
30th International Conference on
Automated Planning and Scheduling

October 19–30, 2020, online

HSDIP 2020
Proceedings of the 12th Workshop on

Heuristics and Search for Domain-independent
Planning (HSDIP)

Edited by:

Alberto Camacho, Salomé Eriksson, Daniel Fiešer, Guillem
Francès, Florian Geißer, Patrik Haslum, Jendrik Seipp, Silvan

Sievers, David Speck, Álvaro Torralba

Organization

Alberto Camacho
Google and University of Toronto, Canada

Salomé Eriksson
University of Basel, Switzerland

Daniel Fiešer
Czech Technical University, Czech Republic

Guillem Francès
Universitat Pompeu Fabra, Spain

Florian Geißer
The Australian National University, Australia

Patrik Haslum
The Australian National University, Australia

Jendrik Seipp
University of Basel, Switzerland

Silvan Sievers
University of Basel, Switzerland

David Speck
University of Freiburg, Germany

Álvaro Torralba
Aalborg University, Denmark

ii

Foreword

Planning as heuristic search remains among the dominating approaches to many variations of domain-independent planning,
including classical planning, temporal planning, planning under uncertainty and adversarial planning, for nearly two decades.
The research on both heuristics and search techniqes is thriving, now more than ever, as evidenced by both the quality and the
quantity of submissions on the topic to major AI conferences and workshops.

This workshop seeks to understand the underlying principles of current heuristics and search methods, their limitations,
ways for overcoming those limitations, as well as the synergy between heuristics and search. To this end, this workshop intends
to offer a discussion forum and a unique opportunity to showcase new and emerging ideas to leading researchers in the area.
Past workshops have featured novel methods that have grown and formed indispensable lines of research.

This year is the 12th edition of the workshop series on Heuristics for Domain-independent Planning (HDIP), which was
first held in 2007. HDIP was subsequently held in 2009 and 2011. With the fourth workshop in 2012, the organizers sought to
recognize the role of search algorithms by acknowledging search in the name of the workshop, renaming it to the workshop on
Heuristics and Search for Domain-independent Planning (HSDIP). The workshop continued flourishing under the new name
and has become an annual event at ICAPS.

Alberto Camacho, Salomé Eriksson, Daniel Fiešer, Guillem Francès, Florian Geißer,
Patrik Haslum, Jendrik Seipp, Silvan Sievers, David Speck, Álvaro Torralba

October 2020

iii

Contents

Learning Search-Space Specific Heuristics Using Neural Network
Liu Yu, Ryo Kuroiwa and Alex Fukunaga 1

Beating LM-cut with LM-cut: Quick Cutting and Practical Tie Breaking for the Precondition Choice Function
Pascal Lauer and Maximilian Fickert 9

Online Saturated Cost Partitioning for Classical Planning
Jendrik Seipp 16

Subset-Saturated Transition Cost Partitioning for Optimal Classical Planning
Dominik Drexler, David Speck and Robert Mattmüller 23

Investigating Lifted Heuristics for Timeline-based Planning
Riccardo De Benedictis and Amedeo Cesta 32

Generating Data In Planning: SAS+ Planning Tasks of a Given Causal Structure
Michael Katz and Shirin Sohrabi 41

Bounding Quality in Diverse Planning
Michael Katz, Shirin Sohrabi and Octavian Udrea 49

Automatic Configuration of Benchmark Sets for Classical Planning
Álvaro Torralba, Jendrik Seipp and Silvan Sievers 58

Revisiting Dominance Pruning in Decoupled Search
Daniel Gnad 67

On the Optimal Efficiency of A* with Dominance Pruning
Álvaro Torralba 76

Approximate bi-criteria search by efficient representation of subsets of the Pareto-optimal frontier
Oren Salzman 84

An Atom-Centric Perspective on Stubborn Sets
Gabriele Röger, Malte Helmert, Jendrik Seipp and Silvan Sievers 93

Simplified Planner Selection
Patrick Ferber 102

iv

Learning Search-Space Specific Heuristics Using Neural Network

Liu Yu, Ryo Kuroiwa,1 Alex Fukunaga,2
1Department of Mechanical and Industrial Engineering, University of Toronto

2Graduate School of Arts and Sciences, The University of Tokyo
liuyu.ai@outlook.com, mhgeoe@gmail.com, fukunaga@idea.c.u-tokyo.ac.jp

Abstract

We propose and evaluate a system which learns a neural-
network heuristic function for forward search-based, satisfic-
ing classical planning. Our system learns distance-to-goal es-
timators from scratch, given a single PDDL training instance.
Training data is generated by backward regression search or
by backward search from given or guessed goal states. In do-
mains such as the 24-puzzle where all instances share the
same search space, such heuristics can also be reused across
all instances in the domain. We show that this relatively sim-
ple system can perform surprisingly well, sometimes compet-
itive with well-known domain-independent heuristics.

1 Introduction
State-space search using heuristic search algorithms such as
GBFS is a state-of-the-art technique for satisficing, domain-
independent planning. Search performance is largely deter-
mined by the heuristic evaluation function used to decide
which state to expand next. Heuristic function effectiveness
for domain-independent planning depends on the domain, as
different heuristics represent different approaches to exploit-
ing available information. Designing heuristics which work
well across many domains is nontrivial, so learning-based
approaches are an active area of research.

In one setting for learning search control knowledge for
planning (exemplified by the Learning Track of the IPC), a
set of training problem instances (and/or a problem instance
generator) is given, and the task is to learn a domain-specific
heuristic for that domain. Previous work on learning heuris-
tics and other search control policies (e.g., selection among
several search strategies) in this setting include (Yoon, Fern,
and Givan 2008; Xu, Fern, and Yoon 2009; de la Rosa et al.
2011; Garrett, Kaelbling, and Lozano-Pérez 2016; Sievers
et al. 2019; Gomoluch, Alrajeh, and Russo 2019). Another
type of setting seeks to learn domain-independent planning
heuristics, which generalize not only to domains used dur-
ing training, but also to unseen domains (Shen, Trevizan,
and Thiébaux 2020; Gomoluch et al. 2017).

Inter-instance speedup learning, or “on-line learning”, is
a setting where only one problem instance (no training in-
stances or problem generator) is given, and the task is to
solve that instance as quickly as possible. Speedup learn-
ing within a single problem solving episode is worthwhile

if the total time spent by the solver (including learning)
is faster than the time required to solve the problem us-
ing other methods. Previous work on on-line learning for
search-based planning includes learning decision rules for
combining heuristics (Domshlak, Karpas, and Markovitch
2010) and macro operator learning (Coles and Smith 2007).

On-line learning can be used to learn an instance-specific
heuristic. Previous work on instance-specific learning in-
cludes bootstrap heuristic learning (Arfaee, Zilles, and Holte
2011), as well as LHFCP, a single-instance neural net-
work heuristic learning system (Geissman 2015). Instance-
specific learning can be generalized to single search space
learning, where many problem instances share a single
search space. For example, all instances of the 15-puzzle
domain share the same search space – different instances
have different initial states, all on the same connected state
space graph. Thus, a learned heuristic function which per-
forms well for one instance of the 15-puzzle can be directly
applied to other instances of the domain.

We propose and evaluate SING, a neural network-based
instance-specific and single search space heuristic learning
system for domain-independent, classical planning. SING is
closely related to LHFCP, an approach to supervised learn-
ing of heuristics which generates training data using back-
ward search (2015). Given a PDDL problem instance I , LH-
FCP learns a heuristic hnn for I . To generate training data for
hnn, LHFCP performs a series of backward searches from a
goal state of I to collect a set of states and their approxi-
mate distances from the goal. After training, hnn is used as
the heuristic function by GBFS to solve I . This does not
require any additional training instances as input, nor pre-
existing heuristics to bootstrap its performance. However,
LHFCP performed comparably to blind search (Geissman
2015), so achieving competitive performance with this ap-
proach remained an open problem.

SING expands upon this basic approach in several ways:
(1) improved backward search space using either (a) explicit
search with inferred inverse operators or (b) regression, (2)
depth-first search (vs. random walk), (3) boolean state rep-
resentation, and (4) relative error loss function. We experi-
mentally evaluate SING for learning domain-specific heuris-
tics for domains where instances share a single state space,
and show performance competitive with the Fast Forward
heuristic (hff) (Hoffmann and Nebel 2001), and the land-

1

mark count heuristic (hlm) (Hoffmann, Porteous, and Se-
bastia 2004) on several domains. We also evaluate SING
as an instance-specific heuristic learner, and show that the
learned heuristics consistently outperforms blind search on
a broad range of standard IPC benchmark domains, and per-
forms competitively on some domains, even when the learn-
ing times are accounted for within the time limit.

2 Preliminaries and Background
We consider domain-independent classical planning prob-
lems which can be defined as follows. A SAS+ plan-
ning task (Bäckström and Nebel 1995) is a 4-tuple, Π =
〈V,O, I,G, 〉, where V = x1, ..., xn is a set of state vari-
ables, each with an associated finite domain Dom(xi); A
state s is a complete assignment of values to variables. S
is the set of all states. O is a set of actions, where each
action a ∈ O is a tuple (pre(a), eff (a)), where pre(a)
and eff (a) are sets of partial state variable assignments
xi = v, v ∈ Dom(xi); I ∈ S is the initial state, and G
is a partial assignment of state variables defining a goal con-
dition (s ∈ S is a goal state if G ⊂ s). A plan for Π is
a sequence of applicable actions which when applied to I
results in a state which satisfies all goal conditions. Search-
based planners seek a path from the start state to a goal state
using a search algorithm such as best-first search guided by
a heuristic state evaluation function.

A natural approach to learn heuristic functions for search-
based planning is a supervised learning framework consist-
ing of the following stages: (1) Training Sample Genera-
tion: generate many state/distance pairs which will be used
as training data. (2) Training: Train a heuristic function h
which predicts distances from a given state to a goal. (3)
Search: Use h as the heuristic evaluation function in a stan-
dard heuristic search algorithm such as GBFS. This paper
focuses mostly on stage (1), training data generation.

Ferber et al. (2020) investigated an approach where the
training data was generated using forward search from the
start states of training instances. They perform random
walks (200 steps) from the initial state, and from each step
visited in the random walk, they perform a forward search
(a “teacher search” using a heuristic such as hff) to a goal
in order to find the distance to the goal. If the teacher
search finds a path to the goal, the states on the path as
well as the distance-to-goal for the states on the path are
added to the training data. This approach can be practical
for shared search space heuristic learning, where the costs
of the teacher searches can be amortized among many in-
stances on the same search space. However, this is not prac-
tical for satisficing, single instance heuristic learning where
there is only one problem solving episode, as requiring for-
ward search to the goal in order to gather training data obvi-
ates the need to learn a heuristic for that particular instance.

An alternative approach to generating training data uses
backward search from the goal. A backward search starting
at a goal state (provided in or guessed/derived from the prob-
lem specification) is performed, storing encountered states
and their (estimated) distances from thoe goal as the training
data. Arfaee, Zilles, and Holte (2011) used this approach in
a bootstrap system for heuristic learning, which starts with

a weak neural net heuristic h0 and generates increasingly
more powerful heuristics by using the current heuristic to
solve problem instances, using states generated during the
search as training data for the next heuristic improvement
step. If h0 is too weak to solve training set problems, they
generate training data by random walks from the goal state
to generate easy problem instances that can be solved by h0.
Lelis et al. (2016) proposed BiSS-h, an improvement which
uses a solution cost estimator instead of search for training
data generation. Arfaee et al. and Lelis et al. evaluated their
work on domain-specific solvers for the 24-puzzle, pancake
puzzle, and the Rubik’s cube.

Geissmann (2015) investigated a backward-search ap-
proach to training data generation for domain-independent
classical planning. His system, LHFCP, uses backward
search to generate training data for learning a neural network
heuristic function which estimates the distance from a state
to a goal. To generate training data, LHFCP performs back-
ward search (random walk) in an explicit search space. It
generates the start state for backward search by generating a
state which satisfies the goal conditions, with values unspec-
ified by the goal condition filled in randomly. LHFCP relies
on the operators in the original (forward) problem to per-
form backward search. Search using the heuristics learned
by LHFCP across a wide range of IPC domains performed
comparably to blind search (Geissman 2015). Geissmann
also investigated a variation of LHFCP which applied BiSS-
h to classical planning but reported poor results, attributed
to difficulties in efficiently implementing BiSS for classi-
cal planning. Thus, a successful backward-search based ap-
proach to training data generation for domain-independent
classical planning remained an open problem.

3 SING: An Improved, Backward-Search
Based Heuristic Learning System

We describe SIngle search space Neural heuristic Generator
(SING), a system which learns single-search space heuris-
tics for domain-independent planning. SING learns a heuris-
tic function hnn(s), which takes as input a vector represen-
tation of a state s, and returns a heuristic estimate of the
distance from s to a closest goal. SING is implemented on
top of the Fast Downward planner (FD) (Helmert 2006).

SING uses backward search to generate training data,
similar to LHFCP, but incorporates several significant dif-
ferences in the state representation, backward search space
formulation, and backward search strategy. Below, we de-
scribe each of these in details:

3.1 State Representation
The input to hnn is a vector representation of a state. LHFCP
used a multivalued SAS+ vector representation of the state,
which is a natural representation to use, as FD uses the SAS+
representation internally.

Another natural representation for the vector input to hnn
is based on the STRIPS propositional representation of the
problem. A STRIPS planning task (Fikes and Nilsson 1971)
is a 4-tuple, Π = 〈F, I,G,A, 〉 where F is a set of propo-
sitional facts, I ∈ 2F is the initial state, G ∈ 2F is a set of

2

goal facts, and A is a set of actions. Each action a ∈ A has
preconditions pre(a), add effects add(a), and delete effects
del(a), which are sets of facts. A state s ∈ 2F is set of facts,
and s is a goal state if G ⊆ s. Given a state s ∈ 2F , a is
applicable iff pre(s) ⊆ s. After applying a in s, s transi-
tions to s ∪ add(a) \ del(a). A plan for Π is a sequence of
applicable actions which make I transition to a goal state.

The STRIPS representation corresponds directly to the
classical planning subset of the standard PDDL domain de-
scription language, as PDDL uses boolean facts to repre-
sent the world state. In the SAS+ representation used by
FD, each possible value of a variable represents a mutu-
ally exclusive set of facts in the underlying propositional
problem. Each variable-value pair in FD represents a fact,
negation of a fact, or negation of all facts represented by
other values in the variable. Preconditions and effects of ac-
tions are also represented as the set of variable-value pairs.
Since the variable/value naming conventions used in the
SAS+ generated by the FD PDDL-to-SAS+ translator, con-
version between the SAS+ finite-domain representation and
the STRIPS propositional state representation is easy. Thus,
hnn can use either the boolean (STRIPS) or multivalued
(SAS+) state vector representation as input during training
and search.

Since each input bit corresponds to a fact in the boolean
encoding, it may enable a more accurate hnn state evalua-
tion function to be learned than the SAS+ multi-valued en-
coding. On the other hand, SAS+ encodings are more com-
pact, which can significantly reduce the dimensionality of
the state representation, which can result in faster NN eval-
uation, speeding up the search process. Thus, the choice of
state vector representation poses a tradeoff between hnn eval-
uation accuracy and hnn evaluation speed, and SING can
use either the multivalued SAS+ vector representation or the
STRIPS boolean vector representation.

3.2 Search Space and Operators for Training
Sample Generation

The task of training sample generation is to collect a train-
ing set T = {(s1, e1), ..., (sr, er)} a set of r states and their
(estimated) distance to a goal. The basic idea is to repeat-
edly start at a goal g and generate a sequence of states head-
ing away from it (using a directed search or random walk),
adding such states to the training data.

In some search problems such as the sliding tiles puz-
zle, backward search is relatively straightforward as the goal
state is given explicitly as input to the problem, and the op-
erators available for the forward problem are sufficient to
solve the backward problem.

In domain-independent planning, backward search based
training sample generation poses several issues. First, a goal
condition, possibly satisfied by many goal states, is given in-
stead of an explicit, unique goal state, so in general, it is not
possible to simply “search backward from the goal state”.
Second, in general, the operators for the forward problem
are not sufficient for backward search. LHFCP generates a
start state for backward search by generating a state which
satisfies the goal conditions, with values unspecified by the

goal condition filled in randomly. It relies on the operators in
the original (forward) problem to perform backward search.

SING incorporates two approaches to backward search
for training sample generation: (1) backward explicit search
using derived inverse operators, and (2) regression.

Explicit Backward Search with Derived Inverse Oper-
ators As in LHFCP, a candidate start state for backward
search is generated by first generating a partial state which
satisfies all conditions in the goal condition, and then ran-
domly assigning values to variables whose values are un-
specified in the goal condition. Such a randomly generated
candidate start state s might be invalid and unexpandable,
i.e., no backward operators (see below) can be applied to
s. In that case, we simply generate another candidate state.
This random initialization is performed for each backward
sampling search.

For the search operators, one simple approach is to use
the same set of actions as for forward search, as in LHFCP
(Geissman 2015). However, this fails in domains where ac-
tions are not invertible such as visitall.

Thus, operators for the backward search must be derived
from the forward operators. Since preconditions and effects
are represented as a set of variable-value pairs in FD, one
naive method to generate inverse actions is to swap values
of variables which appear in both preconditions and effects.
Other variable-value pairs in preconditions and effects are
treated as preconditions in the inverse action, because they
must hold after application of the action. However, the in-
verse action does not change values of variables which ap-
pear in the original effects but not in the original precon-
ditions. To address this issue, we use information available
in the STRIPS formulation of the problem (as explained
in Section 3.1, conversion among the PDDL problem de-
scription, its STRIPS formulation and the SAS+ formula-
tion used internally by Fast Downward is straightforward).
For action a, we generate an inverse action a′ such that
pre(a′) = (pre(a) ∪ add(a)) \ del(a), add(a′) = del(a),
and del(a′) = add(a). We identify variable-value pairs
which represent propositions as add effects, and pairs which
represent negation of facts as delete effects.

Regression Another approach to backward search is re-
gression. In backward search using regression, we use the
modified SAS+ representation by Alcázar et al. (2013). An
action a is applicable to a state s if add(a)∩s 6= ∅∧del(a)∩
s = ∅. If an action a is applied to a state s, s transitions to
a state s′ = (s \ add(a)) ∪ pre(a). Normally, SAS+ vari-
ables represent mutex groups of the corresponding STRIPS
propositions. In regression planning with SAS+, each vari-
able has an additional, undefined value. The starting node in
regression space is the goal state, where variables unspeci-
fied by the goal condition have undefined values. When an
action a is applied to a state s, if a variable v is included in
add(a) but not in pre(a), v is set to undefined.

When generating training data, a bit vector representation
of states needs to be generated (Section 3.1). When convert-
ing the SAS+-based representation used by Fast Downward
into a bit vector, unlike the other possible state values in the
mutex group, undefined values are not explicitly represented

3

in the bit vector. For example, suppose a state variable x in
regression search has 2 possible actual values, v1 and v2, as
well as ”undefined”. In the bit vector representation output
for use as training data, x is represented by 2-bits, where the
first bit represents x1, and the second bit represents x2, and
there is no explicit third bit for the undefined value.

Regression vs. explicit search spaces The choice of re-
gression vs. explicit spaces depends on the domain. Al-
though regression is in a sense the “correct” way to per-
form backward search, the backward branching factor in re-
gression space is very large in many domains. On the other
hand, while explicit backward spaces sometimes have much
smaller branching factor than regression, goal generation has
risks. First, goal generation might fail to find a goal. Also,
generated goals might not be true goal states reachable from
the start state, and states reachable from such incorrect states
are also unreachable from the start state. Such cliques (un-
reachable from the start state) can cause backward search to
yield few or no states for training data.

However, although the training data may include states
which are unreachable from the start state, these may nev-
ertheless be useful for learning an effective hnn which eval-
uates “real” states during search, somewhat similar to how
synthetic data generated by the adversary during training is
useful for learning networks which correctly classify real
data in GAN learning (Goodfellow et al. 2014).

3.3 Backward Search Strategy
Given a start state for backward search (corresponding to a
goal in the forward search space), we seek a set of training
states T which are relatively far from goal g but with a rea-
sonable estimate of their distance from g for training hnn.
Breadth-first search (BFS) from g could be used to generate
states T for which c(s, g), the exact distances from s ∈ S to
g (assuming unit-cost domains) are known, but would limit
the training data to states which are very close to g. We need
a search algorithm which can go much further from g than
BFS, and for which the number of steps in the (inverted)
path from s ∈ T to g is an approximation of c(s, g).

One natural sampling/search strategy is random walk, as
in LHFCP (Geissman 2015). The number of steps from g
at which s is encountered is used as an estimate of the true
distance from g to s. Although random walk is fast, distance
estimates from random walk may be inaccurate if cycles are
not detected. Loop detection can be implemented easily us-
ing a hash table, but in domains with many cycles, it can be
difficult to sample nodes far from g if the random walk is
restarted whenever a previously visited node is generated.

Therefore, we use depth-first search (DFS) to extend a
path from g, using the depth at which s is encountered is
used as an estimate of the true distance from g to s, and
all generated states are added to T . Random tie-breaking
among s is used to select the nodes among successors of
s, Succ(s), to expand. A hash table is used to prune dupli-
cate nodes and prevent cycles. In domains with many cy-
cles and dead ends, by backtracking (instead of restarting
search) when a duplicate is detected, DFS can potentially
sample more states which are further from g than random

walk. The best choice of sampling search strategy depends
on the domain. In some domains, DFS generates more ac-
curate samples than random walk due to duplicate detection
and backtracking, while in other domains DFS may incur
large overheads due to backtracking and Random walk al-
lows faster searches.

In the experiments below, during training data generation
we perform nsearches backward searches, stopping each
search after nsamples states are collected, i.e., nsearches ×
nsamples states are collected.

3.4 Neural Network Architecture
We use a standard feedforward network for hnn, using the
ReLU activation function. Each layer is fully connected to
the next layer. The input layer takes the state vector repre-
senting a state s as input. As discussed in Section 3.1, the
state vector is either a boolean vector for the STRIPS rep-
resentation of the problem instance, or a multivalued vector
for the SAS+ representation of the instance, so the number
of inputs is the same as the length of the state vector (|F |
for STRIPS propositional representation, |V | for SAS+ mul-
tivalued representation). The output layer is a single node
which returns hnn(s), the heuristic evaluation value of state
s. Since hnn will be called many times as the heuristic evalu-
ation function for best-first search, a small network enabling
fast evaluation is desirable.

PyTorch 1.2.0 is used for training hnn, but for search, we
use the Microsoft ONNX Runtime 0.4.0 to evaluate hnn.
Both training and search use a single CPU core. Due to the
simple network architecture as well as accelerated evalua-
tion using the ONNX Runtime, hnn can be evaluated rela-
tively quickly, significantly faster than hff on most IPC do-
mains, (see node expansion rates in Table 2).

3.5 Loss Function
Previous work on learning neural nets for classical planning
used the standard Mean Square Error (MSE) regression loss
function (Geissman 2015; Ferber, Helmert, and Hoffmann
2020). Instead of MSE, we use a prediction relative error
sum loss function, floss =

∑
i abs(ŷi− yi)/(yi + 1), which

is the sum of the relative error of the predicted (ŷi) values
compared to the training data (yi).

4 Evaluation: Domain-Specific Heuristic
Learning on Shared Search Spaces

In domains where multiple instances share the same space,
it is possible to learn reusable hnn networks that can be used
across many instances, so the cost of learning a heuristic can
be amortized across instances. For example, all instances of
the N -puzzle (for a particular value of N) share the same
search space.

We evaluated SING as a shared search space, single model
learner on the following PDDL domains:

• 24-puzzle: PDDL encodings of the standard 50-
instance benchmark set from (Korf and Felner 2002)

• 35-puzzle: 50 randomly generated instances

4

name state backward rev. inversion NN # of NN nodes samples #
vector space search hidden hidden

C2 boolean regression DFS yes 1 16 105

C3 SAS+ explicit rand. walk yes 1 16 105

C4 boolean explicit DFS yes 4 64 105

C5 boolean explicit DFS yes 1 16 4× 105

SING/L SAS+ explicit rand. walk no 1 16 105

Table 1: SING configurations used in experiments. “state
vector”: vector representation of states. “backward space”:
search space for training data generation backward search.
“rev. search” : search strategy for Training data generation
backward search. “NN # of hidden”: # of hidden nodes in
hnn. “NN nodes hidden”: # of nodes per hidden layer. “sam-
ples #” : # of sample states collected in the training data
collection phase using the sampling search. C2, C3 and C4
perform 500 searches, with a limit of 200 samples/search
(105 samples). C5 performs 800 searches, with a limit of
500 samples/search (4× 105 samples).

• blocks25: 100 blocks instances with 25 blocks gener-
ated using the generator from (Hoffmann 2002)

• pancake: 100 randomly generated instances with 14 pan-
cakes.

For each domain above, we ran the learning phase (train-
ing data generation and hnn training) once to learn a heuristic
hnn for the domain. For 24-puzzle, we used the C4 config-
uration (Table 1 shows configuration details), and training
data generation took 7 seconds and training took 61 seconds.
For blocks25, we used the C5 configuration, training data
generation took 502 seconds and training took 228 seconds.
For pancake, we used the C4 configuration, training data
generation took 21 seconds and training took 377 seconds.

Note that for these 3 domains, we tried several SING con-
figurations (i.e., manual tuning) and report the results for the
best configuration. We are currently investigating automated
tuning (hyperparameter optimization) to optimize the best
configuration for a given domain.

Table 2 and Figures 1-2 compare the coverage, node ex-
pansions, and runtime (on solved instances) of GBFS using
hnn, hff, hlm with a 30 min time limit per instance and 8GB
RAM limit using an Intel(R) Xeon(R) CPU E5-2680 v2.

hnn had or tied for the highest coverage on all 4 domains.
On blocks25 and pancake, hnn had the highest cover-
age. On 24-puzzle, 35-puzzle and pancake, hnn had the
lowest median run time. Thus, hnn achieved competitive per-
formance on all of these domains compared to both hff and
hlm in this shared search space evaluation setting. Note that
while hnn and hff expanded a comparable number of nodes,
hnn had a significantly higher median node expansion rate
than hff resulting in faster runtimes.

Figure 3 compares heuristic accuracy (h-value minus true
distance) for a set of 4400 states for hnn, hff, hlm, and hgc
(goal count). For states with true distance ≤ 30 from the
goal state, hnn is fairly accurate. This accuracy and the fast
evaluation speed due to the simple neural network enables
efficient, fast search.

5 Evaluation: Instance-Specific Learning
In Section 4, we evaluated SING for learning domain-
specific heuristics which could be reused on many instances
sharing the same search space, so the evaluation focused on
search time, assuming that the time spent learning hnn can
be amortized across multiple instances.

Next, we evaluate SING as an instance-specific learner
in an IPC Satisficing track setting, where SING is given 30
minutes total for all phases, including learning (including
training data collection and training) and search. Each run
of SING starts from scratch – nothing is reused across in-
stances, learning costs are not amortized, and the heuristic
is learned specifically for solving a given instance once.

We evaluate SING on a large set of standard benchmarks
from the IPC, all with unit-cost actions. All runs were given
a total 30 minutes for time limit both learning and search
(i.e., includes training data collection, training, and search
using hnn) and 8GB RAM per instance. We evaluated the
SING configurations in Table 1. As baselines for compari-
son, we also evaluated blind search, the goal count heuristic
(hgc), the Fast Forward heuristic (hff) (Hoffmann and Nebel
2001), and the landmark count heuristic (hlm) (Hoffmann,
Porteous, and Sebastia 2004). As an additional baseline we
also evaluate SING/L, a configuration of SING which is very
similar to LHFCP (Geissman 2015) (see Table 1. This con-
figuration is the same as C3, except that instead of the de-
rived inverse operators (Section 3.2), SING/L uses only the
actions available in the forward model.

Table 3 shows the coverage results (# of instances solved).
SING configurations C2, C3, C4, C5 significantly outper-
form blind search, showing that SING successfully learned
some useful heuristic information.

The SING/L (LHFCP) configuration performed compara-
bly to blind search, consistent with the results in (Geissman
2015). Configuration C3, which differs from SING/L only
in that action inversion is used, has much higher coverage
than SING/L, showing the effectiveness of action inversion.

C2 outperforms hff on 5 domains and outperforms hlm
on 2 domains. C3 outperforms hff on 5 domains and hlm
on 1 domains. C4 outperforms hff on 4 domains, and C5
outperforms hff on 3 domains. Thus although none of the
SING configurations are competitive with hff and hlm with
respect to overall coverage, these results indicate that there
are some domains where competitive performance can be
obtained with a 30 minute limit, including the time to learn
an instance-specific heuristic function entirely from scratch
without a teacher.

6 Ablation Study
To understand the relative impact of each of the new com-
ponents of SING compared to LHFCP, we performed an ab-
lation study comparing the following configurations:

(1) C5’: Configuration C5 (Table 1) with fewer training
samples (100k instead of 400k), (2) C5’/rw : same as C5’,
except using random walk instead of DFS, (3) C5’/sas : same
as C5’, except using SAS+ instead of boolean state repre-
sentation, (4) C5’/reg : same as C5’, except using regression
instead of explicit search state, (5) C5’/orig : same as C5’,

5

coverage rate median #expansions median #exp. per second median runtime
hnn hff hlm hnn hff hlm hnn hff hlm hnn hff hlm

24-puzzle 100.0 100.0 100.0 5,514 9,232 67,859 10,649 3,862 39,633 0.52 2.31 1.59
35-puzzle 100.0 100.0 100.0 122,463 57,045 1,650,552 9,313 3,749 74,487 12.95 15.20 21.86
blocks 84.0 73.0 83.0 353,856 332,974 33,658 14,926 2,830 24,054 26.07 126.14 1.56
pancake 100.0 48.0 100.0 74,873 324,925 1,620,030 25,261 912 134,248 2.93 347.55 10.60
Average 96.0 80.2 95.8 139,177 181,044 843,025 15,038 2,838 68,106 10.61 122.80 8.90

Table 2: Domain-specific heuristics: Reusing a single learned model across many instances of the same shared search space
domain. The (sampling, training) times were (28s, 210s) for 24-puzzle, (276s, 764s) for 35-puzzle, (502s, 228s) for
blocks25, and (21s, 377s) for pancake.

10 1 100 unsolved

hff

10 1

100

unsolved

h n
n

run time

10 1 100 unsolved

hlm

10 1

100

unsolved

h n
n

run time

(a) 24-puzzle (50 instances)

100 101 unsolved

hff

100

101

unsolved

h n
n

run time

100 101 unsolved

hlm

100

101

unsolved

h n
n

run time

(b) 35-puzzle (50 instances)

101 102 unsolved

hff

101

102

unsolved

h n
n

run time

100 101 unsolved

hlm

100

101

unsolved

h n
n

run time

(c) blocks25 (25 blocks, 100 instances)

Figure 1: Runtime (seconds) for 24-puzzle, 35-puzzle, and blocks25. hnn vs. hff and hlm.

10 1 101 unsolved
hff

10 1

101

unsolved

h n
n

run time

10 2 100 unsolved

hlm

10 2

100

unsolved

h n
n

run time

Figure 2: Runtime (seconds) for pancake (14 pancakes, 100
instances). hnn vs. hff and hlm.

10 20 30 40 50 60
exact distance from goal state

50

25

0

25

50

75

100

125

he
ur

ist
ic

va
lu

e
- e

xa
ct

 d
ist

an
ce

hnn

hff

hlm

hgc

Figure 3: 24-puzzle Heuristic accuracy: hnn, hgc, hff, hlm

except using original operators only (no action inversion),
and (6) C5’/mse : same as C5’, except using MSE instead of
the relative error sum loss function for NN training.

All configurations were run with a 30min, 2GB limit on
the same IPC instances used in the above experiment. The
coverages of the configurations were 604 for C5’, 563 for
C5’/rw, 481 for C5’/sas, 651 for C5’/reg, 420 for C5’/orig,
and 559 for C5’/mse. This shows that the use of DFS in
backward search, the use of boolean state representation, the
use of action inversion, and the use of relative error sum
loss function all have a significant positive impact on per-

formance.
On the other hand, the effect of using regression vs ex-

plicit state search for the backward search during training
data generation is highly domain-dependent, with regres-
sion performing better on some domains and explicit search
on others, as can be seen by comparing configurations C2
(which is the same as C5’/reg) vs. C5 in Table 3.

7 Related Work
A broad survey of learning for domain-independent plan-
ning is (Celorrio et al. 2012). Satzger and Kramer (2013)
developed a neural network based, domain-specific heuris-
tic for classical planning. They used random problem gen-
erators to create instances for training the neural network.
Their training process also relies on the use of an oracle (the
FD planner with an admissible heuristic) to provide true dis-
tance from a state to a goal.

Shen et al. (2020) proposed an approach to learning
domain-independent (as well as domain-dependent) heuris-
tics using Hypergraph Networks. They showed that it was
possible to successfully learn domain-independent heuris-
tics which performed well even on domains which were not
in the training data. As this approach uses a hypergraph
based on the delete relaxation of the original planning in-
stance, it is quite different from the minimalist approach
taken in SING, which does not use any such derived features
and uses only the raw state vector. The training data genera-
tion method is forward search based, similar to the forward
approach of Ferber et al. described in Section 2 (Ferber,
Helmert, and Hoffmann 2020). In addition, while their work
focuses on generalization capability and search efficiency
(node expansions) across domains, with runtime competi-
tiveness left as future work, our work seeks to achieve run-
time competitiveness using a simple NN architecture.

Random-walk sampling of the search space of determin-

6

istic planning problems for the purpose of learning a control
policy for a reactive agent was proposed in (Fern, Yoon, and
Givan 2004). This differs from SING in that SING learns a
heuristic function which estimates distances to a goal state
and and guide search (GBFS), instead of a reactive policy.

There is also a rapidly growing body of work on learning
neural network based policies for probabilistic domains (c.f.,
(Toyer et al. 2018; Issakkimuthu, Fern, and Tadepalli 2018;
Groshev et al. 2018; Bajpai, Garg, and Mausam 2018; Garg,
Bajpai, and Mausam 2019)), which is also related to learning
heuristic evaluation functions for deterministic domains.

8 Conclusion
We investigated a supervised learning approach to learning
a heuristic evaluation for search-based, domain-independent
classical planning, where the training data is generated us-
ing backward search. Although LHFCP, a previous system,
followed the same basic approach, it was performed com-
parably to blind search. SING pushes this approach much
further using (1) backward search for training data gener-
ation using regression, as well as derived inverse operator
for explicit space search, (2) DFS-based backward search
for training data generation, (3) a propositional input vector
representation, and (4) a relative error loss function.

We showed that SING can achieve performance compet-
itive with hff and hlm on several domains, both in shared
search space scenarios where heuristics can be reused across
domains, as well as single-instance learning where both
learning and search using the learned heuristic must be per-
formed within a given time limit.

SING is a relatively simple, minimalist system. SING
uses only a PDDL description of a single problem instance
as input. No additional problem generators or training in-
stances are used. Learning is from scratch, and unlike the
forward search based training data generation approach in-
vestigated by (Ferber, Helmert, and Hoffmann 2020), SING
does not use any standard heuristics during training data
generation. It uses a very simple feedforward neural net-
work architecture, with no feature engineering. The only
“features” used by SING are the raw state vectors. SING
does not exploit any structures used by standard classical
planning heuristics such as delete relaxations and causal
graphs in either the learning or the search phases. Pre-
vious work used features derived/extracted from human-
developed heuristics such as hff and explored how learn-
ing could be used to exploit such features in new ways
(Yoon, Fern, and Givan 2008; Xu, Fern, and Yoon 2009;
de la Rosa et al. 2011; Garrett, Kaelbling, and Lozano-Pérez
2016; Shen, Trevizan, and Thiébaux 2020). By pushing the
performance envelope for a more minimal approach our re-
sults provide a baseline for future work on heuristic learning
using more sophisticated features and methods.

As discussed in Section 3.2, explicit backward search (as
opposed to regression) for training data generation can gen-
erate states which are not reachable from the start state. Nev-
ertheless, our results show that SING configurations which
use explicit backward search perform quite well on some
domains. In future work, we will investigate in detail how
unreachable states in the training data affect the quality of

the learned heuristic and the performance of the (forward)
search using the learned heuristic.

References
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting Regression in Planning. In Proc. IJCAI,
2254–2260.

Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learn-
ing heuristic functions for large state spaces. Artif. Intell.
175(16-17): 2075–2098.

Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11: 625–656.

Bajpai, A. N.; Garg, S.; and Mausam. 2018. Transfer of
Deep Reactive Policies for MDP Planning. In Proc. ICAPS,
10988–10998.

Celorrio, S. J.; de la Rosa, T.; Fernández, S.; Fernández-
Rebollo, F.; and Borrajo, D. 2012. A review of machine
learning for automated planning. Knowledge Eng. Review
27(4): 433–467.

Coles, A.; and Smith, A. 2007. Marvin: A Heuristic Search
Planner with Online Macro-Action Learning. J. Artif. Intell.
Res. 28: 119–156. doi:10.1613/jair.2077.

de la Rosa, T.; Celorrio, S. J.; Fuentetaja, R.; and Borrajo,
D. 2011. Scaling up Heuristic Planning with Relational De-
cision Trees. J. Artif. Intell. Res. 40: 767–813.

Domshlak, C.; Karpas, E.; and Markovitch, S. 2010. To Max
or Not to Max: Online Learning for Speeding Up Optimal
Planning. In Proc. AAAI.

Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Neural Net-
work Heuristics for Classical Planning: A Study of the Hy-
perparameter Space. In Proc. ECAI.

Fern, A.; Yoon, S. W.; and Givan, R. 2004. Learning
Domain-Specific Control Knowledge from Random Walks.
In Proc. ICAPS, 191–199.

Fikes, R.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artif. Intell. 2(3/4): 189–208.

Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In Proc. ICAPS, 631–
636.

Garrett, C. R.; Kaelbling, L. P.; and Lozano-Pérez, T. 2016.
Learning to Rank for Synthesizing Planning Heuristics.
CoRR abs/1608.01302.

Geissman, C. 2015. Learning Heuristic Functions in Clas-
sical Planning. Master’s thesis, University of Basel.

Gomoluch, P.; Alrajeh, D.; and Russo, A. 2019. Learning
Classical Planning Strategies with Policy Gradient. In Proc.
ICAPS, 637–645.

Gomoluch, P.; Alrajeh, D.; Russo, A.; and Bucchiarone,
A. 2017. Towards learning domain-independent planning
heuristics. CoRR abs/1707.06895.

7

Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A. C.; and Bengio,
Y. 2014. Generative Adversarial Nets. In Ghahramani, Z.;
Welling, M.; Cortes, C.; Lawrence, N. D.; and Weinberger,
K. Q., eds., Proc. NIPS, 2672–2680.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies
Using Deep Neural Networks. In Proc. ICAPS, 408–416.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR 26(1): 191–246. ISSN 1076-9757.
Hoffmann, J. 2002. FF Domain Collection.
https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation through Heuristic Search. J. Artif. In-
tell. Res.(JAIR) 14: 253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. J. Artif. Intell. Res. 22: 215–278.
doi:10.1613/jair.1492.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
Deep Reactive Policies for Probabilistic Planning Problems.
In Proc. ICAPS, 422–430.
Korf, R. E.; and Felner, A. 2002. Disjoint pattern database
heuristics. Artif. Intell. 134(1-2): 9–22.
Lelis, L. H. S.; Stern, R.; Arfaee, S. J.; Zilles, S.; Felner, A.;
and Holte, R. C. 2016. Predicting optimal solution costs with
bidirectional stratified sampling in regular search spaces. Ar-
tif. Intell. 230: 51–73.
Satzger, B.; and Kramer, O. 2013. Goal distance estimation
for automated planning using neural networks and support
vector machines. Natural Computing 12(1): 87–100.
Shen, W.; Trevizan, F. W.; and Thiébaux, S. 2020. Learning
Domain-Independent Planning Heuristics with Hypergraph
Networks 574–584.
Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Fer-
ber, P. 2019. Deep Learning for Cost-Optimal Planning:
Task-Dependent Planner Selection. In Proc. AAAI, 7715–
7723.
Toyer, S.; Trevizan, F. W.; Thiébaux, S.; and Xie, L. 2018.
Action Schema Networks: Generalised Policies With Deep
Learning. In Proc. AAAI, 6294–6301.
Xu, Y.; Fern, A.; and Yoon, S. W. 2009. Learning Lin-
ear Ranking Functions for Beam Search with Application
to Planning. J. Mach. Learn. Res. 10: 1571–1610.
Yoon, S. W.; Fern, A.; and Givan, R. 2008. Learning Control
Knowledge for Forward Search Planning. J. Mach. Learn.
Res. 9: 683–718.

bl
in

d

gc hf
f

hl
m

SI
N

G
/L

(l
hf

cp
)

c2 c3 c4 c5

agricola 0 0 10 16 1 13 12 11 9
airport 23 35 36 33 1 21 13 14 17
barman 0 0 12 20 0 0 0 0 0
blocks 18 35 35 35 21 33 27 35 35
childsnack 0 0 1 0 0 0 0 0 0
data-network 0 1 5 2 0 0 0 0 0
depot 4 14 18 18 6 5 5 15 13
driverlog 7 19 18 18 8 12 13 15 14
elevators 0 5 20 7 0 0 0 0 0
floortile 0 0 2 1 0 0 0 0 0
freecell 20 46 79 80 18 80 23 61 57
ged 0 20 20 20 0 20 0 0 0
grid 1 3 4 5 0 3 0 3 4
gripper 8 20 20 20 8 20 10 20 20
hiking 2 3 20 20 2 7 5 3 3
logistics 2 7 29 15 2 2 3 6 5
maintenance 0 14 11 14 0 0 0 0 0
miconic 55 150 150 150 71 150 146 150 150
movie 30 30 30 30 30 30 30 30 30
mprime 20 21 32 22 5 18 13 18 17
mystery 15 15 17 14 9 6 12 10 9
openstacks 0 0 2 20 0 1 8 2 5
organic-synthesis 3 3 2 3 3 3 3 3 2
parcprinter 0 12 20 18 0 0 1 0 0
parking 0 0 7 0 0 0 0 0 0
pathways 4 5 10 8 4 4 4 4 4
pegsol 17 20 20 20 18 20 20 20 20
pipesworld 12 22 23 27 12 13 15 20 17
psr 49 50 50 50 50 50 50 50 50
rovers 6 21 26 25 6 14 16 16 16
satellite 6 15 27 12 7 15 8 8 9
scanalyzer 4 20 18 20 5 18 11 20 18
snake 3 4 5 7 4 3 3 7 6
sokoban 6 13 19 10 8 11 12 10 9
spider 1 12 9 19 0 5 7 5 9
storage 14 18 19 19 17 15 19 18 19
termes 0 10 14 15 3 4 2 7 3
tetris 0 20 9 20 2 11 19 2 18
thoughtful 5 5 8 14 5 12 5 5 5
tidybot 3 19 16 20 0 1 7 8 2
tpp 6 13 23 29 6 15 10 14 15
transport 0 5 0 16 0 0 0 0 0
trucks 6 9 15 9 6 6 7 7 7
visitall 0 20 0 20 0 0 9 0 0
woodworking 1 1 2 4 1 1 1 1 1
zenotravel 8 20 20 20 7 9 9 13 14
SUM 359 775 933 965 346 651 558 631 632
>hgc 4 6 4 6 7
>hff 2 5 5 4 3
>hlm 0 2 1 0 0

Table 3: Instance-Specific Learning: IPC Benchmark In-
stances, 8GB, 30min total limit (including training data gen-
eration, training hnn, and search using hnn) per instance:
Coverage Results. In the bottom 3 rows, “>hheuristic” in-
dicates the count # of domains with higher coverage than
hheuristic.

8

Beating LM-cut with LM-cut:
Quick Cutting and Practical Tie Breaking for the Precondition Choice Function

Pascal Lauer and Maximilian Fickert
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

s8palaue@stud.uni-saarland.de, fickert@cs.uni-saarland.de

Abstract
LM-cut is one of the most popular heuristics in optimal plan-
ning that computes strong admissible estimates of the per-
fect delete relaxation heuristic h+. The heuristic iteratively
computes disjunctive action landmarks for the current state,
reducing their action costs until no more landmarks with re-
maining action costs can be found. These landmarks are gen-
erated by finding cuts in the justification graph, which de-
pends on a precondition choice function mapping each action
to its most expensive precondition according to hmax. This
precondition is not necessarily unique, yet the performance
of the heuristic heavily depends on this choice. We introduce
and analyze several new tie breaking strategies for the pre-
condition choice function, and evaluate their effectiveness on
the IPC benchmarks. Furthermore, we suggest a modification
to the computation of the cut, which trades a negligible loss
in heuristic accuracy for a significant speedup of the LM-cut
computation.

Introduction
In optimal classical planning, strong admissible heuristics
are desired to find solutions through heuristic search. One
such heuristic is the landmarks cut heuristic hLM-cut (Helmert
and Domshlak 2009), which provides high-quality estimates
of the perfect delete relaxation heuristic h+. While LM-cut
has been surpassed by recent advancements on abstraction
heuristics and cost partitionings (e.g. Franco et al. 2017;
Seipp and Helmert 2018; Seipp, Keller, and Helmert 2020),
it remains a popular heuristic that does not require any pre-
computation before search.

LM-cut is defined by iteratively computing hmax (Bonet
and Geffner 2001), finding a disjunctive action landmark,
and reducing the cost of these actions until the hmax-value
becomes zero. A precondition choice function (pcf) maps
each action to a precondition with maximal hmax-value. The
pcf defines the hmax justification graph, where the facts of
the task form the vertices and there are edges from the pre-
condition returned by the pcf to each effect of an action. A
disjunctive action landmark is constructed by computing a
cut in the graph through actions leading into the zero-cost
goal zone (nodes from which the goal can be reached with a
zero-cost path), and the cost of these actions are reduced by
the minimal action cost in that landmark.

Bonet and Helmert (2010) have shown that the heuris-
tic is equal to h+ if the landmarks are computed via hit-

ting sets. They implemented variants of the heuristic us-
ing polynomial-time approximations of the hitting set and
showed that this approach does improve the accuracy of the
heuristic, but the improvement is outweighed by the added
computational overhead.

However, there is also some room to make LM-cut more
accurate without changing the algorithm: There can be mul-
tiple preconditions with the same (maximal) hmax-value (in
particular after the first few iterations when several actions
have reduced costs), and their tie breaking is left unspec-
ified. This detail has been mostly neglected in the litera-
ture, but as we demonstrate in our experiments, the per-
formance of the heuristic varies a lot depending on the tie
breaking strategy. Bonet et al. (Bonet and Helmert 2010;
Bonet and Castillo 2011) introduced a variant with random
tie breaking, where the heuristic is computed multiple times
in each state and the maximum heuristic value is used. While
the estimates of the heuristic values improve, requiring re-
peated computation of the heuristic diminishes its practical
use. We explore several new tie breaking strategies that aim
to improve the heuristic by generating more effective land-
marks.

LM-cut provides accurate admissible estimates, but is
expensive to calculate. Pommerening and Helmert (2012;
2013) show that the computational effort can be reduced
through incremental computation, by caching landmarks
and re-using them for the successor states. We introduce
a new idea to speed up the LM-cut computation, by com-
puting the cuts in the justification graph in a simplified and
faster way. While this can lead to overapproximated cuts and
make the heuristic less informed, this drawback is greatly
outweighed by the improved computation speed.

We first summarize the general planning background and
recapitulate the details of the LM-cut algorithm. Next, we
describe and evaluate our optimization to the computation of
the cuts. Finally, we introduce our new tie breaking strate-
gies for the precondition choice function, explain the intu-
ition behind them, and analyze their effectiveness with an
empirical evaluation on the IPC benchmarks.

Background
We first introduce the necessary background and notations,
before reviewing the details of the LM-cut algorithm.

9

Preliminaries
We consider classical planning using the STRIPS represen-
tation with action costs (Fikes and Nilsson 1971). A plan-
ning task is a 5-tuple Π = (F ,A, c, I,G), where

• F is a finite set of facts,

• A is a set of actions, each a ∈ A is a triple of fact sets
preconditions (prea), add effects (adda), and delete effects
(dela) with adda ∩ dela = ∅,

• c is a cost function A 7→ R+
0 ,

• I ⊆ F is the initial state,

• G ⊆ F are the goal facts.

A state s ⊆ F is a set of facts. An action a ∈ A is applicable
in a state s if prea ⊆ s, and applying a in s leads to the state
sJaK := (s \ dela) ∪ adda. A plan for s is a successively
applicable action sequence leading from s to a goal state
s∗ ⊇ G, and is called optimal if it has minimal cost among
all plans for s. A plan for Π is a plan for its initial state I.

The set of all states is denoted by S. A heuristic function
(short heuristic) h : S 7→ R+

0 ∪ ∞ estimates the cost of a
plan for a state. The perfect heuristic h∗ returns the cost of
an optimal plan. A heuristic h is called admissible if h(s) ≤
h∗(s) for all s ∈ S, and A∗ (Hart, Nilsson, and Raphael
1968) is guaranteed to find optimal solutions when using an
admissible heuristic.

LM-cut
LM-cut (Helmert and Domshlak 2009) is based on an itera-
tive computation of (action) landmarks. A disjunctive action
landmark is a set of actions L, such that every plan must
include at least one action from L. In the following, we as-
sume that I = {i}, G = {g}, and |prea| ≥ 1 for all actions
a ∈ A (this can be achieved with simple transformations).
The heuristic is computed in an iterative procedure, where
each iteration performs the following steps:

1. Compute hmax (Bonet and Geffner 2001) for all facts. If
hmax(g) = ∞, return∞. If hmax(g) = 0, return the com-
puted heuristic value.

2. Define a precondition choice function (pcf), mapping each
action to a precondition with maximal hmax-value.

3. Construct the justification graph. The facts F of the plan-
ning task are the vertices of the graph, and there is an arc
from the precondition chosen by the pcf to each of its add
effects for all actions. The arc is labeled with the action.

4. Partition the vertices into three sets: (a) the 0-cost goal
zone V ∗, containing all facts from which g is reachable
with a 0-cost path, (b) the before-goal zone V 0, contain-
ing all facts reachable from i without passing through a
node in V ∗, and (c) all other vertices V b. The labels of
the arcs leading from V 0 into V ∗ define a disjunctive ac-
tion landmark L.

5. Reduce the cost of actions in L by cmin = mina∈L c(a),
and add cmin to the heuristic value (which starts at 0).

After the computation of the heuristic, the action costs are
reset to their original values.

i g

F1

F2

1

0

0

1

Figure 1: Example justification graph. A minimal cut only
contains the action leading from i to F1.

Our work addresses two aspects of LM-cut. In the next
section, we describe a faster method to compute the cut
(step 4). Afterwards, we introduce and evaluate tie breaking
strategies for the precondition choice function (step 2).

Quick Cutting
In each iteration of LM-cut, the justification graph is built
during the computation of hmax: whenever a fact is assigned
its final hmax-value, (one of) its most expensive precondi-
tions is stored as the predecessor in the justification graph.
Afterwards, the zero-cost goal zone V ∗ is constructed using
a backwards exploration from g considering only edges with
cost 0. Finding the before-goal zone V 0 requires a separate
forward exploration from i considering only arcs that do not
lead into V ∗, to ensure that all vertices found by this proce-
dure are reachable without passing through V ∗.

We suggest to skip the forward exploration phase, and in-
stead just consider all non-zero cost arcs that lead from a
vertex not in V ∗ to a vertex in V ∗ for the cut. These arcs can
easily be identified at the end of the backward exploration
phase, and iterating over those is generally much cheaper
than the forward exploration. However, this strategy may
overapproximate the cut, as for some of the actions in the
cut, the precondition selected by the pcf may not be reach-
able from i without passing through the zero-cost zone.

Consider the example justification graph in Figure 1. The
graph can be partitioned into V ∗ = {g, F1}, V 0 = {i}, and
V b = {F2}. According to the original algorithm, this would
result in the cut containing only the arc from i to F1, whereas
with our method, the cut would additionally include the one
from F2 to g. In this example, the heuristic value would not
be affected, but the heuristic value can potentially change if
the additional action would otherwise be included in a cut in
a later iteration of the LM-cut computation.

Note that, since our computation of the cut always con-
tains the cut as computed by the original algorithm (but
may potentially include more actions), it is still a disjunc-
tive action landmark, and does not affect the properties of
the heuristic (in particular admissibility).

Tie Breaking Strategies for LM-cut
The precondition choice function maps actions to a precon-
dition with maximal hmax-value, but in many cases there
are multiple such preconditions which leaves room for tie
breaking. Consider the justification graph shown in Figure 2.
The action achieving g has three preconditions with maxi-
mal hmax-values: v1, v2, or v3 (indicated by the dashed ar-
rows). If v3 is selected by the precondition choice function,

10

gi

v0 v1 v2 v3
0

01

10
0

Figure 2: Example justification graph. The precondition
choice function for the action achieving g can select any of
v1, v2, or v3.

then the cut will contain both remaining actions with cost
one, and the computation will terminate. However, if v1 or
v2 is selected, the cut only contains one of these actions,
and an additional cut can be made afterwards, increasing the
heuristic value. The example is inspired by the VisitAll do-
main, where a perfect tie breaking strategy will only select
actions leading to a single location for the cut in each it-
eration (making hLM-cut = h+). Different tie breaking may
result in significantly larger cuts (and thus smaller heuristic
values), and similar cases where tie breaking is important
appear on most other domains as well.

In the following, we first explain how tie breaking is ap-
plied in detail, and then introduce several tie breaking strate-
gies that aim to improve the heuristic.

Tie Breaking in LM-cut
The pseudo code of the computation of the cut is shown in
Algorithm 1. This shows our quick cutting method which
only performs the backwards exploration from the goal; the
original computation of the cut would perform the forward
exploration afterwards to compute V 0, and would return
{a ∈ Discovered | pcf (a) ∈ V 0} instead.

It is important to note that for an action a, the tie breaking
of the precondition choice function is only applied the first
time pcf (a) is evaluated — all subsequent calls to pcf (a)
will return the same selected precondition. Furthermore, at
the time of the tie breaking, only a fragment of the final zero-
cost goal zone V ∗ is known.

Our tie breaking methods aim to reduce the size of the
cuts, i.e., generating smaller disjunctive action landmarks in

Algorithm 1: L computation
1 V ∗ ← {g}, Explored← ∅, Discovered← ∅
2 while Explored 6= V ∗ do
3 select f ∈ V ∗ \ Explored
4 Explored← Explored ∪ {f}
5 for each a ∈ A with f ∈ effa and

hmax(p) <∞ for all p ∈ prea do
6 if c(a) = 0 then
7 V ∗ ← V ∗ ∪ {pcf (a)}
8 else
9 Discovered← Discovered ∪ {a}

10 return {a ∈ Discovered | pcf (a) /∈ V ∗}

step 4 of each LM-cut iteration. While this does not guaran-
tee that the heuristic values will improve, it is reasonable to
assume that reducing the cost of fewer actions will result in
more cuts being made before hmax evaluates to zero.

In the following, we refer to the precondition selected by
pcf (a) as the supporter of a. We call an action a an achiever
of a fact f if f ∈ effa. Our first tie breaking strategies aim
to reduce the size of V ∗, with the assumption that this leads
to fewer actions pointing into V ∗ and thereby smaller cuts.

V∗ Detection (GZD) Prefer a precondition that is already
in the zero-cost goal zone V ∗. If such a precondition exists,
then choosing it as the supporter can not increase V ∗. Note
that any further tie breaking among multiple potential sup-
porters that are already in V ∗ has no effect.

Border Detection (BD) Prefer a precondition that has no
zero-cost achievers. If such a supporter is selected, the zero-
cost goal zone will not expand beyond that fact, as there are
no further zero-cost actions to choose from. In our motiva-
tional example (Figure 2), this strategy would prefer v1 and
v2 over v3 as intended, minimizing V ∗.

Zero-Cost Achievers (ZCA) Prefer a precondition with a
minimal number of zero-cost achievers. This strategy is an
extension of the previous one (BD), but imposes a ranking
to the potential supporters if there is no precondition with-
out zero-cost achievers. The idea is again to approximate
how many additional facts may be added to V ∗ when recur-
sively exploring the supporter. However, some of the zero-
cost achievers may originate from other facts already in V ∗,
and these achievers would be beneficial in keeping V ∗ small,
so this approximation may not always be accurate.

