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S88P  [edit]

The surfaces supporting stable placements are specified by 6 values (xmin, xmax, ymin, ymax, zmin, zmax) representing a rectangular

region in the reference frame of the object.

1 <sssp>
2 <xmin>-0.25<xmax><xmin=0.25<xmax>
Z <ymin=-0.25<ymax><ymin=0.25<ymax>
4
5

<zmin>0.5<zmax><zmin>0.5<zmax> '4 P Space Of graSpS and

</ss5p>

placements

Alternatively, S55P can be represented by polygonal regions. Then, the tag <pssp> (polygon supporting stable placements) is used and a
polygonal region is specified as a list of 3D coordinates in the reference frame of the object, assumed to lie in a plane:

states to configurations;
<pssp=

1

2 <point><x>-0.15</x><y>0.33</y><z>0.5</z></point> EI.CtiOI'lS to mOtiDH PlanS.
3 <point><x>-0.22</x><y>0.25</y><z>0.5</z></point>
4 <point><x>0.25</x><y=0.12</y><z>0.5</z></point>
5

6

</pssp>

Remarks:
+ In stacking problems, the 555P is defined by a single point centred on top of the object (i.e., xmin=xmax, ymin=ymax) therefore objects
will be aligned on top of each other (e.qg., disc2 and disc3 in the example below).

+ The number of SSSP per object is currently limited to one. This assumes that if an object is rotated about the x or y axis, it is no longer
possible to place something on it. This assumption is sufficient for the current set of benchmark problems, but it may be relaxed later, i.e.,

by allowing lists of SSOP.

SOP [edit]

The stable object poses are defined similarly to continuous grasps: a template rotation and a rotation axis (both expressed in the world
frame of reference, plus the distance parameter, which is the distance between the centre of the object and the SSSP.

1 <sop>
2 <template=1.0 0.0 0.0 0.0 1.0 0.0 0.0 8.0 1.0</template=
3 <axis>0.0 0.0 1.0</axis>

4 <distance=>0.08</distance>

5 </sop=>

® s, € S is the start state
e S, C Sis the set of goal states
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Siméon T, Laumond J-P, Cortés J, Sahbani A. Manipulation Planning with Probabilistic Roadmaps. The International Journal of
Robotics Research. 2004;23(7-8):729-746.

« NAMO (Navigation Among Movable Obstacles)

Mike Stilman. 2007. Navigation among movable obstacles. Ph.D. Dissertation. Carnegie Mellon University, USA. Advisor(s) James
J. Kuffner.

« Rearrangement Planning

G. Havur, et al., Geometric rearrangement of multiple movable objects on cluttered surfaces: A hybrid reasoning approach, 2014
IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014, pp

* Multimodal Motion Planning

Hauser K, Latombe J-C. Multi-modal Motion Planning in Non-expansive Spaces. The International Journal of Robotics Research.
2010;29(7):897-915.
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* ASYMOV Roadmaps + task planner as heuristic
* FFRob Task planner + CRG as heuristic

* ASP + failure explanation Geometric reasoner pruning

the search space of the task planner
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3 approacnes

to TA

» ASP + failure explanation =N

SAT Planning:

Planning
domain and
prOblb
CNF Plan

| t

SAT Solver =i Model

Formula describing the initial state:
N, |lesyy ANl [1el—s,}

Formula describing the goal state:
NI, Jlegy ANSL | Teg

Formulas describing the preconditions and effects of actions:

For every action @ in 4, formulas describing what changes @ would make if it
were the i’th step of the plan:

e a, = N{p, | p € Precond(a)} A A\ {e,,, | e € Effects(a)}

Formulas describing Complete exclusion:
e Forall actions a and b, formulas saying they cannot occur at the same time
—a; Vo b,
e this guarantees there can be only one action at a time
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