formula describing the goal state: $\Lambda\{l_n \mid l \in g^+\} \land \Lambda\{\neg l_n \mid l \in g^-\}$

Formulas describing the preconditions and effects of actions:

- For every action *a* in *A*, formulas describing what changes *a* would make if it were the *i*'th step of the plan:
- $a_i \Rightarrow \bigwedge \{p_i \mid p \in \operatorname{Precond}(a)\} \land \bigwedge \{e_{i+1} \mid e \in \operatorname{Effects}(a)\}$

Formulas describing *Complete exclusion*:

- For all actions *a* and *b*, formulas saying they cannot occur at the same time
 ¬ *a_i* ∨ ¬ *b_i*
- this guarantees there can be only one action at a time