Value Decrease Minimization (VDM) Prefer a precon-
dition of which the hmax-value since the first iteration de-
creased the least. While the previous two strategies aim to
reduce the breadth of the backward exploration beyond the
supporter, this strategy aims to reduce the depth. If the hmax-
value of the precondition p is close to its value from the first
iteration, then there should not be many zero-cost actions in
the justification graph between i and p. In our example (Fig-
ure 2), assuming that the actions leading from v1 to v3 and
v2 to v3 initially had a cost of 1, then this strategy would
also prefer v1 or v2 over v3.

Zero-Cost Path (ZCP) Prefer a precondition p that min-
imizes the number of zero-cost actions on a path from i to
p. Note that when the precondition choice function is called,
the justification graph is still being constructed backwards
from the goal so we do not know the structure of the graph
between i and p. Therefore, we partially re-use the justifica-
tion graph from the previous iteration. More specifically, we
keep track of the path information for each fact during the
hmax computation: When the hmax-value of a fact is set, we
consider the justification graph from the previous LM-cut
iteration including the incremental updates (with arbitrary
tie breaking) of the current hmax computation so far. For the
evaluation of the precondition choice function, we then se-
lect the candidate with the fewest zero-cost actions on its
path. Like VDM, this strategy aims to reduce the depth of the

11

10−1 100 101 102 103 104 105 106 107
10−1

100

101

102

103

104

105

106

107

10−1 100 101 102 103 104 105 106 107

10−1

100

101

102

103

104

105

106

107

101 102 103 104 105

101

102

103

104

105

Figure 3: Number of expansions before the last f -layer (left), initial heuristic value (middle), and evaluations per second (right)
for original (x-axis) vs. quick (y-axis) cutting. Expansions and evaluations per second are shown for commonly solved instances,
and instances with a search time of less than 0.01 seconds are excluded for the latter to reduce noise.

backward exploration by reducing the number of zero-cost
actions between this precondition and i, but uses a different
approximation.

Achiever Minimization (AM) Prefer a precondition that
has a minimal number of achievers with reachable precondi-
tions under hmax. Each achiever of a fact f adds an incoming
arc to the corresponding node in the justification graph. Pre-
ferring preconditions with fewer achievers leads to fewer it-
erations in the backwards exploration (Algorithm 1, line 5).
Thus, we can expect V ∗ and Discovered to stay smaller,
which should lead to fewer actions in the cut.

Experiments
We implemented our techniques in Fast Downward (Helmert
2006), on top of the existing implementation of LM-cut. For
our evaluation, we include all solvable instances from the
optimal tracks of the IPCs up to 2018 that do not have con-
ditional effects or axioms, resulting in a total of 1672 unique
instances from 48 domains. The experiments were run using
the Lab framework (Seipp et al. 2017) on a cluster of ma-
chines with Intel Xeon E5-2660 CPUs with a clock rate of
2.2 GHz. LM-cut is run in A∗ with time and memory lim-
its of 30 minutes and 4 GB respectively. We first assess the
impact of our alternative computation of the cut, before eval-
uating our new tie breaking strategies.

Quick Cutting
Our new method of computing the cut should improve the
computational efficiency of the heuristic, but at a potential
loss of informativeness.

The left plot of Figure 3 shows a comparison of the num-
ber of expansions to the last f -layer between the two meth-
ods of computing the cut. Across all commonly solved in-
stances, our method of computing the cut leads to 6.6% more
expansions on average. The domains where expansions in-
crease the most are VisitAll (+70%), Sokoban (+40%), and
Depot (+23%), though the increase is typically low (less
than 1% on most domains). The initial heuristic value does

not decrease in 1396 of the 1672 instances (see the middle
plot of Figure 3).

On the other hand, we obtain a huge speed-up in the com-
putation of the heuristic as shown in the right plot of Fig-
ure 3. On average, with our method we can achieve 91%
more heuristic evaluations per second (up to 586% in Mi-
conic), which more than makes up for the comparatively
small loss in informativeness. This leads to a decreased
search time across almost all domains, and we are able to
solve 28 more instances (856 vs. 828) on our benchmark
set (the most significant gains are +4 in Parking and +3 in
Floortile).

The single exception is Organic Synthesis (split). Since
quick cutting overapproximates the cuts which leads to more
actions having their cost reduced, intuitively, one would ex-
pect that this should lead to fewer iterations of hmax per com-
putation of hLM-cut on average. However, this is not always
the case, as demonstrated by the following example. Assume
there are two actions a1 and a2 with cost 2, which, using the
original cutting, would be included in a cut at some point,
having both of their costs reduced by 2. If instead a2 was
included in an earlier (overapproximated) cut which only re-
duced its cost by 1, then reducing both a1 and a2 to 0 may
now require two cuts (first decreasing a1 and a2 by 1, and
then reducing only a2 by 1). Such cases appear frequently
in Organic Synthesis. While the resulting heuristic value is
typically not affected, it can significantly diminish the com-
putational advantage of our cutting method. The coverage
on Organic Synthesis does not decrease, but the number of
evaluations per second drops by 18%, increasing the search
time by 24% on average.

Tie Breaking Strategies
Table 1 shows the coverage of LM-cut with several tie break-
ing strategies. All configurations use our new method of
computing the cuts (we also ran the experiments with the
original cutting which exhibited a similar relative perfor-
mance of the different tie breaking strategies). As baselines,
we consider the (arbitrary) tie breaking employed by the cur-

12

Coverage arb inv rnd GZD BD ZCA VDM ZCP AM GZD+BD Scorpion
Airport (50) 28 27 23 29 27 28 24 24 27 28 29
Blocks (35) 28 27 28 28 28 28 28 28 28 28 28
DataNetwork (20) 12 12 12 13 12 12 12 12 12 13 14
Depot (22) 7 7 7 7 7 7 7 7 7 10 13
DriverLog (20) 13 14 13 14 13 13 13 13 13 13 15
Elevators (30) 22 22 20 22 22 22 22 22 22 22 24
Freecell (80) 15 15 15 24 16 12 15 15 21 33 64
Grid (5) 2 2 1 2 2 2 2 2 2 2 3
Hiking (20) 10 10 9 10 9 8 9 9 10 9 14
Logistics (63) 27 27 25 27 25 25 25 25 25 27 34
Mprime (35) 23 25 22 23 23 23 22 22 25 24 31
Mystery (19) 16 17 15 17 17 17 17 17 17 17 19
Nomystery (20) 16 16 14 17 15 14 18 18 16 18 20
Openstacks (80) 31 31 31 31 31 30 31 31 31 31 34
OrgSynth-split (20) 15 15 14 15 14 10 15 15 15 15 10
Parcprinter (30) 19 22 19 22 19 19 22 22 18 20 30
Parking (40) 9 9 6 9 10 10 12 12 8 13 13
Pegsol (36) 35 34 33 35 34 34 35 34 34 35 35
Pipes-notank (50) 18 18 17 18 17 17 18 18 17 18 25
Pipes-tank (50) 12 12 10 12 11 9 12 12 12 12 18
PNetAlignment (20) 9 9 7 9 9 9 9 9 9 9 0
Rovers (40) 9 11 9 9 9 9 9 9 9 9 9
Satellite (36) 8 12 7 8 14 13 15 15 10 14 8
Scanalyzer (30) 16 16 16 16 15 14 16 16 16 16 18
Snake (20) 6 6 4 6 4 4 6 6 6 7 13
Sokoban (30) 30 29 30 30 30 30 30 30 30 30 30
Spider (20) 11 11 9 12 11 9 11 11 10 12 15
Termes (20) 7 6 6 7 6 6 7 7 6 7 13
Tidybot (40) 23 22 20 23 20 15 22 22 22 23 22
VisitAll (40) 16 15 17 15 36 36 36 36 14 36 30
Woodworking (30) 19 22 19 19 20 22 20 20 22 20 30
Zenotravel (20) 13 13 12 13 12 12 13 13 13 12 13
Others (601) 331 331 331 331 331 331 331 331 331 331 346
Sum (1672) 856 865 821 873 869 850 884 883 858 914 1020

Table 1: Coverage for LM-cut with different tie breaking methods. Domains where coverage across tie breaking methods does
not change are grouped to “Others”.

rent implementation of Fast Downward (“arb”)1, its inverse
(“inv”), and random tie breaking (“rnd”). The results for ran-
dom tie breaking are averaged and rounded over 5 random
seeds, though there is very little variance (coverage changes
across different seeds on only 4 instances, and overall cov-
erage was always between 820 and 822). We include results
for all our tie breaking strategies as well as selected com-
binations thereof. Furthermore, we added Scorpion (Seipp
2018)2 as a representative of the state of the art.

This first thing to note is that the performance of LM-cut
is heavily dependent on the tie breaking strategy, as the over-
all coverage ranges from 821 (with random tie breaking) to
914 (with one of our combined methods). The biggest differ-

1While there is no explicit tie breaking, typically the first one
according to Fast Downward’s variable ordering is selected.

2We disabled the h2 preprocessor (Alcázar and Torralba 2015)
to make it more comparable to our planner which is not using it.

ences can be seen in Freecell and VisitAll: depending on the
tie breaking, the initial heuristic value can change by over
a factor of 3 (Freecell) respectively 5 (VisitAll), and cover-
age ranges from 12 to 33 respectively 14 to 36. Most of our
introduced strategies outperform the baselines, and random
tie breaking is particularly bad across most domains. Four of
our tie breaking strategies (BD, ZCA, VDM, and ZCP) lead
to significant gains on VisitAll (and similarly on Satellite),
as these strategies effectively solve the issue described in our
corresponding example (Figure 2). In Freecell on the other
hand, our other two strategies (GZD and AM) work best,
increasing coverage by 9 respectively 6 over the baselines.

Combined Tie Breaking Strategies In case of remaining
ties, multiple tie breaking strategies can be used in sequence
to break the remaining ties. In preliminary experiments, we
had most success with combining tie breaking strategies that
complement each other. For example, using any other strat-

13

100 102 104 106

100

102

104

106

un
s.

unsolved

Original Tie Breaking

G
Z

D
+B

D

Figure 4: Number of expansions before the last f -layer for
GZD+BD and original tie breaking.

egy after GZD or BD worked really well, as both strategies
seem to make good tie breaking choices if their criterion ap-
plies, but yield no further information in case such a precon-
dition does not exist. In that case, using a different strategy
provides additional information on top, improving the per-
formance of the heuristic. In contrast, VDM and ZCP both
aim to reduce the depth of the backward exploration, and
combining them had little effect.

The best configuration we have found so far prefers sup-
porters that are already in V ∗, and breaks the remaining ties
according to BD (GZD+BD). This configuration retains the
good performance on VisitAll, and further improves results
on Freecell (+9 coverage compared to the best individual
tie breaking method), Depot (+3), Parking (+1), and Snake
(+1). Compared to the original tie breaking, coverage in-
creases in 13 domains and decreases in only 2, solving 58
more instances overall. The number of expansions to the last
f -layer decreases significantly (see Figure 4), sometimes by
several orders of magnitude.

Compared to Scorpion, LM-cut is still worse on most do-
mains. However, on Organic Synthesis (split) and Petri Net
Alignment, the previous implementation of LM-cut already
beat Scorpion; and with our improvements, LM-cut pulls
ahead also in Sattelite (+7 coverage), VisitAll (+6), Rovers
(+2), Tidybot (+1), and Miconic (+1).

Conclusion
In this work, we introduced an optimization to LM-cut ad-
dressing the computation of the cut in the justification graph,
and introduced and evaluated an extensive set of tie break-
ing strategies for the precondition choice function. Both con-
tributions significantly improve the performance of LM-cut
on the IPC benchmarks: our best performing configuration
beats the previous implementation by 914 vs. 828 solved in-
stances, increasing coverage by 86 using the same heuristic
and search engine.

For future work, we want to explore additional tie break-
ing strategies, in particular ones that consider which actions
should be included in the cut. Our current strategies only
aim to include as few actions in the cut as possible, how-
ever, there may be cases where cutting more actions may
be preferable (for example, if there is a single action that, if
cut, enables a zero-cost path to the goal, but multiple other
actions could be cut instead without enabling such a path).

Additionally, we want to analyze the combinations of
multiple tie breaking strategies in more depth. In prelimi-
nary experiments, we had some good results, yet some com-
binations had surprisingly adverse effects on performance.
Understanding the cause of these effects may allow us to
combine our methods more effectively, and find combina-
tions that may further improve the heuristic.

Furthermore, our methods seem complementary to incre-
mental computation of LM-cut (Pommerening and Helmert
2013), and could be easily combined. This should further
boost the performance of the heuristic, and make it more
competitive with the state of the art.

Acknowledgments
Maximilian Fickert was funded by DFG grant 389792660
as part of TRR 248 – CPEC (see https://perspicuous-
computing.science).

References
[Alcázar and Torralba 2015] Alcázar, V., and Torralba, Á.
2015. A reminder about the importance of computing and
exploiting invariants in planning. In Brafman, R.; Domsh-
lak, C.; Haslum, P.; and Zilberstein, S., eds., Proceedings of
the 25th International Conference on Automated Planning
and Scheduling (ICAPS’15), 2–6. AAAI Press.

[Bonet and Castillo 2011] Bonet, B., and Castillo, J. 2011. A
complete algorithm for generating landmarks. In Bacchus,
F.; Domshlak, C.; Edelkamp, S.; and Helmert, M., eds., Pro-
ceedings of the 21st International Conference on Automated
Planning and Scheduling (ICAPS’11). AAAI Press.

[Bonet and Geffner 2001] Bonet, B., and Geffner, H. 2001.
Planning as heuristic search. Artificial Intelligence 129(1–
2):5–33.

[Bonet and Helmert 2010] Bonet, B., and Helmert, M. 2010.
Strengthening landmark heuristics via hitting sets. In
Coelho, H.; Studer, R.; and Wooldridge, M., eds., Proceed-
ings of the 19th European Conference on Artificial Intelli-
gence (ECAI’10), 329–334. Lisbon, Portugal: IOS Press.

[Fikes and Nilsson 1971] Fikes, R. E., and Nilsson, N. 1971.
STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2:189–
208.

[Franco et al. 2017] Franco, S.; Torralba, A.; Lelis, L. H.;
and Barley, M. 2017. On creating complementary pattern
databases. In Sierra, C., ed., Proceedings of the 26th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI’17), 4302–4309. AAAI Press/IJCAI.

[Hart, Nilsson, and Raphael 1968] Hart, P. E.; Nilsson, N. J.;
and Raphael, B. 1968. A formal basis for the heuristic de-

14

termination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics 4(2):100–107.

[Helmert and Domshlak 2009] Helmert, M., and Domshlak,
C. 2009. Landmarks, critical paths and abstractions: What’s
the difference anyway? In Gerevini, A.; Howe, A.; Cesta,
A.; and Refanidis, I., eds., Proceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’09), 162–169. AAAI Press.

[Helmert 2006] Helmert, M. 2006. The Fast Downward
planning system. Journal of Artificial Intelligence Research
26:191–246.

[Pommerening and Helmert 2012] Pommerening, F., and
Helmert, M. 2012. Optimal planning for delete-free tasks
with incremental LM-Cut. In Bonet, B.; McCluskey, L.;
Silva, J. R.; and Williams, B., eds., Proceedings of the
22nd International Conference on Automated Planning and
Scheduling (ICAPS’12), 363–367. AAAI Press.

[Pommerening and Helmert 2013] Pommerening, F., and
Helmert, M. 2013. Incremental lm-cut. In Borrajo, D.;
Fratini, S.; Kambhampati, S.; and Oddi, A., eds., Proceed-
ings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS’13), 162–170. Rome,
Italy: AAAI Press.

[Seipp and Helmert 2018] Seipp, J., and Helmert, M. 2018.
Counterexample-guided Cartesian abstraction refinement
for classical planning. Journal of Artificial Intelligence Re-
search 62:535–577.

[Seipp et al. 2017] Seipp, J.; Pommerening, F.; Sievers, S.;
and Helmert, M. 2017. Downward Lab. https://doi.org/
10.5281/zenodo.790461.

[Seipp, Keller, and Helmert 2020] Seipp, J.; Keller, T.; and
Helmert, M. 2020. Saturated cost partitioning for opti-
mal classical planning. Journal of Artificial Intelligence Re-
search 67:129–167.

[Seipp 2018] Seipp, J. 2018. Scorpion. In IPC 2018 planner
abstracts, 77–79.

15

Online Saturated Cost Partitioning for Classical Planning

Jendrik Seipp
University of Basel
Basel, Switzerland

jendrik.seipp@unibas.ch

Abstract

Saturated cost partitioning is a general method for admissibly
adding heuristic estimates for optimal state-space search. The
algorithm strongly depends on the order in which it consid-
ers the heuristics. The strongest previous approach precom-
putes a set of diverse orders and the corresponding saturated
cost partitionings before the search. This makes evaluating
the overall heuristic very fast, but requires a long precompu-
tation phase. By diversifying the set of orders online during
the search we drastically speed up the planning process and
even solve slightly more tasks.

Saturated Cost Partitioning
One of the main approaches for solving classical planning
tasks optimally is using the A∗ algorithm (Hart, Nilsson, and
Raphael 1968) with an admissible heuristic (Pearl 1984).
Since a single heuristic usually fails to capture enough de-
tails of the planning task, it is often beneficial to compute
multiple heuristics and to combine their estimates (Holte
et al. 2006). The preferable method for admissibly combin-
ing heuristic estimates is cost partitioning (Haslum, Bonet,
and Geffner 2005; Haslum et al. 2007; Katz and Domsh-
lak 2008, 2010; Pommerening, Röger, and Helmert 2013).
By distributing the original costs among the heuristics, cost
partitioning makes the sum of heuristic estimates (under the
reduced cost functions) admissible.

Saturated cost partitioning (SCP) is one of the strongest
methods for finding cost partitionings (Seipp, Keller, and
Helmert 2020). At the core of the SCP algorithm lies the
insight that we can often reduce the (action) cost function
of a planning task and still obtain the same heuristic esti-
mates. This notion is captured by so-called saturated cost
functions. An (action) cost function scf is saturated for a
heuristic h, an original cost function cost and a subset S′
of states in the planning task, if scf(a) ≤ cost(a) for each
action a and for all states s ∈ S′ the heuristic estimate by h
for s is the same regardless of whether we evaluate h under
cost or scf. We call a function that computes a saturated cost
function for a given heuristic and cost function a saturator.

Algorithm 1 shows how the SCP procedure computes sat-
urated cost functions that form a cost partitioning of a given
cost function cost over an ordered sequence of heuristics ω.
The algorithm starts by computing a saturated cost function
for the first heuristic h in ω, i.e., it lets a saturator saturateh

Algorithm 1 Compute a saturated cost partitioning over an
ordered sequence of heuristics ω for a cost function cost.

1: function SATURATEDCOSTPARTITIONING(ω, cost)
2: C ← 〈〉
3: for all h ∈ ω do
4: scf← saturateh(cost)
5: append scf to C
6: cost(a)← cost(a)− scf(a) for all actions a
7: return C

compute the fraction of the action costs that are needed to
preserve the estimates by h for a subset of states under the
original cost function (line 4). Afterwards, it iteratively sub-
tracts the costs given to h from the original costs (line 6)
and considers the next heuristic until all heuristics have been
treated this way. The sequence of computed saturated cost
functions forms the resulting cost partitioning C. We write
hSCP
ω for the cost partitioning heuristic that results from ap-

plying the SCP algorithm to the heuristic order ω.
The original SCP formulation assumed S′ to always be

the set of all states. This definition has been generalized re-
cently to allow preserving the estimates for a subset of states,
giving rise to new saturator types (Seipp and Helmert 2019).
One of the new saturators is perim, which preserves the es-
timates of all states within a given perimeter of the goal. For
example, for a given heuristic h and a state s we can use
perim to preserve the heuristic estimates of all states s′ with
h(s′) ≤ h(s) (and reduce all higher estimates to h(s)). The
perim saturator often yields higher estimates for a given state
than the all saturator, which preserves all estimates. How-
ever, perim also often ignores costs that could be used to im-
prove the heuristic estimates of other states. Therefore, the
strongest method by Seipp and Helmert (2019), perim?, first
computes a saturated cost partitioning using perim and then
uses the remaining costs to compute a saturated cost parti-
tioning that preserves all estimates under the remaining cost
function. We use perim? in all experiments below.

The quality of an SCP heuristic greatly depends on the
order in which the heuristics are considered. In this work,
we use the greedy ordering method with the h

stolen scoring
function, the best ordering in previous work on saturated
cost partitioning (Seipp, Keller, and Helmert 2020). For each

16

Algorithm 2 Offline diversification. Find a diverse set of
heuristic orders Ω for SCP before the search.

1: function OFFLINEDIVERSIFICATION
2: Ω← ∅
3: Ŝ ← sample 1000 states
4: repeat
5: s← sample state
6: ω← greedy order for s
7: if ∃s′ ∈ Ŝ : hSCP

ω (s′) > supω′∈Ω hSCP
ω′ (s′) then

8: Ω← Ω ∪ {ω}
9: until time spent in function ≥ T

10: return Ω

heuristic h and a given state s, it computes the fraction of
h(s) over the costs “stolen” by h, i.e., the amount of costs
that h wants to steal from other heuristics for preserving its
estimates. Then the greedy method orders heuristics by their

h
stolen fractions in decreasing order. As in previous work on
SCP, we focus on abstraction heuristics (Helmert, Haslum,
and Hoffmann 2007).

Offline Diversification of SCP Heuristics Most of the
previous work on the topic precomputes SCPs offline, i.e.,
before the search and then computes the maximum over the
SCP heuristic estimates for a given state during the search.
Algorithm 2 shows the strongest offline SCP algorithm from
the literature (Seipp, Keller, and Helmert 2020). It samples
1000 states Ŝ with random walks (line 3) and then itera-
tively samples a new state s (line 5), computes a greedy or-
der ω for s (line 6) and keeps ω if it is diverse, that is, hSCP

ω
yields a higher heuristic estimate for any of the samples in
Ŝ than all previously stored orders (lines 7–8). (The supre-
mum of the empty set is −∞.) The offline diversification
procedure stops and returns the found set of orders Ω af-
ter reaching a given time limit. This last characteristic is the
main drawback of the algorithm: the A∗ search can only start
after the offline diversification finishes and so far there is no
good stopping criterion except for a fixed time limit. Seipp,
Keller, and Helmert (2020) showed that a limit of 1000 sec-
onds leads to solving the highest number of IPC benchmarks
in 30 minutes, but such a high time limit obviously bloats the
solving time for many tasks, especially for those that blind
search would solve instantly.

Online Computation of SCP Heuristics Instead of pre-
computing SCP heuristics before the search, we can also
compute them online, i.e., during the search. This approach,
which we call online-nodiv, computes a greedy order and the
corresponding SCP heuristic for each state evaluated dur-
ing the search. By design, online-nodiv can start the A∗

search immediately and it has access to the states that are
actually evaluated by A∗ and not only to randomly sam-
pled states like the offline diversification procedure. As a
result, the online-nodiv method has been shown to work
well for landmark heuristics (Seipp, Keller, and Helmert
2017). However, computing an SCP over abstraction heuris-

Algorithm 3 Online diversification. Simultaneously diver-
sify a set of orders Ω for SCP and compute the maximum
over all induced SCP heuristic values for a given state s.

1: function COMPUTEHEURISTIC(Ω, s)
2: if SELECT(s) and time spent in function < T then
3: ω← greedy order for s
4: if hSCP

ω (s) > supω∈Ω hSCP
ω (s) then

5: Ω← Ω ∪ {ω}
6: return maxω∈Ω hSCP

ω (s)

tics for each evaluated state slows down the heuristic eval-
uation so much that the online variant solves much fewer
tasks than precomputed SCP heuristics (Seipp, Keller, and
Helmert 2020). This kind of result is typical for optimal clas-
sical planning: more work per evaluated state often results
in better estimates but does not outweigh the slower evalua-
tion speed (e.g., Karpas, Katz, and Markovitch 2011; Seipp,
Pommerening, and Helmert 2015).

Online Diversification of SCP Heuristics
In this work, we combine ingredients of the offline and
online-nodiv variants to obtain the benefits of both, i.e., fast
solving times and high total coverage. More precisely, we
interleave heuristic diversification and the A∗ search: for a
subset of the evaluated states, we compute a greedy order
and store the corresponding SCP heuristic if it yields a more
accurate estimate for the state at hand than all previously
stored SCP heuristics.

Algorithm 3 shows pseudo-code for the approach, which
adapts the COMPUTEHEURISTIC function used to evaluate
a state. Before COMPUTEHEURISTIC is called for the first
time, we initialize the set of heuristic orders Ω for SCP to be
the empty set.1 When evaluating a state s, we let the state se-
lection function SELECT decide whether to use s for diversi-
fying Ω (line 2). We discuss several state selection functions
below, but all of them select the initial state for diversifi-
cation. If s is selected, we compute a greedy order ω for s
(line 3) and check whether ω induces an SCP heuristic hSCP

ω
with a higher estimate for s than all previously stored or-
ders (line 4). If that is the case, we store ω (line 5). Finally,
we return the maximum heuristic value for s over all SCP
heuristics induced by the stored orders (line 6).

Compared to offline diversification, this online diversi-
fication algorithm has the advantage that it allows the A∗

search to start immediately and it doesn’t need to sample
states with random walks, but can judge the utility of storing
an order based on states that are actually evaluated during
the search. Compared to computing a saturated cost parti-
tioning heuristic for each evaluated state (online-nodiv), on-
line diversification evaluates states much faster and conse-
quently solves many more tasks.

1Note that we could initialize Ω with a set of orders diversified
offline. However, preliminary experiments showed that this only
has a mild advantage over pure offline and pure online variants, so
we only consider the pure variants here.

17

Time Limit
For abstraction heuristics, the offline diversification can per-
form two rather subtle optimizations compared to the on-
line diversification: after precomputing all SCP heuristics,
we can delete all abstract transition systems from memory,
since during the search we only need the abstraction func-
tions, which map from concrete to abstract states. Further-
more, for abstractions that never contribute any heuristic in-
formation under the set of precomputed orders, we can even
delete the corresponding abstraction functions (Seipp 2018).
While both optimizations often greatly reduce the memory
footprint, the latter also speeds up the heuristic evaluation
since we need to map the concrete state to its abstract coun-
terpart for fewer abstractions.

To allow the online diversification to do these two opti-
mizations, we need to stop the diversification eventually. We
therefore introduce a time limit T and only select a state for
diversification (line 2) if the total time spent in COMPUTE-
HEURISTIC is less than T .

State Selection Strategies
We now discuss three instantiations of the SELECT function,
i.e., strategies for choosing the states for which to diversify
the set of orders.

Interval The first strategy selects every i-th evaluated state
for a given value of i. The motivation for this strategy is to
distribute the time for diversification across the state space,
in order to select states for diversification that are differ-
ent enough from each other to let the corresponding SCP
heuristics generalize to many unseen states. Note that for
i=1 this strategy selects all states until hitting the diversifi-
cation time limit T . For i=1 and T=∞ the resulting heuris-
tic dominates the online SCP variant without diversification
(online-nodiv), because both heuristics compute the same
SCP heuristic for the currently evaluated state, but the vari-
ant with diversification also considers all previously stored
orders.

Novelty This strategy makes the notion of “different
states” explicit by building on the concept of novelty
(Lipovetzky and Geffner 2012). Novelty is defined for fac-
tored states spaces, i.e., where each state s is defined by a set
of atoms (atomic propositions) that hold in s. The novelty of
a state s is the size of the smallest conjunction of atoms that
is true in s and false in all states previously evaluated by the
search. For a given value of k, the novelty strategy selects a
state if it has a novelty of at most k.

Bellman The last strategy selects a state s if the maximum
over the currently stored SCP heuristics hSCP

Ω violates the
Bellman optimality equation (1957) for s and its successor
states, i.e., if hSCP

Ω (cost, s) < min
s

a−→s′∈T hSCP
Ω (cost, s′) +

cost(a), where T is the set of transitions in the planning task.
Whenever the Bellman optimality equation is violated for a
state s, we know that the current estimate for s is lower than
the true goal distance of s, in which case it seems prudent to
select s for diversification.

Experiments
We implemented online diversification for saturated cost
partitioning in the Fast Downward planning system
(Helmert 2006) and used the Downward Lab toolkit (Seipp
et al. 2017) for running experiments on Intel Xeon Silver
4114 processors. Our benchmark set consists of all 1827
tasks without conditional effects from the optimal sequen-
tial tracks of the International Planning Competitions 1998–
2018. We limit time by 30 minutes and memory by 3.5 GiB.
All benchmarks, code and experiment data have been pub-
lished online (Seipp 2020).

For the heuristic set on which SCP operates, we use the
combination of pattern databases found by hill climbing
(Haslum et al. 2007), systematic pattern databases of sizes 1
and 2 (Pommerening, Röger, and Helmert 2013) and Carte-
sian abstractions of landmark and goal task decompositions
(Seipp and Helmert 2018). When comparing planning algo-
rithms, we focus on the number of solved tasks, i.e., the cov-
erage of a planner and its time score (used for the agile track
of IPC 2018). The time score of a planner P for a task that
P solves in t seconds is defined as 1− log(t)

log(T) , where T is the
time limit, i.e., 1800 seconds in our case. The time score is
0 if P fails to solve the task within 1800 seconds. The total
coverage and time score of a planner is the sum of its scores
over all tasks.

Reevaluating States
The offline diversification algorithm finds a set of heuristic
orders and maximizes over the corresponding SCP heuris-
tics during the search. With such a fixed set of orders, the
overall heuristic value of a state never changes. When we
diversify the set of orders online during the search however,
the heuristic estimate of a state s can increase after the time
when s is generated, evaluated and added to the open list.
Consequently, the heuristic estimates of states in the open
list may be too low and it might be beneficial to reeval-
uate each state when retrieving it from the open list and
postponing its expansion if its heuristic value has increased.
To test this, we compare online diversification without and
with state reevaluations in Table 1 (columns on-stable and
online). The results show that reevaluating states increases
the number of solved tasks in three domains (scanalyzer,
tetris and tidybot) and never lets coverage decrease.

Our implementation uses the fact that we only need to
reevaluate a state for the additional orders that we stored
since its last evaluation. This minimizes the overhead in-
curred by the state reevaluations and makes the online vari-
ant solve tasks faster than on-stable in many domains (see
right part of Table 1). Due to these results we let all online
diversification variants reevaluate states in the experiments
below.

State Selection Strategies
In the next experiment, we compare the different instantia-
tions of the SELECT function. The left and middle parts of
Table 2 hold per-domain and overall coverage results for the
interval strategy with different intervals, the novelty strategy
for k=1 and k=2 and the Bellman strategy. All strategies use

18

Coverage Time Score

of
fli

ne

on
-n

od
iv

on
-s

ta
bl

e

on
lin

e

of
fli

ne

on
-n

od
iv

on
-s

ta
bl

e

on
lin

e

agricola (20) 0 0 0 0 0.0 0.0 0.0 0.0
airport (50) 34 24 34 34 2.5 18.5 26.1 26.1
barman (34) 4 0 4 4 0.3 0.0 2.0 1.8
blocks (35) 28 20 28 28 2.2 19.5 29.1 29.1
childsnack (20) 0 0 0 0 0.0 0.0 0.0 0.0
data-network (20) 14 11 14 14 1.1 7.2 12.1 12.1
depot (22) 13 6 13 13 1.0 3.3 9.6 9.8
driverlog (20) 15 7 15 15 1.1 4.3 10.5 10.7
elevators (50) 44 12 44 44 3.4 2.6 25.9 26.6
floortile (40) 6 0 6 6 0.3 0.0 0.8 0.8
freecell (80) 68 30 68 68 4.8 10.9 35.8 36.1
ged (20) 19 7 19 19 1.5 4.7 12.1 12.2
grid (5) 3 1 3 3 0.2 1.0 2.2 2.3
gripper (20) 8 6 8 8 0.6 4.8 7.0 6.8
hiking (20) 14 8 15 15 1.0 5.1 10.9 10.7
logistics (63) 39 19 39 39 2.8 11.8 25.2 26.0
miconic (150) 144 133 144 144 11.2 80.6 131.6 131.9
movie (30) 30 30 30 30 2.4 42.7 42.4 42.6
mprime (35) 29 24 29 29 2.3 19.1 26.5 26.7
mystery (30) 19 15 19 19 1.5 12.6 17.8 17.8
nomystery (20) 20 12 20 20 1.5 8.0 15.3 15.4
openstacks (100) 53 21 53 53 3.8 12.0 29.8 30.0
organic (20) 7 7 7 7 0.5 6.0 6.1 6.1
organic-split (20) 10 6 10 10 0.7 1.9 4.2 4.2
parcprinter (50) 38 34 38 38 2.9 28.2 34.1 34.2
parking (40) 13 1 13 13 0.9 0.1 5.4 5.4
pathways (30) 5 4 5 5 0.3 5.1 5.5 5.4
pegsol (50) 48 42 48 48 3.7 22.8 35.6 35.4
petri-net (20) 0 0 0 0 0.0 0.0 0.0 0.0
pipes-nt (50) 25 14 25 25 1.8 10.4 19.0 18.7
pipes-t (50) 18 8 18 18 1.3 5.1 12.1 12.0
psr-small (50) 50 49 50 50 3.9 48.2 54.6 54.5
rovers (40) 8 7 8 8 0.6 6.6 8.1 8.1
satellite (36) 7 6 7 7 0.5 5.5 7.3 7.2
scanalyzer (50) 35 7 33 35 2.7 5.7 19.6 21.2
snake (20) 12 6 12 12 0.9 2.5 7.6 7.4
sokoban (50) 50 33 50 50 3.8 19.6 39.5 39.9
spider (20) 15 7 15 15 1.1 2.9 8.6 8.5
storage (30) 16 14 16 16 1.2 12.5 17.1 17.1
termes (20) 12 0 12 12 0.8 0.0 3.2 3.2
tetris (17) 11 3 10 11 0.8 1.3 5.4 5.5
tidybot (40) 25 18 24 25 1.8 5.8 15.3 15.4
tpp (30) 8 7 8 8 0.6 8.0 8.9 8.9
transport (70) 34 20 36 36 2.6 10.4 22.4 22.4
trucks (30) 13 9 13 13 0.9 5.3 8.6 8.8
visitall (40) 30 33 30 30 2.3 27.8 30.3 30.3
woodwork (50) 49 38 49 49 3.8 24.3 40.5 44.7
zenotravel (20) 13 7 13 13 1.0 4.9 8.7 8.8

Sum (1827) 1156 766 1155 1159 86.8 539.8 900.4 908.7

Table 1: Coverage and time scores of four SCP variants:
offline diversification (offline), online computation without
diversification (on-nodiv), and online diversification with-
out (on-stable) and with state reevaluation (online). All di-
versifying variants use a time limit of 1000 seconds, and
on-stable and online use interval selection with i=10K.

be
llm

an
no

ve
lty

-1
in

te
rv

al
-1

in
te

rv
al

-1
0

no
ve

lty
-2

in
te

rv
al

-1
00

K
in

te
rv

al
-1

K
in

te
rv

al
-1

00
in

te
rv

al
-1

0K

T
=1

00
0s

T
=∞

bellman – 7 5 5 4 5 5 4 4 1145 995
novelty-1 7 – 4 7 5 3 6 5 3 1153 1125
interval-1 7 5 – 4 5 4 5 4 2 1153 803
interval-10 7 8 4 – 6 4 4 2 3 1154 957
novelty-2 7 6 7 8 – 6 4 3 4 1157 1058
interval-100K 8 6 7 7 6 – 5 4 1 1156 1137
interval-1K 10 8 9 8 4 5 – 4 2 1157 1106
interval-100 8 8 7 6 5 4 4 – 3 1157 1061
interval-10K 11 8 8 9 6 4 4 6 – 1159 1125

Table 2: Left: per-domain coverage comparisons of differ-
ent state selection strategies. Each variant uses at most 1000
seconds for online diversification. The entry in row r and
column c shows the number of domains in which strategy
r solves more tasks than strategy c. For each strategy pair
we highlight the maximum of the entries (r, c) and (c, r) in
bold. Middle: total number of solved tasks with a time limit
of 1000 seconds for online diversification. Right: solved
tasks without a diversification time limit.

a time limit of 1000 seconds for the online diversification.
We see that overall coverage is similar for all interval and
novelty variants (1153–1159 solved tasks) and that the Bell-
man strategy solves fewer tasks in total than the other strate-
gies. We obtain the highest total coverage by selecting every
ten thousandth evaluated state (interval-10K) and therefore
we use this strategy in all other experiments.

Time Limit
The middle and right parts of Table 2 confirm that we need
a time limit for the online diversification. For all state selec-
tion strategies total coverage decreases when the time limit
of 1000 seconds for the diversification is lifted. The cover-
age loss is higher, the more states we may select for diversi-
fication. For example, the coverage of the novelty-1 variant
only decreases by 28 tasks, because the number of selected
states is limited by the number of atoms A in the planning
task. For novelty-2 coverage decreases by 99 tasks, because
at most |A|2 states can be selected.

Samples
The offline and online diversification algorithms differ in
two main respects: for which states they compute orders and
which states they use to decide whether to store an order. For
both of these decisions, the offline variant uses sample states
obtained with random walks, whereas the online variant uses
states evaluated during the search. In this subsection, we an-
alyze whether online diversification benefits from consider-
ing randomly sampled states.

19

sa
m

pl
es

bo
th

st
at

e

Coverage Time Score

samples – 2 2 1158 865.5
both 2 – 1 1158 865.5
state 3 2 – 1159 908.7

Table 3: Comparison of three different online diversifica-
tion methods. All methods limit the time for diversification
to 1000 seconds, compute an order for each ten thousandth
evaluated state and reevaluate states before expanding them.
They differ in the set of states Ŝ for which they diversify the
set of stored orders Ω. For samples the set Ŝ contains 1000
sample states obtained with random walks before the search.
When using the state method Ŝ only contains the currently
evaluated state (as in Algorithm 3). The both method sets Ŝ
to the union of the samples and the evaluated state. For an
explanation of the data, see Table 2.

1s 10s 100s 1000s 1200s 1500s

Coverage offline 1056 1145 1159 1156 1148 1128
online 1102 1135 1153 1159 1154 1146

Time Score offline 791.2 690.7 420.3 86.8 59.2 25.9
online 920.6 929.7 919.1 908.7 906.3 906.6

Table 4: Coverage and time scores for offline and online di-
versification using different time limits for diversification.
The online variants use the interval-10K strategy.

It is unlikely that computing orders for randomly sampled
states is preferable to computing orders for states that the
search actually evaluates. However, it could be beneficial
to use a set of sample states when judging whether an or-
der should be stored. In Table 3, we evaluate this hypothesis
by comparing three different choices for the question which
states to consider when deciding whether an order should be
stored. The data shows that we solve almost the same num-
ber of tasks in total and per domain regardless of whether
we take into account only a single state, a set of 1000 sam-
ples or both. However, storing an order when it improves
the heuristic value for the currently evaluated state results in
shorter runtimes than for the other two variants in Table 3,
which is why we only consider this variant in Algorithm 3
and all other experiments.

Offline vs. Online Diversification
We now evaluate different time limits and compare the
resulting algorithms to their offline counterparts. The top
part of Table 4 confirms the result from Seipp, Keller, and
Helmert (2020) that we cannot simply reduce the time for of-
fline diversification (to 1 or 10 seconds) in order to minimize
overall runtime, without sacrificing total coverage. Offline
diversification solves the highest number of tasks (1159)
with a time limit T of 100 seconds and slightly fewer tasks
(1156) with T=1000s. Using lower or higher time limits
leads to solving much fewer tasks. The results are similar for

100 101 102 103
100

101

102

103

fa
ile

d

failed

offline

on
lin

e

Figure 1: Number of stored orders by offline and online di-
versification. Both variants use a diversification time limit
of 1000 seconds and the online variant uses the interval state
selection strategy with i=10K.

online diversification, which solves the most tasks (1159) for
T=1000s and slightly fewer tasks (1153–1154) for T=100s
and T=1200s. Online diversification is less susceptible to
the chosen time limit than offline diversification: while the
difference between the maximum and minimum coverage
score for offline diversification is 103 tasks, the correspond-
ing value for online diversification is only 57 tasks. Table 1
shows detailed coverage and time score results for the of-
fline and online variants that use at most 1000 seconds for
diversification (among two other variants).

Before we analyze the runtimes of the different variants,
we compare the number of orders stored by offline and on-
line diversification (using 1000 seconds for diversification)
in Figure 1. We can see that the online variant tends to
store fewer orders than the offline counterpart, often by more
than one order of magnitude. More precisely, online diver-
sification stores fewer orders than offline diversification for
1221 tasks, while the opposite is the case for 296 tasks. For
SCP the increased accuracy from using more orders usually
outweighs the increased evaluation time (Seipp, Keller, and
Helmert 2020). Therefore, Figure 1 suggests that the online
diversification stores fewer redundant orders than the offline
diversification, because otherwise the coverage gap between
the two variants (3 tasks) would be larger.

Not only does online diversification select useful orders
and obtain high coverage scores, but it also drastically re-
duces the overall runtime for many tasks compared to offline
diversification. The bottom part of Table 4 reveals that the
time score of all online variants is higher than the best time
score of all offline variants. The time score gap between the
two variants is 129.4 points for T=1s and it grows to 880.7
points for T=1500s.

Figure 2 shows the cumulative number of solved tasks
over time by offline and online diversification (with
T=1000s) and the variant that computes an SCP heuristic
for each evaluated state without storing any orders. The lat-

20

100 101 102 103

200

400

600

800

1,000

time in seconds

so
lv

ed
ta

sk
s

online-1000s
offline-1000s
online-nodiv

Figure 2: Number of solved tasks over time.

ter variant (online-nodiv) solves the simpler tasks quickly,
but only reaches a total coverage of 766 tasks. The offline
variant achieves a much higher total coverage (1156 tasks),
but it can only start finding solutions after its diversification
phase ended.

The online variant with diversification combines the ad-
vantages of the other two approaches and achieves both short
runtimes and high total coverage (1159 tasks). For example,
online-1000s solves 1121 tasks before offline-1000s even
finishes the diversification phase. After reaching the diver-
sification time limit, the online and offline variants solve
roughly the same number of additional tasks per time step.

For all time limits between 1 and 1800 seconds, online
diversification solves more tasks than offline diversification
and the online-nodiv variant. The right part of Table 1 holds
per-domain time scores for the algorithms in Figure 2. The
numbers show that online diversification is faster than offline
diversification in all domains, and usually achieves much
higher time scores (columns offline and online in Table 1).

Related Work
The work that is most closely related to ours simultane-
ously refines a set of Cartesian abstraction heuristics and a
set of SCP heuristics over them during an A∗ search (Eifler
and Fickert 2018). Whenever the maximum over the SCP
heuristics violates the Bellman optimality equation (1957)
for a state s and its successor states, the authors either re-
fine one of the abstractions until the heuristic estimate for s
increases, merge two abstractions or compute a new greedy
order ω for s (using the h scoring function, Seipp, Keller,
and Helmert 2020) and add hSCP

ω to the set of SCP heuris-
tics. Their strongest algorithm compares favorably against
a version that only refines the abstractions offline and only
computes a single SCP heuristic over them. However, both
the online and the offline version are outperformed by the
version that diversifies a set of SCP heuristics over a fixed
set of Cartesian abstraction heuristics, i.e., the offline SCP
variant we describe in Algorithm 2.

The literature contains additional approaches that im-
prove heuristics online during the search. For example, the
SymBA∗ planner repeatedly switches between a symbolic
forward search and symbolic backward searches in one of
multiple abstractions (Torralba, Linares López, and Bor-
rajo 2016). In the setting of satisficing planning, Fickert
and Hoffmann (2017) refine the FF heuristic (Hoffmann and
Nebel 2001) during enforced hill-climbing and greedy best-
first searches.

As a final example, Franco and Torralba (2019) interleave
the precomputation of a symbolic abstraction heuristic and
the symbolic search that uses it, by iteratively switching be-
tween the two phases. In each round they double the amount
of time given to each phase. Our work is orthogonal to theirs
since the two approaches focus on interleaving two different
types of precomputation with the search.

Conclusions
The best previously-known method for computing diverse
SCP heuristics uses a fixed amount of time for sampling
states and computing SCP heuristics for them. It yields
strong heuristics, but needs a long precomputation phase.
Computing an SCP heuristic for each evaluated state yields
even better estimates and needs no precomputation phase,
but it greatly slows down the search. We showed that by
diversifying SCP heuristics online, we can combine the
strengths of both approaches and obtain an algorithm that
needs no sample states nor precomputation phase, evaluates
states quickly and achieves high coverage.

Currently, the strongest optimal classical planners com-
pute multiple cost partitionings over abstraction heuristics
and use them in an A∗ search. There are three steps that
can take long before these planners can start their search:
deciding which abstractions to build (i.e., pattern selection
for pattern database heuristics), building the abstractions and
computing orders for cost partitioning algorithms. Franco
and Torralba (2019) show how to interleave the search with
building an abstraction and our paper shows how to effi-
ciently compute orders online. It will be interesting to see
how we can decide during the search which abstractions to
build and how we can combine all of these techniques.

Acknowledgments
We thank Malte Helmert and the anonymous reviewers for
their insightful comments. We have received funding for this
work from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme (grant agreement no. 817639).

References
Bellman, R. E. 1957. Dynamic Programming. Princeton
University Press.

Eifler, R.; and Fickert, M. 2018. Online Refinement
of Cartesian Abstraction Heuristics. In Bulitko, V.; and
Storandt, S., eds., Proceedings of the 11th Annual Sympo-
sium on Combinatorial Search (SoCS 2018), 46–54. AAAI
Press.

21

Fickert, M.; and Hoffmann, J. 2017. Complete Local Search:
Boosting Hill-Climbing through Online Relaxation Refine-
ment. In Barbulescu, L.; Frank, J.; Mausam; and Smith,
S. F., eds., Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling (ICAPS
2017), 107–115. AAAI Press.
Franco, S.; and Torralba, Á. 2019. Interleaving Search and
Heuristic Improvement. In Surynek, P.; and Yeoh, W., eds.,
Proceedings of the 12th Annual Symposium on Combinato-
rial Search (SoCS 2019), 130–134. AAAI Press.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2): 100–107.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New Admis-
sible Heuristics for Domain-Independent Planning. In Pro-
ceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI 2005), 1163–1168. AAAI Press.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI 2007), 1007–1012. AAAI Press.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26: 191–246.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
Abstraction Heuristics for Optimal Sequential Planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), 176–183. AAAI
Press.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14: 253–302.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.;
and Furcy, D. 2006. Maximizing over Multiple Pattern
Databases Speeds up Heuristic Search. Artificial Intelli-
gence 170(16–17): 1123–1136.
Karpas, E.; Katz, M.; and Markovitch, S. 2011. When Op-
timal Is Just Not Good Enough: Learning Fast Informative
Action Cost Partitionings. In Bacchus, F.; Domshlak, C.;
Edelkamp, S.; and Helmert, M., eds., Proceedings of the
Twenty-First International Conference on Automated Plan-
ning and Scheduling (ICAPS 2011), 122–129. AAAI Press.
Katz, M.; and Domshlak, C. 2008. Optimal Additive Com-
position of Abstraction-based Admissible Heuristics. In
Rintanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E., eds.,
Proceedings of the Eighteenth International Conference on
Automated Planning and Scheduling (ICAPS 2008), 174–
181. AAAI Press.
Katz, M.; and Domshlak, C. 2010. Optimal admissible
composition of abstraction heuristics. Artificial Intelligence
174(12–13): 767–798.
Lipovetzky, N.; and Geffner, H. 2012. Width and Serial-
ization of Classical Planning Problems. In De Raedt, L.;

Bessiere, C.; Dubois, D.; Doherty, P.; Frasconi, P.; Heintz,
F.; and Lucas, P., eds., Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI 2012), 540–545.
IOS Press.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning.
In Rossi, F., ed., Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), 2357–
2364. AAAI Press.
Seipp, J. 2018. Counterexample-guided Cartesian Abstrac-
tion Refinement and Saturated Cost Partitioning for Optimal
Classical Planning. Ph.D. thesis, University of Basel.
Seipp, J. 2020. Code, benchmarks and experiment data for
the HSDIP 2020 paper “Online Saturated Cost Partition-
ing for Classical Planning”. https://doi.org/10.5281/zenodo.
4068173.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research 62: 535–577.
Seipp, J.; and Helmert, M. 2019. Subset-Saturated Cost
Partitioning for Optimal Classical Planning. In Lipovetzky,
N.; Onaindia, E.; and Smith, D. E., eds., Proceedings of the
Twenty-Ninth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2019), 391–400. AAAI Press.
Seipp, J.; Keller, T.; and Helmert, M. 2017. A Compari-
son of Cost Partitioning Algorithms for Optimal Classical
Planning. In Barbulescu, L.; Frank, J.; Mausam; and Smith,
S. F., eds., Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling (ICAPS
2017), 259–268. AAAI Press.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. Journal of Ar-
tificial Intelligence Research 67: 129–167.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New Op-
timization Functions for Potential Heuristics. In Brafman,
R.; Domshlak, C.; Haslum, P.; and Zilberstein, S., eds., Pro-
ceedings of the Twenty-Fifth International Conference on
Automated Planning and Scheduling (ICAPS 2015), 193–
201. AAAI Press.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461. doi:10.5281/zenodo.790461. URL https://doi.org/
10.5281/zenodo.790461.
Torralba, Á.; Linares López, C.; and Borrajo, D. 2016. Ab-
straction Heuristics for Symbolic Bidirectional Search. In
Kambhampati, S., ed., Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI 2016),
3272–3278. AAAI Press.

22

Subset-Saturated Transition Cost Partitioning for Optimal Classical Planning

Dominik Drexler and David Speck and Robert Mattmüller
University of Freiburg, Germany

{drexlerd, speckd, mattmuel}@informatik.uni-freiburg.de

Abstract

Cost partitioning admissibly combines the information from
multiple heuristics for state-space search. We use a greedy
method called saturated cost partitioning that considers the
heuristics in sequence and assigns the minimal fraction of the
remaining costs that it needs to preserve the heuristic esti-
mates. In this work, we address the problem of using more
expressive transition cost functions with saturated cost par-
titioning to obtain stronger heuristics. Our contribution is
subset-saturated transition cost partitioning that combines the
concepts of using transition cost functions and prioritizing
states that look more important during the search. Our empir-
ical evaluation shows that this approach still causes too much
computational overhead but leads to more informed heuris-
tics.

Introduction
Heuristic search with a lower bounding heuristic is one of
the most promising techniques to solve challenging planning
problems optimally. We consider cost partitioned heuristics
that combine information from multiple sources. Cost parti-
tioned heuristics use the theory of cost partitioning (Katz and
Domshlak 2008). A cost partitioning distributes each transi-
tion’s cost over multiple heuristics such that the sum does
not exceed the original cost. If each heuristic is admissible
for the assigned transition costs, then the sum of heuristic es-
timates is admissible. The most effective approach to com-
pute cost partitioned heuristics is saturated cost partitioning
(Seipp, Keller, and Helmert 2017). Saturated cost partition-
ing considers the heuristics in sequence and assigns the min-
imum fraction of the remaining costs that it needs to preserve
the heuristic estimates. Recently, saturated cost partitioning
with restrictive operator cost functions yielded state-of-the-
art performance (Seipp and Helmert 2019).

In this work, we address the problem of using more ex-
pressive transition cost functions with saturated cost parti-
tioning to obtain stronger heuristics. Transition cost func-
tions require computationally more demanding representa-
tions compared to operator cost functions but allow comput-
ing more informed cost partitioned heuristics. The baseline
approach is saturated transition cost partitioning by Keller
et al. (2016). It uses the minimal fraction of the remaining

cost required to preserve the heuristic estimates, which often
results in an increased computational effort but also in more
informed heuristics.

We can decrease the computational effort by considering
a larger solution set. Moving from operator to transition cost
functions typically already increases the solution set because
every operator cost function is a transition cost function (but
not vice versa). Another way of increasing the size of the so-
lution set is by preserving the heuristic estimates of a subset
of states. The concepts of preserving the heuristic estimates
of a subset of states were introduced with subset-saturated
(operator) cost partitioning on restrictive operator cost func-
tions (Seipp and Helmert 2019). Preserving the heuristic es-
timates of a subset of states has shown to yield more accurate
cost partitioned heuristics.

Our contribution is subset-saturated transition cost parti-
tioning that combines saturated transition cost partitioning
with the concepts of preserving the heuristic estimates of a
subset of states. Even though subset-saturated transition cost
partitioning does not necessarily compute better cost parti-
tioned heuristics, we provide an empirical analysis to show
that this is often the case in practice. We derive a mechanism
for selecting transition cost functions from the solution set
that trades heuristic accuracy with performance and follows
the principle of prioritizing a subset of states.

Background
In this chapter we define, describe and discuss the concepts
and ideas that form the foundation for subset-saturated tran-
sition cost partitioning.

Planning Tasks

We consider the SAS+ planning formalism (Bäckström and
Nebel 1995). A SAS+ planning task is a 5-tuple that con-
sists of a set of finite domain variables that induce a set of
states, a finite set of operators (or actions) that induce a fi-
nite set of transitions, an initial state, a goal condition and
a function that describes the cost of applying each operator.
Each planning task compactly encodes a transition system
with weights assigned to transitions.

23

Transition Systems
A transition system describes the dynamics of a state-based
system. Transition systems (Seipp and Helmert 2019) are
also called state spaces.
Definition 1 (Transition System). A Transition System T
is a directed, labeled graph defined by a finite set of states
S(T), a finite set of labels L(T), a finite set T (T) of labeled

transitions s l−→ swith s, s′ ∈ S(T) and l ∈ L(T), an initial
state s0(T) ∈ S(T) and a set S?(T) ⊆ S(T) of goal states.

The objective in state space search is to find paths from
the initial state to a goal state.
Definition 2 (Paths and Goal Paths (Seipp and Helmert
2019)). Let T be a transition system. A path from s ∈ S(T)
to s′ ∈ S(T) is a sequence of transitions from T (T) of the

form π =
〈
s0 l1→ s1, . . . , sn−1 ln−→ sn

〉
, where s0 = s and

sn = s′. The length of π denoted by |π|, is n. The empty path
(of length 0) is permitted if s = s′. π is called a goal path, if
it is a path to any goal state s′ ∈ S?(T).

In the context of classical planning and cost partitioning,
it is convenient to allow assignment of costs to transitions
that are not necessarily unit costs. Transition cost functions
allow a different assignment for each transition and there-
fore, allows taking the application contexts of each action
into account.
Definition 3 (Transition Cost Function). Let T be a transi-
tion system with transitions T (T). A transition cost function
for T is a function tcf : T (T) → R ∪ {−∞,∞} that as-
signs costs to transitions. A transition cost function is finite
if −∞ < tcf (t) < ∞ for all transitions t ∈ T (T). It is
nonnegative if 0 ≤ tcf (t) for all transitions t ∈ T (T). We
write C(T (T)) for the set of all transition cost functions for
T and C≥0(T (T)) for the set of all nonnegative transition
cost functions for T .

A special case of a transition cost function is an op-
erator cost function. It is a transition cost function where
every transition with the same label is assigned the same
cost value. Therefore, an operator cost function is a map-
ping from labels (or operators) to our considered codomain.
The representation of an operator cost function requires
worst-case space of Θ(|L(T)|) or Θ(||Π||) where ||Π|| de-
notes the input size of a planning task. The representation
of a transition cost function requires worst-case space of
Θ(||Π|| · 2poly(||Π||)).

In the context of cost partitioning, it is convenient to work
with a collection of transition systems where each transition
system is associated with a transition cost function. The def-
inition of a weighted transition system captures the notion
of this pairing (Seipp and Helmert 2019).
Definition 4 (Weighted Transition System). A weighted
transition system is a tuple 〈T , tcf 〉 where T is a transition
system and tcf is a transition cost function for T .

Allowing infinities to be assigned to transitions through
either operator or transition cost functions means that we
must take care of arithmetic expressions that involve +∞
and−∞ to make the theory of cost partitioning work. Seipp

and Helmert (2019) defined two kinds of addition that make
it possible to handle mixed infinities in cost partitioning.

The symbols + (infix) and
∑

(prefix) denote the left-
addition operation. Left-addition over integers is the usual
addition. Expressions that contain infinities are defined as
∞+x =∞ and−∞+x = −∞ for all integers x, including
x being∞ or−∞. This operation is associative but not com-
mutative. Intuitively, a left addition sum that contains mixed
infinities evaluates to the leftmost infinity. In cost partition-
ing, we use left-addition for summing up multiple heuristic
values and partitioned costs (Seipp and Helmert 2019).

The symbols ⊕ (infix) and
⊕

(prefix) denote the path-
addition operation. Path addition over integers is the usual
addition. Expressions that contain infinities are defined as
x ⊕ y = ∞ iff x = ∞ or y = ∞ and x ⊕ (−∞) = −∞
for all x 6= ∞. This operation is associative and commuta-
tive. Intuitively, a path addition sum evaluates to +∞ if the
path addition sum involves at least one +∞. We use path-
addition to define the cost of a path in a transition system
(Seipp and Helmert 2019).

Definition 5 (Cost of a path). Let 〈T , tcf 〉 be a
weighted transition system. The cost of a path π =〈
s0 l1−→ s1, . . . , sn−1 ln−→ sn

〉
with ti = si−1 li−→ si is

defined as cost(tcf , π) =
⊕n

i=1 tcf (ti).

Intuitively, a path of cost −∞ is infinitely cheap, and a
path of cost∞ is non-existent.

In optimal classical planning, we are interested in finding
paths with the cheapest cost to a goal. The following defi-
nition captures goal distances as functions that depend on a
given state and a transition cost function. This notion follows
the pairing of weighted transition systems in cost partition-
ing.

Definition 6 (Goal Distances and Optimal Paths (Seipp and
Helmert 2019)). Let 〈T , tcf 〉 be a weighted transition sys-
tem. The goal distance of a state s ∈ S(T) in T under cost
function tcf is defined as infπ∈Π?(T ,s) cost(tcf , π) where
Π?(T , s) is the set of goal paths from s in T .

We write h∗T (tcf , s) for the goal distance of s in T under
transition cost function tcf .

A goal path π from s in T is optimal under the given tran-
sition cost function tcf if cost(tcf , π) = h∗T (tcf , s).

The empty infimum is defined as ∞ and follows the no-
tion of a non-existent goal path. The infimum ensures that
repeatedly taking a negative cost cycle in the transition sys-
tem will evaluate to −∞.

Abstractions
Abstractions are relaxations of the behavior of a state-based
system where multiple states collapse into a single abstract
state (Helmert, Haslum, and Hoffmann 2007).

Definition 7 (Abstraction). Let T , T ′ be two transition sys-
tems with the same label sets L(T) = L(T ′) and let α :
S(T) → S(T ′), β : T (T) → T (T ′) be surjective func-
tions. We say that T ′ is an abstraction of T with abstrac-
tion mappings α, β if (1) α(s0(T)) = s0(T ′), (2) α(s?) ∈

24

S?(T ′) for all s? ∈ S?(T), and (3) α(s)
l−→ α(s′) ∈ T (T ′)

and β(s
l−→ s′) = α(s)

l−→ α(s′) for all s l−→ s′ ∈ T (T).
We refer to T as the concrete transition system and T ′ as

the abstract transition system. We consider a special type of
abstraction where every abstract state is cartesian (Seipp and
Helmert 2013).

An abstraction heuristic is a function that maps each con-
crete state to the goal distance of its corresponding abstract
state under a given transition cost function. Goal distances in
the abstract transition system require an abstract transition
cost function that maps every abstract transition to a value
in the codomain. The abstract transition cost function maps
an abstract transition to the minimal cost of every concrete
transition that induces it (Keller et al. 2016).
Definition 8 (Abstraction heuristic). Let 〈T , tcf 〉 and〈
T ′, tcf ′

〉
be two weighted transition systems. Let T ′ be an

abstraction of T with abstraction mappings α, β.
We say that tcf ′ is the abstract transition cost function of

tcf that describes the cost of each abstract transition t′ ∈
T (T ′) in the abstraction with

tcf ′(t′) = min{tcf (t) | t ∈ T (T) ∧ β(t) = t′}
The abstraction heuristic of a concrete state s ∈ S(T) is

the goal distance of the corresponding abstract state α(s) in
the abstraction T ′ under the abstract transition cost func-
tion tcf ′, i.e. h(tcf , s) = h∗T ′(tcf

′, α(s)).
The definition of the abstract transition cost function re-

veals that the computation of an abstract transition cost in-
volves a minimization over all (exponentially many) transi-
tions of the concrete transition system that are responsible
for this abstract transition. In the case of cartesian abstrac-
tions this minimization of exponentially many concrete tran-
sitions can be carried out in time that is often polynomial in
the number of variables of the planning task, albeit worst-
case exponential (Geißer, Keller, and Mattmüller 2016).

A heuristic is admissible if it never overestimates the goal
distances in the weighted concrete transition system. Ab-
straction heuristics are admissible because every goal path
in the concrete transition system corresponds to a goal path
in the abstract transition system. The minimization in the
abstract transition cost function ensures that the abstraction
heuristic does not overestimate any goal distance (Keller
et al. 2016). We use the A∗ algorithm with an admissi-
ble heuristic to find optimal goal paths (Hart, Nilsson, and
Raphael 1968).

Transition Cost Partitioning
A transition cost partitioning splits a given transition cost
function into a sequence of transition cost functions such
that the sum (left addition) of all transition cost functions in
the sequence is upper bounded by the original transition cost
function (Keller et al. 2016; Pommerening 2017).
Definition 9 (Transition Cost Partitioning). A transition
cost partitioning for a weighted transition system 〈T , tcf 〉
with transition cost function tcf ∈ C(T (T)) is a tuple
〈tcf 1, . . . , tcf n〉 ∈ C(T (T))n whose sum is bounded by tcf ,
i.e.
∑n
i=1 tcf i(t) ≤ tcf (t) for all t ∈ T (T).

A transition cost partitioning induces a cost partitioned
heuristic by associating each transition cost function with a
heuristic and summing up the heuristic estimates of individ-
ual states. The following theorem states that the cost par-
titioned heuristic is admissible. Katz and Domshlak (2008)
introduced cost partitioning that works on nonnegative op-
erator cost functions. Pommerening et al. (2015) showed
that general operator cost functions can be used for cost
partitioning and Keller et al. (2016) defined general transi-
tion cost function for cost partitioning. Finally, Seipp and
Helmert (2019) introduced left addition rules to handle
mixed infinities, which led to Theorem 1 and shows that cost
partitioned heuristics are admissible.
Theorem 1. Admissibility Let T be a transition system with
admissible heuristics 〈h1, . . . , hn〉 and a transition cost par-
titioning P (T (T)) = 〈tcf 1, . . . , tcf n〉 ∈ C(T (T))n. Then
hP (T (T))(s) =

∑n
i=1 hi(tcf i, s) is an admissible heuristic.

An optimal transition cost partitionings for a set of heuris-
tics is a transition cost partitioning that provides the best
heuristic estimate for a given state. The best known algo-
rithm to compute optimal transition cost partitioning works
in exponential time and is not useful in practice. In the next
section, we focus on greedy algorithms based on cost satu-
ration that consider the heuristic in sequence and builds the
transition cost partitioning sequentially.

Subset-Saturated Transition Cost Partitioning
In this section, we combine saturated transition cost par-
titioning (Keller et al. 2016) with subset-saturation known
from subset-saturated operator cost partitioning (Seipp and
Helmert 2019). We first generalize dominating cost func-
tions (Seipp and Helmert 2019).
Definition 10 (Dominating Transition Cost Function). Con-
sider two transition cost functions tcf and tcf ′ defined on
the same set of transitions. We say that tcf dominates tcf ′,
in symbols tcf ≤ tcf ′, if tcf (t) ≤ tcf ′(t) for all transitions
t.

We say that tcf is the unique minimum of a set of tran-
sition cost functions Cost if it dominates all transition cost
functions in Cost. (Not all sets Cost have a unique mini-
mum.)

A saturated transition cost function for a subset of states
dominates a given transition cost function and preserves the
heuristic estimates of a given subset of states (Seipp and
Helmert 2019).
Definition 11 (Saturated Transition Cost Function). Con-
sider a weighted transition system 〈T , tcf 〉, a set of states
S′ ⊆ S(T) and a heuristic h for T . A transition cost func-
tion stcf ∈ C(T (T)) is saturated for S′, h and tcf if

1. stcf ≤ tcf and
2. h(stcf , s) = h(tcf , s), for all states s ∈ S′.

A saturated transition cost function always exists because
tcf itself is a saturated transition cost function. Our defini-
tion of the saturated transition cost function allows selecting
from a typically larger set of possible saturated transition

25

cost functions because of allowing transition cost functions
instead of operator cost functions and preserving the heuris-
tic estimates of a subset of states. We formalize this selec-
tion mechanism with a generalization of operator saturators
(Seipp and Helmert 2019) to transition saturators. A transi-
tion saturator is a function that takes as an input a heuristic,
the remaining transition cost function, and a subset of states
and outputs a saturated transition cost function. In contrast,
an operator saturator only allows operator cost functions in
the input and output.
Definition 12 (Transition Saturator). Consider a transition
system T , a set of states S′ ⊆ S(T) and a heuristic h for T .

A transition saturator for S′ and h is a partial func-
tion saturate : C(T (T)) → C(T (T)) such that whenever
saturate(tcf) is defined, it is a saturated transition cost
function for S′, h and tcf .

A transition saturator is general if its domain of definition
is C(T (T)). It is nonnegative to general (NNG) if its domain
of definition is C≥0(T (T)). It is nonnegative if its domain of
definition is C≥0(T (T)) and it only produces transition cost
functions in C≥0(T (T)).

The following definition generalizes subset-saturated op-
erator cost partitioning by exchanging operator saturators
with transition saturators. Alternatively speaking, we param-
eterize saturated transition cost partitioning with transition
saturators and allow saturation for a subset of states.
Definition 13 (Subset-Saturated Transition Cost Partition-
ing). Consider a weighted transition system 〈T , tcf 〉, a set
of states S′ ⊆ S(T), a nonempty sequence of heuristics
H = 〈h1, . . . , hn〉 for T and a sequence Saturate =
〈saturate1, . . . , saturaten〉 such that saturatei is a satura-
tor for S′ ⊆ S(T) and hi for all 1 ≤ i ≤ n.

The saturated transition cost partitioning
〈tcf 1, . . . , tcf n〉 of the transition cost function tcf in-
duced by Saturate is defined as:

remain0 = tcf

tcf i = saturatei(remaini−1) for all 1 ≤ i ≤ n
remaini = remaini−1 − tcf i for all 1 ≤ i ≤ n

The subtraction in the definition of remaini is defined in
terms of left addition, i.e., a−b := a+(−b) and corresponds
the definition from subset-saturated operator cost partition-
ing.

The saturated transition cost partitioning (Definition 13)
is a transition cost partitioning. The result follows from the
proof that subset-saturated operator cost partitioning pro-
duces operator cost partitionings and exchanges labels with
transitions (Seipp and Helmert 2019).

In general, subset-saturated cost partitioning has three
major choice points that influence the accuracy of the cost
partitioned heuristic. These are the set of heuristics, the or-
der of the heuristics, and the transition saturators. In the re-
maining part of this section, we define generalizations of the
four operator saturators and an additional transition satura-
tor that allows avoiding computations of abstract transition
weights (Definition 8).

When comparing transition saturators, we use the same
concept of domination between saturated cost functions.
A dominating saturated cost function is ”more econom-
ical” than the cost function that it dominates because it
achieves the same objective of preserving heuristic estimates
but leaves a larger fraction of the remaining costs for later
heuristics in sequence. This often gives better heuristic esti-
mates but is not guaranteed due to the greediness of saturated
cost partitioning (Seipp and Helmert 2019).

We generalize the comparison results of operator satura-
tors to allow for comparison of transition saturators. We pro-
vide an additional result for comparing operator saturators
with transition saturators.

Theorem 2 (Domination by Subsets). For a given transi-
tion system T , heuristic h for T and transition cost function
tcf ∈ C(T (T)), let STCF (X) be the set of saturated tran-
sition cost functions for the set of states X ⊆ S(T), h and
tcf .

Let S′′ ⊆ S′ ⊆ S(T). Then:

1. For all transition cost functions tcf ′ ∈ STCF (S′), there
exists a transition cost function tcf ′′ ∈ STCF (S′′) that
dominates tcf ′.

2. If a transition cost function tcf ′′ ∈ STCF (S′′) is the
unique minimum of STCF (S′′), then tcf ′′ dominates all
transition cost functions in STCF (S′).

Proof: Statement 1 follows from Definition 11 where we
allow assigning lower saturated costs to transitions that start
at or end at states outside the subset if it does not conflict
with preserving the heuristic estimates of states within the
subset. Such transitions may exist exclusively in S′′, because
S′′ ⊆ S′. Statement 2 follows from Definition 10 of a unique
minimum and the first statement.

The theorem is an analog extension of the theorem
about domination by subsets on operator saturators (Seipp
and Helmert 2019). It shows that transition saturators for
S′′ ⊆ S′ are more economical than transition saturators
for S′. Since sets of saturated transition cost functions do
not necessarily have a unique minimum, it is not guaran-
teed that a minimal saturated transition cost function for
STCF (S′′) dominates all saturated transition cost functions
in STCF (S′). This stronger notion of dominance requires
that STCF (S′′) has a unique minimum and is part 2 of the
theorem.

The second way to obtain more economical transition sat-
urators uses saturator composition where the output of a sat-
urator is applied to the input of another saturator (Seipp and
Helmert 2019).

Theorem 3 (Domination by Composition). Let saturate1

and saturate2 be transition saturators for the same tran-
sition system T , state set S′ ⊆ S(T) and heuris-
tic h. Let saturate12 : C(T (T)) → C(T (T)) be the
composition of these saturators, i.e. saturate12(tcf) =
saturate2(saturate1(tcf)) for all transition cost functions
tcf ∈ C(T (T)).

Then saturate12 is a transition saturator for T , S′ and
h, and for all transition cost functions tcf ∈ C(T (T)),
saturate12(tcf) dominates saturate1(tcf).

26

Proof: Follows directly from Definition 12, where we re-
quire the output of a transition saturator to dominate its in-
put.

The composition is the reason why we consider satura-
tors in the general case. The inner saturator can output nega-
tive costs that the outer saturator has to handle. The compo-
sition with saturate2(max(0, saturate1(tcf))) ensures that
saturate2 is considered in the NNG case. This does not vi-
olate Definition 11 statement 1 because tcf is the remaining
cost function and nonnegative. The following theorem states
that allowing saturators to output transition cost functions
makes them more economical.

Theorem 4 (Domination by Expressiveness). Let saturateo
be an operator saturator for transition system T , state
set S′ ⊆ S(T) and heuristic h. Then there exists a
transition saturator saturate t for T , S′, and h such that
saturate t(ocf) dominates saturateo(ocf) for all operator
cost functions ocf ∈ C(L(T)).

Proof: The output of any operator saturator is an operator
cost function and a special case of the output of a transi-
tion saturator. Hence, there exists a transition saturator that
returns the same saturated transition cost function as the op-
erator saturator.

In other words, for each operator saturator, we can con-
struct a transition saturator that produces a dominating sat-
urated transition cost function. In the rest of this chapter,
we define such a transition saturator for each known oper-
ator saturator. We introduce a new transition saturator that
is explicitly used for transition cost functions and improves
the performance of computing heuristic estimates. When-
ever we provide additional information about the experimen-
tal setup, we describe the setup that allows for a fair compar-
ison with operator saturators.

General transition saturators
In the definition of each transition saturator, we consider
a weighted concrete transition system 〈T , tcf 〉 where tcf
describes the current remaining transition cost function
and an abstraction heuristic h for 〈T , tcf 〉 with underlying
weighted abstract transition system

〈
T ′, tcf ′

〉
.

Saturate for all states (allt) The allt transition satura-
tor preserves the heuristic estimates of all states and is
the one that was considered previously by Keller et al.
(2016). It computes the unique minimum saturated transition
cost function mstcf by setting the consistency constraint
h(tcf , s) ≤ h(tcf , s′) + mstcf (t) tight for all transitions
t = s

l−→ s′ ∈ T (T). This can be enforced by setting

mstcf (t) = h(tcf , s)	 h(tcf , s′)

Seipp, Keller, and Helmert (2020) defined the operator 	
in the context of computing the minimum saturated operator
cost function msocf . The operator 	 behaves like the reg-
ular subtraction in the finite case and handles infinities as
x 	 y = −∞ iff x = −∞ or y = ∞ and x 	 y = ∞
iff x = ∞ 6= y or x 6= −∞ = y. The minimum saturated

operator cost function msocf sets the consistency constraint
tight for at least one transition of each operator, i.e.,

msocf (l) = sup

s
l−→s′∈T (T)

h(tcf , s)	 h(tcf , s′)

where the empty supremum is defined as −∞ and tcf is an
operator cost function in saturated operator cost partitioning.
Seipp, Keller, and Helmert (2020) show that the operator
	 computes the minimal saturated cost for each transition
and the supremum generalizes over all transitions with the
same label such that context information does not need to be
tracked. Hence, the mstcf computes the unique minimum
among all saturated transition cost functions that preserve
the heuristic estimates of all states.

Saturate for all states (spdt) The transition saturator spdt
is nonnegative and preserves the heuristic estimates of all
states. Its name is derived from the Shortest Path Discov-
ery (SPD) problem (Szepesvári 2004), where we are given a
transition system, a function query that returns the cost of a
transition, and a lower bound on the true transition weights.
The objective is to find the exact goal distance of each state1,
such that the number of evaluations of the function query is
as small as possible.

The SPD problem occurs in the saturated transition cost
partitioning algorithm as follows: For the next abstraction
heuristic in sequence, we do not know the abstract transi-
tion weights. But we can compute their weights using Def-
inition 8. Our experiments have shown that computing all
abstract transition weights is a performance bottleneck. Ac-
cording to Definition 13, we know that remaini is nonneg-
ative if remain0 is nonnegative (as in classical planning).
Therefore, a lower bound for each abstract transition weight
is zero2.

A nonnegative lower bound is important because it al-
lows using Dijkstra’s algorithm for goal distance analysis.
The lower bound can avoid the computation of the exact ab-
stract transition weight if it does not shorten goal distances
during goal distance analysis. Consider the case that Dijk-
stra’s expands an abstract transition. If the lower bound on
the abstract transition weight decreases the currently known
goal distance of the source state, then we have to compute
the exact transition weight. Otherwise, we keep the lower
bound and proceed with the next abstract transition. The
lower bound in the else case does not introduce shortcuts be-
cause: If the goal path that uses the transition with the lower
bound on the cost is not the current cheapest path for the
source state, then the same path that uses the exact transition
weight is also not the current cheapest path for the source
state.

Saturate for reachable states (reacht) The transition sat-
urator reacht is a generalization of the operator saturator

1s-t-path in the original problem definition
2It is possible to extract a more accurate lower bound, i.e., an

operator cost function of the remaining transition cost function in
O(|L(T)|) time when using decision diagrams.

27

reacho (Seipp and Helmert 2019). It preserves the heuristic
estimates of all states that are reachable in a forward search.
The concrete preimage S′ of all states that are reachable in
the abstract transition system overapproximates the set of
reachable states. The set of unreachable states is S(T) \ S′.
We set the heuristic estimate of each state s ∈ S(T) \ S′ to
h(tcf , s) = −∞ because they are never visited in a forward
search (Seipp and Helmert 2019). These modified heuris-
tic estimates will remain for all subsequent saturators in a
composition to exclude unreachable states from the subset
of states. Finally, apply allt on the modified heuristic es-
timates to obtain the unique minimum saturated transition
cost function for S′.

Saturate for a perimeter (perimt) The transition satura-
tor perimt is a generalization of the operator saturator perimo
(Seipp and Helmert 2019) and preserves the heuristic esti-
mates of all states that are within a perimeter of k to a goal.
The idea is that it is more important to preserve heuristic es-
timates of states that are closer to a goal (e.g., Holte et al.,
2004; Torralba, Linares López, and Borrajo, 2018). The set
of states within perimeter k > 0 is Sk = {s ∈ S(T) |
h(tcf , s) ≤ k}. In the abstract transition system T ′ the set
of states Sk corresponds to all abstract states s ∈ T ′ with
h∗T ′(tcf

′, s) ≤ k.
To efficiently compute a saturated transition cost function,

we only allow for nonnegative transition cost functions in
the input and cap the heuristic estimates at k = h(tcf , sI)
where sI is the initial state (Seipp and Helmert 2019). Fi-
nally, apply allt on the capped heuristic estimates to obtain a
saturated transition cost function for Sk.

Saturate for a single state (lpt) The transition saturator
lpt is a generalization of the operator saturator lpo (Seipp
and Helmert 2019) and preserves the heuristic estimate of
only a single state s ∈ S(T). The set of possible saturated
transition cost functions to pick from does not have a unique
minimum. We use an adapted version of the linear program-
ming formulation of the lpo operator saturator to choose
from the set of possible saturated transition cost functions.
The LP uses the same LP-trick to encode the heuristic esti-
mates from the saturated transition cost function.

Ha ≤ 0 for all a ∈ S?(T ′) (1)

Ha ≤ Ct +Hb for all a l−→ b = t ∈ T (T ′) (2)

Ct ≤ tcf ′(t) for all t ∈ T (T ′) (3)

Ct ≤ Cl for all a l−→ b = t ∈ T (T ′) (4)
Hα(s) = h(s) (5)

The variables Ct encode the saturated transition cost func-
tion, the variables Cl encode the saturated operator cost
function, and the variables Ha encode the heuristic estimate
h∗T ′ . We also choose the objective of minimizing the sum of
used operator costs min

∑
l∈L(T) Cl where we only include

labels with finite saturated operator costs. Our LP formula-
tion differs from the LP formulation of the operator saturator

lpo by allowing transition cost function in the input and the
output.

The objective function requires a preprocessing, where we
compute the saturated transition cost of all transitions that
result in either ∞ or −∞. We first set the heuristic esti-
mates of every state in the preimage of each abstract state
that is unreachable from the abstract state α(s) to−∞ (sim-
ilar idea as described in reacht). Then, we apply mstcf to
all transitions t that evaluate to mstcf (t) ∈ {−∞,∞}. Fi-
nally, we restrict the LP to contain only abstract states with
finite heuristic estimates together with their incident abstract
transitions. If there is an abstract transition with label l and
a constraint of type 2, then this label l is part of the objective
function. After solving the LP, we extract the saturated cost
of every transition from the variable Ct of the corresponding
abstract transition.

In our experiments, we preserve the heuristic estimate of
the initial state.

Nonnegative transition saturators
We obtain a nonnegative transition saturator by applying
stcf (t) = max(0, stcf (t)) for each transition t ∈ T (T) on
the output stcf of the NNG transition saturator. We denote
the nonnegative transition saturator with an additional super-
script, e.g., perim+

t for the nonnegative transition saturator of
the transition saturator perimt. It is possible to obtain simi-
lar theoretical comparison results on nonnegative transition
saturators.

Selecting runtime efficient saturator outputs
A problem with the current definitions of our transition sat-
urators is that their output does often not perform well in our
experiments. The runtime of the subtraction in Definition 13
and the size of the representation of remaini depends on
the saturated transition cost function. Therefore, selecting a
saturated transition cost function that performs better in the
tradeoff between leaving more remaining costs for subse-
quent heuristics and lowering the computational overhead is
necessary.

The first solution idea is to generalize saturated transition
costs over operators as described in the minimum saturated
operator cost function (section allt). If we do this for all op-
erators, then we obtain subset-saturated operator cost parti-
tioning. Operator costs can be subtracted efficiently from a
transition cost function when using decision diagrams.

The second solution idea is to decrease the number of
transitions for which the saturator output stcf(t) 6= 0 be-
cause subtraction of zero is trivial. We can achieve this by
considering the nonnegative case or considering other sub-
sets of states. Purely considering the nonnegative case is not
an option because negative costs have shown to make the
heuristics stronger (Pommerening et al. 2015).

In our experiments, we use the following mechanism to
select a saturated transition cost function: If an operator o
holds that the saturated transition cost function assigns the
same value to every transition with label o, then we use the
first solution idea because the same remaining cost is avail-
able for subsequent heuristics. Otherwise, we use a weaker
notion of the second solution idea where we replace each

28

stcf(t) = −∞ by 0. We found it prohibitively expensive in
our experiments to saturate with stcf(t) = −∞. The satu-
rated transition cost stcf (t) = −∞ typically occurs in dead
end states or unreachable states. Intuitively speaking, this
replacement corresponds to focus the computational effort
on the subset of states S′. It preserves the same heuristic
estimates but leaves fewer remaining costs for subsequent
heuristics. We denote transition saturators that use this se-
lection mechanism with additional superscript r, e.g. reachr

t .
The proposed solution ideas enable many options to de-

sign selection mechanisms, which we leave open for future
work.

Negative costs in saturator inputs
We conclude the section of transition saturators with a dis-
cussion of the concern about the heuristic reevaluation un-
der different types of transition cost functions. Transition
saturators also require the ability to reevaluate the heuris-
tic under the given input transition cost function. The first
reevaluation under remaini is generally not too costly be-
cause remaini is always nonnegative if the cost function
given with the planning task is nonnegative (as in classical
planning). However, if a transition saturator saturates for a
subset of states S′ and we later reevaluate the heuristic for
states s /∈ S′, then this requires algorithms like Bellman-
Ford if the saturated transition cost function contains nega-
tive costs (Seipp and Helmert 2019).

In contrast to the operator saturators, a transition satura-
tor has the ability to tighten the consistency constraint set
to each transition. In this case, a heuristic does not change
its estimates after reevaluation under the saturated transi-
tion cost function. Therefore, we can directly extract the
heuristic from the output of the saturator. However, when
selecting a saturated transition cost function that does not
tighten each consistency constraint, then the heuristic might
change after reevaluation. Seipp and Helmert (2019) found
it prohibitively expensive to reevaluate the heuristic with
Bellman-Ford and they suggest directly extracting a heuris-
tic lower bound from the output of the saturator, trading
heuristic accuracy with performance.

Experiments
We implemented all transition saturators into the Fast Down-
ward planning system (Helmert 2006). Similar to modern
symbolic search planners, we utilize decision diagrams for
compact representation and computation of sets of states
(Kissmann and Edelkamp 2014; Torralba et al. 2014; Speck,
Geißer, and Mattmüller 2018). More specifically, we use
the CUDD library (Somenzi 1994) for Binary Decision Di-
agrams with the default fast-downward variable order to
represent and compute transition cost functions. We con-
ducted experiments with the Downward Lab toolkit (Seipp
et al. 2017) on Intel Xeon E5-2650v2 2.60GHz processors
with 64GB DDR3 1866MHz ECC registered memory. The
benchmark set consists of all 1827 instances from the op-
timization track of the 1998-2018 International Planning
Competitions that do not have conditional effects. Each task
was limited to a single core with 4GB of memory and a

time limit of 30 minutes. We consider the same set of ab-
straction as the initial work on cost saturation with opera-
tor saturators (Seipp and Helmert 2019) that consists of all
CEGAR abstractions with the goal and landmark diversifi-
cation technique (Seipp and Helmert 2014), the systematic
pattern databases (Pommerening, Röger, and Helmert 2013)
and the pattern databases found by hill-climbing (Haslum et
al. 2007). We order the abstractions using the static greedy
order with the scoring function h

stolen , that measures how
well a heuristic balances the two objectives of having a high
heuristic estimate and stealing low costs from other heuris-
tics (Seipp, Keller, and Helmert 2020). We consider only the
single order that is optimized for a high heuristic estimate
of the initial state. We optimize the order independent of the
transition saturator for a fair comparison. All benchmarks,
code, and experimental data have been published online3.

We write saturate1,saturate2 for the composition
saturate12 of saturators where the output of saturate1 is
applied to the input of saturate2.

We write saturate1+saturate2 to denote that saturate2 is
an additional run of cost saturation on the remaining cost
after computing a saturated transitioncost partitioning with
saturate1. The saturated transition cost functions of both
runs form a cost partitioning. Hence, summing up the heuris-
tic estimates of both runs yields an admissible heuristic.
Postponing additional runs of cost saturation makes sense
if there are potentially unused costs available.

If not explicitly mentioned, a transition saturator compo-
sition always uses the transition saturator spdt first. For ex-
ample allt corresponds to spdt,allt.

Comparison of transition saturators Table 1a shows the
pairwise comparison of a set of transition saturators that we
obtain using Theorems 2, 3, 4, and the knowledge from pre-
vious work about operator saturators. We simulate the sat-
urated transition cost partitioning with the transition satu-
rator allt (without spdt) and subset-saturated transition cost
partitioning and obtain coverage of 974 tasks. Composition
with spdt clearly pays off because allt has a coverage of 984
tasks and guarantees computing the same heuristics. Select-
ing the saturated transition cost function that replaces neg-
ative infinities by zero allrt also pays off because the cover-
age increases to 1003 tasks, and the estimate of the initial
state is worse in only 4 tasks. Preserving the heuristic esti-
mates of reachable state states reachr

t shows small improve-
ments. Preserving the heuristic estimates of only the initial
state lpr

t +reachr
t wins the most pairwise comparison for the

heuristic estimate of the initial state but solves only 766
tasks. Our best transition saturator is reach+

t ,perimr
t +reachr

t
that solves 1016 tasks and wins the second most pairwise
comparisons for the heuristic estimate of the initial state.
The transition saturator perimt most effectively improves
heuristic accuracy.

Comparison with operator saturators Table 1b shows
the pairwise comparison of a set of operator saturators

3https://doi.org/10.5281/zenodo.4065414

29

al
l t

(w
ith

ou
ts

pd
t)

al
l t

al
lr t

re
ac

hr t

lp
r t+

re
ac

hr t

pe
ri

m
r t+

al
lr t

re
ac

h+ t
,p

er
im

r t+
re

ac
hr t

allt (without spdt) - 0 4 17 36 31 33
allt 0 - 4 17 36 32 33
allrt 0 0 - 13 34 33 34
reachr

t 49 49 69 - 30 42 35
lpr

t+reachr
t 370 370 400 397 - 137 131

perimr
t+allrt 444 447 475 468 68 - 8

reach+
t , perimr

t+reachr
t 445 448 477 474 67 20 -

Coverage 974 984 1003 1003 766 1014 1016

(a) Comparison of transition saturators

al
l o

pe
ri

m
o+

al
l o

al
l t

(w
ith

ou
ts

pd
t)

re
ac

h+ t
,p

er
im

r t+
re

ac
hr t

allo - 53 153 51
perimo+allo 485 - 370 49
allt (without spdt) 330 219 - 33
reach+

t , perimr
t+reachr

t 645 384 445 -

Coverage 1035 1042 974 1016

(b) Comparison with operator saturators

Table 1: Per-task comparison of the initial h-value for a sub-
set of all saturator compositions. In every pairwise compar-
ison we consider the tasks for which both transition satu-
rators finished computing the initial heuristic estimate. The
entry in row r and column c indicates the number of tasks
where r returns a transition cost partitioning with a better
initial heuristic value than c. Boldface is used to indicate the
winner in the pairwise comparison (r, c) and (c, r).

and transition saturators. We simulate saturated opera-
tor cost partitioning with the operator saturator allo. We
choose the best operator saturator perimo+allo for subset-
saturated operator cost partitioning. We simulate saturated
transition cost partitioning with the transition saturator allt
(without spdt). We choose the best transition saturator
reach+

t ,perimr
t +reachr

t for subset-saturated transition cost
partitioning.

Operator saturators solve more tasks compared to tran-
sition saturators with 1042 against 1016 solved tasks. This
shows that selecting more efficient saturated transition cost
functions is crucial for further improvements. The best tran-
sition saturator computes significantly fewer heuristics with
a lower estimate for the initial state than other saturators
(rightmost column). Furthermore, the best transition satu-
rator wins the most pairwise comparisons for the heuristic
estimate of the initial state and shows that subset-saturated
transition cost partitioning computes more informed heuris-
tics than previous saturators.

Coverage al
l o

pe
ri

m
o+

al
l o

al
l t

(w
ith

ou
ts

pd
t)

re
ac

h+ t
,p

er
im

r t+
re

ac
hr t

driverlog (20) 15 15 13 14
elevators-opt08-strips (30) 20 20 21 18
elevators-opt11-strips (20) 17 17 18 15
floortile-opt11-strips (20) 4 3 0 1
freecell (80) 65 65 47 47
ged-opt14-strips (20) 15 15 19 19
miconic (150) 110 110 109 113
mprime (35) 28 27 28 27
nomystery-opt11-strips (20) 20 20 13 13
parcprinter-08-strips (30) 17 18 16 19
parcprinter-opt11-strips (20) 13 14 12 15
pipesworld-notankage (50) 22 22 22 23
scanalyzer-08-strips (30) 13 13 10 10
scanalyzer-opt11-strips (20) 10 10 7 7
snake-opt18-strips (20) 13 12 13 13
tetris-opt14-strips (17) 11 10 11 11
transport-opt08-strips (30) 14 14 13 13
transport-opt11-strips (20) 10 10 9 8
transport-opt14-strips (20) 8 8 8 7
woodworking-opt08-strips (30) 20 20 19 26
woodworking-opt11-strips (20) 14 14 13 18
zenotravel (20) 13 13 7 7

Sum (1827) 1035 1042 974 1016

Table 2: Per domain coverage. Contains all domains where
the best operator saturator perimo+allo solves more tasks
than the best transition saturator reach+

t , perimr
t +reachr

t or
vice versa.

Per domain coverage Table 2 shows the per domain cov-
erage of a relevant subset of all domains. The best transition
saturator reach+

t ,perimr
t +reachr

t performs badly in the do-
mains freecell, zenotravel, and nomystery, and it performs
well in domains woodworking, ged and miconic. Further-
more, we see a favor for transition cost partitioning in do-
mains where optimal plans contain an action multiple times.
Intuitively, if an optimal plan contains an action multiple
times, it applies the action in different states. Otherwise, the
plan would not be optimal because it contains a cycle. How-
ever, duplicate actions in optimal plans are not necessary for
transition cost partitioning to give more informed heuristics.

Future work
Finding better variable orderings for decision diagrams can
further improve the performance and lower the risk of un-
manageable large decision diagrams (Keller et al. 2016).

Another important problem to solve is finding mecha-
nisms to select saturated transition cost functions that are
computationally easier to handle but still allow us to profit

30

from more expressive cost assignments. Other selection
mechanisms can provide us with polynomial-size guarantees
for the representations of transition cost functions during
saturated cost partitioning. The question is whether or not
such smaller representations are capable of carrying enough
context information that allows computing better cost parti-
tioned heuristics.

Conclusion
We introduced subset-saturated transition cost partitioning
that combines saturated transition cost partitioning with the
concepts of preserving the heuristic estimates of a subset of
states.

Our empirical evaluation shows that more expressive tran-
sition cost functions still require too much computational
overhead but leads to more informed heuristics. Further-
more, subset-saturated transition cost partitioning lowers the
risk of getting heuristics that are worse than heuristics of
subset-saturated operator cost partitioning. In other words,
the greediness of cost saturation becomes less problematic.

Subset-saturated transition cost partitioning allows select-
ing from a larger solution set of saturated transition cost
functions. Crucial for further improvements is selecting sat-
urated transition cost functions that are computationally eas-
ier to handle and still allowing us to obtain better cost par-
titioned heuristics by considering more expressive cost as-
signments.

Acknowledgements
David Speck was supported by the German Research Foun-
dation (DFG) as part of the project EPSDAC (MA 7790/1-
1). We sincerely thank the anonymous reviewers for their
insightful and detailed comments.

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Geißer, F.; Keller, T.; and Mattmüller, R. 2016. Abstrac-
tions for planning with state-dependent action costs. In Proc.
ICAPS 2016, 140–148.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proc. AAAI
2007, 1007–1012.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proc. ICAPS 2007, 176–183.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Holte, R.; Newton, J.; Felner, A.; Meshulam, R.; and Furcy,
D. 2004. Multiple pattern databases. In Proc. ICAPS 2004,
122–131.

2014. IPC-8 planner abstracts.
Katz, M., and Domshlak, C. 2008. Optimal additive com-
position of abstraction-based admissible heuristics. In Proc.
ICAPS 2008, 174–181.
Keller, T.; Pommerening, F.; Seipp, J.; Geißer, F.; and
Mattmüller, R. 2016. State-dependent cost partitionings for
Cartesian abstractions in classical planning. In Proc. IJCAI
2016, 3161–3169.
Kissmann, P., and Edelkamp, S. 2014. Gamer and dynamic-
gamer – symbolic search at ipc 2014. In IPC-8 planner ab-
stracts (2014), 77–84.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From non-negative to general operator cost partition-
ing. In Proc. AAAI 2015, 3335–3341.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning. In
Proc. IJCAI 2013, 2357–2364.
Pommerening, F. 2017. New Perspectives on Cost Parti-
tioning for Optimal Classical Planning. Ph.D. Dissertation,
University of Basel.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Proc. ICAPS 2013,
347–351.
Seipp, J., and Helmert, M. 2014. Diverse and additive Carte-
sian abstraction heuristics. In Proc. ICAPS 2014, 289–297.
Seipp, J., and Helmert, M. 2019. Subset-saturated cost parti-
tioning for optimal classical planning. In Proc. ICAPS 2019,
391–400.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Seipp, J.; Keller, T.; and Helmert, M. 2017. A comparison of
cost partitioning algorithms for optimal classical planning.
In Proc. ICAPS 2017, 259–268.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated cost
partitioning for optimal classical planning. JAIR 67:129–
167.
Somenzi, F. 1994. Cudd: colorado university decision dia-
gram package - release 3.0.0.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018. SYMPLE:
Symbolic Planning based on EVMDDs. In IPC-9 planner
abstracts, 91–94.
Szepesvári, C. 2004. Shortest path discovery problems: A
framework, algorithms and experimental results. In Proc.
AAAI 2004, 550–555.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A symbolic bidirectional
A* planner. In IPC-8 planner abstracts (2014), 105–109.
Torralba, Á.; Linares López, C.; and Borrajo, D. 2018. Sym-
bolic perimeter abstraction heuristics for cost-optimal plan-
ning. AIJ 259:1–31.

31

Investigating Lifted Heuristics for Timeline-based Planning

Riccardo De Benedictis and Amedeo Cesta
CNR - Italian National Research Council, Institute of Cognitive Sciences and Technologies

Via San Martino della Battaglia 44, 00185, Rome, Italy
{name.surname}@istc.cnr.it

Abstract

This paper investigates the use of lifted heuristics, inspired
by the more classical ones for the resolution of STRIPS-
like problems, for the efficient resolution of timeline-based
planning problems. We propose, in particular, a new heuristic
strategy which, while maintaining the variables lifted, allows
more accurate decisions. Furthermore, the concepts presented
in this work pave the way for a new type of heuristics which,
at present, allow this kind of solvers a significant performance
improvement.

Introduction
Since their early introduction, domain-independent heuris-
tics have immediately proven to be a fundamental ally in
solving difficult combinatorial problems such as those re-
lated to automated planning. The number of heuristics, in-
troduced in recent years, for the efficient resolution of these
problems has grown significantly to the point of constituting
a research field (called heuristic planning) in its own. The
different approaches that make up a solver’s paraphernalia,
range from the seminal hadd and hmax (Bonet and Geffner
2001) to the more recent developments relying on delete-
relaxation, like the hFF heuristic (Hoffmann and Nebel
2001) and the causal graph heuristics (Helmert 2006), on
landmarks, like in (Hoffmann, Porteous, and Sebastia 2004;
Porteous, Sebastia, and Hoffmann 2014), on the critical
path, like the hm heuristic (Haslum and Geffner 2000;
Haslum, Bonet, and Geffner 2005) or, lastly, on abstraction,
like in (Edelkamp 2014) or in (Helmert, Haslum, and Hoff-
mann 2007; Helmert et al. 2014).

While the above heuristics are significantly heterogeneous
among them (although, often, they share some commonali-
ties), they have in common the fact that they have been de-
veloped specifically for the resolution of a particular type
of problem, characterized by a specific modeling language
called PDDL (Ghallab et al. 1998), representing a natural
evolution of the most long-lived STRIPS (Fikes and Nils-
son 1971) formalism. Despite the PDDL, over the years, has
been extended through different directions by introducing
durative-actions and numeric fluents (Fox and Long 2003),
derived predicates and timed initial literals (Edelkamp and
Hoffmann 2004), continuous changes (Fox and Long 2006),

state-trajectory constraints and preferences (Gerevini et al.
2009) and object-fluents1, the development of heuristics for
reasoning with these more expressive formal systems has re-
mained relatively limited to a few cases (e.g., (Piotrowski et
al. 2016; Franco et al. 2019)).

Although it significantly departs from the previous ones,
the timeline-based approach represents a different formal-
ism that, already in its original formulation (Muscettola et
al. 1992), is able to cover a large part of the above features.
Although introduced before the aforementioned formalisms,
this specific planning paradigm has always remained a niche
within the automated planning community. The fragmen-
tation of the different timeline-based formalisms, indeed,
did not allow the emergence of a common language which
would have enabled a fair comparison among the differ-
ent reasoners. Furthermore, analogously to the solvers rea-
soning upon the previous PDDL extensions, timeline-based
planners have to cope with the high expressiveness of the
formalisms which, despite making them particularly suited
at addressing real-world applications, unavoidably leads to
performance issues. The contribution of this paper, a slightly
modified version of (De Benedictis and Cesta 2020), is,
hence, twofold: after providing a new formalization of the
timeline-based problem, aiming to embracing the differ-
ent aspects of the previous formalisms, we propose a new
domain-independent heuristic which, inspired by the more
classical ones, aims at improving the resolution efficiency.

Timeline-based planning
Timeline-based planning was first introduced in (Muscet-
tola et al. 1992; Muscettola 1994) and, since then, many
solvers have been proposed like, for example, IXTET (Ghal-
lab and Laruelle 1994), EUROPA (Jonsson et al. 2000),
ASPEN (Chien et al. 2010), the TRF (Fratini, Pecora, and
Cesta 2008; Cesta et al. 2009) on which the APSI frame-
work (Fratini et al. 2011) relies and, more recently, PLAT-
INUm (Umbrico et al. 2017). Some theoretical work on
timeline-based planning like (Frank and Jónsson 2003; Jon-
sson et al. 2000) was mostly dedicated to identifying con-
nections with classical planning a-la PDDL (Fox and Long

1http://www.plg.inf.uc3m.es/ipc2011-deterministic/
attachments/Resources/kovacs-pddl-3.1-2011.pdf

32

(a) A continuous timeline.

(b) A step-wise timeline.

Figure 1: A continuous and a step-wise timeline.

2003). A recent new formalization of timeline-based plan-
ning has been proposed in (Cialdea Mayer, Orlandini, and
Umbrico 2016), while (Gigante et al. 2020) studied its prop-
erties from a computational complexity point of view. The
work on IXTET and TRF has tried to clarify some key under-
lying principles but mostly succeeded in underscoring the
role of time and resource reasoning (Cesta and Oddi 1996;
Laborie 2003). The planner CHIMP (Stock et al. 2015) fol-
lows a Meta-CSP approach having meta-Constraints which
havely resembles timelines. The Flexible Acting and Plan-
ning Environment (FAPE) (Dvorák et al. 2014) tightly in-
tegrates timelines with acting. The Action Notation Model-
ing Language (ANML) (Smith, Frank, and Cushing 2008)
is an interesting development which combines the HTN de-
composition methods with the expressiveness of the time-
line representation. Finally, it is worth mentioning that the
timeline-based approaches have been often associated to re-
source managing capabilities. By leveraging on constraint-
based approaches, most of the above approaches like IXTET
(Laborie and Ghallab 1995; Laborie 2003), (Cesta, Oddi,
and Smith 2002), (Smith, Frank, and Jónsson 2000) or (Ver-
faillie, Pralet, and Lemaı̂tre 2010) integrate planning and
scheduling capabilities.

In order to better understand what we are talking about
when discussing about timeline-based planning, it is im-
portant to introduce, without going into too much for-
mal details, some basic concepts about constraint networks
(Dechter 2003; Lecoutre 2009). Some of the timeline-based
frameworks like, for example, those described in (Smith,
Frank, and Jónsson 2000; Frank and Jónsson 2003), refer to
timeline-based planning in terms of constraint-based plan-
ning, further emphasizing the central role that constraints
take on within this type of planning. Formally,

Definition 1. A constraint networkN is composed of a finite
set of variables, denoted by vars (N), and a finite set of
constraints, denoted by cons (N).

Specifically, constraint networks represent the lowest

level elements on which timeline-based planning relies. The
main data structure for the timeline-based paradigm is, in-
deed, the timeline which, in generic terms, is a function of
time, either discrete or continuous, over a given domain. For-
mally,
Definition 2. A timeline T is a function

T : T→ D
where T is the (either discrete or continuous) domain of
time and D is the (possibly infinite) domain of the timeline.

It is worth noticing that the previous definition is quite gen-
eral, not specifying any limitation neither on the time, which
can be either discrete or continuous, nor on the domain
which can be, in general, of any kind. Specifically, the do-
main of a timeline can be either symbolic (e.g., “a”, “b”, “c”,
etc.) or numeric (e.g., “1”, “2”, “3”, etc.). Additionally, nu-
meric domains can be either integer (e.g., “10”, “12”, “25”,
etc.) or real (e.g., “1.23”, “2.17”, “3.14”, etc.). While inte-
ger domains can change in time only step-wise, real domains
can change both step-wise and continuously. Finally, contin-
uous changes can happen both linearly or non-linearly. Fig-
ure 1 (a), for example, represents a continuously updating
non-linear timeline over reals. Figure 1 (b), on the contrary,
shows a step-wise updating timeline.

Since the definition of timeline is completely general, it
is possible to represent, through these, extremely heteroge-
neous concepts. We need, therefore, a unifying element that
allows to represent contents homogeneously, in a way which
is agnostic from the nature of the timeline. To this end, we
introduce the concept of token and establish that values on
timelines are a direct consequence of tokens through a time-
line extraction procedure (more details soon). Without loss
of generality, a token is an “assertion over a temporal inter-
val”. Formally,
Definition 3. A token is an expression of the form:

n (x0, . . . , xi)χ@ [s, e, τ]

where n is a predicate name, x0, . . . , xi are the parameters
of the predicate (i.e., constants, numeric variables or sym-
bolic variables), χ is the class of the token (i.e., either a fact
or a goal), s and e are the temporal parameters of the token
(i.e., constants or variables) belonging to T such that s ≤ e
and τ is the scope parameter of the token (i.e., a constant or
a symbolic variable) representing the timeline on which the
token apply.

Roughly speaking, the expression on the left of the “@”
symbol represents the “assertion” while the expression at
its right represents the “interval”. In other words, a token
n (x0, . . . , xi)χ@ [s, e, τ] asserts that ∀t such that s ≤ t ≤ e,
the relation n (x0, . . . , xi) holds at the time t on the timeline
τ . Furthermore, given a token η, we call pars (η) its param-
eters x0, . . . , xi, s, e, τ .

Tokens constitute the main building blocks of timeline-
based plans. Regardless of the resolution procedure, indeed,
the role of any timeline-based solver consists in introducing
new tokens and/or establishing the values of their parame-
ters. A critical aspect to keep in mind, when talking about

33

tokens, is that, in general, their parameters are variables of
a constraint network and, as such, can be constrained. In
other words, in order to reduce the allowed values for the to-
kens’ constituting parameters, and thus decreasing the mod-
eled system’s allowed behaviors, it is possible to impose
constraints among them (and/or among the parameters and
other possible variables). Such constraints include temporal
constraints, binding constraints between symbolic variables
as well as (non)linear constraints among numerical variables
(possibly including temporal variables).

The set of tokens and constraints is used to describe the
main data structure that is used to represent (partial) plans of
the timeline-based approach: the token network. Formally,

Definition 4. A token network is a tuple π = (T ,N),
where:

– T = {η0, . . . , ηj} is a set of tokens, such that ∀η ∈
T , pars (η) ⊆ vars (N).

– N is a constraint network.

Finally, as already mentioned, tokens can be partitioned
into two classes: facts and goals. While facts are, by defi-
nition, inherently true, goals have to be achieved. Causality,
in particular, in the timeline-based approach, is defined by
means of a set o rules indicating how to achieve goals. For-
mally,

Definition 5. A rule is an expression of the form

n (x0, . . . , xk)@ [s, e, τ]← r

where:

– n (x0, . . . , xk)@ [s, e, τ] is the head of the rule, i.e. an
expression in which n is a predicate name, x0, . . . , xk
are the parameters of the head (i.e., numeric variables or
symbolic variables), s and e are the temporal parameters
of the head (i.e., constants or variables) belonging to T
such that s ≤ e and τ is the scope parameter of the head
(i.e., a constant or a symbolic variable) representing the
timeline on which the rule apply.

– r is the body of the rule (or the requirement), i.e. either an-
other token, a constraint among tokens (possibly includ-
ing the x0, . . . , xk, s, e, τ variables), a conjunction of re-
quirements or a (priced2) disjunction3 of requirements.

Specifically, rules define causal relations that must be com-
plied to in order for a given goal to be achieved. Roughly
speaking, for each goal having the “form” of the head of a
rule, the body of the rule (i.e., a logic combination of further
tokens and constraints) must also be present in the token net-
work. An example of rule is given by

2It is possible, if needed, to associate a cost to the different dis-
juncts of a disjunction so as to model preferences.

3Some formalisms allow the definition of different rules having
the same head, thus modeling the disjunctions. We preferred to re-
place this possibility by explicitly representing disjunctions. This
choice can, in cases where these rules share some of the require-
ments, favor the modeler by reducing the size of the domain.

At (?x)@ [s, e, τ]←

[e− s ≥ 1]∧

dt : DriveTo (?x)g@ [s, e, τ]∧
[τ == dt.τ] ∧ [s == dt.e]∧

[?x == dt.?x]

∨

ft : FlyTo (?x)g@ [s, e, τ]∧
[τ == ft.τ] ∧ [s == ft.e]∧

[?x == ft.?x]

By combining tokens, constraints, conjunctions and disjunc-
tions, the above rule states that, in order to be in a given po-
sition, our agent must reach it either by driving or by flying.

We have now all the ingredients to define a timeline-based
planning problem. In particular, the definition can rely on the
above concept of requirement.
Definition 6. A timeline-based planning problem is a triple
P = (T,R, r), where:

– T is a set of timelines.
– R is a set of rules.
– r is a requirement, i.e. either a (fact or goal) token, a con-

straint among tokens, a conjunction of requirements or a
(priced) disjunction of requirements.

It is worth highlighting that, conversely to other timeline-
based approaches, our formalism makes a clear distinction
between tokens and values on timelines. This difference
aims at guaranteeing us a further element of generality. The
transition from tokens to timelines, however, requires the in-
troduction of a further function which allows to extract the
timelines from the tokens. Specifically,
Definition 7. An extraction function XT is a function for a
timeline T

XT : T× 2TT → D
where T is the (either discrete or continuous) domain of
time, TT is the set of tokens in the token network, having
T in the domain of their τ variable, and D is the domain of
the timeline.

As can be easily seen by comparing Definition 2 with Def-
inition 7, the result of the extraction function is, basically,
a timeline. Each type of timeline, indeed, has associated
its own timeline extraction procedure which allows to pass
from the associated tokens to the resulting timelines. In other
words, the timeline extraction procedure assigns to the to-
kens a higher-level semantic: according to the nature of the
timeline, the procedure is able to “recognize the meaning”
of the involved tokens. Note that, thanks to the introduction
of the above higher-level semantic, not all token configura-
tions lead to consistent timelines. According to the nature
of the timeline, indeed, some configurations of tokens might
lead to inconsistencies. It is responsibility of the solver to
introduce further constraints so as to avoid such inconsisten-
cies. Another way to see a timeline, indeed, is in terms of
a global constraint (refer, for example, to (Dechter 2003;
Lecoutre 2009)) over those tokens of the token network
which assume the same value for their τ variables. Such
global constraints, in particular, depend on the nature of the
timeline, hence justifying the introduction of this concept
within the formalism.

34

(a) A state-variable timeline.

(b) A reusable-resource timeline. (c) A consumable-resource timeline.

Figure 2: Different timelines extracted by tokens.

Examples of timelines, extracted from tokens, are shown
in the Figure 2. Specifically, Figure 2a shows a state-
variable timeline, a step-wise timeline whose domain de-
pends from the tokens which can be assigned, by means
of the τ variable (omitted, for simplicity), to it. This type
of timeline, in particular, introduces an additional global
constraint that guarantees that different values, on the same
timeline, cannot overlap in time. The state-variable of Fig-
ure 2a, as an example, has two values that overlap as
a consequence of the overlapping of the At (l1) and the
GoingTo (l2) tokens. Such an inconsistency can be solved,
for example, by imposing an ordering constraint between the
tokens (e.g., e1 ≤ s2). Another type of timeline, typically
used in pure scheduling problems, is the reusable-resource
(see Figure 2b). This step-wise timeline is characterized by
a maximum capacity and by a resource level which changes
over time according to how the tokens, representing re-
source usages, overlap. The resource constraint guarantees
that concurrent uses of the resource do not exceed its ca-
pacity. Finally, as example of a continuous timeline, the
consumable-resource timeline (see Figure 2c) is character-
ized by a maximum capacity and by an initial amount. Sim-
ilarly to reusable-resources, the resource level changes over
time according to how the tokens, representing resource pro-
ductions and consumptions, overlap, while the resource con-
straint guarantees that the level never exceeds the resource
capacity nor goes below zero.

It is worth noticing that, unlike existing formalizations, by
enabling any implementing solver to reason about timelines
agnostically from their specific nature, the above definition
allows us to maintain a certain generality. Furthermore, once
provided an extraction function and the algorithms for man-
aging the specific global constraint, new types of timelines
can be introduced without affecting the solvers’ resolution
procedures.

The last aspect to consider regards the solution of a
timeline-based planning problem. Roughly speaking, a solu-
tion is a token network whose all goals have been achieved.
Furthermore, at least one consistent (i.e., does not violate
any constraint) and complete (i.e., it includes all the vari-
ables) assignment of values to the variables of the underly-
ing constraint network must be available. Notice that, among
the constraints of the constraint network, there are also those
which are imposed by the timelines. Formally,

Definition 8. A token network π = (T ,N) is a solution for
a timeline-based planning problem P = (T,R, r) if:

– there exists a complete and consistent assignment of val-
ues to the variables of the constraint network N .

– every goal g ∈ T is achieved (i.e., either the goal g is
recognized as semantically equivalent to another token,
or a rule, whose head is compatible with the token g, is
applied).

Reasoning with timelines
Unfortunately, the above definitions do not provide a com-
putable test for building and verifying solutions. This sec-
tion, therefore, introduces the typical approach for solv-
ing timeline-based planning problems. Specifically, com-
mon timeline-based solvers strongly rely on partial-order
planning (Weld 1994) for reasoning, generalizing the con-
cept of threat for including any possible inconsistency which
might arise as a consequence of the timeline constraints
(e.g., different states overlapping on the same state-variable,
resources overusages, etc.). Despite this generalization, the
search space (and, consequently, the solving algorithm) re-
mains substantially unchanged. In particular, timeline-based
solvers rely on the concept of flaws, that a token network
has, and on the concept of resolvers, for solving them. For-
mally,

Definition 9. A flaw in a token network π = (T ,N) is ei-
ther: (i) an open goal (i.e., a goal whose associated rule has
not yet been applied or which has not yet been recognized as
semantically equivalent to another token), (ii) a threat (i.e.,
any possible inconsistency arising as a consequence of the
timeline constraints) or (iii) a disjunction.

Intuitively, the main resolution principle consists in refin-
ing the token network π, identifying its flaws and applying
resolvers for solving them, while maintaining the constraints
cons (N) consistent, until the token network π has no more
flaws.

Figure 3 specifies a recursive non-deterministic proce-
dure called TP (for Timeline-based Planning) for resolving
timeline-based planning problems. Specifically:

– flaws denotes the set of all flaws in π provided by proce-
dures OpenGoals, Threats and Disjunctions; ϕ
is a particular flaw in this set.

35

procedure TP(π)
flaws← OpenGoals (π) ∪ Threats (π) ∪ Disjunctions (π)
if flaws = ∅ then return π
end if
select any flaw ϕ ∈ flaws
resolvers← Resolve (ϕ, π)
if resolvers = ∅ then return failure
end if
non-deterministically choose a resolver ρ ∈ resolvers
π′ ← Refine (ρ, π)

return TP (π′)
end procedure

Figure 3: The TP procedure for solving timeline-based plan-
ning problems.

– resolvers denotes the set of all possible ways to resolve a
specific flaw ϕ in a plan π and is given by the procedure
Resolve. The resolver ρ is a particular element of this
set.

– π′ is the new plan obtained by refining π according to the
resolver ρ as a consequence of the procedure Refine.

The TP procedure is called with an initial token network
π0, characterized by the problem’s requirement. Each suc-
cessful recursion is a refinement of the current plan accord-
ing to the chosen resolver. In particular, the Resolve pro-
cedure returns all the resolvers that, in the token network
π, solve the ϕ flaw. These resolvers depend, necessarily,
on the type of flaw ϕ and on the current token network π.
In the case of open goals, for example, resolvers represent
the application of the corresponding rule or the unification
(i.e., same predicate name and same, pairwise, parameter
values, hence recognizing the tokens as semantically equiv-
alent) with another already achieved goal or fact. In the case,
for example, of excessive concurrent resource usages, con-
versely, resolvers could represent ordering constraints be-
tween couples of tokens. As a consequence, each invocation
of the Refine procedure might introduce new tokens, new
variables and/or new constraints to the token network. Intu-
itively, refinement operations should be chosen so as to avoid
adding to the token network any constraint that is not strictly
needed (this is called the least commitment principle).

Toward more effective heuristics
Reasoning within the above formal system is not at all sim-
ple4. It is worth noting that while the choice of the resolver is
a non-deterministic step (i.e., it may be required to backtrack
on this choice), the selection of a flaw is a deterministic step
(i.e., there is no reason to backtrack on this choice) as all
flaws need to be solved before or later in order to reach a so-
lution plan. Despite the order in which flaws are processed is
very important for the efficiency of the procedure, it is unim-
portant for its soundness and completeness. A deterministic
implementation of the TP procedure should rely on algo-
rithms like A* or IDA* so as to avoid that the search may

4Note that it is possible, in general, to represent through this
formalism a self-referential proposition P , whose meaning is “P
is false”, hence showing the formalism’s undecidability.

keep exploring deeper and deeper a single path in the search
space, adding indefinitely new tokens to the partial plan and
never backtracking. As a consequence, choosing the right
flaw and the right resolver becomes a crucial aspect for cop-
ing with the computational complexity and hence efficiently
generating solutions.

The main difficulty derives from the impossibility of i)
having a perfectly defined current state and ii) measuring the
distance between this state and a desired state indicated in
the formulation of the planning problem. For these reasons
it becomes particularly inconvenient to use or even adapt,
directly, the heuristics developed for classical formalisms.
What we propose in this document is, somehow, to separate
the temporal aspects from the purely causal ones, which in
classical planning are strongly linked to be almost the same
thing, and to apply classical heuristics only to the latter. In
doing so, the rules of the timeline formalism become the
equivalent of the PDDL operators, having the requirements
as preconditions and the head of the rule as the only posi-
tive effect. Once this paradigm shift has been made, it be-
comes possible to adapt the heuristics of classical planning.
Note that, however, this translation is not trivial: if, on the
one hand, there is the simplification of having, for each op-
erator, only a single positive effect (i.e., the solved flaw),
on the other hand there is the difficulty of rendering atoms
“ground” due to the presence of numerical parameters (rep-
resenting, for example, the starting and the ending times of
the tokens). We are therefore forced to reason about a sort of
causal graph having lifted variables.

The overall proposed idea consists in applying, in a coarse
way, all the possible resolvers for all the possible flaws un-
til some termination criteria, i.e., unifications and resolvers
which do not add further flaws, is met. Specifically, since
flaws and resolvers are causally related (i.e., resolvers might
introduce flaws which are solved by other resolvers, etc.) it
is possible to build an AND/OR graph for representing such
causal relations. By doing so, instead of searching in the
space of the token networks, we have a single disjunctive
token network containing all the possible plans (or, hope-
fully, only the “most interesting” ones) that can be found
starting from the initial token network π0. By exploiting the
topology of such a graph it is possible to generate an esti-
mation of “how far” a flaw is from being solved and exploit
this estimation for guiding the resolution process. Specifi-
cally, taking inspiration from the hadd and the hmax heuris-
tics introduced in (Bonet and Geffner 2001), the cost of a re-
solver, which can be seen as an AND node, can be estimated
as the maximum (in case of hmax heuristic, or the sum, in
case of the hadd heuristic) of the estimated costs of the flaws
introduced by the resolver itself plus an intrinsic resolver’s
cost, while the estimated cost of a flaw, which can be seen
as an OR node, can be estimated as the minimum of the es-
timated costs of its possible resolvers. Since all flaws must
be solved, the solver chooses, among those that have to yet
been solved, the most expensive one (i.e., the one that, most
likely, will detect an inconsistency earlier) and will solve
it with the least expensive resolver (i.e., the one that, more
likely, will lead to a solution).

36

The lifted heuristic formulation
Before formally introducing the proposed heuristics, it is
worth providing some definitions. Specifically, since the
presence of flaws and resolvers, within the current partial
solution, is controlled by a set of propositional variables, we
refer to flaws by means of ϕ variables (we will use sub-
scripts to describe specific flaws, e.g., ϕ0, ϕ1, etc.) and to
resolvers by means of ρ variables (similarly to flaws, we
will use subscripts to describe specific resolvers, e.g., ρ0, ρ1,
etc.). Specifically, the value of such variables will be used
to recognize active flaws that have to be solved (i.e., those
flaws whose ϕ variables assume the true value) and applied
resolvers (i.e., those resolvers whose ρ variables assume the
true value). Additionally, given a flaw ϕ, we refer to the set
of its possible resolvers by means of res (ϕ) and to the (pos-
sibly empty) set of resolvers which are responsible for intro-
ducing it by means of cause (ϕ). The latter set is usually
constituted by the sole resolver representing the application
of the rule which introduced the flaw. Nonetheless, this set
can also be empty in case of top-level flaws, in which case
the true value is assigned to their controlling ϕ variables
or, also, can contain more than one resolver in case the flaw
is a consequence of their simultaneous application (e.g., a
flaw representing two states overlapping on the same state-
variable is activated whenever the rules that introduce the
two states are applied simultaneously). Finally, given a re-
solver ρ, we refer to the set of its preconditions (e.g., the set
of tokens introduced by the application of a rule) by means
of precs (ρ) and to the flaw solved through its application
by means of eff (ρ).

The above definitions allow us to formally introduce our
heuristics. Specifically, let G be the estimated cost function,
the estimated cost of a flaw ϕ and of a resolver ρ are charac-
terized by the following equations:

G (ϕ) = minρ∈res(ϕ)G (ρ)

G (ρ) = c (ρ) +maxϕ∈precs(ρ)G (ϕ)

where c (ρ) is the intrinsic cost of the ρ resolver, i.e., a pos-
itive number representing the “cost” of disjuncts, in case of
priced disjunctions, or the value 1, in other cases.

Similar to planning models based on satisfability (Kautz
and Selman 1992), it is possible to introduce propositional
constraints to the ϕ and ρ variables so as to guarantee the
causal relations. By doing so, once the graph has been built,
it is possible to frame the search space within a given bound-
ary, dropping the computational complexity of the search
procedure to a “simpler” NP-hard5. Furthermore, the intro-
duction of these variables allows the use of propagation tech-
niques and, in the event of inconsistencies, conflict analysis
(and, hence, non-chronological backtracking) techniques,
typical of SAT/SMT based solvers. The planning problem
is therefore reduced to the assignment of true values to the

5There is, intuitively, no guarantee that the built graph contains
a solution. Similarly to what happens in Graphplan (Blum and Furst
1997), indeed, it might be required the addition of a “layer” to the
graph.

Figure 4: An example of causal graph with lifted variables.

variables associated to the resolvers while observing the as-
signment, as a consequence of constraint propagation, of
true values to the variables associated to the flaws.

Additionally, in order to establish the presence or not
of the tokens inside the solution, a state variable σ ∈
{inactive, active, unified} is associated to each token. A
partial solution will hence consist solely of those tokens of
the token network which are active. Moreover, in case such
tokens are goals, the bodies of the associated rules must also
be present within the solution. The unified tokens do not par-
ticipate directly in the partial solution, since they are recog-
nized as semantically equivalent to other active tokens, yet,
since possibly subject to constraints, they might indirectly
influence the “shape” of the solution. Finally, inactive tokens
do not participate at all in the solution. We refer to tokens,
later on, by means of σ variables (we will use subscripts to
describe specific tokens, e.g., σ0, σ1, etc.) and to the flaws
introduced by tokens by means of the ϕ (σ) function.

An explanatory example
In order to better understand how the heuristic and causal-
ity constraints work we introduce, in this section, a very
simple example involving an agent moving between differ-
ent locations either by driving or by flying (which, in turn,
requires good weather). Figure 4 shows an example of the
graph which is generated for solving the problem of going
from l0 (a fact) to l1 (a goal).

Estimated costs for flaws (boxes) and resolvers (ovals) are
on their upper right. Notice that, in the example, the flaw
ϕ0 can only be solved by resolver ρ0 which is directly ap-
plied (solid lines represent what is in the current partial so-
lution). Additionally, since ϕ0 = ϕ (σ3), the active value
is assigned to σ3. The first flaw to be solved is, hence, ϕ1,
which can be solved either with resolver ρ1, having an esti-
mated cost of 3, or with resolver ρ2 having an estimated cost
of 46. Applying, for example, the least expensive resolver ρ1
would lead, as a consequence of constraint propagation, to
the activation of the flaw ϕ2 (notice that precs (ρ1) = {ϕ2}
and cause (ϕ2) = {ρ1}) which can be solved with the sole
resolver ρ3, which in turn activates the flaw ϕ4 which is

6In the figure, the estimated costs are represented in the upper
right of the flaws/resolvers and are computed through the hmax

heuristic. Whenever they do not coincide, in parenthesis is also rep-
resented the value from the hadd heuristic.

37

solved with resolver ρ5 leading to a solution. Finally, since
ϕ4 = ϕ (σ6), the unified value is assigned to σ6.

Current results
The causal graph, described in the previous section, has been
implemented within the ORATIO solver7. In order to show
the effectiveness of the proposed approach, we tested the
solver, enhanced with the above heuristic, on different in-
stances of the GOAC domain. Specifically, the Goal Ori-
ented Autonomous Controller (GOAC) was an ESA initia-
tive aimed at defining a new generation of software au-
tonomous controllers to support increasing levels of auton-
omy for robotic task achievement. In particular, the domain,
initially defined in (Fratini et al. 2011) and more recently
cited in (Coles et al. 2019), aims at controlling a rover to
take a set of pictures, store them on board and dump the pic-
tures when a given communication channel was available.
The interesting aspect of this domain is that communica-
tion can only take place within specific visibility windows
that take into account the astronomical motions of the plan-
ets/satellites which, in some cases, may stand between the
transmitting and receiving stations. The presence of these
visibility windows, in particular, requires an explicit mod-
eling of temporal aspects in order to adequately plan the
transmission of information and can hence easily be mod-
eled through, and solved by, timeline-based planners. The
problem is made more interesting by the presence of con-
straints which include the available resources (e.g., memory
and battery) as well as by having a distance matrix, among
the possible locations, which might be not completely con-
nected.

Figure 5 shows the execution times of different timeline-
based solvers (i.e., EPSL (Cesta, Orlandini, and Umbrico
2013), AP2 (Fratini et al. 2011), J-TRE (De Benedictis and
Cesta 2012), one of the precursors of ORATIO using a less
accurate heuristic (De Benedictis and Cesta 2016), and the
more recent PLATINUm (Umbrico et al. 2017)) as well as
a couple of temporal-planning solvers (i.e., OPTIC (Ben-
ton, Coles, and Coles 2012) and COLIN (see (Coles et al.
2012)), both based on a classic FF-style forward chaining
search (Hoffmann 2001)) in solving different instances of
the GOAC problem. In particular, problems are obtained by
varying the problem complexity along the number of pic-
tures to be taken and the number of communication win-
dows. Among all the generated problem instances, in partic-
ular, the ones with higher number of required pictures and
higher number of visibility windows result as the hardest
ones. The right mix of causal and temporal aspects makes
the GOAC problem particularly complex to the point that
some of the planners, beyond a certain number of pictures
to collect and data dumps, show serious scalability issues.
As shown in the figure, besides being considerably more
efficient, compared to other timeline-based planners, ORA-
TIO is also able to solve more complex instances. Com-
pared to the temporal-planning solvers, however, it is clear
that, despite significant improvements, there is still a per-
formance gap to fill. Possible explanations of this gap in-

7https://github.com/pstlab/oRatio

Figure 5: Execution times of different solvers to instances,
of increasing complexity, of the GOAC problem.

clude the maintenance, in the current state of the solvers,
of the consistency between the various constraints (which
is not required in the forward state space search planners),
in addition to the greater effectiveness of the FF heuristics.
Another aspect to take into consideration regards the possi-
bility of making the graph more accurate, so as to be able
to represent heuristics as h2 (Haslum and Geffner 2000;
Haslum, Bonet, and Geffner 2005). Since it is not possible
to recognize the mutual exclusivity between the resolvers
directly from the rules’ structure, we have not yet found an
effective approach for implementing it.

Comments on the results. Although, for the moment,
there are solvers able to solve the GOAC problem more ef-
ficiently than the ORATIO solver, we believe that the cur-
rent results are nevertheless significant. In the first place, in-
deed, the heuristic described in this document proposes a
complete paradigm shift for timeline-base planners: we pass
from heuristics based on the current partial solution (i.e., the
current token network π) to heuristics based on all possible
plans that can be generated from starting from the planning
problem. In so doing, we have the possibility to anticipate
the consequences of decisions before they are even taken
and this results in more accurate plan synthesis. A second
aspect to consider regards the possibility of modeling (and,
above all, integrating) different kinds of reasoning which de-
part from those more closely related to automated planning.
By removing the temporal parameters from the tokens, in-
deed, we obtain a form of reasoning which is similar to con-
strained logic programming. The proposed heuristics, in par-
ticular, still remain valid, and paves the way for the efficient
integration of different forms of reasoning such as, for ex-
ample, automated planning and semantic reasoning. To bet-
ter understand this aspect we can consider as an example the
execution of Prolog program, whose efficiency strongly de-

38

pends on the order in which the goals are defined within the
rules as well as on the order in which the rules are defined.
Different rules having the same goals defined in a different
order are, indeed, semantically equivalent. The programmer,
however, could be wrong at defining such orders or, even
worse, the most efficient order could depend on the value
of the parameters, unavoidably affecting the performance of
the resolution process. The introduction of heuristics such as
those presented would alleviate these types of problems.

Conclusions
The reasons for introducing a new timeline-based formal-
ism are manifold and range from the possibility to model,
through a uniform formalism, continuous changes over time
(see, for example, Figure 1a) to make the plans more flexi-
ble in the execution phase (relaxing the constraint, present
in some formalisms, that forces the timelines to be com-
pletely filled over time). Whatever the formalism, reasoning
upon these systems remains particularly challenging from a
computational point of view. For this reason we have intro-
duced a new heuristic that takes into account, before starting
the search, all possible resolvers for all possible flaws that
may emerge from the resolution process, so as to be able
to make choices according to a more accurate criterion. Al-
though encouraging, the results show that there is still work
to be done. As an example, since it is possible to recognize
mutex resolvers by propagating constraints, it is worth to in-
vestigate different approaches for representing the h2 heuris-
tic. Analogously, the proper adaptation of landmark-based
heuristics, might represent a fruitful path toward the reso-
lution efficiency. We hence believe that, through this docu-
ment, we can lay the foundations for the definition of a new
typology of heuristics for the efficient resolution of timeline-
based planning problems.

Acknowledgments. Authors work is partially supported
by the INdAM-GNCS project Metodi formali per tecniche di
verifica combinata, and by SI-ROBOTICS 8. They are mem-
bers of the OVERLAY9 network.

References
Benton, J.; Coles, A.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. In Twenty-Second International Conference on Auto-
mated Planning and Scheduling.
Blum, A. L., and Furst, M. L. 1997. Fast Planning
Through Planning Graph Analysis. Artificial Intelligence
90(1-2):281–300.
Bonet, B., and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence 129(1-2):5–33.
Cesta, A., and Oddi, A. 1996. Gaining Efficiency and Flex-
ibility in the Simple Temporal Problem. In Chittaro, L.;
Goodwin, S.; Hamilton, H.; and Montanari, A., eds., Pro-
ceedings of the Third International Workshop on Temporal

8PON 676–Ricerca e Innovazione 2014-2020–G.A.
ARS01 01120

9https://overlay.uniud.it

Representation and Reasoning (TIME-96). IEEE Computer
Society Press: Los Alamitos, CA.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2009.
Developing an End-to-End Planning Application from a
Timeline Representation Framework. In IAAI-09. Proceed-
ings of the 21st Innovative Applications of Artificial Intelli-
gence Conference, Pasadena, CA, USA.
Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A Constraint-
Based Method for Project Scheduling with Time Windows.
Journal of Heuristics 8(1):109–136.
Cesta, A.; Orlandini, A.; and Umbrico, A. 2013. Toward
a general purpose software environment for timeline-based
planning. In 20th RCRA International Workshop on Exper-
imental Evaluation of Algorithms for solving problems with
combinatorial explosion.
Chien, S.; Tran, D.; Rabideau, G.; Schaffer, S.; Mandl, D.;
and Frye, S. 2010. Timeline-Based Space Operations
Scheduling with External Constraints. In ICAPS-10. Proc.
of the 20th Int. Conf. on Automated Planning and Schedul-
ing.
Cialdea Mayer, M.; Orlandini, A.; and Umbrico, A. 2016.
Planning and execution with flexible timelines: a formal ac-
count. Acta Informatica 53(6):649–680.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012.
COLIN: Planning with Continuous Linear Numeric Change.
Journal of Artificial Intelligence Research 44:1–96.
Coles, A.; Coles, A.; Martinez Munoz, M.; Savas, O.; Delfa,
J.; de la Rosa, T.; E-Martı́n, Y.; and Garcı́a Olaya, A. 2019.
Efficiently Reasoning with Interval Constraints in Forward
Search Planning. In Proceedings of the Thirty Third AAAI
Conference on Artificial Intelligence. AAAI Press.
De Benedictis, R., and Cesta, A. 2012. New Reasoning for
Timeline based Planning - An Introduction to J-TRE and its
Features. In ICAART 2012 - 4th International Conference
on Agents and Artificial Intelligence, 144–153. SciTePress.
De Benedictis, R., and Cesta, A. 2016. Investigating domain
independent heuristics in a timeline-based planner. Intelli-
genza Artificiale 10(2):129–145.
De Benedictis, R., and Cesta, A. 2020. Lifted Heuristics
for Timeline-Based Planning. In ECAI 2020 - 24th Eu-
ropean Conference on Artificial Intelligence, Santiago de
Compostela, Spain, volume 325, 2330–2337.
Dechter, R. 2003. Constraint Processing. Elsevier Morgan
Kaufmann.
Dvorák, F.; Bit-Monnot, A.; Ingrand, F.; and Ghallab, M.
2014. Plan-Space Hierarchical Planning with the Action No-
tation Modeling Language. In IEEE International Confer-
ence on Tools with Artificial Intelligence (ICTAI).
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the Classical Part of the 4th International Planning
Competition. Technical Report 195, Institut für Informatik.
Edelkamp, S. 2014. Planning with Pattern Databases. In
Sixth European Conference on Planning.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. In IJCAI, 608–620.

39

Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20:61–124.
Fox, M., and Long, D. 2006. Modelling Mixed Discrete-
continuous Domains for Planning. Journal Of Artificial In-
telligence Research 27(1):235–297.
Franco, S.; Vallati, M.; Lindsay, A.; and McCluskey, T. L.
2019. Improving Planning Performance in PDDL+ Domains
via Automated Predicate Reformulation. In Computational
Science – ICCS 2019, 491–498. Springer International Pub-
lishing.
Frank, J., and Jónsson, A. K. 2003. Constraint-Based At-
tribute and Interval Planning. Constraints 8(4):339–364.
Fratini, S.; Cesta, A.; De Benedictis, R.; Orlandini, A.; and
Rasconi, R. 2011. APSI-based Deliberation in Goal Ori-
ented Autonomous Controllers. ASTRA 11.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Plan-
ning and Scheduling as Timelines in a Component-Based
Perspective. Archives of Control Sciences 18(2):231–271.
Gerevini, A. E.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: {PDDL3} and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5-
6):619–668. Advances in Automated Plan Generation.
Ghallab, M., and Laruelle, H. 1994. Representation and
Control in IxTeT, a Temporal Planner. In AIPS-94. Proceed-
ings of the 2nd Int. Conf. on AI Planning and Scheduling,
61–67.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL—
The Planning Domain Definition Language.
Gigante, N.; Montanari, A.; Orlandini, A.; Cialdea Mayer,
M.; and Reynolds, M. 2020. On timeline-based games and
their complexity. Theoretical Computer Science 815:247–
269.
Haslum, P., and Geffner, H. 2000. Admissible Heuristics
for Optimal Planning. In Proceedings of the Fifth Inter-
national Conference on Artificial Intelligence Planning Sys-
tems, Breckenridge, CO, USA, April 14-17, 2000, 140–149.
AAAI Press.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New Admissi-
ble Heuristics for Domain-Independent Planning. In AAAI,
volume 5, 9–13.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-Shrink Abstraction: A Method for Gen-
erating Lower Bounds in Factored State Spaces. Journal of
the ACM (JACM) 61(3):16.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
Abstraction Heuristics for Optimal Sequential Planning. In
ICAPS, 176–183.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26(1):191–246.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14:253–302.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. Journal of Artificial Intelligence
Research 22:215–278.
Hoffmann, J. 2001. FF: The Fast-Forward Planning System.
AI Magazine 22(3):57–62.
Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and
Smith, B. 2000. Planning in Interplanetary Space: Theory
and Practice. In AIPS-00. Proceedings of the Fifth Int. Conf.
on AI Planning and Scheduling.
Kautz, H., and Selman, B. 1992. Planning as Satisfiability.
In ECAI, volume 92, 359–363.
Laborie, P., and Ghallab, M. 1995. Planning with Sharable
Resource Constraints. In Proceedings of the 14th interna-
tional joint conference on Artificial intelligence - Volume 2,
IJCAI’95, 1643–1649. Morgan Kaufmann Publishers Inc.
Laborie, P. 2003. Algorithms for propagating resource con-
straints in AI planning and scheduling: existing approaches
and new results. Artificial Intelligence 143:151–188.
Lecoutre, C. 2009. Constraint Networks: Techniques and
Algorithms. Wiley-IEEE Press.
Muscettola, N.; Smith, S.; Cesta, A.; and D’Aloisi, D. 1992.
Coordinating Space Telescope Operations in an Integrated
Planning and Scheduling Architecture. IEEE Control Sys-
tems 12.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., ed., Intelligent
Scheduling. Morgan Kauffmann.
Piotrowski, W.; Fox, M.; Long, D.; Magazzeni, D.; and Mer-
corio, F. 2016. Heuristic Planning for PDDL+ Domains. In
Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI’16, 3213–3219. AAAI
Press.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2014. On the
Extraction, Ordering, and Usage of Landmarks in Planning.
In Sixth European Conference on Planning.
Smith, D. E.; Frank, J.; and Cushing, W. 2008. The ANML
language. In ICAPS Workshop on Knowledge Engineering
for Planning and Scheduling (KEPS).
Smith, D. E.; Frank, J.; and Jónsson, A. K. 2000. Bridg-
ing the Gap Between Planning and Scheduling. Knowledge
Engineering Review.
Stock, S.; Mansouri, M.; Pecora, F.; and Hertzberg, J. 2015.
Hierarchical hybrid planning in a mobile service robot. In
KI 2015 Proceedings, 309–315.
Umbrico, A.; Cesta, A.; Cialdea Mayer, M.; and Orlandini,
A. 2017. Platinum: A new framework for planning and
acting. In AI*IA 2017 Proceedings, 498–512.
Verfaillie, G.; Pralet, C.; and Lemaı̂tre, M. 2010. How to
model planning and scheduling problems using constraint
networks on timelines. The Knowledge Engineering Review
25(3):319–336.
Weld, D. S. 1994. An Introduction to Least Commitment
Planning. AI Magazine 15(4):27–61.

40

Generating Data In Planning: SAS+ Planning Tasks of a Given Causal Structure

Michael Katz and Shirin Sohrabi
IBM T.J. Watson Research Center

1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA
michael.katz1@ibm.com, ssohrab@us.ibm.com

Abstract

The need for data in planning has long been established, by,
e.g., machine learning based approaches. The existing data,
however, is quite limited. There exists only a relatively small
amount of hand-crafted planning domains, mostly introduced
through International Planning Competitions. Further, this
collection of domains is not necessarily diverse: many of
these domains are some variants of the transportation prob-
lem.
In this work, we alleviate the shortage in existing planning
tasks by automatically generating tasks of a particular causal
structure. Given any graph G, we show how to create a SAS+

planning task with the causal graph isomorphic to G. We
create a large collection of planning tasks by randomly gen-
erating graphs of various structural restrictions and creating
planning tasks for these graphs, but also, more importantly,
we provide the community with a tool that allows for on-
demand generation of additional, possibly larger tasks. Our
experimental evaluation ensures that the generated collection
is interesting for the current state of affairs in classical cost-
optimal planning, showing the performance of state-of-the-art
symbolic search and explicit heuristic search based planners.

Introduction
Since the first planning tasks encoded in STRIPS language
back in 1971 (Fikes and Nilsson 1971), data, a.k.a. plan-
ning tasks, was the corner stone and one of the main drivers
of research in planning. With the beginning of International
Planning Competitions (IPC) in 1998 (McDermott 2000)
came the increase in the availability of planning tasks, with
the current estimate of slightly over 70 domains, including
some variants in different formalisms. All these domains are
hand-crafted, although some correspond to machine trans-
lation from a different problem (Palacios and Geffner 2009;
Bonet, Palacios, and Geffner 2009; Grastien and Scala 2018;
Sohrabi et al. 2018). Not only that most of these domains
are hand-crafted, the collection is not necessarily diverse.
Many of these domains are some variants of the transporta-
tion problem.

A major focus in classical planning was on heuristic
search, with heuristics automatically obtained for planning
tasks, exploiting the task structure. Few examples that ex-
plicitly exploit the causal structure include the causal graph

heuristic (Helmert 2004) and the structural pattern heuris-
tics (Katz and Domshlak 2010; Katz and Keyder 2012).
Others, such as pattern databases (PDBs) (Edelkamp 2001)
exploit the causal information in e.g., pattern selection
(Haslum et al. 2007). Merge-and-shrink heuristics (Helmert,
Haslum, and Hoffmann 2007) use the causal graph for guid-
ing the merge process. Most existing heuristics that work
on the multi-valued representation exploit the causal in-
formation in one way or another. Further, starting with
the seminal work of Bäckström and Nebel (1995), the re-
search on the complexity of planning tasks had a major fo-
cus on the characterization of planning fragments by their
causal graph structure (Domshlak and Brafman 2002; Katz
and Domshlak 2007; 2008; Giménez and Jonsson 2008;
2009; Katz and Keyder 2012; Bäckström and Jonsson 2013;
Aghighi, Jonsson, and Ståhlberg 2015; Bäckström, Jonsson,
and Ordyniak 2019), as well as some local structural char-
acteristics, such as k-dependence (Katz and Domshlak 2007;
Giménez and Jonsson 2012), showing these fragments to be-
long to a variety of complexity classes. For these two rea-
sons, various planners performance heavily relies on the var-
ious structural characteristics of the input planning task.

The aim of this work is to generate planning tasks of a
specific predefined structure. Here, we focus on the charac-
terization of planning tasks by the structure of their causal
graphs. Given a collection of multi-valued variables and a
graph representing causal connections between these vari-
ables, we propose a way of generating SAS+ actions, initial
state and a goal, in a way that the causal graph of the re-
sulting task will match the input graph. Our aim is to be
able to automatically generate a diverse collection of plan-
ning tasks, as large as needed for various purposes. One such
example purpose is learning a good planner selection strat-
egy (Sievers et al. 2019; Ma et al. 2020). Another possible
purpose is an additional source of benchmarks for empirical
evaluation of new planning algorithms. We test the gener-
ated collection with two modern cost-optimal planners that
represent the two popular state-of-the-art approaches to cost-
optimal planning. For symbolic search, we chose the planner
SYMBA∗ (Torralba et al. 2014), winner of the sequential op-
timal track of International Planning Competition 2014 and
one of the planners in the winning portfolio of IPC 2018

41

(Katz et al. 2018). For heuristic search, we chose A∗ with
LM-cut heuristic (Helmert and Domshlak 2009), a compo-
nent of many modern heuristics search based planners. Our
experiments confirm that (i) the generated collection is chal-
lenging for both heuristic search and symbolic search based
planners, and (ii) there is no clear dominance to any of the
techniques.

The rest of the paper is structured as follows. We start with
introducing the planning formalism and the notation used
throughout the paper. We then move to construction, where
we first describe various causal graph structures and the way
these graphs can be constructed, and then describe the con-
struction of planning tasks given a causal graph. Next, we
present the experimental evaluation, including describing
the way we have created our collection. Finally, we discuss
the related work, and conclude with the summary of our re-
sults and future work.

Preliminaries
A SAS+ planning task (Bäckström and Nebel 1995) is given
by a tuple 〈V, A, s0, s∗〉, where V is a set of state variables,
A is a finite set of actions. Each state variable v ∈ V has a fi-
nite domain dom(v). Each pair 〈v, ϑ〉 of variable v ∈ V and
its value ϑ ∈ dom(v) is called a fact. By Fv we denote the
set {〈v, ϑ〉 | ϑ ∈ dom(v)} of facts for the variable v, and the
set of all facts is denoted by F :=

⋃
v∈V Fv . A (partial) as-

signment to the variables V is called a (partial) state. Often
it is convenient to view partial state p as a set of facts with
〈v, ϑ〉 ∈ p if and only if p[v] = ϑ. For a partial assignment p,
V(p) ⊆ V denotes the subset of state variables instantiated
by p. Partial state p is consistent with state s if p ⊆ s. We
denote the set of states of a planning task by S. s0 is the ini-
tial state, and the partial state s∗ is the goal. Each action a is
a pair 〈pre(a), eff (a)〉 of partial states called preconditions
and effects. By prv(a) we denote the part of the precondition
that corresponds to variables that do not participate in ac-
tion’s effects, prv(a) = {〈v, ϑ〉 ∈ pre(a) | v 6∈ V(eff (a))},
also called prevail condition. An action cost is a mapping
C : A → R0+. An action a is applicable in a state s ∈ S if
and only if pre(a) is consistent with s. Applying a changes
the value of v ∈ V(eff (a)) to eff (a)[v]. The resulting state
is denoted by sJaK. An action sequence π = 〈a1, . . . , ak〉 is
applicable in s if there exist states s0, · · · , sk such that (i)
s0 = s, and (ii) for each 1 ≤ i ≤ k, ai is applicable in si−1

and si = si−1JaiK. We denote the state sk by sJπK. π is a
plan iff π is applicable in s0 and s∗ is consistent with s0JπK.
We denote by P(Π) (or just P when the task is clear from
the context) the set of all plans of Π. The cost of a plan π,
denoted by C(π) is the summed cost of the actions in the
plan.

A central role in what follows is played by a standard
structure in classical planning, called causal graph (Helmert
2004). The causal graph CGΠ of a task Π is a digraph with
vertices V . An arc (v, v′) is in CGΠ iff v 6= v′ and there
exists an action a ∈ A such that (v, v′) ∈ [V(eff (a)) ∪
V(pre(a))] × V(eff (a)). For an action a, by Ea we denote
the set of all such arcs, and by EA′ we denote the union of
all sets of arcs Ea for a ∈ A′.

Another structure typically used in planning for comput-
ing relaxation based heuristics is relaxed planning graph
(Hoffmann and Nebel 2001), which is a layered graph of
facts and actions, describing action application in the plan-
ning task, under value accumulating semantic. The layers
are added until a fixpoint is reached, that is no new fact can
be achieved. The first fact layer F1 thus corresponds to the
facts from the initial state, and the last layer is also a fact
layer, and it is equal to the preceding fact layer. Each action
layer Ai consists of all actions from A that are applicable in
Fi, that is Ai = {a ∈ A | pre(a) ⊆ Fi}. The next fact layer
Fi+1 is then constructed by adding to Fi all facts achieved
by the actions in Ai, namely Fi+1 = Fi ∪

⋃
a∈Ai

eff (a).
Finally, SAS+ representation is often not provided

directly, and is translated from STRIPS representation
(Helmert 2006). The multi-valued variables in SAS+ then
correspond to invariant groups of pairwise mutually exclu-
sive facts (mutexes), where exactly one such fact is true in
any state reachable from the initial state. Each such invariant
group over STRIPS facts corresponds to a set of facts at most
one of which can be true in any given state that is reachable
from the initial state. If there exist such states where no facts
are true, then an additional value is added, representing that
none of the facts in the invariant group is true.

Construction
We start our construction by defining a graph to be served
as the causal graph of the constructed task. For that, we fo-
cus here on the following causal graph structures: chain, di-
rected chain, fork, inverted fork, star, bipartite graph, di-
rected bipartite graph, tree, polytree, and directed acyclic
graph, complete graph, and random graph. For some of
these structures, namely directed chain, fork, inverted fork,
and complete graph the graphs are fully defined by the num-
ber of nodes (modulo automorphisms). In other cases, we in-
troduce randomness into the graph construction. In what fol-
lows, we first describe how we handle these cases, and then
how a task with the given causal structure is constructed.

Directed Bipartite Graph: A full directed bipartite graph
is constructed by first randomly partitioning the nodes
into left and right and then introducing an edge from each
node on the left to each node on the right.
Bipartite Graph: A full undirected bipartite graph is con-
structed by first randomly partitioning the nodes into left
and right and then introducing an edge from each node on
the left to each node on the right, and vice versa.
Directed Chain: A directed chain of n nodes v1, . . . , vn
is created by adding the edges (vi, vi+1) for each 1 ≤ i <
n.
Chain: An undirected chain of n nodes v1, . . . , vn is cre-
ated as follows. For each 1 ≤ i < n, we randomly decide
whether to add an edge (vi, vi+1), with probability p. If
no such edge is added, we add the edge (vi+1, vi) and if
the edge (vi, vi+1) was added, we decide with probability
p whether to add the edge (vi+1, vi).
Tree: A directed tree of n nodes v1, . . . , vn is constructed
by choosing for each node vi a parent randomly out of the

42

(a) (b) (c)

(d) (e) (f)

Figure 1: Selected causal graph structures: (a) fork, (b) in-
verted fork, (c) polytree, (d) directed bipartite graph, (e)
chain, and (f) complete graph .

nodes v1, . . . , vi−1.

Polytree: For a polytree, we start with a tree constructed
as above, and then for each edge switch its direction with
probability p.

Directed Acyclic Graph: A directed acyclic graph of
n nodes v1, . . . , vn is constructed by choosing for each
node vi at least one parent randomly out of the nodes
v1, . . . , vi−1. We do that by going over all the preced-
ing nodes and deciding with probability p whether to add
an edge from the preceding node to the current node. If
no edges were added, we repeat until at least one edge is
added for each node (except the first one).

Random Graph: For each pair of nodes vi and vj we
randomly decide whether to add a directed edge from vi
to vj .

Fork: A fork is a directed tree with all non-root nodes be-
ing leafs, with their parent being the root node. A fork
over nodes v1, . . . , vn is created by adding the edges
(v1, vi) for each 1 < i ≤ n.

Inverted Fork: An inverted fork is a directed polytree
with one leaf node and all non-leaf nodes being roots,
with their only child node being the leaf node. An inverted
fork over nodes v1, . . . , vn is created by adding the edges
(vi, v1) for each 1 < i ≤ n.

Star: A star structure has one central node with all other
nodes connected with the central node only. A star over
nodes v1, . . . , vn is created as follows. For each 1 < i ≤
n, we randomly decide whether to add an edge (v1, vi),
with probability p. If no such edge is added, we add the
edge (vi, v1) and if the edge (v1, vi) was added, we decide
with probability p whether to add the edge (vi, v1).

Algorithm 1 Construction of a planning task according to a
given causal graph structure.
Input: Graph G = (V, E), number of facts n ≥ 2|V|

1: Partition n into |V| values dv≥2 such that
∑

v∈V dv =
n

2: Fv ← {〈v, ϑ〉 | 0 ≤ ϑ < dv} for all v ∈ V
3: s0[v]← 0 for all v ∈ V
4: k ← 0
5: A← ∅
6: Fk ← s0

7: while |Fk| < n or E \ EA 6= ∅ do
8: k ← k + 1
9: mk ← number of new facts for layer k

10: Fk, Ak−1 ← CREATELAYER(mk, Fk−1, A)
11: A← A ∪Ak−1

12: Select s∗ ⊆ Fk such that ∀v ∈ V, |s∗ ∩ Fv| ≤ 1
and s∗ ∩ (Fk \ Fk−1) 6= ∅

13: return Π = 〈V, A, s0, s∗〉

14: function CREATELAYER(m, F , A)
15: A′ ← ∅
16: F ′ ← F
17: while |F ′\F |<m or (m= 0 and E\EA∪A′ 6= ∅)

do
18: a← CREATEACTION
19: if Ea ⊆ E then
20: if Ea \ EA∪A′ = ∅ and Random(p) then
21: Continue
22: A′ ← A′ ∪ {a}
23: F ′ ← F ′ ∪ eff (a)

24: return F ′, A′

Complete Graph: A complete graph over nodes
v1, . . . , vn is created by adding the edges (vi, vj) and
(vj , vi) for all 1 ≤ i < j ≤ n.

Figure 1 exemplifies selected graph structures. Having de-
scribed how a causal graph for the future planning task is
constructed, we now switch to the next step, showing how
to construct a planning task with that causal graph.

Planning Task Construction
Given a graph G = (V, E) and a number of facts n ≥ 2|V|,
we construct the SAS+ planning task Π = 〈V, A, s0, s∗〉
with the causal graph G as follows. First, we choose the
domain size dv ≥ 2 for each of the multi-valued variables
v ∈ V and assume w.l.o.g. the values to be dom(v) =
{0, . . . , dv − 1}. The variables represent sets of mutually
exclusive facts (mutexes), and each such set corresponds to
one of the two types of mutexes, namely, either exactly one
or at most one of the values is true in all reachable states.
We randomly decide which variables belong to which cat-
egory. For the variables that represent the at-most-one case,
we dedicate the last domain value to represent the case when
none of the other facts are true. Next, w.l.o.g. we assume
s0[v] = 0 for all v ∈ V . Then, we construct the actions,
in layers, while constructing the relaxed planning graph. Fi-

43

bi
pa

rti
te

bd
-b

ip
ar

tit
e

ch
ai

n
0.

1
ch

ai
n

0.
25

ch
ai

n
0.

5
ch

ai
n

0.
75

co
m

pl
et

e
da

g
0.

1
da

g
0.

25
da

g
0.

5
da

g
0.

75
d-

ch
ai

n
fo

rk
in

ve
rte

d
fo

rk
po

ly
tre

e
0.

1
po

ly
tre

e
0.

25
po

ly
tre

e
0.

5
po

ly
tre

e
0.

75
ra

nd
om

 0
.1

ra
nd

om
 0

.2
5

ra
nd

om
 0

.5
ra

nd
om

 0
.7

5
st

ar
 0

.1
st

ar
 0

.2
5

st
ar

 0
.5

st
ar

 0
.7

5
tre

e

0

1000

2000

3000

4000

5000

Figure 2: Mean generation time and 95% confidence intervals for each collection of tasks.

nally, the goal is chosen from the last fact layer of the re-
laxed planning graph, making sure that at least one of the
chosen facts is unique to the last fact layer and that at most
one fact is chosen per variable. In what follows, we describe
how actions are constructed. Starting with the initial state as
the first fact layer F0, we create actions for an action layer
Li by

(I) selecting a subset of facts from the fact layer Fi, en-
suring at most one fact is selected per variable,

(II) partitioning the selected set of facts into prevail con-
dition and non-prevail precondition, and

(III) choosing for all1 the variables of the precondition
facts a different value as its effect.

The constructed action is checked against the graph G,
ensuring that it contributes only edges that exist in G. If not,
the action is discarded. Additionally, if the constructed ac-
tion does not add any new causal edges and does not achieve
new facts, we randomly decide whether to keep it.

The generic approach to action construction described
above can be adapted to enforce particular properties. We
discuss three such cases in detail.

(A) The first case is enforcing the action to achieve at least
one new fact. For that, one can ensure in steps (I) and

1While SAS+ representation does not require to specify the pre-
condition when the effect is specified, in order to ensure maintain-
ing variables as mutexes of facts, we restrict ourselves here to al-
ways specifying the precondition in such cases.

(II) that the precondition includes facts for some vari-
ables v ∈ V that are not fully covered by the fact layer
Fi (that is Fv \ Fi 6= ∅), and in step (III) to choose one
of these facts Fv\Fi. Note that this can be done without
adding any edges to the causal graph, if a single fact is
chosen in step (I).

(B) The second case is enforcing the preconditions to in-
clude atoms from Fi \ Fi−1, enforced in step (I).

(C) The third case is enforcing adding a particular edge
〈v, v′〉 to the causal graph. This can be done by ensur-
ing that 〈v, ϑ〉 and 〈v′, ϑ′〉 are chosen in step (I), and
in step (II) at most one of these facts is chosen for the
prevail condition.

We randomly independently decide whether to enforce the
options (A)-(C) and whether to add edges to the causal
graph. Note that not all combinations are always possible.
In such cases, an action is not constructed in that iteration.
Each layer is constructed until a sufficient number of new
facts Fi+1 \ Fi is added. The construction is stopped when
all facts were achieved and all edges from G are reflected in
the causal graph of the constructed planning task. The lat-
ter is enforced in the last layer. The goal is then randomly
chosen from the last layer according to step (I), ensuring
that at least one of the facts is not achieved before the last
layer, analogously to how a precondition of an action is cho-
sen when enforcing the option (B). Algorithm 1 describes
the construction of a planning task from the given graph G,
where the function CREATEACTION creates a single action,

44

randomly choosing among the options described above.

Theorem 1 Given G and n, Algorithm 1 terminates in time
polynomial in |G| and n and returns a planning task with
the causal graph G.

Proof: The proof follows from the fact that in line 18 of Al-
gorithm 1, for some of the options for action creation must
eventually hold Ea ⊆ E and Ea \ EA∪A′ 6= ∅. Therefore,
CREATELAYER terminates and returns a layer with m new
facts or, if m = 0, with A′ such that EA∪A′ = E. As there
are only a constant number of options, a new fact is achieved
or a new causal graph edge is covered in time O(1) and
therefore CREATELAYER terminates in time O(m + |E|).
Since at least one new fact is added in each layer, Algorithm
1 terminates in time O(n|E|). Since the while loop in line 7
terminates only whenE\EA = ∅ and actions a are added to
A only if Ea ⊆ E, when the algorithm terminates we have
EA = E, and therefore the causal graph of the returned task
Π is exactly G. �

In order to create a PDDL task, the SAS+ task is then trans-
lated to the STRIPS fragment of PDDL, ignoring the facts that
correspond to the last value of the variables representing the
at-most-one case. PDDL preconditions are taken from SAS+

preconditions, add effects are taken from SAS+ effects, and
delete effects are taken from non-prevail preconditions. Note
that if the tasks are translated from STRIPS back to SAS+,
there is nothing that enforces that the same mutex groups
will be detected, as different planners implement different
translation procedures. Thus, the causal graph structure is
not necessarily preserved by translating to STRIPS and back
to SAS+.

Experimental Evaluation
We start by constructing the benchmark set, as described in
the previous section. Our benchmark set was generated as
follows. For each of the causal graph structures mentioned
above, and a value in [0.1, 0.25, 0.5, 0.75] for edge probabil-
ity (if needed), we create a collection of tasks. This results in
27 collections in our case, with 7 causal graph structures that
do not consider edge probabilities and 5 causal graph struc-
tures that do. For each such collection, we generate 512 in-
stances by uniformly choosing the number of atoms (4 vari-
ants), variables (4 variants), goal variables (4 variants), max-
imum prevail size (2 variants), maximum effect size (2 vari-
ants), and the upper bound on the minimum number of atoms
per layer (2 variants). Thus, our constructed benchmark
set consists of 13824 generated planning tasks. The bench-
mark set is available at https://github.com/IBM/structural-
benchmarks-PDDL. To give a general impression of typical
generation time, Figure 2 shows the mean generation time
and 95% confidence intervals for each collection. It is worth
mentioning that while in most collections task generation is
typically quick, in some collections, such as complete and
random, it can be quite time consuming. We note that these
causal structures are somewhat less interesting. Nonetheless,
we have decided to include these collections in our gener-
ated set.

Collection Comp PDBs Scorp LM-cut SYMBA∗

bipartite 105 73 182 180 59
bd-bipartite 96 78 137 107 72
chain 0.1 358 321 395 372 282
chain 0.5 349 327 389 359 288
chain 0.25 409 345 444 428 309
chain 0.75 320 304 391 333 261
complete 123 117 153 129 110
dag 0.1 113 94 179 166 77
dag 0.5 65 45 108 121 25
dag 0.25 66 50 134 108 15
dag 0.75 73 62 113 110 32
d-chain 382 341 416 391 296
fork 350 321 421 395 308
inverted fork 436 393 356 386 357
polytree 0.1 325 253 386 343 224
polytree 0.5 323 269 373 338 254
polytree 0.25 367 268 405 379 245
polytree 0.75 365 276 421 408 260
random 0.1 54 38 167 95 32
random 0.5 57 52 117 88 34
random 0.25 97 89 153 129 83
random 0.75 56 39 81 50 35
star 0.1 226 130 272 224 125
star 0.5 257 144 333 272 139
star 0.25 219 114 290 248 115
star 0.75 172 132 263 199 134
tree 364 277 433 402 245
Sum (13824) 6127 4952 7512 6760 4416

Table 1: Per-collection coverage of state-of-the-art planning
systems: Complementary (Comp), planning-PDBs (PDBs),
Scorpion (Sc), as well as A∗ with LM-cut heuristic and
SYMBA∗ planner. Bolded results indicate the best coverage
in a collection and overall.

Our evaluation of the constructed set aims at understand-
ing whether the set is sufficiently challenging for modern
cost-optimal planners. Therefore, we have selected the top-
performing cost-optimal planners from the most recent In-
ternational Planning Competition (IPC) 2018: Complemen-
tary (Franco et al. 2018), Planning-PDBs (Moraru et al.
2018), and Scorpion (Seipp 2018). We excluded the portfo-
lio planner Delfi (Katz et al. 2018), and included instead its
top performing components: the symbolic planner SYMBA∗

(Torralba et al. 2014) and explicit heuristic search with LM-
cut heuristic (Helmert and Domshlak 2009),2 both with h2

mutex detection (Alcázar and Torralba 2015). The planners

2While the components of Delfi also use symmetry based prun-
ing (Domshlak, Katz, and Shleyfman 2012) and partial order reduc-
tion (Wehrle and Helmert 2014), here we do not use these pruning
techniques.

45

Collection Comp PDBs Scorp LM-cut SYMBA∗

bd-bipartite 66 66 66 66 61
chain 0.1 6 6 6 6 5
chain 0.5 8 8 8 8 7
chain 0.25 19 19 19 19 20
chain 0.75 30 30 30 30 21
complete 108 108 108 108 104
fork 25 25 25 25 27
inverted fork 1 1 1 1 8
random 0.5 40 40 40 40 33
random 0.25 50 50 50 50 46
star 0.5 14 14 14 14 16
star 0.25 0 0 0 0 1
star 0.75 14 14 16 14 14
Sum other 154 154 154 154 154
Sum all 535 535 537 535 517

Table 2: Per-collection number of instances that proved to
be unsolvable.

are run on the entire constructed benchmark set, with the
timeout of 30 minutes and memory limit of 7.6GB allocated
to each run. The experiments were performed on Intel(R)
Xeon(R) CPU E7-8837 @2.67GHz machines.

Table 1 shows per-collection aggregated coverage com-
parison of the selected planners. Each task in a collection
contributes a value of 1 to the coverage if it was either solved
by the planner or the planner was able to prove the task to
be unsolvable. Otherwise, the task contributes 0. Separately,
Table 2 depicts the number of tasks in each collection that
were proved to be unsolvable. Note that the tested planning
systems perform very similarly in terms of unsolvability de-
tection. In contrast, when looking at tasks solved, the tested
planning systems perform very differently.

Going beyond aggregated coverage results, and focusing
on two planners with the lowest total time on average – LM-
cut and SYMBA∗, Figure 3 shows the per-task total time
for these planners. For the tasks solved by both approaches
within the time bound, there is no clear advantage to any of
the planners.Looking at the timeouts, there are 2963 cases
where SYMBA∗ times outs but LM-cut does not, and 103
cases where LM-cut times outs but SYMBA∗ does not.

We observe that for each of the tested planners, in each
of the collections, there still remains a significant number of
tasks not solved. Further, while some causal graph structures
correspond to seemingly easier planning tasks, at least for
the tested planners, there is a significant number of tasks
in each collection that were not solved by any of the tested
planners: from 54 in chain 0.25 to 427 in random 0.75, with
the average of 219 tasks in a collection, 5917 tasks overall.
Clearly, the generated tasks are challenging for the state of
the art in cost-optimal classical planning.

10−1 100 101 102 103

10−1

100

101

102

103

t.o.

t.o.

A∗ with LMcut + h2 mutex

S
Y

M
B

A
∗

Total Time

Figure 3: Total time comparison ofA∗ with LM-cut heuristic
to SYMBA∗ planner.

Related Work
The idea of generating domain models as well as specific
planning tasks has been explored in planning community,
with a major focus on learning domain models from traces,
for classical planning (e.g., (Yang, Wu, and Jiang 2007;
Zhuo et al. 2010; Tian, Zhuo, and Kambhampati 2016)) and
HTN planning (e.g., (Hogg, Muñoz-Avila, and Kuter 2008;
Hogg, Kuter, and Muñoz-Avila 2010; Hogg, Muñoz-Avila,
and Kuter 2016)). The work on learning domain models of-
ten assumes an existence of a complete model where the plan
traces or plan examples are generated from. Some aspects
of these domain models are then learned or reconstructed
from successful plan traces. Some examples include learn-
ing action preconditions (Zhuo et al. 2009), or refine incom-
plete action descriptions (Zhuo, Nguyen, and Kambhampati
2013).

Probably a more related to our current work is the work on
generating problem instances for CSP/SAT problems (e.g.,
(Achlioptas et al. 2000; Xu et al. 2005)). There are also sev-
eral online tools/services such as the “Tough SAT Project”
or “SATLIB” that generate CNF formulas encoding “dif-
ficult” problems (e.g., (Yuen and Bebel 2017; Hoos and
Stützle 2000)). Producing hard satisfiable instances has sev-
eral advantages one of which is to advance the research field
in SAT/CSP by providing a suite of problems that can be
used for evaluation of solvers. Further, these instances can
be polynomial-time reduced to STRIPS in theory, but also
in practice (Porco, Machado, and Bonet 2011). The authors
provide a tool to translate multiple NP-complete computa-
tional problem instances (including SAT, CLIQUE, Direct-
edHamiltonianPath, etc.) into an NP-Complete fragment of
STRIPS that they call STRIPS-1. In that fragment, the actions

46

are either delete-free or can be applied at most once. While
the fragment is somewhat limited, the approach can be used
for creating additional benchmark sets for planning. Unfor-
tunately, the work has not yet received the attention it de-
serves, and the instances or the tool are not currently widely
used. It is worth mentioning that our suggested approach to
generating random PDDL instances is a somewhat different
task than generating random CNF formula, and then trans-
lating to STRIPS. Our focus is on being able to control the
causal structure of the generated problem, which is not pos-
sible with the aforementioned methods.

Another highly related work is the work on random plan-
ning tasks generation for the purpose of analyzing the phase
transition in classical planning (Bylander 1996; Rintanen
2004). The authors propose a variety of models for sampling
the space of STRIPS planning problem instances, exploring
the possibility of phase transition at some constant ratio of
the number of actions to the number of state variables. These
models correspond to a constrained set of problem instances,
restricting the sizes of preconditions and effects, and reduc-
ing the chances of generating trivially unsolvable tasks. Un-
fortunately, the proposed methods for generating tasks do
not yield tasks of a desired structure and it is not clear what
additional restrictions can be imposed in order to obtain such
tasks.

Summary

In this work, we have presented an approach that allows to
generate planning tasks with the causal graph of a specific
given structure. Further, we cast these tasks into a STRIPS
fragment of PDDL, allowing using as an input to any PDDL
planner that supports the STRIPS fragment, as most ma-
ture planning systems do. We have generated a benchmark
set of 27 task collections characterized by the causal graph
structure, with 512 tasks in each collection, summing up to
13824 ground PDDL tasks in total. Our experimental evalua-
tion clearly shows that the generated benchmark set is chal-
lenging for both the heuristic search based and the symbolic
search based planners. In the hope to facilitate further re-
search and enable better comparison of planning tools, we
make our tool publicly available to the planning community.

For future work, we intend to explore additional structural
restrictions of planning tasks, such as, e.g., k-dependence
(Katz and Domshlak 2007), as well as possibly additional
causal graph structures. Further, we would like to investigate
the phase transition in planning according to structural char-
acterization of planning tasks. We conjecture that phase tran-
sition might appear at different number of actions to state
variables ratios for different causal graph structures. As an
additional future work, we would like to explore the usage of
generating planning tasks for the purpose of learning a plan-
ner selection strategy. Finally, we would like to explore the
possibility of generating lifted PDDL tasks of a meaningful
causal structure. For that, we would need to understand how
to characterize the ground concept of causal graph structure
on a lifted level.

References
Achlioptas, D.; Gomes, C. P.; Kautz, H. A.; and Selman, B.
2000. Generating satisfiable problem instances. In Proc.
AAAI 2000, 256–261.
Aghighi, M.; Jonsson, P.; and Ståhlberg, S. 2015. Tractable
cost-optimal planning over restricted polytree causal graphs.
In Proc. AAAI 2015, 3225––3231.
Alcázar, V., and Torralba, Á. 2015. A reminder about the
importance of computing and exploiting invariants in plan-
ning. In Proc. ICAPS 2015, 2–6.
Bäckström, C., and Jonsson, P. 2013. A refined view of
causal graphs and component sizes: SP-Closed graph classes
and beyond. JAIR 47:575–611.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bäckström, C.; Jonsson, P.; and Ordyniak, S. 2019. A re-
fined understanding of cost-optimal planning with polytree
causal graphs. In Proc. IJCAI 2019, 6126–6130.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In Proc. ICAPS 2009, 34–41.
Bylander, T. 1996. A probabilistic analysis of propositional
STRIPS planning. AIJ 81(1–2):241–271.
Domshlak, C., and Brafman, R. I. 2002. Structure and com-
plexity in planning with unary operators. In Proc. AIPS
2002, 34–43.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In Proc. ICAPS 2012, 343–347.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 2001, 84–90.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. AIJ 2:189–208.
Franco, S.; Lelis, L. H. S.; Barley, M.; Edelkamp, S.; Mar-
tines, M.; and Moraru, I. 2018. The Complementary1 plan-
ner in the IPC 2018. In IPC-9 planner abstracts, 28–31.
Giménez, O., and Jonsson, A. 2008. The complexity of
planning problems with simple causal graphs. JAIR 31:319–
351.
Giménez, O., and Jonsson, A. 2009. Planning over chain
causal graphs for variables with domains of size 5 is NP-
hard. JAIR 34:675–706.
Giménez, O., and Jonsson, A. 2012. The influence of k-
dependence on the complexity of planning. AIJ 177:25–45.
Grastien, A., and Scala, E. 2018. Sampling strategies for
conformant planning. In Proc. ICAPS 2018, 97–105.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proc. AAAI
2007, 1007–1012.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS 2009, 162–169.

47

Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proc. ICAPS 2007, 176–183.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. ICAPS 2004, 161–170.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Hogg, C.; Kuter, U.; and Muñoz-Avila, H. 2010. Learn-
ing methods to generate good plans: Integrating HTN learn-
ing and reinforcement learning. In Proc. AAAI 2010, 1530–
1535.
Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with minimal additional knowl-
edge engineering required. In Proc. AAAI 2008, 950–956.
Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2016. Learning
hierarchical task models from input traces. 32(1):3–48.
Hoos, H., and Stützle, T. 2000. SATLIB: An online resource
for research on SAT. 283–292.
Katz, M., and Domshlak, C. 2007. Structural patterns of
tractable sequentially-optimal planning. In Proc. ICAPS
2007, 200–207.
Katz, M., and Domshlak, C. 2008. Structural patterns
heuristics via fork decomposition. In Proc. ICAPS 2008,
182–189.
Katz, M., and Domshlak, C. 2010. Implicit abstraction
heuristics. JAIR 39:51–126.
Katz, M., and Keyder, E. 2012. Structural patterns be-
yond forks: Extending the complexity boundaries of clas-
sical planning. In Proc. AAAI 2012, 1779–1785.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018.
Delfi: Online planner selection for cost-optimal planning. In
IPC-9 planner abstracts, 57–64.
Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M. 2020. On-
line planner selection with graph neural networks and adap-
tive scheduling. In Proc. AAAI 2020, 5077–5084.
McDermott, D. 2000. The 1998 AI Planning Systems com-
petition. AI Magazine 21(2):35–55.
Moraru, I.; Edelkamp, S.; Martinez, M.; and Franco, S.
2018. Planning-PDBs planner. In IPC-9 planner abstracts,
69–73.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
JAIR 35:623–675.
Porco, A.; Machado, A.; and Bonet, B. 2011. Automatic
polytime reductions of NP problems into a fragment of
STRIPS. In Proc. ICAPS 2011, 178–185.
Rintanen, J. 2004. Phase transitions in classical planning:
an experimental study. In Proc. ICAPS 2004, 101–110.
Seipp, J. 2018. Fast Downward Scorpion. In IPC-9 planner
abstracts, 77–79.

Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Fer-
ber, P. 2019. Deep learning for cost-optimal planning: Task-
dependent planner selection. In Proc. AAAI 2019, 7715–
7723.
Sohrabi, S.; Riabov, A. V.; Katz, M.; and Udrea, O. 2018. An
AI planning solution to scenario generation for enterprise
risk management. In Proc. AAAI 2018, 160–167.
Tian, X.; Zhuo, H. H.; and Kambhampati, S. 2016. Discov-
ering underlying plans based on distributed representations
of actions. In Proc. AAMAS 2016, 1135–1143.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A symbolic bidirectional
A* planner. In IPC-8 planner abstracts, 105–109.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Proc.
ICAPS 2014, 323–331.
Xu, K.; Boussemart, F.; Hemery, F.; and Lecoutre, C. 2005.
A simple model to generate hard satisfiable instances. In
Proc. ICAPS 2005, 337–342.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action
models from plan examples using weighted MAX-SAT. AIJ
171:107–143.
Yuen, H., and Bebel, J. 2017. Tough SAT project.
Zhuo, H. H.; Hu, D. H.; Hogg, C.; Yang, Q.; and Muñoz-
Avila, H. 2009. Learning HTN method preconditions and
action models from partial observations. In Proc. IJCAI
2009, 1804–1810.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. AIJ 174(18):1540–1569.
Zhuo, H. H.; Nguyen, T.; and Kambhampati, S. 2013. Refin-
ing incomplete planning domain models through plan traces.
In Proc. IJCAI 2013, 2451–2457.

48

Bounding Quality in Diverse Planning

Michael Katz and Shirin Sohrabi and Octavian Udrea
IBM T.J. Watson Research Center

1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA
michael.katz1@ibm.com, {ssohrab,udrea}@us.ibm.com

Abstract
Diverse planning is an important problem in automated plan-
ning with various real world applications. Recently, diverse
planning has seen renewed interest, with work that defines
a taxonomy of computational problems with respect to both
plan quality and solution diversity. However, despite the re-
cent advances in diverse planning the variety of approaches
and the number of available tools for these problems are
still quite limited, even nonexistent for several computational
problems. In this work, we aim to extend the portfolio of ap-
proaches and tools for various computational problems in di-
verse planning. To that end, we introduce a novel approach
to finding solutions for three computational problems within
diverse planning and present planners for these three prob-
lems. For one of these problems, our approach is the first one
that is able to provide solutions to the problem. For another,
we show that top-k and top quality planners can provide, al-
beit naive, solutions to the problem and we extend these plan-
ners to improve the diversity of the obtained solution. Finally,
for the third problem, we show that some existing diverse
planners already provide solutions to the problem. Further,
we suggest another approach and empirically show that our
suggested approach compares favorably with these existing
planners.

Introduction
Diverse planning is an important problem in AI Planning
with many practical applications that require generating
multiple plans rather than one. Example applications include
automated machine learning (Mohr, Wever, and Hüllermeier
2018), risk management (Sohrabi et al. 2018), automated
analysis of streaming data (Riabov et al. 2015), and mal-
ware detection (Boddy et al. 2005). Diverse planning is also
important in the context of re-planning and plan monitoring
(Fox et al. 2006), under-specified user preferences (Myers
and Lee 1999; Nguyen et al. 2012), as well as plan recogni-
tion and its related applications (Sohrabi, Riabov, and Udrea
2016). In all these applications it is important to generate
multiple diverse plans, and it is of equal importance to be
able to control solution quality.

Most diverse planners developed over the last decade are
focused on addressing a particular diversity metric. For ex-
ample, while the diverse planner DLAMA focuses on find-
ing a set of plans by considering a landmark-based diversity

measure (Bryce 2014), other diverse planners such as LPG-
d, DIV, DFAA/DFAM, and A∗AA/A∗AM focus on find-
ing a set of plans with a particular minimum action dis-
tance (Nguyen et al. 2012; Coman and Muñoz-Avila 2011;
Vadlamudi and Kambhampati 2016). Goldman and Kuter
(2015) propose a diversity metric based on information re-
trieval literature. Roberts, Howe, and Ray (2014) suggest an-
other diversity metric, introducing several planners, such as
itA∗ and MQA, which, in addition to the diversity metrics,
consider plan quality. While all these planners implement
the chosen diversity metric and switching to another metric
is not trivial, the planners DFAA/DFAM and A∗AA/A∗AM
work in two phases: finding a set of plans and choosing a
proper subset from the found set. That is, selection of a set of
plans is independent of the diversity metric. Recently, plan-
ners FI-diverse were introduced (Katz and Sohrabi 2020).
These planners also separate the phase of finding candidate
plans from choosing a diverse subset of these plans. Further,
the authors provide a tool for selecting a subset of plans for
a variety of metrics and computational problems (Katz and
Sohrabi 2019).

Another important recent contribution introduced a tax-
onomy of computational problems and classified existing
planners according to the problems they tackle (Katz and
Sohrabi 2020). Most existing planners, according to that tax-
onomy, solve Satisficing Diverse Planning (sat-k), where
any sufficiently large set of plans is a solution, and the
aim is to improve solution diversity. The planners LPG-
d (Nguyen et al. 2012) and bFI (Katz and Sohrabi 2020)
tackle Bounded Diversity Diverse Planning (bD-k), where
a set of plans is a solution only if its diversity is above a
certain specified bound. Top-k planners (Katz et al. 2018b;
Speck, Mattmüller, and Nebel 2020) and top-quality plan-
ners (Katz, Sohrabi, and Udrea 2020), while usually are
not considered as diverse planners, according to the afore-
mentioned taxonomy return, albeit naive, solutions to the
Bounded Quality Diverse Planning (bQ-k) problem, where
plan set quality is required to be above a specified bound.
The planners DFAA/DFAM and A∗AA/A∗AM (Vadlamudi
and Kambhampati 2016) tackle Bounded Quality and Di-
versity Diverse Planning (bQbD-k), where both the quality
and the diversity of plan sets is bounded from above.

49

Despite these recent advances in diverse planning, the
pool of existing tools is still quite limited. The planners
DFAA/DFAM and A∗AA/A∗AM by Vadlamudi and Kamb-
hampati (2016) are the only existing planners for bQbD-k.
Top-quality planners (Katz, Sohrabi, and Udrea 2020), al-
though technically solving bQ-k, do not aim at improving
the diversity of the solution. No planners exist for other com-
putational problems, such as Optimal Diversity Bounded
Quality Diverse Planning (bQoptD-k), where a solution cor-
responds to a set of plans of best diversity among the sets of
bounded quality.

In this work, expand the pool of available planners for di-
verse planning. We introduce novel planners for the three
aforementioned computational problems, bQ-k, bQbD-k,
and bQoptD-k, exploiting the recently introduced top-
quality planners. To that end, we introduce a novel quality
metric that reflects bounded plan costs, making a connec-
tion between the costs of plans in a set and quality of a
set of plans. Focusing on the most popular diversity met-
ric (Nguyen et al. 2012; Coman and Muñoz-Avila 2011;
Vadlamudi and Kambhampati 2016), for all three planners
we generate a subset of all plans of bounded quality as a first
step. In the second step, we select a subset of plans found
in the first step that constitutes a solution to the respective
computational problem. For bQ-k, as any sufficiently large
subset of plans is, albeit naive, a solutions to the problem,
we extend these planners by using a previously suggested
greedy algorithm to choose a subset of plans of higher di-
versity (Katz and Sohrabi 2020). For bQbD-k, we show that
the decision problem that corresponds to the second step is
NP-complete and suggest using previously proposed inte-
ger linear programming formulation. As the formulation was
not previously formally described, we describe it formally
and prove that it provides us with a solution to bQbD-k. For
bQoptD-k, as the optimization problem in second step is NP-
hard, we propose using a novel mixed integer linear program
to solve it. We formally describe the program and prove that
a solution to the program can be used for solving bQoptD-k.
Our approach is the first one that is able to provide solutions
to the problem.

Finally, we perform an empirical evaluation of our pro-
posed planners. For bQbD-k, we show to favorably compare
to the existing planners. For bQ-k, as no previous planners
exist, we test the quality of our solution by comparing it to
the quality of the optimal solution, obtained by our proposed
planner for bQoptD-k, where no previous planners exist ei-
ther. We show that the greedy algorithm works very well
on tested domains, producing results close to the optimum.
Our novel contributions, thus, include (i) the introduction of
the new quality metric that allows us to connect between the
cost of plans and quality of a set of plans, (ii) a concrete al-
gorithmic scheme that uses top quality planners for the first
step, finding a set of plans of bounded cost, (iii) computa-
tional complexity investigation of the second step, choosing
a proper subset from the found set, for various computational
problems, and (iv) introduction of the new mixed integer lin-
ear program for the resulting optimization problem.

Preliminaries and Related Work
In this work we follow the notation of Katz and Sohrabi
(2020). A SAS+ planning task (Bäckström and Nebel 1995)
is given by a tuple 〈V,A, s0, s∗〉, with V being a set of state
variables andA being a finite set of actions. Each state vari-
able v ∈ V has a finite domain dom(v) of values. A pair
〈v, ϑ〉 with v ∈ V and ϑ ∈ dom(v) is called a fact. A
(partial) assignment to V is called a (partial) state. Often
it is convenient to view partial state p as a set of facts with
〈v, ϑ〉 ∈ p if and only if p[v] = ϑ. Partial state p is consistent
with state s if p ⊆ s. We denote the set of states of a planning
task by S. s0 is the initial state, and the partial state s∗ is the
goal. Each action a is a pair 〈pre(a), eff (a)〉 of partial states
called preconditions and effects. An action cost is a mapping
C : A → R0+. An action a is applicable in a state s ∈ S if
and only if pre(a) is consistent with s. Applying a changes
the value of v to eff (a)[v], if defined. The resulting state is
denoted by sJaK. An action sequence π = 〈a1, . . . , ak〉 is
applicable in s if there exist states s0, · · · , sk such that (i)
s0 = s, and (ii) for each 1 ≤ i ≤ k, ai is applicable in si−1
and si = si−1JaiK. We denote the state sk by sJπK. π is a
plan iff π is applicable in s0 and s∗ is consistent with s0JπK.
We denote by P(Π) (or just P when the task is clear from
the context) the set of all plans of Π. The cost of a plan π,
denoted by C(π) is the summed cost of the actions in the
plan.

In regard to reasoning about sets of plans rather than indi-
vidual plans, there are two main measures defined on sets of
plans, quality and diversity. Previous work has introduced
one definition of quality, mirroring the International Plan-
ning Competition (IPC) quality metric for individual plans
(Katz and Sohrabi 2020).
Definition 1 Let P be the set of known plans of Π and let
P ′ ⊆ P be a subset of plans. The relative quality of P ′ with
respect to P is defined as

QP (P ′) :=
1

|P ′| ×
|P ′|∑

i=1

C(πi)

C(π′i)
,

where π1, . . . , π|P ′| and π′1, . . . , π
′
|P ′| are plans in P and

P ′, respectively, sorted in ascending order of their costs.
The relative quality of a set of plans is always between 0
and 1, being 1 if and only if there is no plan in P \P ′ that is
cheaper than any plan in P ′.

Switching now our attention to diversity metrics, pairwise
plan distance is defined by δ(π, π′) = 1− sim(π, π′), where
sim is a similarity measure, a value between 0 (unrelated)
and 1 (equivalent). The diversity of a set of plans, D(P),
P ⊆ P is then defined as some aggregation (e.g., min or
average) of the pairwise distance within the set P . In this
work, we focus on one of the most popular similarity mea-
sures, stability (Fox et al. 2006; Coman and Muñoz-Avila
2011). Stability similarity measures the ratio of the number
of actions that appear on both plans to the total number of
actions on these plans, referring to plans as action multi-
sets (sets with repetitions). Given two plans π, π′, it is de-
fined as simstability(π, π′) = |A(π)∩A(π′)|/|A(π)∪A(π′)|,
where A(π) is the multi-set of actions in π. In what follows,

50

by Dma we denote the diversity metric computed as min-
imum over the pairwise plan distance under stability simi-
larity, the diversity metric implemented by multiple existing
diverse planners (Nguyen et al. 2012; Coman and Muñoz-
Avila 2011; Vadlamudi and Kambhampati 2016).

There is a variety of computational problems that fall un-
der the umbrella of diverse planning. In our work, focusing
on bounded quality problems, we follow the recently intro-
duced taxonomy (Katz and Sohrabi 2020).

Definition 2 (Diverse planning solution) Let Π be a plan-
ning task and P be the set of all plans for Π. Given a nat-
ural number k, P ⊆ P is a k-diverse planning solution if
|P | = k or P = P if |P| < k.

Definition 3 (Quality-bounded solution) Let Π be a plan-
ning task, Q be some quality metric, c be some bound, and
P be the set of all Π’s plans. Given a natural number k,
P ⊆ P is a c-quality-bounded k-diverse planning solution
if it is a k-diverse planning solution and Q(P) ≥ c.

Bounded Quality Diverse Planning computational prob-
lem is defined as follows.

bQ-k : Given k and c,find a c-quality-bounded
k-diverse planning solution.

Definition 4 (Diversity-bounded solution) Let Π be a
planning task,D be some diversity metric, b be some bound,
and P be the set of all Π’s plans. Given a natural number k,
P ⊆ P is a b-diversity-bounded k-diverse planning solution
if it is a k-diverse planning solution and D(P) ≥ b.

Bounded Quality and Diversity Diverse Planning compu-
tational problem is defined as follows.

bQbD-k : Given k, b, and c,find a c-quality-bounded
and b-diversity-bounded k-diverse planning solution.

Note that the definition above generalizes the previously
suggested search problem described in Equation 1 below and
implemented for the diversity metric Dma by Vadlamudi
and Kambhampati (2016).

cCOSTdDISTANTkSET : find P with P ⊆ P,
|P | = k, min

π,π′∈P
δ(π, π′) ≥ d,C(π) ≤ c ∀π ∈ P. (1)

Finally, Optimal Diversity Bounded Quality Diverse Plan-
ning optimization problem is defined as follows.

bQoptD-k : Given k and c,find a diversity-optimal
among c-quality-bounded k-diverse planning solutions.

Bounded Quality in Diverse Planning
As stated above, in this work, we focus on the three com-
putational problems in diverse planning taxonomy of Katz
and Sohrabi (2020) that deal with bounded quality, bQ-k,
bQbD-k, and bQoptD-k. Our proposed solutions to these
three problems all have in common the first step - find-
ing a set of plans of bounded quality. While existing plan-
ners for bounded quality diverse planning took the same

approach (Vadlamudi and Kambhampati 2016), they used
planners for the top-k planning problem (Riabov, Sohrabi,
and Udrea 2014). Specifically, A∗AA/A∗AM apply them-A∗
algorithm (Flerova, Marinescu, and Dechter 2016), while
DFAA/DFAM apply the well-known branch-and-bound al-
gorithm. We suggest using a different approach, generating
plans with a planner for a recently proposed unordered top-
quality problem (Katz, Sohrabi, and Udrea 2020). Switch-
ing to top-quality allows to ensure that all plans of bounded
cost are found. Unordered top-quality allows to disregard
plans that are reorderings of the found plans. For some diver-
sity metrics, this is highly beneficial, with pairwise diversity
between a plan and its reordering might be very low. Fur-
ther, ignoring plan orders reduces the computational effort
required for finding all plans of bounded cost.

The second step, after finding a set of plans of bounded
quality, is different for the different computational problems
that we consider in this work. For bQ-k, although any set of
k plans is a solution, we strive to obtain solutions of higher
diversity. Therefore, we apply a greedy algorithm that iter-
atively increases the set of plans by adding at each step the
candidate plan that increases the overall diversity score the
most, the same algorithm that was used for satisficing di-
verse planning (Katz and Sohrabi 2020). For bQbD-k and
bQoptD-k, we cast the problem of finding the subset of plans
as (mixed) integer linear programs. We describe these pro-
grams in detail in what follows. We start with the discussion
of the quality metric that we consider in this work.

Quality Metric
While we consider the planners DFAA/DFAM and
A∗AA/A∗AM to be solving the Bounded Quality and Di-
versity Diverse Planning problem as defined by Katz and
Sohrabi (2020), the quality metric they maximize is not ob-
vious. These planners consider the set P of plans of cost
smaller or equal than a given absolute bound value c, or
maxπ∈P C(π) ≤ c. Alternatively, the criterion can be ex-
pressed via Qa(P) ≥ c′ for the quality measure

Qa(P) =
c∗

maxπ∈P C(π)
(2)

where c∗ is the task’s optimal plan cost and c′ = c∗

c ∈ [0, 1].
Thus, the planners above solve the bQbD-k problem for the
quality metric Qa as in Eq. 2. Note that this quality measure
is different from the measure described in Definition 1, as
introduced by Katz and Sohrabi (2020), where the quality
of the set of plans is affected by the costs of all plans, not
only most expensive ones. The above proposed quality met-
ric makes it possible to connect the quality metric to the cost
bound.

Bounded Quality Planning
Let us consider now the (unordered) top quality planners
(Katz, Sohrabi, and Udrea 2020), that, given a multiplier
qm ≥ 1, return the set of all plans P such that ∀π ∈ P
we have C(π) ≤ qm × c∗, or a subset thereof with a sin-
gle representative for plans that differ only in the order of
their actions for the unordered case. For such sets, we have

51

Qa(P) ≥ 1
qm

, and therefore these planners can be used to
derive solutions of bounded quality according to the qual-
ity metric Qa. Furthermore, top quality planners produce a
set of plans that is a super-set of the sets of plans that consti-
tute solutions to all three computational problems of interest,
bQ-k, bQbD-k, and bQoptD-k. Therefore, in what follows,
we will focus on finding subsets of plans out of a given set
of plans, according to the relevant solution definition for the
corresponding computational problem.

Focusing first on bQ-k, while any subset of required size
of the set of plans returned by top quality planners is a solu-
tion to bQ-k, different subsets can vary significantly in their
diversity measure score. Since bQ-k does not pose any re-
strictions on these subsets beyond the desired size, one pos-
sible way of coming up with subsets of high diversity is to
employ the same greedy selection algorithm that was used
for Satisficing Diverse Planning (Katz and Sohrabi 2020).
The algorithm iteratively constructs a set of plans by greed-
ily adding a plan that will contribute the most to already
added plans.

Bounding Diversity
Switching now our attention to bQbD-k, first, note that for a
set of plans and a number k, the decision problem of whether
there exists a subset of bounded diversity of size k is NP-
complete. The membership in NP is trivial. We show the
hardness by a polynomial reduction from the clique problem
(Garey and Johnson 1979).

For a graph G = (V,E), let PG = {πv | v ∈ V } be a
collection of plans. For a pair of plans πu, πv ∈ P

d(πu, πv) =

{
d, (u, v) ∈ E,
0, otherwise.

Theorem 1 Given a number k and diversity bound d > 0
for diversity metrics minimal pairwise diversity, if there is a
subset of plans PG of bounded by d diversity of size at least
k, then there is a clique in G of the same size.

Proof: Let P ⊆ PG be a subset of plans such that |P | ≥
k and D(P) ≥ d. Then for all πu, πv ∈ P we have
d(πu, πv) ≥ d and therefore d(πu, πv) > 0. Thus, it must
be the case that (u, v) ∈ E for all πu, πv ∈ P and thus the
set V ′ = {v | πv ∈ P} is a clique, of size |V ′| = |P | ≥ k.

Next, we describe the mixed integer linear program that
is used for finding a subset of plans of bounded diversity.
While the program is not novel,1 its description was not pre-
sented in the literature. Here, we describe the program in
detail. Given a set of plans P and a bound on the diversity d,
the variables are as follows.
• A binary variable vπ per plan π ∈ P , describing whether

the plan is selected for the subset.
The constraints are as follows.

(i) ∀π, π′ ∈ P, s.t. d(π, π′) < d : vπ + vπ′ ≤ 1, stating
that if the pairwise diversity of π and π′ is below d,

1The mixed integer linear program was previously used for
bounded diversity diverse planning (Katz and Sohrabi 2020)

then at most one of these plans can be selected for the
subset, and

(ii)
∑
π∈P

vπ≥k, forcing the size of the subset be at least k.

The objective of the program is to minimize
∑
π∈P vπ . In

words, the program encodes a subset selection and restrict
the selected subset to not have pairs of plans with diver-
sity outside of the provided bound. In what follows, we
prove that the program can be used for devising solutions
for bQbD-k.

Theorem 2 For a planning task Π with a set of all plans of
bounded quality P such that |P | ≥ k, and a bound d, the
binary program finds a subset of size k with the bounded by
d diversity score, for diversity metrics maximizing minimal
pairwise diversity, if such subset exists. Otherwise, the pro-
gram is infeasible.

Proof: We first show that a solution to bQbD-k corresponds
to a feasible assignment. Let P ′ ⊂ P be a solution to
bQbD-k for the bound d, with |P ′| = k. Then, let v assign 1
to plans π ∈ P ′ and 0 otherwise. Since |P ′| = k, constraint
(ii) holds. For π, π′ ∈ P , if either of the plans is not in P ′,
then vπ+vπ′ ≤ 1. If both plans are in P ′, then d(π, π′) ≥ d.
Thus, constraint set (i) holds for v and the program is feasi-
ble.

Now, let v be some feasible solution and let P ′ = {π ∈
P | vπ = 1} be the corresponding subset of P . Then,
(a) from constraint (ii) we have |P ′| ≥ k, and (b) for all
π, π′ ∈ P ′, since vπ + vπ′ = 2, we know that the corre-
sponding constraint is not in the constraint set (i), and there-
fore d(π, π′) ≥ d. Therefore, P ′ (or any of its subset of size
k) is a solution to bQbD-k.

We now switch our attention to the next computational
problem, bQoptD-k.

Optimizing Diversity
Due to the NP-completeness of the decision problem of se-
lecting a subset of plans of bounded diversity, the corre-
sponding optimization problem is NP-hard. To solve it ef-
ficiently, we encode it in mixed integer linear programming.
We present a novel mixed integer linear program that we
use for finding a subset of size k that optimizes the diversity
metric. Given a set of plans P , we define the variables as
follows.

• A binary variable vπ per plan π ∈ P , describing whether
the plan is selected for the subset, and

• a single continuous variable d for bounding the pairwise
diversity.

The constraints are as follows.

(i)
∑
π∈P vπ = k, stating that the size of the subset is

exactly k, and

(ii) ∀π, π′ ∈ P : d+vπ+vπ′ ≤ d(π, π′)+2, stating that d
is bounded by the diversity of each chosen pair, if the
pair is chosen.

52

qm=1.00 qm=1.05 qm=1.10 qm=1.20
Coverage DFA A∗A FI Sym DFA A∗A FI Sym DFA A∗A FI Sym DFA A∗A FI Sym
airport (28) 0 7 18 7 0 7 18 7 0 7 17 7 0 7 17 7
barman11 (8) 0 0 4 8 0 0 5 4 0 0 5 4 0 0 5 4
barman14 (4) 0 0 3 4 0 0 3 3 0 0 3 3 0 0 2 4
blocks (30) 12 21 18 28 11 20 19 29 18 20 18 28 20 20 17 22
childsnack14 (6) 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
data-ntwrk18 (13) 9 7 9 11 10 7 10 10 9 7 10 10 9 7 10 10
depot (12) 0 1 3 3 0 1 3 3 2 1 3 3 2 1 3 3
driverlog (14) 3 6 10 9 2 6 10 9 6 2 10 9 8 2 10 9
elevators08 (24) 4 2 7 0 4 2 7 0 4 2 5 0 2 2 6 0
elevators11 (18) 3 1 5 0 2 1 5 0 2 1 5 0 2 1 5 0
floortile11 (14) 2 0 2 5 2 0 2 5 2 0 2 5 2 0 2 5
floortile14 (20) 0 0 0 8 0 0 0 8 0 0 0 7 0 0 0 8
freecell (22) 6 6 7 21 6 6 7 21 6 6 7 21 8 6 7 18
ged14 (19) 12 13 12 15 12 13 12 15 12 13 12 15 12 13 12 15
grid (2) 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2
gripper (20) 3 2 6 15 3 2 6 15 4 2 6 15 8 2 6 15
hiking14 (19) 3 2 7 7 3 2 8 6 2 1 6 6 3 1 8 5
logistics00 (20) 0 3 15 5 0 3 12 4 0 3 10 3 1 0 6 3
logistics98 (6) 1 0 5 2 1 0 5 2 3 0 5 2 3 0 5 2
miconic (143) 121 70 53 79 121 67 54 70 122 68 53 63 118 67 53 57
movie (30) 30 30 30 2 30 30 30 2 30 30 30 2 30 30 30 0
mprime (24) 6 21 20 17 6 21 20 17 6 21 20 17 15 21 19 16
mystery (17) 1 16 16 11 1 16 16 12 1 16 15 12 10 16 15 11
nomystery11 (17) 4 11 11 13 7 7 10 13 10 6 9 12 11 4 9 13
openstacks08 (30) 26 4 17 21 26 4 17 21 26 4 17 21 26 4 17 21
openstacks11 (20) 18 1 12 16 18 1 12 15 18 1 12 15 18 1 12 16
openstacks14 (18) 5 0 2 1 5 0 2 2 5 0 2 1 6 0 2 1
openstacks (17) 5 0 5 0 5 0 5 0 5 0 5 0 0 0 5 0
organic-s18 (7) 6 7 7 7 6 7 7 7 6 7 7 7 6 7 7 7
organic-ssp18 (15) 11 14 14 12 11 14 14 13 11 14 15 12 11 14 15 11
parcprinter08 (30) 0 6 15 6 1 4 13 6 1 4 13 6 1 4 13 6
parcprinter11 (20) 0 3 11 3 1 1 9 3 1 1 9 3 1 1 8 3
parking11 (3) 2 1 0 0 1 1 1 0 1 1 1 0 2 1 1 0
parking14 (4) 2 2 0 0 2 2 0 0 1 1 0 0 2 1 0 0
pegsol08 (30) 9 21 28 29 9 21 27 29 9 21 28 29 20 20 28 29
pegsol11 (20) 9 9 18 19 9 9 17 19 11 8 18 19 16 6 17 19
pipes-notank (22) 14 11 14 12 14 11 14 12 14 11 14 12 16 11 14 10
pipes-tank (18) 7 6 13 8 7 6 13 9 5 6 14 7 7 6 13 6
psr-small (50) 4 31 46 44 4 30 42 45 5 29 40 43 13 26 38 42
rovers (12) 3 4 6 6 2 4 6 6 4 4 5 6 6 4 5 6
satellite (15) 7 5 7 11 6 5 7 11 6 5 7 9 6 5 7 7
scanalyzer08 (19) 12 13 12 12 7 13 13 12 6 13 13 10 8 13 13 10
scanalyzer11 (15) 11 10 10 9 6 10 10 9 5 10 10 7 7 10 10 7
snake18 (11) 5 4 3 3 5 4 3 3 6 4 3 3 7 4 3 3
sokoban08 (30) 5 6 0 0 5 6 0 0 3 6 0 0 3 6 0 0
sokoban11 (20) 3 3 0 0 3 3 0 0 1 3 0 0 0 3 0 0
spider18 (11) 5 7 6 2 6 7 4 3 8 7 5 3 8 7 5 3
storage (18) 8 11 16 14 8 11 16 14 7 11 16 14 11 11 16 13
termes18 (16) 0 0 0 10 0 0 0 9 0 0 0 10 0 0 0 10
tetris14 (9) 1 1 3 5 1 1 3 5 2 1 3 5 4 1 3 5
tidybot11 (16) 1 5 6 10 4 3 4 10 12 2 3 9 12 1 3 9
tidybot14 (10) 4 2 0 3 6 2 0 2 6 2 0 3 7 2 0 3
tpp (11) 0 3 6 4 0 3 6 4 0 3 6 4 0 3 6 4
transport08 (12) 4 5 8 11 5 5 8 4 6 5 8 4 6 5 8 4
transport11 (8) 2 1 3 7 2 1 3 3 2 1 3 3 2 1 3 3
transport14 (7) 1 0 2 5 0 0 2 3 0 0 2 2 1 0 2 2
trucks (12) 6 3 7 5 5 3 7 6 6 3 7 5 7 3 7 5
visitall11 (12) 7 9 9 11 8 9 9 10 9 9 9 7 9 9 9 5
visitall14 (6) 6 3 3 5 6 3 3 2 6 3 3 0 6 3 3 0
woodwork08 (28) 8 7 10 22 10 6 10 22 14 6 10 22 12 6 10 22
woodwork11 (20) 7 2 5 16 8 2 4 16 9 2 5 16 7 2 5 16
zenotravel (13) 7 9 8 9 7 9 8 10 6 9 8 10 8 9 8 10
Sum other(27) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum (1192) 453 449 594 631 452 433 582 603 484 424 573 574 548 411 564 548

Table 1: Domain-wise coverage comparison of FI-bQbD and Sym-bQbD to DFAM and A∗AM, for k=5, diversity bound 0.15,
and four quality bounds.

53

qm=1.00 qm=1.05 qm=1.10 qm=1.20
k DFA A∗A FI Sym DFA A∗A FI Sym DFA A∗A FI Sym DFA A∗A FI Sym
10 390 373 530 594 389 354 511 559 426 338 494 535 505 318 480 499
100 189 238 433 491 194 216 403 448 229 185 365 396 291 123 302 352
1000 79 238 380 435 82 216 345 386 105 185 287 321 124 123 203 257

Table 2: The overall coverage comparison of FI-bQbD and Sym-bQbD to DFAM and A∗AM, for diversity bound 0.15, four
quality bounds, and various k values.

The objective of the program is then to maximize d. In
words, as in the previous case, the program encodes a subset
selection, but in this case all subsets of size k correspond to
valid assignments. We additionally have a continuous vari-
able d that is bounded by the diversity score of the selected
subset. In the case of diversity metrics that correspond to
minimal pairwise diversity, this would mean to require the
variable d to be bounded by the diversity of each selected
pair. In other words, if a pair of plans is selected, then d
should be no greater than their diversity score. If a pair is
not selected, there is no such restriction, but since there is a
natural upper bound of 1 on the overall diversity, d can be
required to be upper bounded by any value that is larger or
equal to 1. If at least one of vπ , vπ′ gets 0 assigned to it,
the constraint d+ vπ + vπ′ ≤ d(π, π′) + 2 is then satisfied.
Therefore, the constraint is valid whether the variables vπ
and vπ′ are assigned 0 or 1.

In what follows, we prove that the program can be used
for devising solutions for bQbD-k.

Theorem 3 For a planning task Π with a set of all plans of
bounded quality P such that |P | ≥ k, the mixed integer pro-
gram finds a subset of size k with the optimal diversity score,
for diversity metrics maximizing minimal pairwise diversity.

Proof: Let v, d be a feasible assignment to the variables of
the mixed integer program and let P ′ = {π ∈ P | vπ = 1}
be the corresponding subset of P . Then, from the constraint
set (i) we have |P ′| = k and from constraint set (ii) we
have d ≤ d(π, π′) for all π, π′ ∈ P ′. Further, for a plan
π ∈ P \ P ′ and a plan π′ ∈ P ′ we have d ≤ 1 + d(π, π′),
which does not pose additional constraint on the values of d
since all pairwise distances d(π, π′) are upper-bounded by
1. Similarly, for π, π′ ∈ P \ P ′, we have d ≤ 2 + d(π, π′),
which also does not pose additional constraint on the values
of d. Therefore we have d ≤ d(π, π′) for all π, π′ ∈ P ′

and maximizing d without changing v would lead to d =
minπ,π′∈P ′ d(π, π′). Thus, the linear program finds a subset
of size k with maximum minimal pairwise diversity.

Experimental Evaluation
To empirically evaluate the feasibility of our suggested
approach, we have implemented our diverse planners on
top of the Diversity Score Computation component (Katz
and Sohrabi 2019), using CPLEX v12.8.0 for solving the
mixed integer linear programs. The code is available at
https://github.com/IBM/diversescore. The experiments were
performed on Intel(R) Xeon(R) CPU E7-8837 @2.67GHz
machines, with the time and memory limit of 30min and
2GB, respectively. The benchmark set consists of all STRIPS
benchmarks from optimal tracks of International Planning

Competitions (IPC) 1998-2018, a total of 1797 tasks in 64
domains. For Bounded Quality and Diversity Diverse Plan-
ning (bQbD-k), we compare to the existing planners for
that computational problem DFAM and A∗AM (Vadlamudi
and Kambhampati 2016). Since these planners are imple-
mented for the diversity metric Dma, we focus our exper-
imental evaluation on Dma, although our approach works
with any metric. Further, since these planners require an ab-
solute bound on the solution cost to be provided as a parame-
ter, we further restrict the benchmark set to tasks where opti-
mal costs could be found with a state-of-the-art cost-optimal
planner. For that, we used the 17 single planners from the
portfolio of Delfi1 (Katz et al. 2018a). As a result, for the
bQbD-k computational problem, the benchmark set consists
of 1192 tasks.

As a first step, we generate a set of plans of bounded
quality. Focusing on Dma allows us to use unordered top-
quality planners (Katz, Sohrabi, and Udrea 2020) to de-
rive all plans (modulo reorderings) of bounded cost. This
is due to the fact that two plans that differ only in the order
of their actions would produce pairwise diversity of 0 and
thus any set of plans P that includes two such plans would
get Dma(P) = 0. For other diversity metrics we might
need to produce the set of all plans of bounded cost (Katz,
Sohrabi, and Udrea 2020). Note that some top-k planners,
such as K∗-based (Katz et al. 2018b) and symbolic search
based (Speck, Mattmüller, and Nebel 2020) can be easily
adapted to produce solutions for top-quality planning. Fur-
ther, these two planners can be rather naively adapted to pro-
duce unordered toq-quality solutions, by performing a du-
plicate check and skipping plans for which a reordering was
previously found. In our experiments, we have performed
the first step with each of these three planners, namely FI,
K∗, and Sym. We run these planners with a 29min time
bound, to allow at least one minute for the second step. In all
cases, the overall time bound for both steps is 30min. Fur-
ther, to avoid generating a larger amount of plans, the overall
bound on the number of generated plans for the first step is
set to 10000. As a second step, we select a subset of plans ac-
cording to the computational problem of interest. For bQ-k,
we use the greedy approach suggested by Katz and Sohrabi
(2020). For the bQbD-k and bQoptD-k computational prob-
lems, we solve a mixed-integer linear program, as described
in the previous section. This results in three configurations
for each computational problem of interest. For space rea-
sons, in what follows, we focus on the two best performing
ones, FI and Sym.

Table 1 presents a domain-wise comparison of our plan-
ners, FI-bQbD and Sym-bQbD to the existing planners
DFAM and A∗AM (Vadlamudi and Kambhampati 2016), for

54

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

FI-bQ

FI
-b

Q
op

tD
score

Quality multipliers: qm=1.00 qm=1.05 qm=1.10 qm=1.20

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Sym-bQ

Sy
m

-b
Q

op
tD

score
Quality multipliers: qm=1.00 qm=1.05 qm=1.10 qm=1.20

(a) (b)

0 0.2 0.4 0.6 0.8 10

50

100

150

200

250

300

350

400

450

500

FI-bQ

FI
-b

Q
op

tD

time
Quality multipliers: qm=1.00 qm=1.05 qm=1.10 qm=1.20

0 0.2 0.4 0.6 0.8 1 1.20

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Sym-bQ

Sy
m

-b
Q

op
tD

time
Quality multipliers: qm=1.00 qm=1.05 qm=1.10 qm=1.20

(c) (d)

Figure 1: Comparison of the greedy and the optimal approaches to subset selection for k = 5. FI-bQ vs. FI-bQoptD: (a) diversity
score and (c) score computation time. Sym-bQ vs. Sym-bQoptD: (b) diversity score and (d) score computation time.

k = 5. We use the diversity bound of 0.15 and experiment
with four quality bounds, defined by multipliers of the op-
timal plan cost, from qm = 1.0 (optimal plans only), to
qm = 1.05, qm = 1.10, and to qm = 1.20 (up to 120%
of the optimal plan cost). The results for these four quality
bound multipliers are depicted in the four parts of the ta-
ble. Each part presents the coverage value for the four plan-

ners. A planner gets a coverage of 1 on a planning task if
it was able to either find a solution of size k or prove that
no such solution exists. Otherwise, the planner gets cover-
age 0. The coverage of a domain is a sum over coverages
of all tasks in the domain. Best results are highlighted in
bold. While both FI-bQbD and Sym-bQbD outperform the
existing approaches in terms of overall coverage, it is worth

55

mentioning that for each of the approaches there are multi-
ple domains where that approach exhibit superior behavior.
To show how these planners scale with larger values of k,
Table 2 presents aggregated overall coverage for the values
of k = 10, 100, 1000. Going deeper into the coverage re-
sults, note that DFAM does not prove unsolvability. A∗AM,
on the other hand, for large values of k = 100 and k = 1000,
did not find any solutions, and all the instances reported in
the table for A∗AM and these values of k correspond to un-
solvable cases. For our suggested approach, both FI-bQbD
and Sym-bQbD are able to cope with both, for any value
of k. It is worth mentioning that the performance of DFAM
often improves, sometimes significantly, with larger quality
bounds. We conjecture that this increase is due to the nature
of the branch-and-bound algorithm, that does not necessar-
ily produce plans in the order of their costs.

Switching to bQ-k and bQoptD-k, in order to evaluate the
quality of the solution obtained using the greedy algorithm,
we compare the diversity metric score of the subset chosen
by FI-bQ (respectively, Sym-bQ) to the best possible score,
obtained with the FI-bQoptD (respectively, Sym-bQoptD)
planner. Figure 1(a,b) depict the comparison for k = 5, for
all four quality multipliers 1.0, 1.05, 1.1, and 1.2, for tasks
where both planners were able to find a solution, and the
first step produced at least k + 1 plans. Note that the greedy
approach works surprisingly well. On these tasks, in most
cases the greedy algorithm has reached the optimum (nodes
on the diagonal): 80 out of 121, 90 out of 126, 71 out of
105, and 50 out of 105 for FI-bQ and 106 out of 176, 99 out
of 162, 67 out of 118, and 63 out of 129 for Sym-bQ (for
the four quality multipliers, respectively). When it hasn’t
reached the optimum, the scores are still mostly below the
y = x + 0.1 line. There are only 21, 18, 17, and 26 tasks
for FI-bQ and 26, 23, 20, and 30 tasks for Sym-bQ for the
four quality multipliers 1.0, 1.05, 1.1, and 1.2, respectively
above the y = x+ 0.1 line, and only 21 tasks for FI-bQ and
16 tasks for Sym-bQ in total for all quality multipliers above
the y = x+ 0.2 line.

While our experiments show that the greedy approach of-
ten produces solutions of diversity close to optimum, the
question remains how these algorithms compare in their run
time. Figure 1 (c) and (d) present such run time comparison
between the greedy and the optimal approaches. The greedy
algorithm always finished in under 1.2 seconds, while solv-
ing mixed integer linear program takes significantly longer
on these tasks, up to 500 seconds for FI-bQoptD and 1760
seconds for Sym-bQoptD.

Finally, note that an inherent limitation of our approach to
solving bQoptD-k is that the first step must produce a solu-
tion to the (unordered) top quality planning problem. There
is no such limitation when solving bQ-k. As a result, FI-bQ
successfully solves bQ-k in 617, 617, 615, and 613 tasks
for the four quality multipliers, while FI-bQoptD solves
bQoptD-k in only 369, 333, 273, and 191 tasks. Similarly,
Sym-bQ successfully solves bQ-k in 702, 675, 648, and 624
tasks for the four quality multipliers, while Sym-bQoptD
solves bQoptD-k in only 379, 338, 262, and 196 tasks.

Discussion and Future Work
In this work, we extend the portfolio of existing tools for
various computational problems in diverse planning by in-
troducing three new such tools. We follow the recently in-
troduced taxonomy and, focusing on bQbD-k, map existing
planners DFAA/DFAM and A∗AA/A∗AM to that problem.
For that, we introduce a novel quality metric under which
these planners can be considered to solve bQbD-k. The met-
ric also allows us to use top quality planners as a basis for
our proposed planners, for bQbD-k as well as for other com-
putational problems, choosing a subset of plans from the so-
lution for the top quality problem. We show that it is NP-
complete to find a solution to bQbD-k, given the set of all
plans of bounded cost and suggest using a previously pro-
posed integer linear programming based approach, which
is experimentally shown to favorably compete with existing
planners. As the integer linear program was not previously
detailed in the literature, we present it in detail and formally
prove that it can be used for solving bQbD-k. Switching
from bounding to optimizing diversity, we suggest a novel
mixed integer linear program and formally prove that this
program solves bQoptD-k. For another computational prob-
lem, bQ-k, we use an existing greedy approach of selecting
a subset of plans, and empirically show that such a simple
approach is able to often achieve the optimum in practice.

Our suggested approach is similar to the one of Vadla-
mudi and Kambhampati (2016), in that it is also separated
into two steps: (i) finding a set of plans of bounded cost,
and (ii) choosing a proper subset from the found set. There
are two major differences. The first one is the stopping cri-
teria for step (i): while Vadlamudi and Kambhampati (2016)
iterate until enough plans are found or no more plans exist,
and can stop before finding all plans of bounded cost, we are
using an existing (unordered) top-quality planner as is, and
therefore will produce the set of all plans of bounded cost in
step (i). While it is possible to adapt the top quality planner
that we used to terminate earlier, we decided not to do so,
to allow for easily replacing the top quality planner with a
different one. The second major difference is that instead of
trying to construct a feasible solution during the execution of
step (i), we perform step (ii) after the first step is finished, as
a post-processing. Further, instead of implementing a dedi-
cated algorithm, we cast the problem of choosing the proper
subset as an integer linear program, allowing us to use ex-
isting solvers. Thus, our solution is highly modular, allow-
ing us to easily replace the solvers when better ones become
available.

While there has been significant progress in the field of
diverse planning recently, there are still several interesting
computational problems for which no planners currently ex-
ist. For example, in this work we show how to optimize di-
versity when the set of candidate plans is given. However,
if the quality restriction is alleviated, it is not clear how
to choose a set of maximal diversity. It is not even clear
whether all plans must be considered while searching for
such a set. Another possible problem of interest is finding a
subset of optimal quality among the bounded diversity ones.
Focusing on these planning problems is an interesting re-
search direction.

56

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005. Course
of action generation for cyber security using classical plan-
ning. In Biundo, S.; Myers, K.; and Rajan, K., eds., Pro-
ceedings of the Fifteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2005), 12–21.
AAAI Press.
Bryce, D. 2014. Landmark-based plan distance measures
for diverse planning. In Chien, S.; Fern, A.; Ruml, W.;
and Do, M., eds., Proceedings of the Twenty-Fourth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2014), 56–64. AAAI Press.
Coman, A., and Muñoz-Avila, H. 2011. Generating diverse
plans using quantitative and qualitative plan distance met-
rics. In Burgard, W., and Roth, D., eds., Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence
(AAAI 2011), 946–951. AAAI Press.
Flerova, N.; Marinescu, R.; and Dechter, R. 2016. Searching
for the m best solutions in graphical models. jair 55:889–
952.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Long, D.; Smith,
S. F.; Borrajo, D.; and McCluskey, L., eds., Proceedings of
the Sixteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2006), 212–221. AAAI Press.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability — A Guide to the Theory of NP-Completeness.
Freeman.
Goldman, R. P., and Kuter, U. 2015. Measuring plan di-
versity: Pathologies in existing approaches and a new plan
distance metric. In Bonet, B., and Koenig, S., eds., Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI 2015), 3275–3282. AAAI Press.
Katz, M., and Sohrabi, S. 2019. Diversity score compu-
tation for diverse planning. https://doi.org/10.5281/zenodo.
2691996.
Katz, M., and Sohrabi, S. 2020. Reshaping diverse plan-
ning. In Conitzer, V., and Sha, F., eds., Proceedings of
the Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI 2020). AAAI Press.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S.
2018a. Delfi: Online planner selection for cost-optimal plan-
ning. In Ninth International Planning Competition (IPC-9):
planner abstracts, 57–64.
Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018b. A
novel iterative approach to top-k planning. In de Weerdt, M.;
Koenig, S.; Röger, G.; and Spaan, M., eds., Proceedings of
the Twenty-Eighth International Conference on Automated
Planning and Scheduling (ICAPS 2018). AAAI Press.
Katz, M.; Sohrabi, S.; and Udrea, O. 2020. Top-quality
planning: Finding practically useful sets of best plans. In
Conitzer, V., and Sha, F., eds., Proceedings of the Thirty-

Fourth AAAI Conference on Artificial Intelligence (AAAI
2020). AAAI Press.
Mohr, F.; Wever, M.; and Hüllermeier, E. 2018. ML-Plan:
Automated machine learning via hierarchical planning. Ma-
chine Learning 107(8):1495–1515.
Myers, K. L., and Lee, T. J. 1999. Generating qualitatively
different plans through metatheoretic biases. In Proceed-
ings of the Sixteenth National Conference on Artificial Intel-
ligence (AAAI 1999), 570–576. AAAI Press.
Nguyen, T. A.; Do, M. B.; Gerevini, A.; Serina, I.; Srivas-
tava, B.; and Kambhampati, S. 2012. Generating diverse
plans to handle unknown and partially known user prefer-
ences. Artificial Intelligence 190:1–31.
Riabov, A. V.; Sohrabi, S.; Sow, D. M.; Turaga, D. S.; Udrea,
O.; and Vu, L. H. 2015. Planning-based reasoning for auto-
mated large-scale data analysis. In Brafman, R.; Domshlak,
C.; Haslum, P.; and Zilberstein, S., eds., Proceedings of the
Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2015), 282–290. AAAI Press.
Riabov, A. V.; Sohrabi, S.; and Udrea, O. 2014. New al-
gorithms for the top-k planning problem. In ICAPS 2014
Scheduling and Planning Applications woRKshop, 10–16.
Roberts, M.; Howe, A. E.; and Ray, I. 2014. Evaluat-
ing diversity in classical planning. In Chien, S.; Fern, A.;
Ruml, W.; and Do, M., eds., Proceedings of the Twenty-
Fourth International Conference on Automated Planning
and Scheduling (ICAPS 2014), 253–261. AAAI Press.
Sohrabi, S.; Riabov, A. V.; Katz, M.; and Udrea, O. 2018. An
AI planning solution to scenario generation for enterprise
risk management. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI 2018), 160–167.
AAAI Press.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan recog-
nition as planning revisited. In Kambhampati, S., ed., Pro-
ceedings of the 25th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2016), 3258–3264. AAAI Press.
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic
top-k planning. In Conitzer, V., and Sha, F., eds., Proceed-
ings of the Thirty-Fourth AAAI Conference on Artificial In-
telligence (AAAI 2020). AAAI Press.
Vadlamudi, S. G., and Kambhampati, S. 2016. A combina-
torial search perspective on diverse solution generation. In
Schuurmans, D., and Wellman, M., eds., Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence (AAAI
2016), 776–783. AAAI Press.

57

Automatic Configuration of Benchmark Sets for Classical Planning

Álvaro Torralba,1 Jendrik Seipp,2 Silvan Sievers2

1Aalborg University, Denmark
2University of Basel, Switzerland

alto@cs.aau.dk, jendrik.seipp@unibas.ch, silvan.sievers@unibas.ch

Abstract

The benchmarks from previous International Planning Com-
petitions are commonly used to evaluate new planning algo-
rithms. Since this set has grown organically over the years,
it has several flaws: it contains duplicate tasks, unsolvable
tasks, trivially solvable domains, and domains with modelling
errors. Also, diverse domain sizes complicate aggregating re-
sults. Most importantly, however, the range of task difficulty
is very small in many domains. We propose an automated
method for creating benchmarks that solves these issues. To
find a good scaling in difficulty, we automatically configure
the parameters of benchmark domains. We show that the re-
sulting benchmark set improves empirical comparisons by al-
lowing to differentiate between planners more easily.

1 Introduction
Domain-independent planning aims to develop general
solvers that find solutions to arbitrary sequential decision-
making problems. This makes the evaluation of planners an
essential part of planning research. The International Plan-
ning Competition (IPC) has set some evaluation standards
and triggered the development of tools that compare plan-
ners in terms of different metrics (Linares López, Celorrio,
and Helmert 2013; Seipp et al. 2017; Vallati, Chrpa, and Mc-
Cluskey 2018). The most popular metric is coverage, i.e.,
the number of solved benchmark instances within certain
time and memory limits. Typically, there are two main goals
for the evaluation: (1) analyze the impact of the novel algo-
rithms by comparing their performance against a baseline,
and (2) compare the performance against the state of the art
to evaluate the progress in the area.

Evaluating planners on different benchmark sets may pro-
duce different results, leading to different conclusions from
the evaluation. Not only is it important which domains we
choose, but also how we model the domains (Riddle, Holte,
and Barley 2011), and which instances of a domain we se-
lect. Therefore, having a standardized benchmark set is im-
portant to increase the comparability of results across differ-
ent papers, and to avoid the use of benchmarks tailored for
the proposed technique.

We focus on classical planning where the current standard
benchmark set has grown across the nine editions of the IPC
so far, from 1998 to 2018 (e.g., Hoffmann and Edelkamp
2005; Linares López, Celorrio, and Olaya 2015). Numerous

researchers have contributed to this set by carefully design-
ing new domains (e.g., Hoffmann et al. 2006), so it features
a diverse set of domains that pose interesting challenges for
planning algorithms. However, there are several issues with
this benchmark set (Moraru and Edelkamp 2019). For ex-
ample, it uses a different number of instances per domain,
which reduces the value of statistics aggregated over differ-
ent domains. Moreover, instances in the current benchmark
set were scaled to be useful for the evaluation of planners at
the respective IPC. Some of the domains are trivially solved
by modern planners, making it impossible to show any cov-
erage advantages over a baseline. On the other hand, early
IPC editions did not have a specialized track for optimal
planning, and some of their instances are too hard even for
state-of-the-art optimal planners.

This paper deals with the question of how to generate in-
stances of a domain to evaluate planning algorithms. Our
goal is to improve the empirical evaluation of future plan-
ning papers by (1) providing an algorithm for automatically
constructing interesting benchmark sets and by (2) using this
algorithm to construct a new benchmark set where differ-
ences in performance are better reflected in coverage than
under the current standard. We aim to generate a set of in-
stances that range from very easy (solved by most planners)
to very hard (out of reach for current state-of-the-art plan-
ners) allowing future approaches to show benefits with re-
spect to the harder instances. This definition necessarily de-
pends on the algorithms being evaluated.

We identify which properties are desirable for a bench-
mark set and propose an automatic method that generates
a set of instances, given an instance generator, a baseline
planner that represents the expected minimum performance
of any planner, and a set of state-of-the-art planners. The
instance sets generated by our method fulfill the desirable
properties by design. To avoid overfitting to the sets of plan-
ners used and not introduce a bias in our benchmark set, our
method does not select a set of instances directly, but rather
performs a search on the space of possible parameters for the
generator to obtain a set of instances of adequate difficulty.
We use our tool to design two separate sets of benchmarks,
for optimal and satisficing planning, and show their advan-
tages over the current standard IPC benchmark set.

58

2 Background
Informally, a classical planning task is defined by an ini-
tial state, a set of actions and a goal description. Given a
planning task, a planner finds a plan, that is, a sequence of
actions that can be applied in the initial state to achieve the
goal. A plan is optimal if it minimizes the summed-up cost
of the actions among all plans. If the planner is guaranteed to
find an optimal solution, it is an optimal planner, otherwise
it is a satisficing planner. In both settings, we only consider
solvable planning tasks.

Since its inception in 1998, the International Planning
Competition (IPC) has set the standards for the evaluation of
planners such as the planner input language PDDL (McDer-
mott et al. 1998). The IPC also introduced numerous plan-
ning tasks from different problem settings, called domains.

A planning task is typically divided into a domain and
an instance file. The domain file defines the types of ob-
jects, their properties, and the action schemas. Each instance
file can have a different number of objects, initial state and
goals. Most domains have an instance generator, a program
that, given certain parameters and a random seed, will gen-
erate a new instance of the domain. Even though many in-
stance generators are available,1 most planning papers use
the benchmarks introduced for the IPCs, since a standard-
ized benchmark set makes research more reproducible.

As an example, consider the Nomystery domain, where a
truck must deliver a set of packages to certain locations. To
do that, there is a limited amount of fuel that is consumed by
drive actions. Instances differ in the amount of fuel available,
the number of locations and their connections, the number
of packages, and their initial and final location. The instance
generator for Nomystery accepts several parameters that al-
low the benchmark designer to control the difficulty of the
generated instances: the number of locations, the number of
packages, the number of edges between locations, the maxi-
mum fuel consumption between two locations, and the con-
strainedness C ≥ 1, so that the amount of fuel in the initial
state is set to C times the minimum fuel consumption re-
quired to solve the instance.

3 Benchmark Design Principles
The purpose of a benchmark set is to evaluate planners and
compare their performance on a diverse class of problems.
Ideally, one should select a diverse set of domains that are
representative of real-world scenarios where different users
apply planning to solve their problems. However, in addi-
tion to selecting interesting domains, one must select a set
of concrete instances from each domain to evaluate the plan-
ners on. This selection of instances is an important step in
the design of the benchmark set, since different instance sets
of a domain may lead to different conclusions about which
planner is better at solving instances of a given domain. Our
goal is that, for any two planners A and B (possibly un-
known at the time when the instance set is generated) if A is
consistently faster than B on the instances of a domain, the
probability that this is reflected on the coverage score should
be as high as possible.

1https://github.com/AI-Planning/pddl-generators

IPC New’14

L D O L D O

Nomystery 11 20 12 25 30 24
Rovers 40 40 40 22 18 21
Woodworking 50 50 50 18 27 30
Total 101 110 102 65 75 75

Table 1: Coverage of LAMA (L), and two IPC 2018 agile
planners Decstar (D) and OLCFF (O) on three domains.

For aggregated statistics to be meaningful, not only
should all domains have the same number of instances, but
their difficulty should also scale similarly. Otherwise, con-
clusions taken from the empirical evaluation may be biased.
Table 1 shows an example comparing 3 planners in 3 do-
mains when using the IPC instances and our New’14 bench-
mark set, as described in the evaluation section. A paper
evaluating these planners with IPC instances would reach
the conclusion that Decstar is clearly superior to the other
two planners in these domains, both in total coverage and on
a per-domain basis since it has better or equal coverage in
all domains. However, this conclusion is biased because in-
stances are not well scaled. Instances in Rovers and Wood-
working are way too easy and therefore they do not show
any differences between the planners. Using our New’14
instances leads to a different conclusion: all three planners
are complementary. Of course, no strong conclusions can be
taken out of only 3 domains. However, using more domains
will help to alleviate this issue only if the instances are well
scaled.

A good scaling must meet three conditions: (1) have easy
instances that are solved by all planners, (2) have hard in-
stances that are not solved by any current planner, and (3)
the instance difficulty should grow smoothly.

Condition (1) is necessary for experiments to be infor-
mative at all: if some planners do not solve any instance,
no conclusions can be obtained about their relative perfor-
mance. This happens in some domains of the IPC bench-
mark set for optimal planning. E.g., Fišer, Torralba, and Sh-
leyfman (2019) write that “In childsnack, [they] measured
about twice as many expanded states per second. However,
no planner solved any instance in this domain.”.

Condition (2) is necessary for new algorithms to show that
they can deal with instances that previous planners could
not, as shown by our example in Table 1.

Condition (3) is necessary for differences between the
planners’ performance to be reflected in coverage. To see
why, consider an idealized setting where a baseline planner
A, whose runtime scales exponentially (t(A, x) = xC for
some constant C), is compared to an improved planner ver-
sion B which is always faster than A by at least a factor of
K > 1, i.e., t(B, x) ≤ t(A,x)

K . Given these assumptions,
there is a guaranteed difference in coverage if and only if
(1) some instances are solved by B, (2) not all instances are
solved by A, and (3) K ≥ C. Otherwise, there may be cases
where both planners solve the same number of instances,

59

10−2

10−1

100

101

102

103
uns.

Ti
m

e
(s

)

Complementary 2, IPC
Delfi-blind, IPC
Complementary 2, New’14
Delfi-blind, New’14

Figure 1: Runtime of two IPC 2018 optimal planners in the
Barman domain using the IPC and New’14 instance sets.

and the difference in performance by a factor ofK is missed
by the coverage analysis. If these conditions do not hold, it
is possible to choose runtimes for A and B that are compati-
ble with these exponential scalings, so that their coverage is
equal. For example, if K = 2 and C = 3, then (3) does not
hold. So for any time limit (e.g., 300 seconds), if the runtime
of the last instance solved by A is close enough to the time
limit (e.g., 250 seconds), the next instance cannot be solved
by B below the time limit (e.g., 250·3

2 > 300).
Real distributions of planner runtimes over sets of in-

stances differ from this idealized example in that they usu-
ally involve constant factors, the runtime scaling of different
planners may be completely different, and even for a sin-
gle planner it may be impossible to obtain instances that
scale according to the desired runtimes in some domains.
But ideally, all domains should consist of a collection of in-
stances of increasing difficulty, ranging from very easy to
very hard for current planners. Therefore, we aim for a col-
lection where the easiest instance is quickly solved by most
planners; all domains have instances that are not solved by
current planners; and difficulty scales by approximately a
factor of 1.5–2 between consecutive instances.

Figure 1 exemplifies why a smooth scaling is important in
practice. The plot shows the runtimes of two optimal plan-
ners on the Barman domain from IPC 2011 and our New’14
benchmark set. In the IPC instances the difficulty does not
grow smoothly. Instead, for each group of four instances the
difficulty increases visibly and the runtime of all planners
increases by about one order of magnitude. This is undesir-
able since we cannot observe differences in performance for
some planners by inspecting their coverage. In contrast, the
difficulty on the new benchmark set grows more smoothly,
there are instances of more varied difficulty for all plan-
ners, and fewer jumps in their runtime. Accordingly, now
we can observe that Complementary 2 is able to solve some
instances that are not solved with Delfi-blind in this domain.

Given our definition of an ideal benchmark set as one that
meets conditions (1), (2), and (3) described above, the in-
stance selection necessarily depends on the planning algo-
rithms being evaluated. As our objective is to generate a
benchmark set to evaluate future planners that do not ex-
ist yet, one cannot directly select instances that are useful to

compare planner’s right now. However, selecting an instance
set that scales well for current planners may generalize well
for planners that are introduced in the next few years. In-
deed, our New’14 instance set featured in our examples of
Table 1 and Figure 1 was configured without using any plan-
ner after 2014, so it did not use any information regarding
the IPC’18 planners mentioned in our examples.

One must be careful not to “overfit” the benchmark set
to match the set of selected planners, so that the difficulty
scales well for the selected planners but not for future plan-
ners. To avoid overfitting, we impose two restrictions on the
benchmark configuration process. On the one hand, the op-
timization process does not consider concrete instances, but
rather only decides which overall characteristics they should
have (e.g. the number of objects in each instance). The fi-
nal benchmark set is then generated with a random seed dif-
ferent from the one used during our optimization process.
On the other hand, we do not consider the individual results
of all planners available for the optimization. In each do-
main, we require a baseline planner that represents the ex-
pected minimum performance of any planner to ensure that
some instances are solved by all planners. Also, to ensure
that some instances remain unsolved, we estimate the per-
formance of state-of-the-art planners by taking the minimum
runtime of any of the available planners on each instance.
This makes our instance selection as objective as possible
since it does not depend on the concrete set of planners avail-
able to the benchmark designer, as long as the best planner
for the given domain is considered.

4 Configuration of Planning Benchmarks
We consider domains that have an instance generator with
several parameters to control the hardness of the generated
instances.

4.1 Framework
We model the problem of generating the instances of a
benchmark set as follows. Our tool takes as input a tuple
(spec, G,A,B), where spec is a domain specification; G is
an instance generator; A is a set of state-of-the-art planners;
and B is a set of baseline planners. The output will be a set
of instances of that domain.

The domain specification describes the instance genera-
tor parameters and their constraints and it is discussed in
detail in the next section. The instance generator G is a
function that takes as input a tuple of parameter values
ρ = 〈ρ1, . . . , ρk〉 and a random seed seed ∈ N+ and out-
puts a planning task. Let p ∈ A ∪ B be a planner, and Π a
planning task produced by G(ρ, seed) for some seed ∈ N+.
We define t(p,Π) as the runtime of planner p to solve task
Π. For every instance we characterize the performance of a
set of planners A on an instance Π as the minimum runtime
of any planner, t(A,Π) = minp∈A t(p,Π).

Given a parameter configuration ρ, we define t(p, ρ) as
the average runtime over all possible tasks that the generator
may output for different random seeds. We estimate t(p, ρ)
by sampling k tasks Π1, . . . ,Πk from the distribution and
taking the average running time

∑
i∈[1,k] t(p,Πi)

k . In practice,

60

a small k is sufficient for most domains. In our experiments
we used k = 1, which was enough to produce robust results.

Our goal is to select a set of parameter configura-
tions ρ1, . . . , ρn such that the running time t(A, ρi) scales
smoothly with i, as described in our general design princi-
ples. Note that our automatic tool is not allowed to hand-pick
the random seed, but rather the final benchmark set is cre-
ated by sampling these distributions of instances with new
random seeds. This helps to avoid overfitting. An assump-
tion is that the variance of the runtimes t(A,Πi) for tasks
generated with the same parameter configuration is not too
high, since otherwise the parameters provided to the gener-
ator are irrelevant for obtaining a smooth difficulty scaling.
This is a reasonable assumption in practice, following analy-
ses made in the context of predicting planner runtimes (de la
Rosa, Cenamor, and Fernández 2017). Out of 10 domains
analyzed by de la Rosa, Cenamor, and Fernández, most of
them had a very low variance. The one with highest variance
was Barman, where 90% of the instances were still relatively
close to the average runtime, especially for our purposes.

4.2 Domain Specification
In order to use our benchmark configuration tool, the bench-
mark designer must specify how to call the instance gener-
ator, what parameters are available, as well as which values
are appropiate for each parameter.

We distinguish between two types of parameters. Lin-
ear parameters can be assigned arbitrary non-negative nu-
meric values, where larger values usually result in harder
instances. They are typically used to specify the number of
objects of a given type. Each generator should have at least
one linear parameter that helps to control the difficulty of
the generated instances. In contrast, enumerated parameters
have a finite set of values, and we do not make any assump-
tion about their impact on instance hardness. All other pa-
rameters are fixed to a predefined constant value.

We define the instances of a domain as a set of se-
quences of instances. A sequence consists of a list of plan-
ning tasks Π1,Π2, . . . of increasing difficulty. To ensure
that difficulty increases, all instances in the sequence have
a fixed value for all enumerated parameters, whereas the
value of linear parameters increases linearly across the se-
quence. We specify this via the base value b that the lin-
ear parameter takes for Π1 and the slope m. For example,
suppose that a domain has two linear parameters that de-
fine the number of packages (b = 2,m = 1), and trucks
(b = 1,m = 0.5). Then, the sequence will generate in-
stances with the following numbers of packages and trucks:
(2, 1), (3, 1), (4, 2), (5, 2), (6, 3), etc.

Considering sequences of instances allows us to choose
the parameters that generate instances which current plan-
ners fail to solve within reasonable time. A limitation of this
approach is that not all combinations of parameters are pos-
sible. In the example above, a single sequence cannot con-
tain both (3, 2) and (2, 3) because that would require to de-
crease one of the parameters, which is not allowed by our
linear scaling. In most cases, this is not a problem because
we can use multiple sequences of instances for a single do-
main. A notable exception are parameters that define the

generator_command = "nomystery -l {locations}

-p {packages} -n {edgefactor} -m {edgeweight}

-c {constrainedness} -s {seed} -e 0"

domain_attributes = [

LinearAttr("locations", lower_b=3, upper_b=5,

lower_m=0.1, upper_m=1),

LinearAttr("packages", lower_b=2, upper_b=10),

ConstantAttr("edgefactor", "1.5"),

ConstantAttr("edgeweight", "25"),

EnumAttr("constrainedness", [1.1, 1.5, 2.0])]

Figure 2: Example of a domain specification with the gen-
erator command and the specification of the corresponding
parameters.

width and height of a grid, because they have a strong in-
teraction, i.e., the number of cells is the product of both pa-
rameters. In that case, we consider them a single parameter
so that the number of tiles in the grid scales linearly.

The snippet from Figure 2 shows the domain specification
for the nomystery domain. For each linear parameter, lower
and upper bounds for the base and slope values should be
provided. This allows the domain modeller to specify pref-
erences on which parameters to scale (e.g., by restricting the
slopem for the number of locations to be between 0.1 and 1,
they indicate their preference to increase difficulty by scal-
ing the number of packages). Note that this is important,
since a property of a good benchmark set is that instances
reflect problems that are “interesting in practice”, and this is
a subjective matter that the configuration tool cannot decide
on its own. If the benchmark designer has no such prefer-
ence, all parameters can be left with a default interval.

Often, instance generators impose constraints on the
range of parameter values or their combination. Those con-
straints must be enforced by adding a postprocessing func-
tion that updates the value of the parameters passed to the
generator. This is an arbitrary function provided by the
benchmark designer which receives the parameters that were
automatically chosen and outputs the final parameters that
will be provided to the generator. For example, if the num-
ber of packages has to be greater than the number of loca-
tions, instead of directly selecting the number of packages,
our linear scaling will consider the number of locations and
the number of additional packages. All of these adjustments
must be done on a per-domain basis, since they depend on
the specific characteristics of the domain and generator.

Given this framework, our automatic tool decides which
sequences of instances are suitable for each domain. This
is done in two phases: the first phase designs a set of can-
didate sequences (Sequence Optimization), and the second
phase performs a final selection that adheres to our design
principles as much as possible (Sequence Selection).

4.3 Sequence Optimization
The first phase generates sequences of 30 instances by op-
timizing sequence parameters. To guide the search towards
sequences that scale the instance difficulty as smoothly as
possible, we compute a penalty score for each sequence and

61

search for the sequence that minimizes this score.
Sequences are evaluated by running hand-picked state-of-

the-art (A) and baseline (B) planners on their instances, us-
ing a time limit of 180 seconds per instance. We ignore in-
stances that are solved under 10 seconds, considering that
differences of±5 seconds are not meaningful enough. Since
the sequences are generated with increasing values of the
linear parameters, we assume that the runtimes will always
increase, so we can stop our evaluation as soon as one in-
stance is not solved under the time limit. In cases where
this does not hold, we enforce it by sorting the runtimes of
the instances. Our assumption is that these anomalies stem
from using different random seeds for the instance gener-
ator and the results will be different with different random
seeds.2 The runtime of a set of planners is the minimum of
the runtimes of the individual planners. For evaluating a se-
quence we consider the first five instances with a minimum
runtime above 10 seconds. We ignore harder instances be-
cause they will usually incur runtimes above the 180 sec-
onds time limit. Let t(X, 1), . . . , t(X, 5) be the runtimes
of the set of planners X on the first five instances with a
runtime above 10 seconds. The penalty score is defined as∑

i∈[2,5] S(B, i) + S(A, i) where S(X, i) =

3− 2t(X, i)

t(X, i− 1)
if 1 ≤ t(X, i)

t(X, i− 1)
≤ 1.5

0 if 1.5 <
t(X, i)

t(X, i− 1)
≤ 2

1− 2t(X, i− 1)

t(X, i)
if 2t(X, i− 1) ≤ t(X, i) ≤ 180

2 if t(X, i) > 180

This penalty is lower for sequences whose runtime scales
smoothly, assigning a minimum score of 0 to any sequence
where the runtimes of both the baseline and state-of-the-art
planners scale exponentially with a factor between 1.5 and
2, e.g., 〈10, 15, 23, 35, 52, . . . 〉, or 〈10, 20, 40, 80, 160, . . . 〉.
If not enough instances are solved in the [10, 180] second
interval, the sequence gets a penalty of 2, and otherwise we
assign it a penalty between 0 and 1. To avoid generating se-
quences where all instances are solved by the state-of-the-
art planners, we also add a penalty of 1 for each instance
solved by them beyond 20 instances. To guarantee that all
valid sequences contain some instances solvable within the
time limit and to speed up the evaluation we require the first
three instances to be solved within 10, 60, and 180 seconds,
respectively. Otherwise, we discard the sequence, unless all
linear parameters are at their minimum value.

The concrete choice of penalty values is arbitrary. What
matters is that sequences that minimize this score adhere
more to the design principles introduced in Section 3 than
those that do not, thereby guiding the parameter optimiza-
tion towards good sequences.

2Note that any parameter that has an unpredictable influence
on the runtime of a planner should be considered an enumerated
parameter and remain constant for a given sequence.

4.4 Sequence Selection
After performing one or more optimization runs for a do-
main (using different random seeds) as described above, we
collect all sequences seen during the optimization process.
Since this set can be very large, we only keep the 100 se-
quences with the lowest penalty score per value of the enu-
merated parameters. For each group of sequences where the
planners solves the same instances, we only keep one mem-
ber of the group. This filtering ensures that we keep a set of
diverse sequences with a good penalty score.

For each sequence, we collect the runtimes of all instances
solvable in 180 seconds from the sequence optimization
phase. For the rest of the instances, we estimate the runtime
by assuming that runtimes will increase according to the av-
erage increasing factor t(A, i)/t(A, i − 1) observed on the
instances solved between 5 and 180 seconds. This is a very
rough estimate but it is accurate enough for the purposes of
choosing up to when a sequence should be continued (see
below).

We model the problem of selecting a suitable set of sub-
sequences as a Mixed-Integer Programming (MIP) problem,
where constraints directly aim to model the design principles
of Section 3. The decision variables model the start and end
points of each sub-sequence of instances. The selection must
satisfy the following hard constraints that model properties
desirable for a good set of instances:

(H1) The number of selected instances must be exactly 30.

(H2) There must be at least one instance solvable by the
baseline under 30 seconds.

(H3) All sequences must start with an instance that is solv-
able by a state-of-the-art planner and end with an in-
stance whose estimated runtime is higher than 2000
seconds.

(H4) Each parameter configuration must be used (with dif-
ferent random seeds) at most twice, and only once
for domains whose generators do not admit a random
seed.

The objective is to minimize the summed-up penalty score
of all sequences used, plus the penalty incurred for violating
any of the following soft constraints:

(S1) The number of instances solved by the baseline under
30 seconds must be between 2 and 6 (with a penalty of
2x2 where x is the deviation with respect to the con-
straint).

(S2) The number of instances solved under 180 seconds
must be between 8 and 15 (with a penalty of 2x2 where
x is the deviation with respect to the constraint).

(S3) All sequences must end with an instance whose esti-
mated runtime is between 18 000 and 180 000 seconds
(that is, 1–2 orders of magnitude larger than the typ-
ical time limit of 30 minutes). Larger times t incur
a penalty of 100t/180000 and smaller times incur a
penalty of 100(18000/t).

(S4) If a parameter configuration is used more than once,
there is a penalty of 100.

62

Optimal Satisficing

Configuration New’14 blind search (baseline), all four components of the FDSS 1
portfolio from IPC 2011 (Helmert et al. 2011) and SymBA∗

1

from IPC 2014 (Torralba et al. 2014)

greedy best-first search with FF heuristic (baseline,
Hoffmann and Nebel 2001), LAMA (Richter and
Westphal 2010) and Madagascar (Rintanen 2012)

Configuration New’20 union of Configuration New’14 and Evaluation union of Configuration New’14 and Evaluation

Evaluation five components of Delfi1 portfolio from IPC 2018 us-
ing symmetry pruning and partial order reduction (blind
search, iPDB, LM-Cut and two M&S variants, see Katz
et al. 2018) and three vanilla IPC 2018 planners: Comple-
mentary2 (Franco, Lelis, and Barley 2018), DecStar (Gnad,
Shleyfman, and Hoffmann 2018), Scorpion (Seipp 2018b)

eight vanilla IPC 2018 planners: Cerberus (Katz
2018), BFWS-PREF, DUAL-BFWS and POLY-
BFWS (Francès et al. 2018), DecStar (Gnad, Sh-
leyfman, and Hoffmann 2018), OLCFF (Fickert and
Hoffmann 2018), Fast Downward Remix (Seipp
2018a) and Saarplan (Fickert et al. 2018)

Table 2: Choice of planners for benchmark generation and evaluation.

For domains where all instances in the sequence are
solved by state of the art planners under 180 seconds (be-
cause the domain is solvable in polynomial time and it is
impossible to fulfill our criteria with state-of-the-art plan-
ners), we consider the runtimes of the baseline instead of
those of the state of the art planners in our constraints de-
scribed above.

Constraints (H2), (S1) and (S2) ensure that the instance
set contains some easy instances, so that any future planning
algorithms are expected to solve at least some instances, al-
lowing researchers to analyze the behaviour of their algo-
rithms in the domain. Constraints (H3) and (S3) ensure that,
whenever possible, at least some of the instances are ex-
pected to be out of reach for state-of-the-art planners. To-
gether with minimizing the penalty score of the selected
sequences, they aim to obtain a smooth scaling, since se-
quences must interpolate between easy and hard instances
and sequences with smoother scaling are preferred. Finally,
constraints (H4) and (S4) are needed to avoid duplicate in-
stances and instances that are very similar to each other.

The penalties are set arbitrarily, but they scale quadrati-
cally with respect to the deviation because it is better to not
fulfill several soft constraints entirely than to completely ig-
nore one of the constraints.

5 Experiments
We implemented the first phase, i.e., sequence optimization,
using the automatic configurator SMAC (Hutter, Hoos, and
Leyton-Brown 2011). We test our approach by running two
completely separated optimizations for optimal and satisific-
ing planners. As baseline planners, we use blind search for
optimal planning and greedy best-first search with the FF
heuristic (Hoffmann and Nebel 2001) for satisficing plan-
ning, both implemented in Fast Downward (Helmert 2006a).

Both for optimal and satisficing planning, we generate
two separate benchmark sets, New’14 and New’20, that dif-
fer in the set of state-of-the-art planners available for opti-
mization. The New’14 set consists of a heterogeneous set of
planning algorithms from IPCs 2011 and 2014. The New’20
set is trained using the same planners plus the ones used in
the evaluation. Therefore, for New’14, the configuration and
evaluation sets are disjoint, while for New’20, the sets over-
lap. Table 2 gives an overview of the planners used.

Since we limit each planner run during the optimization to
3 minutes, we adapt the planners for the configuration phase
by breaking portfolios into components and by adapting pre-
processing time limits. For optimization in each domain, we
hand-pick 1–3 planners that perform best in that domain,
which is sufficient to approximate the minimum time of any
planner in each instance. We run SMAC 10 times using dif-
ferent random seeds. Each run is limited to 10 hours. Af-
ter the first phase finishes, we consider all sequences en-
countered during optimization for the second phase, i.e.,
sequence selection. We filter the instances as described in
Section 4.4 and solve the MIP for sequence selection using
CPLEX 12.10, which finishes in under 30 seconds for each
domain.

We evaluate the new benchmark sets using the aforemen-
tioned planners, limiting each run to 30 minutes and 3.5
GiB. In Table 3 we compare the IPC benchmarks to the
new benchmark sets for optimal and satisficing planning. We
compare benchmark sets according to two metrics: the range
of coverage scores per domain, which allows us to see how
many instances are solved by all planners and how many re-
main unsolved by any of the planners; and the number of
pairwise comparisons in which a planner had higher cover-
age than another, which quantifies how many differences in
the performance of planners are reflected by the coverage
score.

In optimal planning the difference between the bench-
mark sets is rather subtle because difficulty typically scales
very fast with increasing instance size. Therefore, the IPC
set has some interesting instances in all domains. Also, it can
be very hard to generate instance sequences whose difficulty
scales smoothly, since often increasing one of the parame-
ters of a generator by a unit has a big impact on runtime.

The results are more pronounced for satisficing planners,
where the IPC set scales very poorly for some domains. Only
in the Elevators domain the IPC set is superior in terms of
comparisons detected by the coverage score compared to
both new benchmark sets. In contrast, with the new bench-
mark sets, we observe differences in performance in do-
mains like Blocksworld, Driverlog or Zenotravel, where all
planners solve all instances in the IPC set. Overall, New’14
uncovers more differences in coverage between pairs of
planners than the IPC set in 21 out of 26 domains, while

63

coverage range comparisons

Optimal #IPC IPC ’14 ’20 IPC ’14 ’20

barman 34 4–11 9–13 9–12 12 21 19
blocksworld 35 18–30 5–12 5–12 18 24 24
childsnack 20 0–6 9–20 6–21 12 18 22
data-network 20 6–14 5–12 5–16 27 25 27
depot 22 5–14 9–25 8–16 26 26 24
driverlog 20 7–15 6–30 5–18 22 26 25
elevators 50 28–44 7–14 10–18 26 26 23
floortile 40 16–34 9–18 8–17 21 21 22
grid 5 1–3 6–26 4–21 19 28 27
gripper 20 8–20 11–30 11–30 7 7 7
hiking 20 12–18 7–9 5–16 23 15 25
logistics 63 13–34 5–17 5–14 27 27 25
miconic 150 56–142 4–28 3–30 25 27 28
nomystery 20 8–20 3–27 5–21 18 28 27
openstacks 130 42–71 4–11 3–7 24 18 7
parking 40 0–15 11–18 12–21 28 24 23
rovers 40 6–13 4–26 6–19 25 22 7
satellite 36 7–14 8–30 4–27 22 25 26
scanalyzer 50 21–33 6–16 7–15 27 24 24
snake 20 7–14 5–20 7–19 22 24 21
storage 30 15–18 9–25 2–19 21 27 26
tpp 30 7–20 7–30 2–7 24 24 21
transport 70 24–35 5–30 8–19 21 18 22
visitall 40 12–30 6–21 5–20 27 27 27
woodworking 50 38–50 16–25 10–14 22 26 24
zenotravel 20 8–13 6–30 3–13 23 26 28

coverage range comparisons

Satisficing #IPC IPC ’14 ’20 IPC ’14 ’20

barman 40 39–40 7–25 9–30 7 24 27
blocksworld 35 35–35 7–24 4–22 0 27 28
childsnack 20 1–20 14–30 2–19 27 25 28
data-network 20 9–19 10–30 13–30 24 27 25
depot 22 21–22 12–20 11–26 7 27 22
driverlog 20 20–20 29–30 9–19 0 12 24
elevators 50 49–50 30–30 30–30 7 0 0
floortile 40 4–40 1–12 1–11 17 25 24
grid 5 5–5 4–20 9–21 0 26 24
gripper 20 20–20 26–30 26–30 0 7 7
hiking 20 10–20 2–22 3–26 24 28 27
logistics 63 51–63 5–30 5–26 17 27 26
miconic 150 150–150 30–30 30–30 0 0 0
nomystery 20 12–20 19–30 2–30 23 18 26
openstacks 160 99–160 12–21 14–23 21 27 25
parking 40 36–40 14–20 13–16 7 24 21
rovers 40 38–40 10–22 6–30 7 26 27
satellite 36 26–36 5–30 6–14 23 17 23
scanalyzer 50 48–50 9–16 13–14 12 21 12
snake 20 3–17 6–30 5–14 27 28 26
storage 30 21–30 6–26 7–17 26 27 26
tpp 30 29–30 10–26 6–21 15 27 27
transport 70 65–70 22–30 15–23 7 24 26
visitall 40 36–40 4–30 4–29 7 24 26
woodworking 50 28–50 6–30 5–30 13 27 27
zenotravel 20 20–20 6–29 5–17 0 23 25

Table 3: Comparison of the IPC and new benchmark sets for optimal and satisficing planning. The #IPC column shows the
number of tasks per domain in the IPC benchmark set, which is always 30 for the new sets. The coverage range shows the
minimum and maximum coverage of any planner. In the “comparisons” columns we list how many pairs of planners yield
different coverage scores for each benchmark set.

the opposite is the case in only 4 domains.
The comparison between New’14 and New’20 reveals

that our technique is not very sensitive to the set of state-
of-the-art planners. The reason is that the state of the art has
not advanced enough in the last six years to make a set of
instances trained with our method in 2014 outdated.

6 Discussion
Our paper deals with the problem of generating instances
that are adequate to evaluate planning algorithms. The goal
is to select instances that scale well, so that differences in
algorithm performance are reflected in the number of prob-
lems solved within a certain time limit. It must be remarked
that no benchmark set can replace a careful analysis of the
results. Aggregating results from different domains without
further analysis may be misleading and an empirical analysis
only based on total coverage should be discouraged. Never-
theless, coverage is a useful metric to summarize experimen-
tal data and it is used by most planning papers. As shown by
our experiments, the coverage metric is more meaningful for
the benchmark sets generated with our approach than with
the previous standard. Our main result is a new benchmark
set, as well as a set of generators and tools that can be used

in the future to automatically generate new instances.

In other communities like SAT, there has been a lot
of research on how to construct random instances (Sel-
man, Mitchell, and Levesque 1996; Achlioptas et al. 2000;
Giráldez-Cru and Levy 2015; Xu et al. 2005) around the
phase transition (Cheeseman, Kanefsky, and Taylor 1991).
Our approach is orthogonal to any approach that can gener-
ate new instances, e.g., around the phase transition of plan-
ning problems (Rintanen 2004; Rieffel et al. 2014), or with
suitable initial states and goals for Sokoban (Bento, Pereira,
and Lelis 2019). Those approaches provide an instance gen-
erator that adjusts the instance difficulty for a given problem
size, but to generate an instance set still requires to select the
value of certain parameters. Our approach is complemen-
tary, since it can be used to select suitable values that are
useful to evaluate a given set of solvers. Our tool can also
be adapted to generate benchmarks with different character-
istics, e.g., with smaller instances that are solved in a few
seconds (Ruml 2010). Future work could also consider rela-
tions among different domains theoretically (Helmert 2003,
2006b) or empirically (Cenamor and Pozanco 2019).

64

Acknowledgments
We thank Florian Pommerening for helping us set up the ex-
periments and we thank the anonymous reviewers for their
helpful comments. We have received funding for this work
from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement no. 817639). Álvaro Torralba was
employed by Saarland University and the CISPA Helmholtz
Center for Information Security during part of the develop-
ment of this paper.

References
Achlioptas, D.; Gomes, C. P.; Kautz, H. A.; and Selman, B.
2000. Generating Satisfiable Problem Instances. In Kautz,
H.; and Porter, B., eds., Proceedings of the Seventeenth Na-
tional Conference on Artificial Intelligence (AAAI 2000),
256–261. AAAI Press.
Bento, D. S.; Pereira, A. G.; and Lelis, L. H. S. 2019. Proce-
dural Generation of Initial States of Sokoban. In Kraus, S.,
ed., Proceedings of the 28th International Joint Conference
on Artificial Intelligence (IJCAI 2019), 4651–4657. IJCAI.
Cenamor, I.; and Pozanco, A. 2019. Insights from the 2018
IPC Benchmarks. In ICAPS 2019 Workshop on the Interna-
tional Planning Competition (WIPC), 8–14.
Cheeseman, P.; Kanefsky, B.; and Taylor, W. M. 1991.
Where the Really Hard Problems Are. In Mylopoulos, J.;
and Reiter, R., eds., Proceedings of the 12th International
Joint Conference on Artificial Intelligence (IJCAI 1991),
331–337. Morgan Kaufmann.
de la Rosa, T.; Cenamor, I.; and Fernández, F. 2017. Per-
formance Modelling of Planners from Homogeneous Prob-
lem Sets. In Barbulescu, L.; Frank, J.; Mausam; and Smith,
S. F., eds., Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling (ICAPS
2017), 425–433. AAAI Press.
Fickert, M.; Gnad, D.; Speicher, P.; and Hoffmann, J. 2018.
SaarPlan: Combining Saarlands Greatest Planning Tech-
niques. In Ninth International Planning Competition (IPC-
9): planner abstracts, 11–16.
Fickert, M.; and Hoffmann, J. 2018. OLCFF: Online-
Learning hCFF. In Ninth International Planning Competition
(IPC-9): planner abstracts, 17–19.

Fišer, D.; Torralba, Á.; and Shleyfman, A. 2019. Operator
Mutexes and Symmetries for Simplifying Planning Tasks. In
Proceedings of the Thirty-Third AAAI Conference on Artifi-
cial Intelligence (AAAI 2019), 7586–7593. AAAI Press.
Francès, G.; Geffner, H.; Lipovetzky, N.; and Ramiréz, M.
2018. Best-First Width Search in the IPC 2018: Complete,
Simulated, and Polynomial Variants. In Ninth International
Planning Competition (IPC-9): planner abstracts, 23–27.
Franco, S.; Lelis, L. H. S.; and Barley, M. 2018. The Com-
plementary2 Planner in the IPC 2018. In Ninth International
Planning Competition (IPC-9): planner abstracts, 32–36.
Giráldez-Cru, J.; and Levy, J. 2015. A modularity-based ran-
dom SAT instances generator. In Yang, Q.; and Wooldridge,

M., eds., Proceedings of the 24th International Joint Con-
ference on Artificial Intelligence (IJCAI 2015), 1952–1958.
AAAI Press.

Gnad, D.; Shleyfman, A.; and Hoffmann, J. 2018. DecStar
– STAR-topology DECoupled Search at its best. In Ninth
International Planning Competition (IPC-9): planner ab-
stracts, 42–46.

Helmert, M. 2003. Complexity results for standard bench-
mark domains in planning. Artificial Intelligence 143(2):
219–262.

Helmert, M. 2006a. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26: 191–246.

Helmert, M. 2006b. New Complexity Results for Classi-
cal Planning Benchmarks. In Long, D.; Smith, S. F.; Bor-
rajo, D.; and McCluskey, L., eds., Proceedings of the Six-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2006), 52–61. AAAI Press.

Helmert, M.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011.
Fast Downward Stone Soup. In IPC 2011 planner abstracts,
38–45.

Hoffmann, J.; and Edelkamp, S. 2005. The Deterministic
Part of IPC-4: An Overview. Journal of Artificial Intelli-
gence Research 24: 519–579.

Hoffmann, J.; Edelkamp, S.; Thiébaux, S.; Englert, R.; dos
Santos Liporace, F.; and Trüg, S. 2006. Engineering Bench-
marks for Planning: the Domains Used in the Deterministic
Part of IPC-4. Journal of Artificial Intelligence Research 26:
453–541.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14: 253–302.

Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2011. Sequen-
tial Model-Based Optimization for General Algorithm Con-
figuration. In Coello, C. A. C., ed., Proceedings of the
Fifth Conference on Learning and Intelligent OptimizatioN
(LION 2011), 507–523. Springer.

Katz, M. 2018. Cerberus: Red-Black Heuristic for Planning
Tasks with Conditional Effects Meets Novelty Heuristic and
Enchanced Mutex Detection. In Ninth International Plan-
ning Competition (IPC-9): planner abstracts, 47–51.

Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018.
Delfi: Online Planner Selection for Cost-Optimal Planning.
In Ninth International Planning Competition (IPC-9): plan-
ner abstracts, 57–64.

Linares López, C.; Celorrio, S. J.; and Helmert, M. 2013.
Automating the evaluation of planning systems. AI Commu-
nications 26(4): 331–354.

Linares López, C.; Celorrio, S. J.; and Olaya, A. G. 2015.
The deterministic part of the seventh International Planning
Competition. Artificial Intelligence 223: 82–119.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL
– The Planning Domain Definition Language – Version

65

1.2. Technical Report CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control, Yale Univer-
sity.

Moraru, I.; and Edelkamp, S. 2019. Benchmarks Old
and New: How to compare domain independence for cost-
optimal classical planning? In ICAPS 2019 Workshop on
the International Planning Competition (WIPC), 36–39.

Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research 39: 127–177.

Riddle, P. J.; Holte, R. C.; and Barley, M. W. 2011. Does
Representation Matter in the Planning Competition? In Pro-
ceedings of the Ninth Symposium on Abstraction, Reformu-
lation, and Approximation (SARA 2011). AAAI Press.

Rieffel, E. G.; Venturelli, D.; Do, M.; Hen, I.; and Frank,
J. 2014. Parametrized Families of Hard Planning Problems
from Phase Transitions. In Brodley, C. E.; and Stone, P.,
eds., Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence (AAAI 2014), 2337–2343. AAAI
Press.

Rintanen, J. 2004. Phase Transitions in Classical Planning:
an Experimental Study. In Zilberstein, S.; Koehler, J.; and
Koenig, S., eds., Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2004), 101–110. AAAI Press.

Rintanen, J. 2012. Planning as Satisfiability: Heuristics. Ar-
tificial Intelligence 193: 45–86.

Ruml, W. 2010. The Logic of Benchmarking: A Case
Against State-of-the-Art Performance. In Felner, A.; and
Sturtevant, N., eds., Proceedings of the Third Annual Sym-
posium on Combinatorial Search (SoCS 2010), 142–143.
AAAI Press.

Seipp, J. 2018a. Fast Downward Remix. In Ninth Inter-
national Planning Competition (IPC-9): planner abstracts,
74–76.

Seipp, J. 2018b. Fast Downward Scorpion. In Ninth Inter-
national Planning Competition (IPC-9): planner abstracts,
77–79.

Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461. doi:10.5281/zenodo.790461. URL https://doi.org/
10.5281/zenodo.790461.

Selman, B.; Mitchell, D. G.; and Levesque, H. J. 1996. Gen-
erating Hard Satisfiability Problems. Artificial Intelligence
81(1–2): 17–29.

Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A Symbolic Bidirectional
A* Planner. In Eighth International Planning Competition
(IPC-8): planner abstracts, 105–109.

Vallati, M.; Chrpa, L.; and McCluskey, T. L. 2018. What you
always wanted to know about the deterministic part of the
International Planning Competition (IPC) 2014 (but were
too afraid to ask). The Knowledge Engineering Review 33.

Xu, K.; Boussemart, F.; Hemery, F.; and Lecoutre, C. 2005.
A Simple Model to Generate Hard Satisfiable Instances.
In Kaelbling, L. P.; and Saffiotti, A., eds., Proceedings of
the 19th International Joint Conference on Artificial Intelli-
gence (IJCAI 2005), 337–342. Professional Book Center.

66

Revisiting Dominance Pruning in Decoupled Search

Daniel Gnad
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

gnad@cs.uni-saarland.de

Abstract

In classical planning as heuristic search, duplicate state prun-
ing is a standard method to avoid unnecessarily handling the
same state multiple times. In decoupled search, similar to
symbolic search approaches, search nodes, called decoupled
states, do not correspond to individual states, but to entire sets
of states. As a result, duplicate state pruning cannot be ap-
plied in a straightforward manner. Instead, dominance prun-
ing is employed, taking into account the state sets. We ob-
serve that the time required for dominance checking dom-
inates the overall runtime, and propose two ways of tack-
ling this issue. Our main contribution (1) is a stronger vari-
ant of dominance checking for optimal planning, where ef-
ficiency and pruning power are most crucial. The new vari-
ant greatly improves the latter, without incurring a computa-
tional overhead. Furthermore, (2) we develop and implement
three methods that make the dominance check more efficient:
exact duplicate checking, which, albeit resulting in weaker
pruning, can pay off due to the use of hashing; avoiding the
dominance check when leaf state spaces are invertible; and
exploiting the transitivity of the dominance relation to only
check against the relevant subset of visited decoupled states.
We show empirically that all our improvements are indeed
beneficial across many standard benchmark domains.

Introduction
In classical planning, the most popular approach to solve
planning tasks is heuristic search in the explicit state
space (Bonet and Geffner 1999). Heuristic search, however,
suffers from the state explosion problem that arises from
the fact that the size of the state space of a task is expo-
nential in the size of its description. Many methods have
been introduced to tackle this explosion, such as partial-
order reduction (Valmari 1989; Godefroid and Wolper 1991;
Edelkamp, Leue, and Lluch-Lafuente 2004; Alkhazraji et al.
2012; Wehrle et al. 2013; Wehrle and Helmert 2014), sym-
metry breaking (Starke 1991; Pochter, Zohar, and Rosen-
schein 2011; Domshlak, Katz, and Shleyfman 2012), dom-
inance pruning (Hall et al. 2013; Torralba and Hoffmann
2015; Torralba 2017), or symbolic representations (Bryant
1986; Edelkamp and Helmert 1999; Torralba et al. 2017). In
this work, we look into a recent addition to this set of tech-
niques, namely star-topology decoupled state space search,
or decoupled search for short (Gnad and Hoffmann 2018).

Decoupled search is a form of factored planning (Amir
and Engelhardt 2003; Brafman and Domshlak 2006, 2008;
Fabre et al. 2010) that partitions the variables of a planning
task into components such that the causal dependencies be-
tween the components form a star topology. The center C of
this topology can interact arbitrarily with the other compo-
nents, the leaves L = {L1, . . . , Ln}, while any interaction
between leaves has to involve the center, too. A decoupled
state sF corresponds to a single center state, an assignment
to C, and a non-empty set of leaf states (assignments to an
Li) for each Li. The member states of sF , i. e., the set of
explicit states it represents, result from all combinations of
leaf states across leaf factors, sharing the same center state.
Thereby, a decoupled state represents exponentially many
explicit states, leading to a reduction in search effort. Prior
work has shown that there exist scalable families of plan-
ning tasks where this reduction is exponentially larger for
decoupled search than it is for other state-space-reduction
methods like partial-order reduction (Gnad, Hoffmann, and
Wehrle 2019), symmetry breaking (Gnad et al. 2017), sym-
bolic representations (Gnad and Hoffmann 2018), and Petri-
net unfolding (Gnad and Hoffmann 2019).

Since decoupled states sF , correspond to sets of states,
namely the member states of sF , the standard concept of
duplicate elimination, ignoring a state that has already been
visited (on a cheaper path) to avoid repeated work, cannot be
applied so easily. More importantly, it is not as effective as in
explicit state search, because two decoupled states are only
equal if the entire sets of member states they represent are
equal. Therefore, prior work on decoupled search only con-
sidered dominance pruning (Torralba et al. 2016; Gnad and
Hoffmann 2018), where a decoupled state sF1 that contains
the member states S1 is dominated by a decoupled state sF2
that represents the set of states S2 if S1 ⊆ S2, respecting the
so-called pricing function of sF1 and sF2 in case of optimal
planning. Then, if each member state of sF2 is reached in sF1
with at most the price it has in sF2 , we can safely prune sF1 ,
like duplicate states in explicit state search.

Initiating this work was the observation that on average
around 60% of the overall runtime of decoupled search for
optimal planning is spent on dominance checking (on the
benchmarks from our evaluation that are solved in ≥ 0.1s).
Thus, we take a closer look at (1) algorithmic improvements
that lead to an increased pruning power for optimal planning,

67

and (2) ways to make the dominance check more efficient in
general. Regarding (1), we introduce two new extensions to
the dominance check. First, we take into account not only
the pricing function, but incorporate the g-value of A∗ in the
check. Second, we propose a decoupled-state transformation
that moves cost from the pricing function into the g-value.
Both make the dominance check more informed, without
introducing a computational overhead. For (2), we experi-
ment with an implementation of exact duplicate checking,
which, albeit resulting in weaker pruning, can be beneficial
runtime-wise due to the use of hashing; we identify cases
where leaves can be skipped in the check, namely if their
leaf state space is invertible; and, exploiting the transitivity
of the dominance relation, we only check against the non-
dominated subset of visited decoupled states.

In our experimental evaluation, we see that the improve-
ments as of (2) indeed have a (mostly mild) positive impact
on the runtime. The stronger pruning variants from (1) lead
to a substantial reduction in search effort, which translates
to a strong runtime advantage.

Background
We consider a classical planning framework with finite-
domain state variables (Bäckström and Nebel 1995; Helmert
2006). In this framework a planning task is a tuple Π =
〈V,A, I, G〉, where V is a finite set of variables, each
variable v ∈ V is associated with a finite domain D(v).
A is a finite set of actions, each a ∈ A being a triple
〈pre(a), eff(a), cost(a)〉 of precondition, effect, and cost.
The preconditions pre(a) and effects eff(a) are partial as-
signments to V , and the cost is a non-negative real number
cost(a) ∈ R0+. A state is a complete assignment to V , I
is the initial state, and the goal G is a partial assignment to
V . For a partial assignment p, we denote by vars(p) ⊆ V
the subset of variables on which p is defined. For V ′ ⊆ V ,
by p[V ′] we denote the restriction of p onto V ′ ∩ vars(p),
i. e., the assignment to V ′ made by p. We identify (partial)
variable assignments with sets of variable/value pairs.

An action a is applicable in state s if pre(a) ⊆ s. Ap-
plying a in a (partial) state s changes the value of all v ∈
vars(eff(a))∩ vars(s) to eff(a)[v], and leaves s unchanged
elsewhere. The outcome state is denoted sJaK. A plan for Π
is an action sequence π iteratively applicable in I , and result-
ing in a state sG where G ⊆ sG. A plan π is optimal if the
summed-up cost of its actions, denoted cost(π), is minimal
among all plans for Π.

During an A∗ search, we denote by g(s) the minimum
cost of a path on which a state s was reached from I . Note
that the g-value of a state can get reduced during the search,
in case a cheaper path from I to s is generated.

Decoupled Search
Decoupled search is a technique developed to avoid the com-
binatorial explosion of having to enumerate all possible vari-
able assignments of causally independent parts of a plan-
ning task. It does so by partitioning the state variables into a
factoring F , whose elements are called factors. By impos-
ing a structural requirement on the interaction between these

factors, namely a star topology, decoupled search can effi-
ciently handle cross-factor dependencies. A star factoring is
one that has a center C ∈ F that interacts arbitrarily with
the other factors L ∈ L := F \ C, called leaves, but where
the only interaction between leaves is via the center.

Actions affectingC, i. e., with an effect on a variable inC,
are called center actions, denoted AC , and those affecting a
leaf are called leaf actions, denotedAL. The actions that af-
fect a particular leaf L ∈ L are denoted AL.1 A sequence of
center actions applicable in I in the projection onto C is a
center path, a sequence of leaf actions affecting L, applica-
ble in I in the projection onto L, is a leaf path. A complete
assignment to C, respectively an L ∈ L, is called a cen-
ter state, respectively leaf state. The set of all leaf states is
denoted SL, and that of a particular leaf L is denoted SL.

A decoupled state sF is a pair 〈center(sF), prices(sF)〉,
where center(sF) is a center state, and prices(sF) : SL 7→
R0+ ∪ {∞} is the pricing function, that assigns every leaf
state a non-negative price. The pricing function is main-
tained during decoupled search in a way so that the price
of a leaf state sL is the cost of a cheapest leaf path that
ends in sL and that is compliant, i. e., that can be sched-
uled alongside the center path executed up to sF . By SF we
denote the set of all decoupled states. We say that a decou-
pled state sF satisfies a condition p, denoted sF |= p, iff
(i) p[C] ⊆ center(sF) and (ii) for every L ∈ L there exists
an sL ∈ SL s.t. p[L] ⊆ sL and prices(sF)[sL] < ∞. We
define the set of leaf actions enabled by a center state sC as
AL|sC := {aL | aL ∈ AL ∧ pre(aL)[C] ⊆ sC}.

The initial decoupled state sF0 is defined as sF0 :=
〈center(sF0), prices(sF0)〉, where center(sF0) = I[C].
Its pricing function is given, for each L ∈ L, as
prices(sF0)[sL0] = 0, where sL0 = I[L]; and elsewhere as
prices(sF0)[sL] = csF0 (sL0 , s

L), where csF0 (sL0 , s
L) is the

cost of a cheapest path of AL|center(sF0) \ AC actions from
sL0 to sL. If no such path exists csF0 (sL0 , s

L) = ∞. The set
of decoupled goal states is SFG := {sFG | sFG |= G}.

Decoupled-state transitions are induced only by cen-
ter actions, where a center action aC is applicable in
a decoupled state sF if sF |= pre(aC). By SL

aC (sF)

we define the set of leaf states of L in sF that com-
ply with the leaf precondition of aC , i. e., SL

aC (sF) :=

{sL | pre(aC)[L] ⊆ sL ∧ prices(sF)[sL] < ∞}. Ap-
plying aC to sF results in the decoupled state tF =
sFJaCK as follows: center(tF) = center(sF)JaCK,
and prices(tF)[tL] = minsL∈SL

aC (sF)(prices(sF)[sL] +

ctF (uL, tL)), where sLJaCK = uL.
By πC(sF) we denote the center path that starts in sF0

and ends in sF . Accordingly, we define the g-value of sF as
g(sF) = cost(πC(sF)), the cost of its center path.

A decoupled state sF represents a set of explicit states,
which takes the form of a hypercube whose dimensions are
the leaf factors L. Hypercubes are defined as follows:

1We remark that actions can be center and leaf action at the
same time, so possibly AL ∩ AC 6= ∅.

68

Definition 1 (Hypercube) Let Π be a planning task, and
F a star factoring. Then a state s of Π is a member
state of a decoupled state sF , if s[C] = center(sF) and,
for all leaves L ∈ L, prices(sF)[s[L]] < ∞. We say
that s has price price(sF , s) in sF , where price(sF , s) :=∑

L∈L prices(sF)[s[L]]. The hypercube of sF , denoted [sF],
is the set of all member states of sF .

The hypercube of sF captures both, the reachability and
the prices of all member states s of sF . For every mem-
ber state s of a decoupled state sF , we can construct the
global plan, i. e., the sequence of actions that starts in I and
ends in s by augmenting πC(sF) with cheapest-compliant
leaf paths, i. e., leaf action sequences that lead to the pricing
function of sF . The cost of member states in a hypercube
only takes into account the cost of the leaf actions, since cen-
ter action costs are not included in the pricing function. The
cost of a plan reaching a member state s of sF from I can be
computed as follows: cost(sF , s) = g(sF) + price(sF , s).

Dominance Pruning for Decoupled Search
Prior work on decoupled search has only considered dom-
inance pruning instead of exact duplicate checking (Tor-
ralba et al. 2016; Gnad and Hoffmann 2018). With domi-
nance pruning, instead of duplicate states, the search prunes
decoupled states that are dominated by an already visited
decoupled state (with lower g-value). We formally define
the dominance relation �B⊆ SF × SF over decoupled
states as (tF , sF) ∈�B iff (1) [tF] ⊆ [sF] and (2) for all
sL ∈ SL : prices(sF)[sL] ≤ prices(tF)[sL]. Instead of
(tF , sF) ∈�B , we often write tF �B sF to denote that
sF dominates tF . Note that (2) is only required for optimal
planning. In satisficing planning we can simply set the price
of all reached leaf states to 0, ignoring the leaf action costs
completely. In practice these checks are performed by first
comparing the center states center(sF) = center(tF) via
hashing, followed by a component-wise comparison of the
prices of reached leaf states.

Exact Duplicate Checking
In explicit state search, duplicate checking is performed to
avoid unnecessary repeated handling of the same state. This
can be implemented efficiently by means of hashing func-
tions: if a state is re-visited during search – and, in case of
optimal planning using A∗, the path on which it is reached
is not cheaper than its current g-value – the new state can
be pruned safely. In this section, we will look into exact du-
plicate checking for decoupled search, showing how an effi-
cient hashing can be implemented.

Formally, we define the duplicate state relation over de-
coupled states�D⊆ SF ×SF as the identity relation where
(tF , sF) ∈�D iff sF = tF . Like in explicit state search, a
decoupled state tF can safely be pruned if there exists an al-
ready visited state sF where g(sF) ≤ g(tF) and tF �D sF .

In decoupled search, a search node, i. e., a decoupled state
sF , does not represent a single state, but a set of states,
namely its hypercube [sF]. As a consequence, duplicate
checking is less effective. This is because the chances of

finding a decoupled state with the exact same hypercube (in-
cluding leaf state prices) are smaller than finding a duplicate
in explicit state search. Importantly, care must be taken when
hashing decoupled states, to properly take into account both
reachability and prices of leaf states.

In order to hash decoupled states, we need a canonical
form that provides a unique representation of a decoupled
state. We achieve this by, prior to the search, constructing all
reachable leaf states sL for each leaf L, over-approximating
reachability by projecting the task onto L. This ignores all
interaction between the center and the leaf, assuming that
action preconditions on V \ L are always achieved. The re-
sulting transition systems are called the leaf state spaces for
every leaf L ∈ L. Given the leaf state spaces, we assign a
unique ID to every leaf state, starting with 0, up to |SL

R| − 1,
where SL

R is the set of leaf states of L that can be reached
from I[L] in the leaf state space of L.

With the leaf state IDs, we can efficiently store the pricing
function of each leaf L ∈ L of a decoupled state sF as an
arrayA of numbers, whereA[i] contains the price of the leaf
state with ID i. To get a canonical representation of sF , and
to keep the memory footprint of its pricing function as small
as possible, we decide to limit the size of the array to just fit
the highest ID of a leaf state with finite price. Implicitly, all
leaf states with a higher ID are not reached in sF and have
cost∞. This does incur a memory overhead, in the extreme
case wasting |SL

R|−1 entries in the array, if only the leaf state
with ID |SL

R| − 1 is reached, so the entries for all other leaf
states are ∞. However, leaf state spaces are mostly “well-
behaved” in the sense that such pathologic behaviour does
not usually occur.

In non-optimal planning, where, as previously noted, we
do not require the actual leaf state prices, but only reacha-
bility information, we only keep a bitvector A for each leaf
L ∈ L, indicating whether the leaf state with ID i is reached
if A[i] = >.

The unique IDs and the maintenance of the pricing func-
tion as standard arrays allow the use of hashing functions,
where two decoupled states can only be equal if the hashes
of their center state, and for each leaf factor, the hashes of
the representation of the pricing functions match.

Improved Dominance for Optimal Planning
In this section, we introduce two improvements over the
basic dominance relation �B for optimal planning. The
first one incorporates the g-value of decoupled states into
the dominance check when comparing the leaf-state prices.
This increases the potential for pruning, allowing to prune
states that have a lower g-value. The second technique is a
decoupled-state transformation that moves part of the leaf-
state prices into the g-value of a decoupled state, enhancing
search guidance by fully accounting for costs that have to be
spent to reach the cheapest member state.

Incorporating the g-value in Dominance Checking
In optimal planning, a decoupled state tF can only be pruned
with�B if there exists an already visited state sF with lower
g-value that dominates it. Doing the dominance check in

69

tF : g(tF) = 10

sL1 → 1

sL2 → 1
sL

′
1 → x

sL
′

2 → x

6�B

�G

sF : g(sF) = 5

sL1 → 6

sL2 → 6
sL

′
1 → x

sL
′

2 → x

Figure 1: Illustrating example where sF can only be pruned
when using the new dominance relation �G.

tF : g(tF) = 10

sL1 → 1

sL2 → 1
sL

′
1 → 3

sL
′

2 → 3

6�B

�G

sF : g(sF) = 5

sL1 → 6

sL2 → 6
sL

′
1 → 1

sL
′

2 → 1

Figure 2: Example where tF has lower prices in leaf L,
higher prices in L′, and �G detects that sF dominates tF .

this way, however, separately considers g-values and pric-
ing function, where these in fact can be combined. We next
show that the g-value difference of two decoupled states can
be traded against differences in the pricing function. To see
this, recall the definition of the cost of a member state s of a
decoupled state sF :

cost(sF , s) = g(sF) + price(sF , s)

= g(sF) +
∑

L∈L
prices(sF)[s[L]]

Instead of only comparing the pricing function to visited
states with lower g-value, we can directly compare the costs
of the member states to all visited states, independent of their
g-values. Then, a new decoupled state tF can be pruned if
there exists a visited state sF s.t. all member states s of tF
have lower cost in sF : ∀s ∈ [tF] : cost(sF , s)≤cost(tF , s).
If all member states s of a decoupled state tF are contained
with lower cost in an already visited decoupled state sF ,
then analogously to pruning duplicate states with higher g-
value in explicit search, we can safely prune tF .

Consider the example in Figure 1. Each box represents a
decoupled state, and an arrow sLi → 6 indicates that in a
state sF we have prices(sF)[sLi] = 6. Say sF is visited and
tF is a new state, where g(tF) = 10 and g(sF) = 5. Further,
the prices in all but one leaf factor L of both states are identi-
cal. In leaf L, we have prices(sF)[sL] = prices(tF)[sL] + 5,
so all leaf states of L in tF are cheaper by a cost of 5, but
sF has a g-value that is by 5 lower than that of tF . With
the dominance relation �B from prior work, tF cannot be
pruned, because its prices are lower than the ones of sF .
However, the cost of all its member states is equal to the
cost of the states in sF , so it is actually safe to prune tF .

An important question is how to compute this efficiently,
i. e., without explicitly enumerating the costs of all member
states. We next show that, similar to �B , dominance can be
checked component-wise by only considering, for each leaf
L, the leaf state with the highest price difference.

Formally, we define the g-value aware dominance rela-

tion �G⊆ SF × SF as follows:

(tF , sF) ∈ �G⇔ g(tF)− g(sF) ≥
∑

L∈L
maxsL∈SL

R
(prices(sF)[sL]− prices(tF)[sL]),

where SL
R = {sL ∈ SL | prices(tF)[sL] <∞}

If tF has a higher g-value than sF , but has leaf states with
a lower price, then the disadvantage in g-value can be traded
against the advantage in leaf state prices. More concretely,
it suffices to sum-up only the maximal price-difference of
any leaf state over the leaves. Thereby, we essentially com-
pare only the member state s ∈ [tF] for which the price-
advantage is maximal. This can be done component-wise,
so is efficient to compute. Indeed, �G detects that tF in the
above example is dominated and can be pruned.

Theorem 1 Let sF and tF be two decoupled states. Then
tF �G sF iff for all s ∈ [tF] : cost(tF , s) ≥ cost(sF , s).

Proof Sketch: Let s be the member state of tF where
prices(sF)[s[L]]−prices(tF)[s[L]] is maximal for allL ∈ L.
If prices(sF , s) − prices(tF , s) ≤ g(tF) − g(sF), then this
also holds for all other s′ ∈ [tF]. With cost(tF , s′) =
g(tF) + prices(tF , s′) the claim follows. �

The new relation �G also tackles more subtle cases,
where prices differ in several leaf factors. We then need
to distribute the difference in g-values across the leaf fac-
tors, i. e., we cannot use the full difference for each fac-
tor. However, we can even trade lower prices in one leaf by
higher prices in another, incorporating these different prices
in the g-difference. Consider the example in Figure 2, which
extends the previous example by a leaf factor L′ where
prices(tF)[sL

′
] = prices(sF)[sL

′
] + 2 for all sL

′ ∈ SL′
.

We can then combine the price advantage of +2 in L′ for
sF with its g-advantage +5 to make up for a total price dis-
advantage of 7 in other leaves, where tF might have lower
prices:

g(tF)− g(sF) = 5

≥
∑

L∈L
maxsL∈SL

R
(prices(sF)[sL]− prices(tF)[sL])

=(6− 1) + (1− 3) = 3 =⇒ tF �G sF

In this case, given that sF is visited before tF during
search, we can prune tF , although the prices of its leaf states
are neither lower-equal, nor higher-equal than the prices of
tF . There is even a difference of cost 2 left that could be
used to trade higher prices of sF in another leaf factor.

g-Value Adaptation
We next introduce a canonical form which moves as much of
the leaf-state prices into the g-value of a decoupled state as
possible. Assume that, in a decoupled state sF , there exists
a leaf L such that all leaf states sL have a minimum non-
zero price p, so ∀sL ∈ SL : prices(sF)[sL] ≥ p. Then
we can reduce the prices of all these leaf states by p and
increase g(sF) by p without affecting the cost cost(sF , s)

70

sF : g(sF) = 5

sL1 → 3

sL2 → 1
sL

′
1 → 2

sL
′

2 → 3

→ tF : g(tF) = 8

sL1 → 2

sL2 → 0
sL

′
1 → 0

sL
′

2 → 1

Figure 3: A decoupled state sF and its g-adapted variant tF .

of the member states s of sF . Intuitively, the transformation
moves the price that has to be spent to reach the cheapest
member state of sF into its g-value, reducing the price of all
leaf states accordingly, so that in every leaf L there exists at
least one leaf state with price 0. See Figure 3 for an example
of a decoupled state sF and its canonical representative tF .

The main advantage of adapting the g-value of a decou-
pled state occurs when executing decoupled search using the
A∗ algorithm. Here, on a cost layer f the search usually pri-
oritizes states with lower heuristic value. By moving cost
into the g-value we achieve that the heuristic of a decoupled
state (which takes into account the pricing function (Gnad
and Hoffmann 2018)) can only get lower, aiding A∗ to focus
on more promising states. A second important effect is that
the part of the prices moved into the g-value will always be
considered entirely by the search, whereas heuristics (in the
extreme case blind search) might not be able to capture all
the cost encoded in the pricing function.

Note that the g-value adaptation is independent of the new
dominance relation �G. It can have a positive impact on
the number of state expansions of �G, the base dominance
check �B , and exact duplicate checking �D.

Efficient Implementation
In this section, we propose two optimizations that aim at
making the dominance check more efficient. First, we show
that with invertible leaf state spaces the comparison of leaf
reachability can be entirely avoided. Second, we show how
to exploit the transitivity of the dominance relation to focus
the checking on the relevant subset of decoupled states. Both
optimizations do not affect the pruning behavior.

Invertible Leaf State Spaces
Given the precomputed leaf state spaces as described in the
previous section, it is straightforward to compute the con-
nectivity of these graphs. In particular, we can efficiently
check if a leaf state space is strongly connected when only
considering transitions of leaf actions that do not affect, nor
are preconditioned by, the center factor. Formally, we define
the set of no-center actions of a leaf L as AL

¬C := {aL ∈
AL | vars(pre(a)) ∩ C = ∅ ∧ vars(eff(a)) ∩ C = ∅}.

Let SL
R be the set of L-states that is reachable from

I[L] in the projection onto L using all actions A. Let fur-
ther SL

R|AL
¬C

be the corresponding set using only the no-
center actions AL

¬C of L. We say that L is leaf-invertible, if
SL
R = SL

R|AL
¬C

, i. e., any L-state reachable from I[L] can be
reached using no-center actions, and the part of the leaf state
space induced by SL

R and AL
¬C is strongly connected.

Proposition 1 Let L be leaf-invertible and SL
R the set of L-

states reachable from I[L], then in every decoupled state sF

reachable from sF0 , the set of reached L-states in sF is SL
R.

Proof: In sF0 , the claim trivially holds. Let sF be a (not nec-
essarily direct) successor of sF0 . The center action that gen-
erates sF can possibly restrict the set of compliant leaf states
SL
a , and affect the remaining ones, resulting in a set of leaf

states that is a subset of SL
R. Since SL

R is strongly connected
by AL

¬C , all L-states of SL
R have a finite price in sF . �

All decoupled states reached during search can only differ
in the leaf-state prices for leaf-invertible factors, but will al-
ways have the same set of leaf states reached. Thus, at least
for satisficing planning, these leaves do not need to be com-
pared in the dominance check at all. For optimal planning,
we still need to compare the prices, since these might differ.

Another minor optimization that can be performed with
the leaf-invertibility information is successor generation
during search. When computing the center actions that are
applicable in a decoupled state, we usually need to check
leaf preconditions by looking for a reached leaf state that
enables an action. For leaf-invertible leaf factors, however,
this check is no longer needed (even for optimal planning),
because the set of reached leaf states remains constant. We
precompute the set of applicable center actions, and skip the
check for leaf preconditions on leaf-invertible factors.

Transitivity of the Dominance Relation
In explicit state search, a duplicate state can be pruned if
it has already been visited (with a lower g-value). This can
be efficiently implemented using a hash table. In decoupled
search with dominance pruning, the corresponding check
needs to iterate over all previously visited states (with a
lower g-value) that have the same center state, and compare
the pricing function.

Instead of iterating over all visited decoupled states,
though, we can exploit the transitivity of our dominance re-
lations to focus on the relevant visited states, namely those
that are not themselves dominated by another visited state.

Proposition 2 Let V be the set of decoupled state already
visited during search and let tF a newly generated decou-
pled state. If there exist sF1 , s

F
2 ∈ V such that sF1 � sF2 ,

where � is a transitive relation over decoupled states, then
tF 6� sF2 implies tF 6� sF1 .

Clearly, we do not need to check dominance of tF against
sF1 , but only need to compare sF2 and tF to see if tF can
be pruned. During search, we incrementally compute the set
of “dominated visited states” as a side product of the dom-
inance check. If a new state tF dominates an existing state
sF1 , then either there exists another visited state sF3 that dom-
inates tF , so it will be pruned, or there is no state yet that
dominates tF . In both cases, sF1 can be skipped in every fu-
ture dominance check because there exists another visited
state, either sF3 or tF , that is visited and that dominates it.

Experimental Evaluation
We implemented all proposed methods in the decoupled
search planner by Gnad & Hoffmann (2018), which itself
builds on the Fast Downward planning system (Helmert

71

Blind Search A∗ with hLM-cut

Dominance Pruning Duplicate Checking Dominance Pruning Duplicate Checking
Domain # �B �IT

B �gIT
B �IT

G �g
G �gIT

G �D �I
D �g

D �gI
D �B �IT

B �gIT
B �IT

G �g
G �gIT

G �D �I
D �g

D �gI
D

DataNet 20 9 9 5 9 9 9 5 5 5 5 14 14 12 14 14 14 12 12 12 12
Depots 22 3 3 4 4 4 4 2 2 4 4 7 7 7 7 7 7 5 5 7 7
Driverlog 20 11 11 11 11 11 11 9 9 10 10 13 13 13 13 13 13 13 13 13 13
Elevators 30 6 6 9 12 16 16 0 0 10 10 10 11 22 13 23 23 0 0 22 22
Floortile 40 2 2 2 2 2 2 0 0 0 0 10 10 10 10 10 10 5 5 5 5
Freecell 42 0 0 0 0 0 0 0 0 2 2 1 1 2 2 2 2 1 1 2 2
GED 20 13 13 15 15 15 15 7 7 15 15 15 15 15 15 15 15 13 13 15 15
Grid 5 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 2 2
Logistics 63 24 25 25 26 25 26 22 22 24 24 34 34 35 34 36 36 30 30 34 34
Miconic 145 46 47 47 47 45 47 42 42 42 42 135 135 135 135 135 135 135 135 135 135
NoMystery 20 20 20 20 20 19 20 16 16 16 16 20 20 20 20 20 20 19 19 19 19
OpenSt14 20 1 2 1 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 2 2
PSR 48 48 48 46 48 48 48 42 42 46 46 48 48 47 48 48 48 45 45 47 47
Rovers 40 7 7 7 7 7 7 6 6 7 7 8 8 8 8 8 8 8 8 8 8
Satellite 36 5 5 5 5 5 5 5 5 5 5 7 7 9 7 9 9 7 7 9 9
Tidybot14 10 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 5 6
Transport 28 10 11 13 14 15 15 0 0 13 13 12 12 14 13 14 14 6 6 14 14
Woodwork 26 7 7 7 7 7 7 7 7 7 7 16 16 16 17 17 17 16 16 16 16
Zenotravel 20 8 9 8 9 9 9 6 6 6 7 12 12 12 13 13 13 8 8 11 11
Others 239 67 67 67 67 67 67 67 67 67 67 87 87 87 87 87 87 87 87 87 87∑

894 291 296 296 309 310 313 242 242 285 286 459 460 473 466 481 480 419 419 465 466

Table 1: Coverage data for optimal planning with blind search and with A∗ using hLM-cut. All configurations use the incident
arcs factoring. Domains without difference in coverage are summarized in “Other”. Best coverage is highlighted in bold face.

2006). We conducted our experiments using the lab python
package (Seipp et al. 2017) on all benchmark domains of
the International Planning Competition (IPC) from 1998-
2018 in both the optimal and satisficing tracks. We also
run decoupled search to prove planning tasks unsolvable,
using the benchmarks of UIPC’16 and Hoffmann, Kiss-
mann, and Torralba (2014). In all benchmark sets, we elimi-
nated duplicate instances that appeared in several iterations.
For optimal planning, we run blind search and A∗ with
hLM-cut (Helmert and Domshlak 2009); in satisficing plan-
ning, we use greedy best-first search (GBFS) with the hFF

heuristic without preferred operator pruning (Hoffmann and
Nebel 2001); to prove unsolvability, we run A∗ with the
hmax heuristic (Bonet and Geffner 2001). We use the com-
mon runtime/memory limits of 30min/4GiB. The code and
experimental data of our evaluation are publicly available
(https://doi.org/10.5281/zenodo.4061825).

Decoupled search needs a method that provides a factor-
ing, i. e., that detects a star topology in the causal structure
of the input planning task. We use two basic factoring meth-
ods, inverted-fork factorings (IF) – only for satisficing plan-
ning – as well as the incident arcs factoring (IA) as described
in Gnad, Poser, and Hoffmann (2017). We expect IF factor-
ings to nicely show the advantage of the more efficient han-
dling of invertible leaf state spaces, since there are several
domains that have such state spaces in this case, but not us-
ing IA. IA is the canonical choice since it is fast to compute
and finds good decompositions in many domains.

We use the following naming convention for search con-
figurations: we distinguish the three dominance relations
�B , �D, and �G. We indicate the g-value adaptation, and
the invertibility and transitivity optimizations by adding a

Unsolvability Satisficing
Domain # �IT

B �I
D Domain # �IT

B �I
D

Cavediving 21 4 2
Diagnosis 20 14 13 Floortile 40 5 2
OverNoMy 24 13 12 NoMyst 20 19 16
OverTPP 30 15 14 Rovers 40 21 20
Other 182 88 88 Other 884 657 657∑

277 134 129
∑

984 702 695

Table 2: Coverage data, like Table 1, for proving unsolv-
ability and satisficing planning with preferred operators.

superscript g, respectively I and T to the relation symbol,
e. g. �gT

B for a configuration that uses �B and has the g-
value adaptation and the transitivity optimization enabled.

Tables 1 and 2 show coverage data (number of instances
solved) for the benchmarks where the factoring methods are
able to detect a star factoring. For optimal planning, Table 1,
we see that both �G and the g-adaptation individually lead
to an increase in coverage across several domains for both
blind search and A∗ with hLM-cut. There even seems to be a
positive correlation, shown by the fact that the combination
�g

G outperforms both its components. We do not separately
evaluate the invertibility optimization, since the only change
in the successor generation does not influence coverage a
lot. Compared to �B , �I

B only differs in coverage by +1
in Openstacks for blind search. The main advantage of the
�IT

x configurations stems from the transitivity optimization.
The duplicate checking configurations without g-

adaptation show a significant drop in coverage compared
to �B , so although the checking is computationally more

72

100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

�B

�gIT
G

Blind search – Expansions

100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

�B

�gIT
G

A∗ + hLM-cut – Expansions

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

�B

�gIT
G

Blind search – Runtime

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

�B

�gIT
G

A∗ + hLM-cut – Runtime

Figure 4: Scatter plots comparing runtime and number of
state expansions for optimal planning.

100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

�gIT
G

�gI
D

Blind search – Expansions

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

�gIT
G

�gI
D

Blind search – Runtime

Figure 5: Like Figure 4, comparing dominance pruning to
duplicate checking.

efficient, this does not even out the weaker pruning power.
When enabling the g-adaptation, total coverage gets almost
back to the level of �B for blind search, and increases by
7 instances for hLM-cut. Compared to �gIT

B , though, in both
search variants �gI

D drops in coverage. Surprisingly, dupli-
cate checking can solve two Freecell instances that the dom-
inance pruning cannot solve with blind search.

Table 2 has coverage (number of instances solved, resp.
proved unsolvable) results for proving unsolvability and sat-
isficing planning. We focus on the difference between dom-
inance pruning and duplicate checking, as the invertibility
and transitivity optimizations do not have an impact on cov-
erage. Duplicate checking performs worse in several do-
mains, does not affect coverage across many other domains,
but never increases coverage. So even outside optimal plan-
ning, with strong pruning being less crucial, its use does in
general not pay off.

The scatter plots in Figure 4 and 5 shed further light
on the per-instance runtime and search space size compari-
son between some optimal planning configurations. Figure 4
shows the number of expanded states in the top row and the

10−2 10−1 100 101 102 103
0.6

0.8

1

1.2

�g
G

�gT
G

Blind search – Runtime

10−2 10−1 100 101 102 103
0.2

0.4

0.6

0.8

1

1.2

�B

�T
B

Unsolvability – Runtime

Figure 6: Improvement factors of�xT
y over�x

y showing the
impact of the transitivity optimization in optimal planning
and proving unsolvability.

10−2 10−1 100 101 102 103

0.4

0.6

0.8

1

1.2

1.4

�B

�I
B

GBFS + hFF (IA) – Runtime

10−2 10−1 100 101 102 103

0

0.5

1

1.5

�B

�I
B

GBFS + hFF (IF) – Runtime

Figure 7: Like Figure 6, showing the impact of the invert-
ibility optimization in satisficing planning with IA vs. IF.

runtime in the bottom row. All configurations use the IA fac-
toring and compare �B to �gIT

G , with blind search in the
left column and hLM-cut in the right column. The advantage
of the more clever dominance check, the g-adaptation, and
our runtime optimizations is obvious, saving up to several
orders of magnitude for state expansions and runtime.

Figure 5 illustrates the effect of exact duplicate checking.
The left plot shows the expected increase in search space
size, due to the reduced pruning power. The right plot indi-
cates that where the increase in search space size is small the
more efficient computation indeed pays off runtime-wise.
The two dashed lines highlight a difference of a factor of
2, which can often be gained with duplicate checking.

Figures 6 and 7 show the impact of the transitivity and
invertibility optimizations. The plots show per-instance run-
time improvement factors of configuration Y on the y-axis
over configuration X on the x-axis, where a y-value of a in-
dicates that the runtime of Y is a times the runtime of X
(values below 1 are a speed-up). The transitivity optimiza-
tion clearly has a positive impact on runtime, reducing it up
to 40% in optimal planning and up to 70% for proving un-
solvability. The invertibility optimization (Figure 7) does not
show such a clear picture when using the IA factoring (left
plot). With IF, though, it indeed nicely accelerates the dom-
inance check, as the optimization is applicable more often.

Conclusion
We have taken a closer look at the behavior and implementa-
tion details of dominance pruning in decoupled search. We

73

introduced exact duplicate checking, which, in spite of its
weaker pruning, can improve search performance in practice
due to higher computational efficiency under certain con-
ditions. Furthermore, we developed two optimizations that
make the dominance check more efficient to compute.

Our main contribution are two extensions of dominance
pruning for optimal planning, that take the g-value of de-
coupled states into account. Both methods are highly ben-
eficial and their combination significantly outperforms the
baseline, improving the performance of decoupled search
across many benchmark domains.

For future work, we think it is worthwhile to further in-
vestigate dominance pruning for decoupled search. A com-
bination with the quantitative dominance pruning of Tor-
ralba (2017) could for example be interesting.

References
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert, M.
2012. A Stubborn Set Algorithm for Optimal Planning. In
Raedt, L. D., ed., Proceedings of the 20th European Confer-
ence on Artificial Intelligence (ECAI’12), 891–892. Mont-
pellier, France: IOS Press.
Amir, E.; and Engelhardt, B. 2003. Factored Planning. In
Gottlob, G., ed., Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI’03), 929–935.
Acapulco, Mexico: Morgan Kaufmann.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11(4): 625–
655.
Bonet, B.; and Geffner, H. 1999. Planning as Heuristic
Search: New Results. In Biundo, S.; and Fox, M., eds.,
Proceedings of the 5th European Conference on Planning
(ECP’99), 60–72. Springer-Verlag.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence 129(1–2): 5–33.
Brafman, R.; and Domshlak, C. 2006. Factored Planning:
How, When, and When Not. In Gil, Y.; and Mooney, R. J.,
eds., Proceedings of the 21st National Conference of the
American Association for Artificial Intelligence (AAAI’06),
809–814. Boston, Massachusetts, USA: AAAI Press.
Brafman, R. I.; and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In Rin-
tanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E., eds., Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS’08), 28–35. AAAI Press.
Bryant, R. E. 1986. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Computers
35(8): 677–691.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced Symmetry Breaking in Cost-Optimal Planning as
Forward Search. In Bonet, B.; McCluskey, L.; Silva, J. R.;
and Williams, B., eds., Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’12). AAAI Press.
Edelkamp, S.; and Helmert, M. 1999. Exhibiting Knowl-
edge in Planning Problems to Minimize State Encoding

Length. In Biundo, S.; and Fox, M., eds., Proceedings of
the 5th European Conference on Planning (ECP’99), 135–
147. Springer-Verlag.

Edelkamp, S.; Leue, S.; and Lluch-Lafuente, A. 2004.
Partial-order reduction and trail improvement in directed
model checking. International Journal on Software Tools
for Technology Transfer 6(4): 277–301.

Fabre, E.; Jezequel, L.; Haslum, P.; and Thiébaux, S. 2010.
Cost-Optimal Factored Planning: Promises and Pitfalls. In
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds., Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS’10), 65–72.
AAAI Press.

Gnad, D.; and Hoffmann, J. 2018. Star-Topology Decoupled
State Space Search. Artificial Intelligence 257: 24 – 60.

Gnad, D.; and Hoffmann, J. 2019. On the Relation between
Star-Topology Decoupling and Petri Net Unfolding. In Pro-
ceedings of the 29th International Conference on Automated
Planning and Scheduling (ICAPS’19). AAAI Press.

Gnad, D.; Hoffmann, J.; and Wehrle, M. 2019. Strong Stub-
born Set Pruning for Star-Topology Decoupled State Space
Search. Journal of Artificial Intelligence Research 65: 343–
392. doi:10.1613/jair.1.11576.

Gnad, D.; Poser, V.; and Hoffmann, J. 2017. Beyond
Forks: Finding and Ranking Star Factorings for Decoupled
Search. In Sierra, C., ed., Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’17).
AAAI Press/IJCAI.

Gnad, D.; Torralba, Á.; Shleyfman, A.; and Hoffmann, J.
2017. Symmetry Breaking in Star-Topology Decoupled
Search. In Proceedings of the 27th International Conference
on Automated Planning and Scheduling (ICAPS’17). AAAI
Press.

Godefroid, P.; and Wolper, P. 1991. Using Partial Orders for
the Efficient Verification of Deadlock Freedom and Safety
Properties. In Proceedings of the 3rd International Work-
shop on Computer Aided Verification (CAV’91), 332–342.

Hall, D.; Cohen, A.; Burkett, D.; and Klein, D. 2013. Faster
Optimal Planning with Partial-Order Pruning. In Borrajo,
D.; Fratini, S.; Kambhampati, S.; and Oddi, A., eds., Pro-
ceedings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS’13). Rome, Italy: AAAI
Press.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26: 191–246.

Helmert, M.; and Domshlak, C. 2009. Landmarks, Criti-
cal Paths and Abstractions: What’s the Difference Anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.

Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. “Dis-
tance”? Who Cares? Tailoring Merge-and-Shrink Heuristics
to Detect Unsolvability. In Schaub, T., ed., Proceedings

74

of the 21st European Conference on Artificial Intelligence
(ECAI’14). Prague, Czech Republic: IOS Press.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14: 253–302.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Ex-
ploiting Problem Symmetries in State-Based Planners. In
Burgard, W.; and Roth, D., eds., Proceedings of the 25th
National Conference of the American Association for Ar-
tificial Intelligence (AAAI’11). San Francisco, CA, USA:
AAAI Press.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461. doi:10.5281/zenodo.790461. URL https://doi.org/
10.5281/zenodo.790461.
Starke, P. 1991. Reachability analysis of Petri nets using
symmetries. Journal of Mathematical Modelling and Simu-
lation in Systems Analysis 8(4/5): 293–304.

Torralba, Á. 2017. From Qualitative to Quantitative Dom-
inance Pruning for Optimal Planning. In Sierra, C., ed.,
Proceedings of the 26th International Joint Conference
on Artificial Intelligence (IJCAI’17), 4426–4432. AAAI
Press/IJCAI.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient symbolic search for cost-optimal planning.
Artificial Intelligence 242: 52–79.

Torralba, Á.; Gnad, D.; Dubbert, P.; and Hoffmann, J. 2016.
On State-Dominance Criteria in Fork-Decoupled Search.
In Kambhampati, S., ed., Proceedings of the 25th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’16).
AAAI Press/IJCAI.
Torralba, Á.; and Hoffmann, J. 2015. Simulation-Based Ad-
missible Dominance Pruning. In Yang, Q., ed., Proceedings
of the 24th International Joint Conference on Artificial In-
telligence (IJCAI’15), 1689–1695. AAAI Press/IJCAI.
Valmari, A. 1989. Stubborn sets for reduced state space gen-
eration. In Proceedings of the 10th International Conference
on Applications and Theory of Petri Nets, 491–515.
Wehrle, M.; and Helmert, M. 2014. Efficient Stubborn Sets:
Generalized Algorithms and Selection Strategies. In Chien,
S.; Do, M.; Fern, A.; and Ruml, W., eds., Proceedings of the
24th International Conference on Automated Planning and
Scheduling (ICAPS’14). AAAI Press.
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller, R.
2013. The Relative Pruning Power of Strong Stubborn Sets
and Expansion Core. In Borrajo, D.; Fratini, S.; Kambham-
pati, S.; and Oddi, A., eds., Proceedings of the 23rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’13). Rome, Italy: AAAI Press.

75

On the Optimal Efficiency of A∗ with Dominance Pruning

Álvaro Torralba
Department of Computer Science, Aalborg University, Denmark

alto@cs.aau.dk

Abstract

A well known result is that, given a consistent heuristic and
no other source of information, A∗ does expand a minimal
number of nodes up to tie-breaking. We extend this analysis
for A∗ with dominance pruning, which exploits a dominance
relation to eliminate some nodes during the search. We show
that the expansion order of A∗ is not necessarily optimally
efficient when considering dominance pruning with arbitrary
dominance relations, but it remains optimally efficient under
certain restrictions for the heuristic and dominance relation.

Introduction
Heuristic best-first search algorithms are a fundamental tool
for problem solving whenever the problem can be mod-
eled as finding paths in graphs. Heuristic functions guide
the search towards the goal by estimating the distance from
any given state to the goal. Whenever an optimal solution
of minimum cost is required, A∗ search is often the algo-
rithm of choice (Hart, Nilsson, and Raphael 1968). This is
well supported by the well known result that, given a con-
sistent heuristic h and no other source of information, A∗

does expand a minimal number of nodes up to tie-breaking
among all algorithms that guarantee finding the optimal so-
lution (Dechter and Pearl 1985).

Dominance pruning is a technique to eliminate nodes dur-
ing the search if they can be proven to be dominated by an-
other state (Hall et al. 2013; Torralba and Hoffmann 2015).
This exploits an additional source of information in the form
of a dominance relation �, which compares two states to
determine whether one can be proven to be as close to the
goal as the other. This type of dominance appears naturally
on problems that have to deal with resources, (i.e., remov-
ing states that have strictly less resources than another), and
can also be applied on other kinds of problems (e.g., in grid-
worlds being at a central square can sometimes be proven
better than being at a corner if the set of reachable squares
in one step is strictly larger). This can be exploited by any
search algorithm to reduce the number of nodes explored
while retaining any solution optimality guarantees. This has
been mainly used in the context of cost-optimal planning, as
an enhancement for the A∗ algorithm.

In this paper, we address the question of whether the ex-
pansion order of A∗ is good to minimize the number of ex-
pansions when dominance pruning is used. Prioritizing the

expansion of states with lower f -value is not necessarily an
obvious choice anymore, since states that are more promis-
ing according to the heuristic function are not necessarily
better according to the dominance relation. Furthermore,
previous results proving the optimal efficiency of A∗ are no
longer valid due to having a new source of information.

Indeed, we show that there are cases where A∗ with dom-
inance pruning is not optimally efficient, and that differ-
ent expansion orderings, or even expanding some states that
could be pruned lead to a globally higher number of ex-
pansions in some cases. However, these cases can be at-
tributed to “inconsistencies” in the information provided by
the heuristic function and the dominance relation. We extend
the notion of consistent heuristics to consistent heuristic and
dominance relation pairs, and prove that A∗ with dominance
pruning is indeed optimally efficient, meaning that there is
a tie-breaking for A∗ that is guaranteed to expand the low-
est number of nodes among all algorithms with admissible
heuristics and dominance pruning.

We also analyze which tie-breaking strategies remain op-
timally efficient up to the last f -layer, i.e., when we ignore
the expansions of nodes with an f -value equal to the solution
cost. This is relevant because when consistent heuristics are
used, the choice of tie-breaking rule in A∗ is only relevant
for the last layer, since all nodes with an f -value lower than
the optimal solution cost must be expanded regardless of
the expansion order. Therefore, most implementations of A∗

choose tie-breaking strategies in favor of nodes with lower
h-value, which are expected to find a solution faster in the
last f -layer. We show that with dominance pruning this is no
longer the case, as tie-breaking strategies in favor of nodes
with lower g-value are preferable up to the last layer.

Background
A transition system (TS) is a tuple Θ = 〈S,L, T, sI , SG〉
where S is a finite set of states, L is a finite set of labels
each associated with a label cost c(l) ∈ R+

0 , T ⊆ S×L×S
is a set of transitions, sI ∈ S is the start state, and SG ⊆ S

is the set of goal states. We write s l−→ t as a shorthand for
(s, l, t) ∈ T . A plan for a state s is a path from s to any sG ∈
SG. We use h∗(s) (g∗(s)) to denote the cost of a cheapest
plan for s (path from sI to s). A plan for s is optimal iff its
cost equals h∗(s). The sum f∗(s) = g∗(s)+h∗(s) is the cost

76

of an optimal plan from sI passing through s. We denote F ∗
to the optimal solution cost for sI , F ∗ = f∗(sI) = h∗(sI).

To deal with tasks with 0-cost actions, we define a mod-
ified cost function cε so that all 0-cost actions are assigned
a cost of ε, where ε is a tiny constant such that the sum of
arbitrarily many ε will still be lower than any other action
cost greater than 0. We define gε, h∗ε , fε, . . . as the functions
above under this new cost function.

A heuristic h : S 7→ R+
0 ∪{∞} is a function that estimates

goal distance. It is admissible if it never overestimates the
real cost, i.e., h(s) ≤ h∗(s) for all s ∈ S, and consistent if
for any s l−→ t it holds that h(s) ≤ h(t) + c(l).

Best-first search algorithms maintain an open and a closed
list with all nodes that have been seen so far. A search node
ns characterizes a path from the initial state to the final state
of the path, s, where the g-value g(ns) is the cost of the
path. We write ns

l−→ nt as a shorthand for s l−→ t and
g(nt) = g(ns) + c(l). The open list is initialized with the
initial state that has a g-value of 0. At each step, a node is
selected from the open list for expansion. When a node is
expanded, it is removed from open and all the successors
are generated and inserted into the open list. The closed
list keeps all nodes that have been expanded to avoid du-
plicates so that a node is not expanded if another node with
the same state and a lower or equal g-value has already been
expanded. A∗ always selects for expansion a node with min-
imum f -value where f(ns) = g(ns) + h(s). Since the be-
havior of A∗ is not uniquely defined, we say that it is a family
of algorithms, one per possible tie-breaking rule.

Optimal Efficiency of A∗

The seminal work by Dechter and Pearl (1985) analyzes the
optimal efficiency of A∗ in great depth, considering several
degrees of optimal efficiency. They consider the heuristic as
part of the input to the algorithm, so a problem instance is a
tuple 〈Θ, h〉. An instance is consistent if it has a consistent
heuristic h. An algorithm is admissible if it is guaranteed to
return an optimal plan for Θ, whenever h is admissible.

To prove optimal efficiency of an algorithm, some as-
sumptions about the considered algorithms are needed. In
their paper, Dechter and Pearl define a family of algorithms
that use only a few primitive functions, such as expansion
and heuristic functions. Eckerle et al. (2017) refine this by
making explicit the assumption that all these functions are
deterministic, and black box, defining the family of Deter-
ministic, Expansion-based, Black Box (DXBB) algorithms.
We also assume that the transition relation can only be ac-
cessed in a forward manner, as a function that given a state
returns its successors. If backward search is possible, A∗

does not guarantee optimal efficiency (Chen et al. 2017).

Definition 1 (UDXBB Algorithm). A algorithm is Uni-
directional, Deterministic, Expansion-based, Black Box
(UDXBB) if it is deterministic and it has access to the state
space Θ via exactly the following functions:

• Start: returns the initial state sI .
• Is-goal: given a state s returns true iff s is a goal state.

• Expand: given a state s returns a set of successor states
expand(s) = {t | s l−→ t}.

• Cost: given a state and a successor state returns the cost
of reaching it (cost(s, t) = minc(l) s

l−→ t).
They define a hierarchy with several degrees of optimal-

ity, based on comparing the sets of nodes expanded by dif-
ferent families of algorithms over a set of instances. Let
N(A, I) be the set of expanded nodes by algorithm A on in-
stance I . A family of algorithms A is X-optimally efficient
over another B relative to an instance set I if:
• Type 0: ∀I ∈ I,∀B ∈ B,∀A ∈ A, N(A, I) ⊆ N(B, I).
• Type 1: ∀I ∈ I,∀B ∈ B,∃A ∈ A, N(A, I) ⊆ N(B, I).
• Type 2: ∀I ∈ I,∀B ∈ B,∀A ∈ A, N(B, I) 6⊂ N(A, I).
• Type 3: ∀B ∈ B,∀A ∈ A, (∃I1 ∈ I, N(A, I1) 6⊆
N(B, I1)) =⇒ (∃I2 ∈ I, N(B, I2) 6⊆ N(A, I2))

Among other results, Dechter and Pearl proved that, on
consistent instances A∗ is 1-optimal, meaning that for any
admissible UDXBB algorithmX , there exists a tie-breaking
for A∗ that expands a subset of the nodes expanded by
X . They also show that no family of algorithms can be 0-
optimal, meaning that there is no way to set the tie-breaking
strategy to guarantee a minimal number of node expansions.

Dominance Pruning
Dominance pruning is a technique that makes use of a dom-
inance relation as an additional source of information. A re-
lation � ⊆ S × S is a dominance relation if, whenever
s � t, then h∗ε (t) ≤ h∗ε (s). We say that a node nt prunes
another ns if ns 6= nt, g(nt) ≤ g(ns) and s � t.

We define A∗ with dominance pruning (A∗pr) as the
vanilla A∗ algorithm with a simple modification. Anytime
that a node ns is selected for expansion, skip it if there ex-
ists another node nt in open or closed such that nt prunes
ns. Nodes pruned this way are removed from open but
they are neither expanded nor inserted into the closed list.1
Therefore, pruned nodes are “forgotten” and no node can be
pruned due to being dominated by a previously pruned node.
This is necessary to correctly handle the case where there are
only two nodes that prune each other, since in that case any
of the two nodes could be pruned, but at least one of them
must be expanded to find a solution.

In this work, we assume that the dominance relation is
provided as an instance-dependent function. In practice, it
can also be automatically obtained from a model of the prob-
lem, even though in this work we assume that the model
is not available to the search algorithm. A common way
to define a dominance relation is based on identifying re-
sources (Hall et al. 2013), i.e. variables for which there ex-
ists a total order for their values such that larger values en-
able more actions. Furthermore, there are other more ad-
vance methods that find pre-orders on arbitrary abstract state
spaces (Torralba and Hoffmann 2015). In both cases, the
dominance relations that have been used in the literature are:

1Nodes can also be pruned upon generation to avoid the over-
head of computing h and open list insertion. But this does not affect
the number of expanded states, which is what interests us.

77

• Pre-order relations: they are reflexive (s � s for all s) and
transitive (s � t ∧ t � u =⇒ s � u).

• Cost-simulation relations: whenever s � t, for all s l−→ s′,
either s′ � t or ∃t l′−→ t′ s.t. c(l′) ≤ c(l) and s′ � t′.
Even though one can define dominance relations that do

not satisfy these properties, they are naturally obtained in
most cases. In particular, the property of cost-simulation is
related to the way automatic methods prove that the obtained
relation is a dominance relation without having access to h∗.

Definition of Optimal Efficiency
Following Dechter and Pearl, we are interested in the opti-
mal efficiency of algorithms in regards of node expansions
on concrete families of instances. In this section, we gen-
eralize their framework by considering the additional infor-
mation of a dominance relation. This requires defining what
consistent instances are in this case, as well as defining the
different notions of optimal efficiency, and the families of
algorithms that we will consider.

Consistent Instances
A problem instance is a tuple 〈Θ, h,�〉, where Θ is a tran-
sition system, h is an admissible heuristic for Θ, and � is
a dominance relation for Θ. We say that an instance is con-
sistent if both the heuristic and dominance relation are con-
sistent on their own, and they are consistent with each other,
meaning that they fulfill the following properties.
Definition 2. An instance I = 〈Θ, h,�〉 is consistent if:
(i) h is consistent.

(ii) � is a transitive cost-simulation.
(iii) � is consistent with h: s � t =⇒ h(t) ≤ h(s).

Condition (ii) ensures that the information provided by �
is consistent in two different ways. First, � must be tran-
sitive, because if we do know that s � t and t � u, then
h∗(u) ≤ h∗(t) ≤ h∗(s) so s � u can be deduced. Second,
for a dominance relation to be consistent, we require it to
be a cost-simulation relation so that whenever nt prunes ns,
then if ns or any of its successors would prune nu, then nt
or some of its successors prune nu as well.

Condition (iii) requires � and h to not contradict each
other on their comparison for any two states s and t. Note
that this does not render � uninformative, since comparing
states based on their heuristic value is no substitute for dom-
inance analysis. In particular, even if � always agrees with
h, its role is to identify cases where the relative heuristic
evaluation of both states is provably correct.

A question is whether these conditions are extremely rare
or they can be expected to happen in practice. The first two
conditions are indeed quite common: most heuristics that
come from an optimal solution to a relaxation of the prob-
lem are indeed consistent; and typical approaches to com-
pute dominance relations in planning are guaranteed to re-
turn transitive cost-simulation relations (Torralba and Hoff-
mann 2015; Torralba 2017).

An analysis of whether heuristics are consistent with re-
spect to a dominance relation � is beyond the scope of this

paper since that would require to consider concrete heuristic
functions and dominance relations. In practice, it is reason-
able to expect that most consistent heuristics will fulfill this
property. For example, consider resource-based dominance
relations that identify that states having more resources (fuel
or money for example) are preferred. These are dominance
relations because more resources can only enable more tran-
sitions in the state space; so heuristics that result from sys-
tematic (symmetric) relaxations of the problem will typi-
cally associate a lower heuristic value to states with more
resources, everything else being equal. Indeed, for several
families of heuristic functions in domain-independent plan-
ning, they have been shown to be consistent with symmetry
equivalence relations (Shleyfman et al. 2015; Sievers et al.
2015), which are a special case of dominance relation. We
conjecture that this holds as well for dominance relations
based on comparing the values of sub-sets of variables, for
heuristics that take into account the same subsets (e.g. we
conjecture hmax and h+ are consistent with dominance re-
lations over single variables, and pattern databases are con-
sistent with dominance relations over subsets of the pattern).

Types of Optimality

We extend the optimality criteria considered by Dechter and
Pearl in several ways.

Definition 3 (#-optimally efficient). Let N(A, I) be the
set of expanded nodes by algorithm A on instance I . A
family of algorithms A is #-optimally efficient over an-
other B relative to an instance set I if for any algorithm
B ∈ B and instance I ∈ I, there exists A ∈ A such that
|N(A, I)| ≤ |N(B, I)|.

This definition of #-optimality is a relaxed variant of the
1-optimality definition by Dechter and Pearl, which requires
the number of expansions by A to be lower or equal than
that of B, instead of requiring it to be a subset (N(A, I) ⊆
N(B, I)). Our criteria is slightly weaker since it only re-
quires having an overall minimum number of expansions,
which implicitly assumes that all expansions are equally
time consuming. We say that 1-optimality is strict if A is
1-optimally efficient over B, but B is not over A. We say
that #-optimality is strict if A is #-optimally efficient over
B, but B is not over A.

We also consider when A∗ is optimal up to the last layer,
i.e., where only nodes with an f -value lower than the op-
timal solution cost are taken into account. That is, we re-
place N(X, I) by N ′(X, I) where N ′(X, I) = {n ∈
N(X, I) | f(n) < F ∗}. This is related to the notion of
non-pathological instances introduced by Dechter and Pearl,
which are those instances where A∗ does not expand any
node n with f(n) = F ∗. However, paradoxically, non-
pathological instances are very unlikely to occur in practice.
For that reason, on the context of A∗ algorithms, we prefer
to directly consider optimality up to the last layer, simply ig-
noring the effort that A∗ will make in the last f -layer, which
most of the times strongly depends on the tie-breaking.

78

UDXBB UDXBBpr

A∗ A∗pr A∗g<,pr

A∗h<,pr

1-opt, strict

#-opt, strict

1-opt
(Dechter and Pearl 1985)

#-opt

1-opt (last layer)

1-opt (last layer)
strict

Figure 1: Summary of optimal efficiency relationships. All
results assume consistent instances.

Families of Algorithms
We introduce a new family of algorithms that extends
UDXBB with dominance pruning.

Definition 4 (UDXBBpr). UDXBBpr is a family of al-
gorithms that extends UDXBB with the ability to perform
dominance pruning, i.e., to discard any node ns if another
node nt has been generated such that nt prunes ns.

Note that UDXBBpr algorithms cannot access the domi-
nance relation directly or indirectly, i.e., they are not allowed
to perform inference based on the fact that h∗(t) ≤ h∗(s)
whenever s � t. Our analysis focuses on using dominance
pruning, excluding other future uses of dominance relations.

Proposition 1. UDXBBpr is strictly 1-optimal over
UDXBB on all instances.

Proof. 1-optimality follows trivially from the fact that
UDXBB is contained in UDXBBpr, since UDXBBpr al-
gorithms could choose not to prune any node if they desire
so. To show this to be strict, it suffices to show an instance
where there are nodes ns, nt with f(nt) ≤ f(ns) ≤ F ∗

such that nt prunes ns. It is very easy to construct such ex-
ample, e.g. see the instances in Figures 2, and 3.

Optimal Efficiency of A∗
pr

Thorough the paper, we assume consistent instances, i.e.,
that the heuristic function and dominance relation are con-
sistent. Figure 1 summarizes our results. Our theoretical
analysis concludes that, in terms of node expansions using
dominance pruning is strictly better than not using domi-
nance. Our main result is that, on consistent instances, the
expansion order of A∗ is #-optimally efficient, meaning that
there exist some tie-breaking of A∗ that expands a minimum
number of expansions. We begin by showing some counter-
examples on instances that do not satisfy our consistency
criteria to highlight why consistency is required. Then we
discuss how to characterize the states that must be expanded
to find a solution and prove it to be optimal; prove our main
result; and discuss what tie-breaking strategies are more ap-
propriate for A∗ with dominance pruning.

Counter-examples due to Inconsistencies
We begin considering the two things that characterize A∗pr
algorithms from the set of UDXBBpr algorithms, and that
may cause A∗pr to not be optimally efficient in inconsistent
instances:

I

A

B

C

B’

C’ . . .

G

1

1

1

1

1

99

1

100

100

(a)
�: B � A, C′ � B′

A∗: 〈I, A,C,C′, . . . , G〉
opt: 〈I, A,B,C,G〉

I

A B

C . . .

G
h=3

h=3 h=2

h=1

h=0

1 1 100

2
1

100

(b)
�: C � B

A∗: 〈I, C, . . . , A,B,G〉
opt: 〈I, A,B,G〉

Figure 2: Counterexamples that show cases where A∗pr is
not optimally efficient, when pruning according to the dom-
inance relation below each figure. The “. . . ” region repre-
sents an arbitrarily large region of the state space that will
be expanded by A∗pr , but could be avoided with a different
pruning or expansion order strategies. In (a) h = 0 for all
states, in (b) each node is labeled with its h value.

1. A node is pruned whenever possible, and sometimes
not pruning a node may lead to less overall expansions.

2. The expansion order of A∗ may not be optimally effi-
cient anymore when considering dominance pruning.
Figure 2 shows examples where A∗pr does expand more

nodes than necessary for these two reasons. The example
in Figure 2a illustrates a state space and dominance rela-
tion� for which pruning a node whenever possible is not an
optimal strategy, independently of the expansion order (for
simplicity we set h = 0 for all states). After expanding the
initial state I , one can prune node B because it is dominated
by A. However, if B is pruned, B′ won’t be generated un-
der any expansion order so C ′ and all its arbitrarily many
successors will be expanded.

Our second example, illustrated in Figure 2b, shows a
case where it is good to prune nodes whenever possible but
the expansion order of A∗ leads to a sub-optimal number of
expansions. The optimal expansion order is 〈I, A,B,G〉. C
does not need to be expanded even though f(C) < F ∗ be-
cause C will be pruned (C � B and g(B) ≤ g(C)). How-
ever, A∗pr will expand C after expanding the initial state I ,
since f(C) < f(A) and B has not been generated yet.

All these scenarios can be attributed to “inconsistencies”
within the dominance relation � or between � and the
heuristic function h. In Figure 2b the dominance relation and
heuristic do not agree on the comparison between B and C.
The dominance relation proves that B is at least as close to
the goal as C, but the heuristic function estimates that C is
closer to the goal. In the case of Figure 2a, the dominance re-
lation is inconsistent because the information thatA is closer
to the goal than B is lost after one expansion and neither A
nor any of its successors could be used to prune B′ or C ′.

Solution Sets
We first identify which states need to be expanded to prove
optimality by any search that does not have access to any
additional information, other than a heuristic function h and
the ability to prune nodes. Traditionally, this is done by iden-
tifying must-expand states that must be expanded for every
algorithm to prove optimality, or must-expand pairs as done

79

in the bidirectional search setting (Eckerle et al. 2017). How-
ever, in our case there are many choices that can be made for
dominance pruning, so now the difference between must-
expand nodes and the nodes that belong to any concrete so-
lution is not restricted to the last f -layer.

We define instead solution sets, which take into consid-
eration all nodes that must be expanded by any UDXBBpr

algorithm to find a solution, including the last f -layer. Let
S be a set of nodes. We use [S] to denote the set extended
with its immediate successors, i.e., [S] = S ∪ {ns′ | ns →
Ns′ , ns ∈ S}. The intuition is that, if S is the set of nodes
that have been expanded at some point during the execution
of a UDXBB algorithm, then [S] is the set of nodes that have
been generated. In other words, if S represents the contents
of the closed list, then [S]\S contains the set of nodes in the
open list and all pruned nodes.

Definition 5 (UDXBBpr Solution Set). A set of nodes S is
a UDXBBpr solution set for an instance I if:

(a) ∀ns ∈ S \ {nsI},∃nt ∈ S, nt l−→ ns.
(b) ∃ns ∈ [S], s ∈ SG and g(ns) = F ∗,
(c) ∀ns ∈ [S] \ S, f(ns) ≥ F ∗ or ∃nt ∈ S, nt prunes ns.

Condition (a) requires that every expanded node in S was
generated by expanding one of its parents. Condition (b) re-
quires that an optimal solution was found. Condition (c) en-
sures that the solution found is proven to be optimal, be-
cause all nodes in the open list after expanding S have a
large enough f -value or are pruned by dominance.

Theorem 1. Let I be any admissible instance. Then, ex-
panding a solution set is a necessary and sufficient condi-
tion for admissible UDXBBpr algorithms, i.e., for any A in
UDXBBpr, N(A, I) is a solution set.

Proof Sketch. If (a), (b), and (c) hold, then an optimal so-
lution has been found due to (a) and (b), and the stopping
condition holds, since all states remaining in the open list
have an f -value greater or equal to the incumbent solution.

If (a) does not hold, then a state has been expanded with-
out being in open, which is impossible in any UDXBB al-
gorithm. If (b) does not hold, then an optimal solution has
not been found. If (c) does not hold, then there exists some
s in the open list that may lead to a solution cost lower than
F ∗, so the solution was not proven to be optimal.

We remark that the proof above relies on the fact that
UDXBBpr algorithms are not allowed to use dominance re-
lations for anything except dominance pruning. Otherwise,
the criteria (c) of a solution set could be made weaker, in-
creasing the set of possible solution sets.

A∗
pr is Optimally Efficient on Consistent Instances

Before proving our main result of this section, we analyze
some properties that hold for consistent instances. An im-
portant one is that, whenever h and � are consistent with
each other, nodes with larger f -value cannot prune nodes
with lower f -value.

Lemma 1. Let I be a consistent instance. Let ns, nt be any
two nodes such that nt prunes ns. Then, f(nt) ≤ f(ns).

Proof. Since nt prunes ns, it holds that g(nt) ≤ g(ns) and
s � t. By consistency, h(t) ≤ h(s), so f(nt) ≤ f(ns).

Next, we show that pruning is transitive.

Lemma 2. If � is transitive, nu prunes nt and nt prunes
ns, then nu prunes ns.

Proof. By the assumption it follows that g(nu) ≤ g(nt) ≤
g(ns), and s � t � u. Therefore, g(nu) ≤ g(ns) and, by
transitivity of �, s � u. So nu prunes ns.

Next, we show that all states in the smallest solution set
must be expanded only with its optimal g-value.

Lemma 3. Let I be a consistent instance. Then, there exists
a solution set S for I of minimum size such that for all ns ∈
S, g(ns) = g∗(s).

Proof. Assume the contrary. Then, some ns has been ex-
panded with a sub-optimal value, g∗(s) < g(ns). Therefore,
a predecessor along the optimal path from sI to s has not
been expanded. Let nt be the first such predecessor. By con-
sistency of h, we know that f -values monotonically increase
along a path, so f(nt) ≤ f∗(ns) < f(ns). As nt 6∈ S, by
condition (c) of a solution set, nt was pruned, i.e., ∃nu ∈ S
s.t. nu prunes nt. As � is a cost-simulation, then nu has
some successor that would prune ns, so there must be a node
in S that prunes ns. Therefore, S \ {ns} is also a solution
set, contradicting the fact that S is of minimum size.

We next show that pruning a node whenever possible is
an optimally efficient strategy because there exists a solu-
tion set S of minimum size that does not contain any node
that can be pruned by another node in [S], unless both nodes
prune each other. To show this, we consider Algorithm 1.

Algorithm 1: Replace
Input: S0,ns ∈ S0, nt ∈ [S0] where S0 is a solution

set and nt prunes ns
Output: Solution set Si that does not contain ns

1 S1 := (S0 ∪ {nt}) \ {ns};
2 i = 1;

3 while ∃nsi ∈ Si, 6 ∃nui ∈ Si, nui
l−→ nsi do

4 Choose such an nsi with minimum g-value ;
5 Choose nti in [Si] such that nti prunes nsi ;
6 Si+1 := Si ∪ {nti} \ {nsi} ;
7 i = i+ 1 ;
8 return Si ;

Lemma 4. Let S0 be a solution set for a consistent instance.
Let ns ∈ S0, nt ∈ [S0] such that nt prunes ns. Then, Algo-
rithm 1 returns a solution set Sk such that: |Sk| ≤ |S0|;
ns 6∈ Sk; nt ∈ Sk; and If nt ∈ S0 then |Sk| < |S0|.

Proof Sketch. The size of the solution set cannot increase
during the execution of Algorithm 1, i.e., |Si+1| ≤ |Si| be-
cause a node is removed at each iteration and at most one
node is added. If nt ∈ S0 then |S1| = |S0| − 1, since

80

ns was removed and no node was added, so in that case
|Sk| ≤ |S1| < |S0|.

Properties (b) and (c) of a solution set are preserved by
all intermediate Si because nsi is replaced by nti such that
nti prunes nsi , so by Lemma 1 and 2, nti can do anything
nsi could. Property (a) holds when the algorithm terminates,
since it is the stopping condition for the loop. The algorithm
always terminates because all nodes nsi removed in the loop
are descendants of ns which were present in S0, and there
are only finitely many.

Finally, it remains to be proven that, at every iteration in
line 4, there exists some nti in [Si] such that nti prunes nsi .
Note that nsi is a descendant of ns that has no parent in Si.
Since all nodes in S0 have a parent, and all nti added along
the way too, this means that the parent of nsi was some nsj
removed in a previous iteration j < i, being replaced by
ntj . Since � is a cost-simulation relation, ntj must have a
successor nti that prunes nsi .

Lemma 5. Let S be a solution set of minimum size for a
consistent instance. Then there do not exist ns, nt in S such
that nt prunes ns.

Proof. Assume that nt prunes ns. By Lemma 4, using the
procedure above, we can construct another solution set S ′
such that |S ′| < |S|, contradicting that S has minimum size.

Lemma 6. Let I be a consistent instance. Then, there exists
a solution set S of minimum size for I such that there does
not exist any ns ∈ S and nt ∈ [S] such that nt prunes ns
and ns does not prune nt.

Proof Sketch. Assume the opposite, let S be a solution set
such that there exist ns ∈ S and nt ∈ [S] where ns prunes
nt and nt does not prune ns. By Lemma 5 nt 6∈ S . By
condition (c) of a solution set we know that either f(nt) ≥
F ∗ or there exists nu ∈ S such that nu prunes nt.

Case 1: There exists nu ∈ S such that nu prunes nt. By
transitivity, nu prunes ns, so one can construct a minimal
solution set with Lemma 4 of smaller size, contradicting that
S is a solution set of minimal size.

Case 2: f(nt) ≥ F ∗. Then, by Lemma 1, f(ns) ≥
f(nt) ≥ F ∗. If f(nt) > F ∗, we can remove ns and all its
descendants from S0 to obtain a smaller solution set, con-
tradicting the fact that it is a solution set of minimal size.
Therefore, f(ns) = f(nt) = F ∗. Note that a solution set of
minimum size only contains a node with f(ns) = F ∗ when
ns is on the solution path returned by the algorithm. This
path can be replaced by another of the same length and cost
that goes through nt by repeatedly calling Algorithm 1.

Now we are ready to prove our main result.
Theorem 2. A∗pr is #-optimal on consistent instances over
UDXBBpr.

Proof. We show that there exists a solution set S of mini-
mum size for which there exists a tie-breaking strategy under
which A∗pr with h and � expands exactly S. By Lemma 6,
we choose S so that there does not exist any ns ∈ S and
nt ∈ [S] s.t. nt prunes ns and ns does not prune nt. Assume

a tie-breaking that prefers expanding nodes in S over any
other node, and prefers pruning nodes not in S. Formally,
our tie-breaking strategy selects for expansion any node not
in S such that it can be pruned. If no such node exists, it
selects a node (with minimal f value) from S that cannot
be pruned. This tie-breaking always succeeds because oth-
erwise, the open list does not contain any node with minimal
f value that is outside S and can be pruned or that it is in S
and cannot be pruned. Then, the node selected for expansion
either: (A) it is in S but can be pruned due to some node in
open or closed; (B) it is not in S and cannot be pruned.

Case (A). There exists nt that prunes some ns ∈ S . By
Lemma 5, we know that nt 6∈ S . As nt is in the open
list after having expanded a subset of S, nt ∈ [S] and, by
our choice of solution set with Lemma 6, ns prunes nt. By
Lemma 1, f(nt) ≤ f(ns), so with our tie-breaking strategy
A∗ would have selected nt instead, reaching a contradiction.

Case (B). Let ns be a node that is expanded by A∗pr but it
is not in S. If f(ns) = F ∗, then a node along the optimal
solution contained in S should have been chosen instead. If
f(ns) < F ∗, by condition (c) of a solution set, there exists
nt ∈ S such that nt prunes ns. Again, if nt is in open or
closed, ns will be pruned reaching a contradiction. Other-
wise, there must be an ancestor along the path from sI to nt
in open with its optimal g-value. Such an nu ∈ S, must have
f(nu) ≤ f(nt) ≤ f(ns), so according to our tie-breaking
nu would have been chosen for expansion instead of ns (nu
cannot be pruned by the same argument as in case (A)).

Corollary 1. A∗pr is strictly #-optimal over A∗ on consistent
instances.

Proof. This follows directly from the fact that A∗pr is
#-optimal over UDXBBpr and UDXBBpr is strictly 1-
optimal over the family of UDXBB algorithms, which con-
tains all algorithms in the family of A∗ algorithms.

Optimal Tie-Breaking Strategies
For A∗ with consistent heuristics the tie-breaking strategy
is only relevant in the last f -layer. Ideally, once the min-
imum f -value in the open list is equal to F ∗, only nodes
on a path to the goal will be selected for expansion. Practi-
cal implementations often prefer expanding nodes with low-
est h-value, aiming to reduce the effort in the last layer. In
domain-independent planning, where a factored model of
the state space is available to offer additional information
to the algorithm, some other strategies have been suggested,
like using (possibly inadmissible) heuristic functions that
estimate plan length instead of plan cost (Asai and Fuku-
naga 2017; Corrêa, Pereira, and Ritt 2018). They showed
that tie-breaking can be quite significant for the overall per-
formance, specially in domains with 0-cost actions.

A∗pr , however, is more sensitive to the choice of tie-
breaking strategy, since it may matter along previous layers.
This brings up the question of what is a good tie-breaking
strategy for A∗pr . We define A∗g<,pr as A∗pr breaking ties in
favor of states with minimum g-value.

Theorem 3. A∗g<,pr is 1-optimal efficient up to the last layer
over A∗pr on consistent instances.

81

I

A1

B1

A2

B2

A3

B3

G
h=2

h=2

h=1

h=1

h=1

h=0

h=0

h=01

1

1

1

1

1

1

1

�:B2 � A2, B3 � A3

A∗
h<,pr

: 〈I, B1, B2, B3, A1, A2, A3, G〉
A∗

g<,pr
: 〈I, B1, A1, A2, A3, G〉

Figure 3: Counter-example for the 1-optimal efficiency of
A∗h<,pr up to the last layer on consistent instances.

Proof Sketch. Let S to be a solution set for A∗pr , and let S ′
be the subset of nodes in solution set up to the last layer,
S ′ = {ns ∈ S | f(ns) < F ∗}. We show that there is
an expansion order compatible with A∗g<,pr that expands all
nodes in S ′ before expanding any other node. For this, the
same proof from Theorem 2 applies up to case (B). For case
(B), we know that f(ns) < F ∗ and, by the same argument
as in the proof of Theorem 2, some nu ∈ S must remain in
the open list with f(nu) ≤ f(nt) ≤ f(ns). At this point the
tie-breaking matters since whenever f(nu) = f(ns), the tie-
breaking policy should allow selecting nu over ns. Since nu
is an ancestor of nt, g(nu) ≤ g(nt), and since nt prunes ns,
g(nu) ≤ g(nt) ≤ g(ns). Then, expanding nu instead of ns
is still valid according to the g< tie-breaking strategy.

However, the same is not true for every tie-breaking strat-
egy for A∗. For example, let A∗h<,pr be the family of A∗pr
algorithms with a tie-breaking strategy that always prefers a
state with minimum h-value. As argued above this is the tie-
breaking preferred by most implementations of A∗ without
dominance pruning, but it cannot guarantee anymore that the
number of expansions up to the last layer will be minimal.

Theorem 4. A∗h<,pr is not optimally efficient up to the last
layer on consistent instances.

Proof Sketch. Figure 3 shows a counter-example of a con-
sistent instance where all tie-breaking strategies compatible
with A∗h<,pr expand a node that A∗g<,pr would not expand.
After expanding I and B1, the open list contains two nodes:
B2 and A1, both with an f -value of 3. At this point, A2

has not been generated yet so B2 cannot be pruned. How-
ever, A∗h<,pr will expand B2 and B3 (and in general the
entire plateau of states with f = 3 underneath B2), be-
fore expanding A1. Note that this happens for nodes with
f = 3 < 4 = F ∗, i.e. nodes before the last f -layer.

Corollary 2. A∗g<,pr is strictly 1-optimally efficient up to the
last layer over A∗h<,pr on consistent instances.

Proof Sketch. 1-optimality follows directly from Theo-
rem 3, since A∗h<,pr is contained in A∗pr . The fact that opti-
mality is strict follows from Theorem 4.

Thus, there are two conflicting objectives. Up to the last
layer, it is provably beneficial to break ties in favor of lower
g-value. On the last layer, empirical analysis show that it
is better to break ties in favor of lower h-value. Which one

should be given priority depends on the particular domain,
dominance relation and heuristic. Our preliminar experi-
ments show that in common planning domains, it is often
beneficial to break ties in favor of lower h-value even when
dominance pruning is used.

Conclusions

We analyzed the optimal efficiency of A∗ with dominance
pruning, A∗pr . Assuming a consistent heuristic is not suf-
ficient, because there may be inconsistencies in the dom-
inance relation as well, which may cause A∗pr to perform
unnecessary expansions. We defined a new criterion of con-
sistency for heuristic and dominance relation pairs, which
ensures that A∗pr will be optimally efficient in terms of the
number of expanded nodes. We also show that tie-breaking
in favor of nodes with lower g value is provably preferable to
minimize the number of expansions up to the last layer. This
contrasts with common strategies, which favor nodes with
lowest h-value to minimize expansions in the last layer.

As in the optimal efficiency result for A∗, our analy-
sis is based only on the number of state expansions and
it ignores the actual runtime. There are of course other al-
gorithms which may outperform A∗ according to differ-
ent performance measures. For example, the IDA∗ algo-
rithm (Korf 1985) and other extensions like Budgeted Tree
Search (Helmert et al. 2019; Sturtevant and Helmert 2020)
outperform A∗ in terms of memory usage. EPEA∗ (Gold-
enberg et al. 2014) aims to minimize the number of nodes
generated, which is arguably more relevant to runtime than
expanded nodes, but it requires additional domain-specific
knowledge. Finally, other algorithms may outperform A∗

in terms of runtime, e.g., when the benefits of reducing
the number of node expansions does not compensate the
overhead of computing the heuristic or performing pruning,
which may require a quadratic cost in the number of gen-
erated states in the worst case. Nevertheless, for concrete
problems and/or dominance relations it may be possible to
perform the pruning more efficiently (e.g., dividing states in
classes so that each state needs to be compared only against
a small subset of alternatives), and one could extend ratio-
nal algorithms that reason about when it is worth to compute
the heuristic (Barley, Franco, and Riddle 2014; Karpas et al.
2018) to consider dominance as well.

Finally, in this work we extended the basic framework
with the ability of dominance pruning using a dominance
relation, but it could also be extended in other ways. For
example, if backward search is possible, there are a variety
of bidirectional heuristic search algorithms that can outper-
form A∗ in terms of node expansions (Eckerle et al. 2017;
Chen et al. 2017). One could consider several extensions of
this paradigm regarding different forms of dominance, e.g.,
introducing variants that make use of more general forms
of dominance (Torralba 2017), or alternative methods to ex-
ploit this information. This may open new avenues of re-
search on how to use dominance relations beyond domi-
nance pruning in order to make the most of them.

82

Acknowledgments
Álvaro Torralba was employed by Saarland University and
the CISPA Helmholtz Center for Information Security dur-
ing part of the development of this paper. I would like to
thank Nathan Stutervant for his insights on DXBB algo-
rithms. Thanks to the anonymous reviewers at SoCS’20 and
HSDIP’20 as well as to the Basel reading group for their
comments that helped me to improve the paper.

References
Asai, M.; and Fukunaga, A. 2017. Tie-Breaking Strategies
for Cost-Optimal Best First Search. Journal of Artificial In-
telligence Research 58: 67–121.

Barley, M. W.; Franco, S.; and Riddle, P. J. 2014. Overcom-
ing the Utility Problem in Heuristic Generation: Why Time
Matters. In Chien, S.; Do, M.; Fern, A.; and Ruml, W., eds.,
Proceedings of the 24th International Conference on Auto-
mated Planning and Scheduling (ICAPS’14). AAAI Press.

Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R.
2017. Front-to-End Bidirectional Heuristic Search with
Near-Optimal Node Expansions. In Sierra, C., ed., Proceed-
ings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI’17), 489–495. AAAI Press/IJCAI.

Corrêa, A. B.; Pereira, A. G.; and Ritt, M. 2018. Analyzing
Tie-Breaking Strategies for the A* Algorithm. In Lang, J.,
ed., Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI’18), 4715–4721. ijcai.org.

Dechter, R.; and Pearl, J. 1985. Generalized Best-First
Search Strategies and the Optimality of A*. Journal of the
Association for Computing Machinery 32(3): 505–536.

Eckerle, J.; Chen, J.; Sturtevant, N. R.; Zilles, S.; and Holte,
R. C. 2017. Sufficient Conditions for Node Expansion
in Bidirectional Heuristic Search. In Proceedings of the
27th International Conference on Automated Planning and
Scheduling (ICAPS’17), 79–87. AAAI Press.

Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturte-
vant, N. R.; Holte, R. C.; and Schaeffer, J. 2014. Enhanced
Partial Expansion A*. Journal of Artificial Intelligence Re-
search 50: 141–187.

Hall, D.; Cohen, A.; Burkett, D.; and Klein, D. 2013. Faster
Optimal Planning with Partial-Order Pruning. In Borrajo,
D.; Fratini, S.; Kambhampati, S.; and Oddi, A., eds., Pro-
ceedings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS’13). Rome, Italy: AAAI
Press.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2): 100–107.

Helmert, M.; Lattimore, T.; Lelis, L. H. S.; Orseau, L.;
and Sturtevant, N. R. 2019. Iterative Budgeted Exponential
Search. In Kraus, S., ed., Proceedings of the 28th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’19),
1249–1257. ijcai.org.

Karpas, E.; Betzalel, O.; Shimony, S. E.; Tolpin, D.; and Fel-
ner, A. 2018. Rational deployment of multiple heuristics in
optimal state-space search. Artificial Intelligence 256: 181–
210.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Op-
timal Admissible Tree Search. Artificial Intelligence 27(1):
97–109.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and Symmetries in Classi-
cal Planning. In Bonet, B.; and Koenig, S., eds., Proceed-
ings of the 29th AAAI Conference on Artificial Intelligence
(AAAI’15), 3371–3377. AAAI Press.
Sievers, S.; Wehrle, M.; Helmert, M.; Shleyfman, A.; and
Katz, M. 2015. Factored Symmetries for Merge-and-Shrink
Abstractions. In Bonet, B.; and Koenig, S., eds., Proceed-
ings of the 29th AAAI Conference on Artificial Intelligence
(AAAI’15), 3378–3385. AAAI Press.
Sturtevant, N.; and Helmert, M. 2020. A Guide to Bud-
geted Tree Search. In Harabor, D.; and Vallati, M., eds.,
Proceedings of the Thirteenth International Symposium on
Combinatorial Search, SOCS’20, 75–81. AAAI Press. URL
https://www.aaai.org/Library/SOCS/socs20contents.php.

Torralba, Á. 2017. From Qualitative to Quantitative Dom-
inance Pruning for Optimal Planning. In Sierra, C., ed.,
Proceedings of the 26th International Joint Conference
on Artificial Intelligence (IJCAI’17), 4426–4432. AAAI
Press/IJCAI.
Torralba, Á.; and Hoffmann, J. 2015. Simulation-Based Ad-
missible Dominance Pruning. In Yang, Q., ed., Proceedings
of the 24th International Joint Conference on Artificial In-
telligence (IJCAI’15), 1689–1695. AAAI Press/IJCAI.

83

Approximate bi-criteria search by efficient representation of subsets of the
Pareto-optimal frontier

Oren Salzman†
†Technion, Israel Institute of Technology

Haifa 32000, Israel
salzman@cs.technion.ac.il

Abstract

We consider the bi-criteria shortest-path problem where we
want to compute shortest paths on a graph that simultaneously
balance two cost functions. While this problem has numerous
applications, there is usually no path minimizing both cost
functions simultaneously. Thus, we typically consider the set
of paths where no path is strictly better than the others in both
cost functions, a set called the Pareto-optimal frontier. Unfor-
tunately, the size of this set may be exponential in the number
of graph vertices and the general problem is NP-hard. While
existing schemes to approximate this set exist, they may be
slower than exact approaches when applied to relatively small
instances and running them on graphs with even a moderate
number of nodes is often impractical. The crux of the problem
lies in how to efficiently approximate the Pareto-optimal fron-
tier. Our key insight is that the Pareto-optimal frontier can be
approximated using pairs of paths. This simple observation
allows us to run a best-first-search while efficiently and effec-
tively pruning away intermediate solutions in order to obtain
an approximation of the Pareto frontier for any given approx-
imation factor. We compared our approach with an adapta-
tion of BOA∗, the state-of-the-art algorithm for computing
exact solutions to the bi-criteria shortest-path problem. Our
experiments show that as the problem becomes harder, the
speedup obtained becomes more pronounced. Specifically, on
large roadmaps, when using an approximation factor of 10%
we obtain a speedup on the average running time of more
than ×19.

1 Introduction & Related Work
We consider the bi-criteria shortest-path problem, an exten-
sion to the classical (single-criteria) shortest-path problem
where we are given a graph G = (V,E) and each edge
has two cost functions. Here, we are required to compute
paths that balance between the two cost functions. The well-
studied problem (Chinchuluun and Pardalos 2007) has nu-
merous applications. For example, given a road network,
the two cost functions can represent travel times and dis-
tances and we may need to consider the set of paths that
allow to balance between these costs. Other applications in-
clude planning of power-transmission lines (Bachmann et al.
2018) and planning how to transport hazardous material in
order to balance between minimizing the travel distance and
the risk of exposure for residents (Bronfman et al. 2015).

There usually is no path minimizing all cost functions si-
multaneously. Thus, we typically consider the set of paths
where no path is strictly better then the others for both cost
functions, a set called the Pareto-optimal frontier. Unfortu-
nately, the problem is NP-hard (Serafini 1987) as the car-
dinality of the size of the Pareto-optimal frontier may be
exponential in |V | (Ehrgott 2005; Breugem, Dollevoet, and
van den Heuvel 2017) and even determining whether a path
belongs to the Pareto-optimal frontier is NP-hard (Papadim-
itriou and Yannakakis 2000).

Existing methods either try to efficiently compute the
Pareto-optimal frontier or to relax the problem and only
compute an approximation of this set.

Efficient computation of the Pareto-optimal frontier.
To efficiently compute the Pareto-optimal frontier, adapta-
tions of the celebrated A∗ algorithm (Hart, Nilsson, and
Raphael 1968) were suggested. Stewart et al. (1991) intro-
duced Multi-Objective A* (MOA∗) which is a multiobjec-
tive extension of A∗. The most notable difference between
MOA∗ and A∗ is in maintaining the Pareto-optimal frontier
to intermediate vertices. This requires to check if a path π is
dominated by another path π̃. Namely, if both of π̃’s costs
are smaller than π’s costs. As these dominance checks are
repeatedly performed, the time complexity of the checks
play a crucial role for the efficiency of such bi-criteria
shortest-path algorithms. MOA∗ was later revised (Mandow
and De La Cruz 2005; Mandow and De La Cruz 2010;
Pulido, Mandow, and Pérez-de-la Cruz 2015) with the most
efficient variation, termed bi-Objective A∗ (BOA∗) (Ulloay
et al. 2020) allowing to compute these operations in O(1)
time when a consistent heuristic is used.1

Approximating the Pareto-optimal frontier. Ini-
tial methods in computing an approximation of the
Pareto-optimal frontier were directed towards devis-
ing a Fully Polynomial Time Approximation Scheme2

1A heuristic function is said to be consistent if its estimate is
always less than or equal to the estimated distance from any neigh-
bouring vertex to the goal, plus the cost of reaching that neighbour.

2An FPTAS is an approximation scheme whose time complex-
ity is polynomial in the input size and also polynomial in 1/ε

84

(FPTAS) (Vazirani 2001). Warburton (1987) proposed
a method for finding an approximate Pareto optimal
solution to the problem for any degree of accuracy
using scaling and rounding techniques. Perny and Span-
jaard (2008) presented another FPTAS given that a finite
upper bound L on the numbers of arcs of all solution-
paths in the Pareto-frontier is known. This requirement
was later relaxed (Tsaggouris and Zaroliagis 2009;
Breugem, Dollevoet, and van den Heuvel 2017) by parti-
tioning the space of solutions into cells according to the
approximation factor and, roughly speaking, taking only
one solution in each grid cell. Unfortunately, the running
times of FPTASs are typically polynomials of high degree,
and hence they may be slower than exact approaches when
applied to relatively-small instances and running them
on graphs with even a moderate number of nodes (e.g.,
≈ 10, 000) is often impractical (Breugem, Dollevoet, and
van den Heuvel 2017).

A different approach to compute a subset of the Pareto-
optimal solution is to find all extreme supported non-
dominated points (i.e., the extreme points on the convex hull
of the Pareto-optimal set) (Sedeno-Noda and Raith 2015).
Taking a different approach Legriel et al. (2010) suggest a
method based on satisfiability/constraint solvers. Alterna-
tively, a simple variation of MOA∗, termed MOA∗ε allows
to compute an approximation of the Pareto-optimal frontier
by prunning intermediate paths that are approximately dom-
inated by already-computed solutions (Perny and Spanjaard
2008). However, as we will see, this allows to prune only a
small subset of paths that may be pruned.

Finally, recent work (Bökler and Chimani 2020) conducts
a comprehensive computational study with an emphasis on
multiple criteria. Similar to the aforementioned FPTASs,
their framework still partitions the space prior to running the
algorithm.

Key contribution. To summarize, exact methods compute
a solution set whose size is often exponential in the size of
the input. While one would expect that approximation al-
gorithms will allow to dramatically speed up computation
times, in practice their running times are often slower than
exact solutions for FPTAS’s because they partition the space
of solution into cells according to the approximation factor
in advance. Alternative methods only prune paths that are
approximately dominated by already-computed solutions.

Our key insight is that we can efficiently partition the
space of solution into cells during the algorithm’s execution
(and not a-priori). This allows us to efficiently and effec-
tively prune away intermediate solutions in order to obtain
an approximation of the Pareto frontier for any given ap-
proximation factor ε (this will be formalized in Sec. 2). This
is achieved by running a best-first search on path pairs and
not individual paths. Such path pairs represent a subset of
the Pareto frontier such that any solution in this subset is
approximately dominated by the two paths. Using concepts
that draw inspiration from a recent search algorithm from
the robotics literature (Fu et al. 2019), we propose Path-Pair

where ε is the approximation factor.

A∗ (PP-A∗). PP-A∗ dramatically reduces the computational
complexity of the best-first search by merging path pairs
while still ensuring that an approximation of the Pareto-
optimal frontier is obtained for any desired approximation.

For example, on a roadmap of roughly 1.5 million
vertices, PP-A∗ approximates the Pareto optimal frontier
within a factor of 1% in roughly 13 seconds on average
on a commodity laptop. We compared our approach with
an adaptation of BOA∗ (Ulloay et al. 2020), the state-of-
the-art algorithm for computing exact solutions to the bi-
criteria shortest-path problem, which we term BOA∗ε . BOA∗ε
computes near optimal solutions by using the approach sug-
gested in (Perny and Spanjaard 2008). Our experiments
show that as the problem becomes harder, the speedup that
PP-A∗ may offer becomes more pronounced. Specifically,
on the aforementioned roadmap and using an approximation
factor of 10%, we obtain a speedup on the average running
time of more than×19 and a maximal speedup of over×25.

2 Problem definition
Let G = (V,E) be a graph, c1 : E → R and c2 : E → R
be two cost functions defined over the graph edges. A path
π = v1, . . . vk is a sequence of vertices where consecutive
vertices are connected by an edge. We extend the two cost
functions to paths as follows:

c1(π) =
k−1∑

i=1

c1(vi, vi+1) and c2(π) =
k−1∑

i=1

c2(vi, vi+1).

Unless stated otherwise, all paths start at the same specific
vertex vstart and πu will denote a path to vertex u.
Definition 1 (Dominance). d We say that πu strictly dom-
inates π̃u if (i) πu weakly dominates π̃u and (ii) c1(πu) <
c1(π̃u) or c2(πu) < c2(π̃u).
Definition 2 (Approximate dominance). Let πu and π̃u be
two paths to vertex u and let ε1 ≥ 0 and ε2 ≥ 0 be two real
values. We say that πu (ε1, ε2)-dominates π̃u if (i) c1(πu) ≤
(1 + ε1) · c1(π̃u) and (ii) c2(πu) ≤ (1 + ε2) · c2(π̃u). When
ε1 = ε2, we will sometimes say that πu (ε1)-dominates π̃u
and call ε1 the approximation factor.
Definition 3 ((approximate) Pareto-optimal frontier).
The Pareto-optimal frontier Πu of a vertex u is a set of paths
connecting vstart and u such that (i) no path in Πu is strictly
dominated by any other path from vstart to u and (ii) every
path from vstart to u is weakly dominated by a path in Πu.
Similarly, for ε1 ≥ 0 and ε2 ≥ 0 the approximate Pareto
optimal frontier3 Πu(ε1, ε2) ⊆ Πu is a subset of u’s Pareto
frontier such that every path in Πu is (ε1, ε2)-dominated by
a path in Πu(ε1, ε2).
For brevity we will use the terms (approximate) Pareto fron-
tier to refer to the (approximate) Pareto optimal frontier. For
a visualization of these notions, see Fig. 1.

We are now ready to formally define our search problems.

3Our definition of an approximate Pareto optimal frontier
slightly differs from existing definitions (Breugem, Dollevoet, and
van den Heuvel 2017) which do not require that the approximate
Pareto frontier is a subset of the Pareto-optimal frontier.

85

cost1

cost2

πu

c1(πu)
c1(πu)
(1+ε1)

c2(πu)

c2(πu)
(1+ε2)

Figure 1: Dominance, approximate dominance and Pareto
frontier. Given start and target vertices, we consider each
path πu as a 2D point (c1(πu), c2(πu)) according to the two
cost functions (points and squares). The set of all possible
paths dominated and approximately dominated by path πu
are depicted in blue and green, respectively. The Pareto fron-
tier Πu is the set of all black points that collectively domi-
nate all other possible paths (squares in grey region).

Problem 1 (Bi-criteria shortest path). Let G be a graph,
c1, c2 : E → R two cost functions and vstart and vgoal be
start and goal vertices, respectively. The bi-criteria shortest
path problem calls for computing the Pareto frontier Πvgoal .

Problem 2 (Bi-criteria approximate shortest path). Let G
be a graph, c1, c2 : E → R two cost functions and vstart
and vgoal be start and goal vertices, respectively. Given ε1 ≥
0 and ε2 ≥ 0, the bi-criteria approximate shortest path
problem calls for computing an approximate Pareto fron-
tier Πvgoal(ε1, ε2).

3 Algorithmic Background
In this section we describe two approaches to solve the bi-
criteria shortest-path problem (Problem 1). With the risk of
being tedious, we start with a brief review of best-first search
algorithms as both state-of-the-art bi-criteria shortest path
algorithms, as well as ours, rely heavily on this algorithmic
framework. We note that the description of best-first search
we present here can be optimized but this version will allow
us to better explain the more advanced algorithms.

A best-first search algorithm (Alg. 1) computes a short-
est path from vstart to vgoal by maintaining a priority queue,
called an OPEN list, that contains all the nodes that have not
been expanded yet (line 1). Each node is associated with a
path πu from vstart to some vertex u ∈ V (by a slight abuse
of notation we will use paths and nodes interchangeability
which will simplify algorithm’s descriptions in the next sec-
tions). This queue is ordered according to some cost func-
tion called the f -value of the node. For example, in Dijkstra
and A∗, this is the computed cost from vstart (also called
its g-value) and the computed cost from vstart added to the
heuristic estimate to reach vgoal, respectively.

At each iteration (lines 3-13), the algorithm extracts the
most-promising node from OPEN (line 3), checks if it has
the potential to be a better solution than any found so far

Algorithm 1 Best First Search
Input: (G = (V,E), vstart, vgoal, . . .)

1: OPEN← new node πvstart
2: while OPEN 6= ∅ do
3: πu ← OPEN.extract min()
4: if is dominated(πu) then
5: continue
6: if u = vgoal then . reached goal
7: merge to solutions(πu, solutions)
8: continue
9: for e = (u, v) ∈ neighbors(u,G) do

10: πv ← extend(πu, e)
11: if is dominated(πv) then
12: continue
13: insert(πv,OPEN)
14: return all extreme paths in solutions

(line 4). If this is the case and we reached vgoal, the solu-
tion set is updated (in single-criteria shortest path, once a
solution is found, the search can be terminated). If not, we
extend the path represented by this node to each of it’s neigh-
bors (line 10). Again, we check if it has the potential to be a
better solution than any found so far (line 11). If this is the
case, it is added to the OPEN list.

Different single-criteria search algorithms such as Dijk-
stra, A∗, A∗ε as well as bi-criteria search algorithms such
BOA∗ fall under this framework. They differ with how
OPEN is ordered and how the different functions (high-
lighted in Alg. 1) are implemented.

Bi-Objective A∗ (BOA∗) To efficiently solve Problem 1,
bi-Objective A∗ (BOA∗) runs a best-first search. The algo-
rithm is endowed with two heursitic functions h1, h2 esti-
mating the cost to reach vgoal from any vertex according
to c1 and c2, respectively. Here, we assume that these heuris-
tic functions are admissible and consistent. This is key as the
efficiency of BOA∗ relies on this assumption.

Given a node πu, we define gi(πu) to be the computed
distance according to ci. It can be easily shown that in best-
first search algorithms gi := ci(πu). Additionally, we define
fi(πu) := gi(πu) + hi(πu). Although the cost and the g-
value of a path can be used interchangeably, we will use the
former to describe general properties of paths and the later to
describe algorithm operations. Nodes in OPEN are ordered
lexicographically according to (f1, f2) which concludes the
description of how extract min and insert (lines 3 and 13,
respectively) are implemented.

Domination checks, which are typically time-consuming
in bi-criteria search algorithms are implemented in O(1) per
node by maintaining for each vertex u ∈ V the minimal
cost to reach u according to c2 computed so for. This value
is maintained in a map gmin

2 : V → R which is initialized
to∞ for each vertex. This allows to implement the function
is dominated for a node πu by testing if

g2(πu) ≥ gmin
2 (u) or f2(πu) ≥ gmin

2 (vgoal). (1)

86

The first test checks if the node is dominated by an
already-extended node and replaces the CLOSED list typ-
ically used in A∗-like algorithms. The second test checks if
the node has the potential to reach the goal with a solution
whose cost is not dominated by any existing solution. Fi-
nally, the function merge to solutions simply adds a newly-
found solution to the solution set.

Computing the approximate Pareto frontier Perny and
Spanjaard (2008) suggest to compute an approximate Pareto
frontier by endowing the algorithm with an approximation
factor ε. When a node is popped from OPEN, we test if its f -
value is ε-dominated by any solution that was already com-
puted. While this algorithm was presented before BOA∗ and
hence uses computationally-complex dominance checks, we
can easily use this approach to adapt BOA∗ to compute an
approximate Pareto frontier. This is done by replacing the
dominance check in Eq. 1 with the test

g2(πu) ≥ gmin
2 (v) or (1 + ε) · f2(πu) ≥ gmin

2 (vgoal). (2)

We call this algorithm BOA∗ε .

4 Algorithmic Framework
4.1 Preliminaries
Recall that (single-criteria) shortest-path algorithms such as
A∗ find a solution by computing the shortest path to all nodes
that have the potential to be on the shortest path to the goal
(namely, whose f -value is less than the current estimate of
the cost to reach vgoal). Similarly, bi-criteria search algo-
rithms typically compute for each node the subset of the
Pareto frontier that has the potential to be in Πvgoal .

Now, near-optimal (single-criteria) shortest-path algo-
rithms such as A∗ε (Pearl and Kim 1982) attempt to speed
this process by only approximating the shortest path to in-
termediate nodes. Similarly, we suggest to construct only an
approximate Pareto frontier for intermediate nodes which, in
turn, will allow to dramatically reduce computation times.
Looking at Fig. 1, one may suggest to run an A∗-like search
and if a path πu on the Pareto frontier Πu of u is approx-
imately dominated by another path π̃u ∈ Πu, then dis-
card πu. Unfortunately, this does not account for paths in Πu

that may have been approximately dominated by πu and
hence discarded in previous iterations of the search. Exist-
ing methods use very conservative bounds to prune interme-
diate paths. For example, as stated in Sec. 1, if a bound L on
the length of the longest path exists, we can use this strategy
by replacing (1 + ε) with (1 + ε)1/L to account for error
propagation (Perny and Spanjaard 2008).

In contrast, we suggest a simple-yet-effective method to
prune away approximately-dominated solutions using the
notion of a partial Pareto frontier which we now define.

Definition 4 (Partial Pareto frontier PPF). Let πtlu , π
br
u ∈

Πu be two paths on the Pareto frontier of vertex u such that
c1(πtlu) < c1(πbru) (here, tl and br are shorthands for
“top left” and “bottom right” for reasons which will soon
be clear). Their partial Pareto frontier PPFπ

tl
u ,π

br
u

u ⊆ Πu

is a subset of a Pareto frontier such that if πu ∈ Πu and

cost1

cost2

πtlu

πbru

Figure 2: The partial Pareto frontier of two paths πtlu
and πbru is the set of all paths (blue dots) on the Pareto fron-
tier (blue and black dots) between these paths. Lemma 1
implies that any path represented by a blue dot is approx-
imately dominated by πtlu and πbru for ε1 =

c1(π
br
u)−c1(πtlu)
c1(πtlu)

and ε2 =
c2(π

tl
u)−c2(πbru)
c2(πbru) .

c1(πtlu) < c1(πu) < c1(πbru) then πu ∈ PPFπ
tl
u ,π

br
u

u . The
paths πtlu , π

br
u are called the extreme paths of PPFπ

tl
u ,π

br
u

u
For a visualization, see Fig. 2.
Definition 5 (Bounded PPF). A partial Pareto frontier
PPFπ

tl
u ,π

br
u

u ⊆ Πu is (ε1, ε2)-bounded if

ε1 ≥
c1(πbru)− c1(πtlu)

c1(πtlu)
and ε2 ≥

c2(πtlu)− c2(πbru)

c2(πbru)
.

Lemma 1. If PPFπ
tl
u ,π

br
u

u is an (ε1, ε2)-bounded partial
Pareto frontier then any path in PPFπ

tl
u ,π

br
u

u is (ε1, ε2)-
dominated by both πtlu and πbru .

Proof. Let πu ∈ PPFπ
tl
u ,π

br
u

u . By definition, we have that
c1(πtlu) < c1(πu) and that ε1 ≥ c1(π

br
u)−c1(πtlu)
c1(πtlu) . Thus,

c1(πbru) ≤ (1 + ε1) · c1(πtlu) < (1 + ε1) · c1(πu).

As c2(πbru) < c2(πu), we have that πbru approximately dom-
inates πu.

Similarly, by definition, we have that c2(πu) > c2(πbru)

and that ε2 ≥ c2(π
tl
u)−c2(πbru)
c2(πbru) . Thus,

c2(πtlu) ≤ (1 + ε2) · c1(πbru) < (1 + ε2) · c1(πu).

As c1(πtlu) < c1(πu), we have that πtlu approximately dom-
inates πu.

4.2 Algorithmic description
In contrast to standard search algorithms which incremen-
tally construct shortest paths from vstart to the graph ver-
tices, our algorithm will incrementally construct (ε1, ε2)-
bounded partial Pareto frontiers. Lemma 1 suggests a
method to efficiently represent and maintain these frontiers
for any approximation factors ε1 and ε2. Specifically, for
a vertex u, PP-A∗ will maintain path pairs corresponding

87

cost1

cost2

πtlu
e = (u, v)

πtlv

c1(π
br
u) c1(π

br
v)

πbru
e = (u, v)

πbrv

c1(π
tl
u) c1(π

tl
v)

c1(e)c1(e)

c2(π
tl
u)

c2(π
tl
v)

c2(π
br
u)

c2(π
br
v)

c2(e)

c2(e)

(a)

cost1

cost2

π̃bru

π̃tlu

πtlu

πbru
cost1

cost2

π̂tlu

π̂bru

π̃tlu

cost1

cost2

π̃bru
πtlu

πbru
cost1

cost2

π̂tlu

π̂bru

(b)

Figure 3: Operations on path pairs. (a) Extend operation. The path pair (πtlu , π
br
u) (blue) is extended by edge e = (u, v) to

obtain the path pair (πtlv , π
br
v) (green). (b) Merge operation. Two examples of merging the path pair (πtlu , π

br
u) (blue) with the

path pair (π̃tlu , π̃
br
u) (green) to obtain the path pair (π̂tlu , π̂

br
u) (purple).

to the extreme paths in partial Pareto frontiers. For each
path pair (πtlu , π

br
u) we have that c1(πtlu) ≤ c1(πbru) and

c2(πtlu) ≥ c2(πbru).
Before we explain how path pairs will be used let us de-

fine operations on path pairs: The first operation we consider
is extending a path pair (πtlu , π

br
u) by an edge e = (u, v),

which simply corresponds to extending both πtlu and πbru
by e. The second operation we consider is merging two path
pairs (πtlu , π

br
u) and (π̃tlu , π̃

br
u). This operation constructs a

new path pair (π̂tlu , π̂
br
u) such that

π̂tlu =

{
πtlu if c1(πtlu) ≤ c1(π̃tlu)

π̃tlu if c1(π̃u
tl) < c1(πtlu),

and

π̂bru =

{
πbru if c2(πbru) ≤ c2(π̃bru)

π̃bru if c2(π̃u
br) < c2(πbru).

For a visualization, see Fig. 3.
We are finally ready to describe PP-A∗, our algorithm

for bi-criteria approximate shortest-path computation (Prob-
lem 2). We run a best-first search similar to Alg. 1 but
nodes are path pairs. We start with the trivial path pair
(vstart, vstart) and describe our algorithm by detailing the
different functions highlighted in Alg. 1. For each function,
we describe what needs to be performed and how this can be
efficiently implemented when consistent heuristics are used
(see Sec. 3). Finally, the pseudocode of the algorithm is pro-
vided in Alg. 2 with the efficient implementations provided
in Alg. 3-6.

Ordering nodes in OPEN: Recall that a node is a path
pair (πtlu , π

br
u) and that each path π has two f values which

correspond to the two cost functions and the two heuristic
functions. Nodes are ordered lexicographically according to

(f1(π
tl
u), f2(π

br
u)). (3)

Domination checks: Recall that there are two types of
domination checks that we wish to perform (i) checking if

Algorithm 2 PP-A∗

Input: (G = (V,E), vstart, vgoal, c1, c2, h1, h2, ε1, ε2)
1: solutions pp← ∅ . path pairs
2: OPEN← new path pair (vstart, vstart)

3: while OPEN 6= ∅ do
4: (πtlu , π

br
u)← OPEN.extract min()

5: if is dominated PP-A∗(πtlu , πbru) then
6: continue
7: if u = vgoal then . reached goal
8: merge to solutions PP-A∗(πtlu , πbru , solutions pp)
9: continue

10: for e = (u, v) ∈ neighbors(s(n), G) do
11:

(
πtlv , π

br
v

)
← extend PP-A∗((πtlu , πbru), e)

12: if is dominated PP-A∗(πtlv , πbrv) then
13: continue
14: insert PP-A∗((πtlv , πbrv),OPEN)
15: solutions← ∅
16: for (πtlvgoal , π

br
vgoal

) ∈ solutions pp do
17: solutions← solutions ∪{πtlvgoal}
18: return solutions

a node is dominated by a node that was already expanded
and (ii) checking if a node has the potential to reach the goal
with a solution whose cost is not dominated by any existing
solution.

In our setting a path pair PPu is dominated by another
path pair P̃Pu if the partial Pareto frontier represented by
PPu is contained in the partial Pareto frontier represented
by P̃Pu (see Fig. 4). We can efficiently test if PPu =
(πtlu , πbru) is dominated by any path to u found so far, by
checking if

g2(πbru) ≥ gmin
2 (u). (4)

This only holds when using the assumption that our heuristic
functions are admissible and consistent and using the way

88

cost1

cost2

π̃tlu

π̃bru

πtlu

πbru

Figure 4: Testing dominance of partial Pareto frontiers using
path pairs. The partial Pareto frontier Π

πtlu ,π
br
u

u is contained
in the partial Pareto frontier Π

π̃tlu ,π̃
br
u

u . Thus, the region rep-
resented by πtlu , π

br
u is contained in the region represented

by π̃tlu , π̃
br
u .

we order our OPEN list.
We now continue to describe how we test if a path pair

has the potential to reach the goal with a solution whose
cost is not dominated by any existing solution. Given a
path pair PPu = (πtlu , πbru) a lower bound on the partial
Pareto frontier at vgoal that can be attained via PPu is ob-
tained by adding the heuristic values to the costs of the two
paths in PPu. Namely, we consider two paths πtlvgoal , π

br
vgoal

such that ci(πtlvgoal) := ci(π
tl
u) + hi(u) and ci(πbrvgoal) :=

ci(π
br
u) + hi(u). Note that these paths may not be attain-

able and are a lower bound on the partial Pareto frontier that
can be obtained via PPu. Now, if the partial Pareto frontier

PPF
πtlvgoal

,πbrvgoal
vgoal is contained in the union of the currently-

computed partial Pareto frontiers at vgoal, then PPu is dom-
inated. Similar to the previous dominance check, this can be
efficiently implemented by testing if

(1 + ε2) · (f2(πbru)) ≥ gmin
2 (vgoal). (5)

Inserting nodes in OPEN: Recall that we want to use the
notion of path pairs to represent a partial Pareto frontier. Key
to the efficiency of our algorithm is to have every partial
Pareto frontier as large as possible under the constraint that
they are all (ε1, ε2)-bounded. Thus, when coming to insert
a path pair PPu into the OPEN list, we check if there exists
a path pair P̃Pu such that PPu and P̃Pu can be merged and
the resultant path pair is still (ε1, ε2)-bounded.

If this is the case, we remove P̃Pu and replace it with the
merged path pair.

Merging solutions: Since we want to minimize the num-
ber of path pairs representing Πvgoal(ε1, ε2) we suggest
an optimization that operates similarly to node insertions.
When a new path pair PPvgoal

representing a partial Pareto
frontier at vgoal is obtained, we test if there exists a path pair
in the solution set P̃Pvgoal

such that PPu and P̃Pvgoal
can be

merged and the resultant path pair is still (ε1, ε2)-bounded.

Algorithm 3 is dominated PP-A∗

Input: (PPu = (πtlu , πbru))
1: if (1 + ε2) · f2(πbru) ≥ gmin

2 (vgoal) then
2: return true . dominated by solution
3: if g2(πbru) ≥ gmin

2 (u) then
4: return true . dominated by existing path pair
5: return false

Algorithm 4 extend PP-A∗

Input: (PPu = (πtlu , πbru), e = (u, v))
1: πtlv ←extend(πtlu)
2: πbrv ←extend(πbru)
3: return (πtlv , π

br
v)

Algorithm 5 insert PP-A∗

Input: (PPv, OPEN)
1: for each path pair P̃Pv ∈ OPEN do
2: PPmerged

v ← merge(P̃Pv,PPv)
3: if PPmerged

v .is bounded(ε1, ε2) then
4: OPEN.remove(P̃Pv) . remove existing path pair
5: OPEN.insert(PPmerged

v)
6: return
7: OPEN.insert(PPv)
8: return

Algorithm 6 merge to solutions PP-A∗

Input: (PPvgoal
, solutions pp)

1: for each path pair P̃Pvgoal
∈ solutions pp do

2: PPmerged
vgoal

← merge(P̃Pvgoal
,PPv)

3: if PPmerged
vgoal

.is bounded(ε1, ε2) then
4: solutions pp.remove(P̃Pvgoal

)
5: solutions pp.insert(PPmerged

vgoal
)

6: return
7: solutions pp.insert(PPvgoal

)
8: return

If this is the case, we remove P̃Pvgoal
and replace it with

the merged path pair.

Returning solutions: Recall that our algorithm stores so-
lutions as path pairs and not individual paths. To return an
approximate Pareto frontier, we simply return one path in
each path pair. Here, we arbitrarily choose to return πtlvgoal
for each path pair (πtlvgoal , π

br
vgoal

).

4.3 Analysis
Showing that PP-A∗ indeed computes an approximate
Pareto frontier using the domination checks suggested in
Eq. 4 and 5, may be done by using similar arguments as
those presented in (Ulloay et al. 2020). However, such a
proof is omitted due to lack of space and we refer the reader

89

New York City (NY)
264,346 states, 730,100 edges

avg nsol avg t min t max t
ε PP-A∗ BOA∗ PP-A∗ BOA∗ PP-A∗ BOA∗ PP-A∗ BOA∗
0 158 158 1,047 405 2 0 13,563 5,038

0.01 19 20 291 353 3 0 3,662 4,577
0.025 10 10 168 295 2 0 2,207 4,101
0.05 6 6 111 240 3 0 1,523 3,538
0.1 4 4 69 174 2 0 932 2,694

San Francisco Bay (BAY)
321,270 states, 794,830 edges

avg nsol avg t min t max t
ε PP-A∗ BOA∗ PP-A∗ BOA∗ PP-A∗ BOA∗ PP-A∗ BOA∗
0 117 117 1,213 423 3 0 21,751 7,584

0.01 16 17 222 369 4 0 2,927 6,805
0.025 9 9 127 321 3 0 1,530 5,614
0.05 5 6 85 272 3 0 1,109 4,570
0.1 3 4 54 199 3 0 576 3,056

Colorado (COL)
435,666 states, 1,042,400 edges

avg nsol avg t min t max t
ε PP-A∗ BOA∗ PP-A∗ BOA∗ PP-A∗ BOA∗ PP-A∗ BOA∗
0 318 318 3,368 1,144 5 1 56,153 17,348

0.01 15 16 372 944 5 1 3,633 16,304
0.025 7 8 192 768 5 1 1,690 15,037
0.05 4 5 116 608 5 1 991 13,718
0.1 3 3 69 470 4 1 593 11,977

Florida (FL)
1,070,376 states, 2,712,798 edges

avg nsol avg t min t max t
ε PP-A∗ BOA∗ PP-A∗ BOA∗ PP-A∗ BOA∗ PP-A∗ BOA∗
0 357 357 12,177 3,545 12 3 270,450 68,467

0.01 12 13 1,000 3,228 12 3 17,092 64,642
0.025 6 6 479 2,738 11 3 8,060 59,908
0.05 3 4 263 1,985 12 3 3,945 39,214
0.1 2 2 144 1,172 11 2 1,780 21,665

Table 1: Average number of solutions (nsol) and runtime (in
ms) comparing BOA∗ε and PP-A∗ on 50 random queries
sampled for four different roadmaps for different approxi-
mation factors.

to the extended version of this text (Salzman 2020).

5 Evaluation
Experimental setup. To evaluate our approach we com-
pare it to BOA∗ε as BOA∗ was recently shown to dramat-
ically outperform other state-of-the-art algorithms for bi-
criteria shortest path (Ulloay et al. 2020). All experiments
were run on an 1.8GHz Intel(R) Core(TM) i7-8565U CPU
Windows 10 machine with 16GB of RAM. All algorithm
implementations were in C++. We use road maps from the
9’th DIMACS Implementation Challenge: Shortest Path4.
The cost components represent travel distances (c1) and
times (c2). The heuristic values are the exact travel distances
and times to the goal state, computed with Dijkstra’s algo-
rithm. Since all algorithms use the same heuristic values,
heuristic-computation times are omitted.

General comparison. Similar to the experiments of Ulloa
et al (2020) we start by comparing the algorithms for four
different roadmaps containing between roughly 250K and
1M vertices. Table 1 summarizes the number of solutions
in the approximate Pareto frontier and average, minimum
and maximum running times of the two algorithms using

4http://users.diag.uniroma1.it/challenge9/download.shtml.

North East (NE)
1,524,453 states, 3,897,636 edges

avg t min t max t
ε PP-A* BOA* PP-A* BOA* PP-A* BOA*
0 192.6 59.5 0.04 0.02 2,4189.9 592.6

0.01 13.1 68.3 0.03 0.01 111.6 600.9
0.025 5.6 57.3 0.02 0.01 46.9 510.9
0.05 2.7 40.8 0.02 0.01 22.6 345.1
0.1 1.3 25.8 0.02 0.01 9.0 229.8

Table 2: Runtime (in seconds) comparing BOA∗ and PP-A∗
on 50 random queries sampled for the NE map.

the following values5 ε ∈ {0, 0.01, 0.025, 0.05, 0.1}. Here,
approximation values of zero and 0.01 correspond to com-
puting the entire Pareto frontier and approximating it using
a value of 1%, respectively.

When computing the entire Pareto frontier BOA∗ is
roughly three times faster than PP-A∗ on average. This is
to be expected as PP-A∗ stores for each element in the pri-
ority queue two paths and requires more computationally-
demanding operations. As the approximation factor is in-
creased, the average running time of PP-A∗ drops faster,
when compared to BOA∗ε and we observe a significant av-
erage speedup. Interestingly, when looking at the minimal
running time, BOA∗ε significantly outperforms PP-A∗. This
is because in such settings the approximate Pareto frontier
contains one solution, which BOA∗ε is able to compute very
fast. Other nodes are approximately dominated by this solu-
tion and the algorithm can terminate very quickly. PP-A∗,
on the other hand, still performs merge operations which in-
cur a computational overhead. When looking at the maximal
running time, we can see an opposite trend where PP-A∗
outperforms BOA∗ε by a large factor.

Pinpointing the performance differences between PP-A∗
and BOA∗ε . The first set of results suggest that as the prob-
lem becomes harder, the speedup that PP-A∗ may offer be-
comes more pronounced. We empirically quantify this claim
by moving to a larger map called the North East (NE) map
which contains 1,524,453 states and 3,897,636 edges where
we obtain even larger speedups (see Table 2).

We plot both the number of nodes expanded (which typi-
cally is proportional to running time of A∗-like algorithms)
as well as the running time of each algorithm as a function of
the approximation factor (see, Fig. 5a and 5b, respectively).
Here we used ε ∈ {0, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1}.

We observe that the number of nodes expanded monoton-
ically decreases when the approximation factor is increased
for both algorithms. This is because additional nodes may be
pruned which in turn, prunes all nodes in their subtree. It is
important to discuss how these nodes are pruned: Recall that
BOA∗ε prunes nodes according to Eq. 2. Thus, increasing the
approximation factor only allows to prune more nodes ac-

5While PP-A∗ allows a user to specify two approximation fac-
tors corresponding to the two cost functions, this is not the case
for BOA∗. Thus, in all experiments we use a single approximation
factor ε and set ε1 = ε2 = ε.

90

1

10

10
2

10
3

10
4

10
5

10
6

10
7

n
ex

p

0.0 0.2 0.4 0.6 0.8 1.0

PP-A
*

BOA
*

(a)

1

2

5

10

2

5

10
2

2

5

10
3

2

5

10
4

2

5

10
5

2

5

t
[m

se
c
]

0.0 0.2 0.4 0.6 0.8 1.0

PP-A
*

BOA
*

(b)

0

2

4

6

8

av
er

ag
e

sp
ee

d
u

p

0.0 0.2 0.4 0.6 0.8 1.0

(c)

Figure 5: North East (NE) plots. (a) The average number of expanded nodes (nexp) and (b) the average time for both algorithms
as a function of the approximation factor. Notice the logarithmic scale in the y-axis for both plots. (c) The average speedup
of PP-A∗ when compared to BOA∗ε as a function of the approximation factor. Error bars denote one standard error (error bars
in (a) and (b) are not visible due to the logarithmic scale).

cording to the already-computed solutions and not accord-
ing to the paths computed to intermediate nodes. In contrast,
PP-A∗ prunes nodes according to Eq. 4 and 5. Thus, in addi-
tion to more path pairs being merged, increasing the approx-
imation allows to prune more path pairs according to the
already-computed solutions as well as the path pairs com-
puted to intermediate vertices. Thus, for relatively-small ap-
proximation factors that are greater than zero (in our setting,
0 < ε < 0.5, we see that BOA∗ expands a significantly
higher number of nodes than PP-A∗ which explains the
speedups we observed. However, for large approximation
factors, there is typically only one solution in the approxi-
mate Pareto frontier. This solution, which is found quickly
by BOA∗ε , allows to prune almost all other paths which re-
sults in BOA∗ε running much faster than PP-A∗. This trend
is visualized in Fig. 5c.

6 Future research
6.1 Bidirectional search
We presented PP-A∗ as a unidirectional search algorithm,
however a common approach to speed up search algo-
rithms is to perform two simultaneous searches: a forward
search from vstart to vgoal and a backward search from vgoal
to vstart (Pohl 1971). Thus, an immediate task for future re-
search is to suggest a bidirectional extension of PP-A∗. Here
we can build upon recent progress in bi-directional search
algorithms for bi-criteria shortest-path problems (Sedeño-
Noda and Colebrook 2019).

6.2 Beyond two optimization criteria
We presented PP-A∗ as a search algorithm for two opti-
mization criteria, however the same concepts can be used for
multi-criteria optimization problems. Unfortunately, it is not
clear how to perform operations such as dominance checks
efficiently since the methods presented for BOA∗ do not ex-
tend to such settings.

References
[Bachmann et al. 2018] Bachmann, D.; Bökler, F.; Kopec, J.;
Popp, K.; Schwarze, B.; and Weichert, F. 2018. Multi-
objective optimisation based planning of power-line grid ex-
pansions. ISPRS International Journal of Geo-Information
7(7):258.

[Bökler and Chimani 2020] Bökler, F., and Chimani, M.
2020. Approximating multiobjective shortest path in prac-
tice. In Symposium on Algorithm Engineering and Experi-
ments, (ALENEX), 120–133.

[Breugem, Dollevoet, and van den Heuvel 2017] Breugem,
T.; Dollevoet, T.; and van den Heuvel, W. 2017. Analysis
of FPTASes for the multi-objective shortest path problem.
Computers & Operations Research 78:44–58.

[Bronfman et al. 2015] Bronfman, A.; Marianov, V.;
Paredes-Belmar, G.; and Lüer-Villagra, A. 2015. The
maximin HAZMAT routing problem. European Journal of
Operational Research 241(1):15–27.

[Chinchuluun and Pardalos 2007] Chinchuluun, A., and
Pardalos, P. M. 2007. A survey of recent developments in
multiobjective optimization. Annals of Operations Research
154(1):29–50.

[Ehrgott 2005] Ehrgott, M. 2005. Multicriteria Optimization
(2. ed.). Springer.

[Fu et al. 2019] Fu, M.; Kuntz, A.; Salzman, O.; and Al-
terovitz, R. 2019. Toward asymptotically-optimal inspec-
tion planning via efficient near-optimal graph search. In
Robotics: Science and Systems (RSS).

[Hart, Nilsson, and Raphael 1968] Hart, P. E.; Nilsson, N. J.;
and Raphael, B. 1968. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics 4(2):100–107.

[Legriel et al. 2010] Legriel, J.; Le Guernic, C.; Cotton, S.;
and Maler, O. 2010. Approximating the pareto front of
multi-criteria optimization problems. In International Con-

91

ference on Tools and Algorithms for the Construction and
Analysis of Systems, 69–83.

[Mandow and De La Cruz 2005] Mandow, L., and
De La Cruz, J. L. P. 2005. A new approach to multi-
objective A* search. In International Joint Conferences on
Artificial Intelligence (IJCAI), 218–223.

[Mandow and De La Cruz 2010] Mandow, L., and
De La Cruz, J. L. P. 2010. Multiobjective A* search
with consistent heuristics. Journal of the ACM (JACM)
57(5):1–25.

[Papadimitriou and Yannakakis 2000] Papadimitriou, C. H.,
and Yannakakis, M. 2000. On the approximability of trade-
offs and optimal access of web sources. In Symposium on
Foundations of Computer Science (FoCS), 86–92.

[Pearl and Kim 1982] Pearl, J., and Kim, J. H. 1982. Studies
in semi-admissible heuristics. IEEE transactions on pattern
analysis and machine intelligence (4):392–399.

[Perny and Spanjaard 2008] Perny, P., and Spanjaard, O.
2008. Near admissible algorithms for multiobjective search.
In European Conference on Artificial Intelligence (ECAI),
volume 178, 490–494.

[Pohl 1971] Pohl, I. 1971. Bi-directional search. Machine
intelligence 6:127–140.

[Pulido, Mandow, and Pérez-de-la Cruz 2015] Pulido, F.-J.;
Mandow, L.; and Pérez-de-la Cruz, J.-L. 2015. Dimension-
ality reduction in multiobjective shortest path search. Com-
puters & Operations Research 64:60–70.

[Salzman 2020] Salzman, O. 2020. Approximate bi-criteria
search by efficient representation of subsets of the pareto-
optimal frontier. CoRR abs/2006.10302.

[Sedeño-Noda and Colebrook 2019] Sedeño-Noda, A., and
Colebrook, M. 2019. A biobjective dijkstra algorithm. Eu-
ropean Journal of Operational Research 276(1):106–118.

[Sedeno-Noda and Raith 2015] Sedeno-Noda, A., and Raith,
A. 2015. A dijkstra-like method computing all extreme sup-
ported non-dominated solutions of the biobjective shortest
path problem. Computers & Operations Research 57:83–
94.

[Serafini 1987] Serafini, P. 1987. Some considerations about
computational complexity for multi objective combinatorial
problems. In Recent advances and historical development
of vector optimization. Springer. 222–232.

[Stewart and White III 1991] Stewart, B. S., and White III,
C. C. 1991. Multiobjective A*. Journal of the ACM (JACM)
38(4):775–814.

[Tsaggouris and Zaroliagis 2009] Tsaggouris, G., and Zaro-
liagis, C. D. 2009. Multiobjective optimization: Improved
FPTAS for shortest paths and non-linear objectives with ap-
plications. Theory Comput. Syst. 45(1):162–186.

[Ulloay et al. 2020] Ulloay, C. H.; Yeohz, W.; Baier, J. A.;
Zhang, H.; Suazoy, L.; and and, S. K. 2020. A simple and
fast bi-objective search algorithm. In International Confer-
ence on Automated Planning and Scheduling (ICAPS).

[Vazirani 2001] Vazirani, V. V. 2001. Approximation algo-
rithms. Springer.

[Warburton 1987] Warburton, A. 1987. Approximation of
pareto optima in multiple-objective, shortest-path problems.
Operations research 35(1):70–79.

92

An Atom-Centric Perspective on Stubborn Sets

Gabriele Röger, Malte Helmert, Jendrik Seipp, Silvan Sievers
University of Basel
Basel, Switzerland

{gabriele.roeger,malte.helmert,jendrik.seipp,silvan.sievers}@unibas.ch

Abstract

Stubborn sets are an optimality-preserving pruning technique
for factored state-space search. Their applicability in classi-
cal planning is limited by their computational overhead. We
describe a new algorithm for computing stubborn sets that is
based on the state variables of the state space, while previ-
ous algorithms are based on its actions. Typical factored state
spaces tend to have far fewer state variables than actions, and
therefore our new algorithm is much more efficient than the
previous state of the art, making stubborn sets a viable tech-
nique in many cases where they previously were not.

An archival version of this paper has been published at SoCS 2020
(Röger et al. 2020a).

Introduction
Heuristic search is a common approach for classical plan-
ning. Especially in optimal planning, the search suffers from
a state explosion problem that occurs if states can be reached
by applying the same actions in different orders. Even with
close-to-perfect heuristics, the number of nodes that must
be explored by pure heuristic search (only relying on node
expansions and an admissible heuristic) can grow exponen-
tially in the size of the task (Helmert and Röger 2008).
Hence, search algorithms are often enhanced with pruning
techniques that reduce the size of the explored state space.

One family of such pruning techniques is partial order
reduction, which allows the search to ignore some paths
to the goal by not considering all permutations of the ac-
tions. Intuitively, the idea is to avoid interleaving the so-
lution of independent subproblems but instead solving one
subproblem after the other. Partial order reduction was orig-
inally introduced by Valmari (1989) for Petri nets in the con-
text of computer-aided verification. Alkhazraji et al. (2012)
transferred his concept of strong stubborn sets to classi-
cal planning. Later on, Wehrle and Helmert (2014) gener-
alized them with more fine-grained criteria that are still suf-
ficient for optimality-preserving pruning. With suitable de-
cisions at certain choice points, strong stubborn sets strictly
dominate the expansion core method (Chen and Yao 2009;
Wehrle and Helmert 2012), a partial order reduction tech-
nique introduced earlier for planning (Wehrle et al. 2013).

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A stubborn set for a state is a set of actions such that all
other actions can safely be ignored at its expansion. The con-
cept is inherently action-centric and so are the underlying
definitions and algorithms. In this paper, we adopt a more
atom-centric perspective on their computation, which gives
rise to a significantly faster algorithm. As an additional en-
hancement, we also contribute a new atom selection strategy,
which has a tendency to produce smaller stubborn sets and
leads to more pruning in our experiments.

Background
We consider SAS+ planning tasks (Bäckström and Nebel
1995), extended with non-negative action costs. A task is
defined over a finite set V of variables, each associated with
a finite domainD(v). A pair (v, d) with v ∈ V and d ∈ D(v)
is called an atomic proposition, or atom for short, and we
use P to denote the set of all atomic propositions (over an
implicit set of variables V). We call all atoms (v, d′) with
d′ ∈ Dv \ {d} the siblings of atom (v, d).

A partial state s maps every variable v from a set
vars(s) ⊆ V to a value s[v] from D(v). If vars(s) = V ,
we call s a state. When it is suitable, we also consider a par-
tial state s as the set of atoms {(v, s[v]) | v ∈ vars(s)} and
write (v, d) ∈ s for s[v] = d.

A task is given as a tuple Π = 〈V,A, sI, sG〉 where V is
the finite set of variables, A a finite set of actions, sI a state
called the initial state and sG a partial state called the goal.
Each action a ∈ A is defined by its cost c(a) ∈ R+

0 and
two partial states pre(a) and eff(a) called its precondition
and effect. If (v, d) ∈ eff(a) for some atom (v, d), we say
that action a achieves (v, d). If (v, d) ∈ pre(a), we say a
depends on (v, d). W.l.o.g. we require that no action both
depends on and achieves the same atom.

An action a is applicable in state s if pre(a) ⊆ s. Then
the successor state s′ is given as s′[v] = eff(a)[v] for all
v ∈ vars(eff(a)) and s′[v] = s[v] for all other variables.
Slightly abusing notation, we write a(s) for the successor
state resulting from applying action a in state s.

A goal state is a state s with sG ⊆ s. A plan is a sequence
of actions that are subsequently applicable in sI and where
the resulting state is a goal state. The cost of a plan is the
sum of the individual action costs. A plan is optimal if it has
minimal cost among all plans. Wehrle and Helmert (2014)
pointed out that for correct pruning it is sometimes impor-

93

tant to only consider so-called strongly optimal plans, which
are optimal plans with a minimal number of 0-cost actions
among all optimal plans. If there is no plan for a task, the
task is unsolvable. The aim of optimal planning is to find an
optimal plan or to prove that the task is unsolvable.

Strong stubborn sets aim to prune permuted plans from
the search. On a lower level, the permutation of actions is
related to the following notion of interference.
Definition 1 (interference, Wehrle and Helmert 2014). Let
a1 and a2 be actions and let s be a state of a planning task
Π. We say that a1 and a2 interfere in s if they are both ap-
plicable in s, and
• a1 disables a2, i.e., a2 is not applicable in a1(s), or
• a2 disables a1, or
• a1 and a2 conflict in s, i.e., a2(a1(s)) and a1(a2(s)) are

both defined but differ.

If two actions that are both applicable in a state s do not
interfere in s, we can apply them in any order and will in
both cases reach the same state.

The second relevant notion are necessary enabling sets.
These are related to disjunctive action landmarks (Helmert
and Domshlak 2009), which are sets of actions of which at
least one must be applied in every plan. Similarly, necessary
enabling sets are sets of actions of which at least one must
be applied before a given action is applied in every action
sequence from a given set.
Definition 2 (necessary enabling set, Wehrle and Helmert
2014). Let Π be a planning task, let a be one of its actions,
and let Seq be a set of action sequences applicable in the
initial state of Π.

A necessary enabling set for a and Seq is a set N of ac-
tions such that every action sequence in Seq which includes
a as one of its actions also includes some action a′ ∈ N
before the first occurrence of a.

For this paper, we build on the generalized definition of
strong stubborn sets by Wehrle and Helmert (2014) but for
clarity we omit the concept of envelopes, which permit to
safely ignore some actions. Empirically, the known meth-
ods for exploiting envelopes did not provide much bene-
fit (Wehrle and Helmert 2014), and they can easily be re-
integrated in our work.
Definition 3 (strong stubborn set). Let s be a state of plan-
ning task Π = 〈V,A, sI, sG〉 and let Πs = 〈V,A, s, sG〉.
A strong stubborn set in s is a set A ⊆ A of actions that
satisfies the following conditions.

If Πs is unsolvable or s is a goal state, then every A is a
strong stubborn set. Otherwise, let Opt be the set of strongly
optimal plans for Πs and let SOpt be the set of states that are
visited by at least one plan in Opt. The following conditions
must be true for A to be a strong stubborn set.
C1 A contains at least one action from at least one plan

from Opt.
C2 For every a ∈ A that is not applicable in s, A contains

a necessary enabling set for a and Opt.
C3 For every a ∈ A applicable in s, A contains all actions

from A that interfere with a in any state s′ ∈ SOpt.

Wehrle and Helmert (2014) showed that the cost of an op-
timal solution does not change if for every state in the state
space we only preserve the outgoing transitions that corre-
spond to an action from a strong stubborn set. Put differently,
in each state visited during the search we can prune all ac-
tions that are not in the strong stubborn set, while preserving
the guarantee to find optimal solutions.

In practice, it is impossible to efficiently determine a min-
imal strong stubborn set because we do not know Opt and
SOpt. However, if C2 and C3 hold for an overapproximation
of these sets, they must also hold for the required sets.

Since the set SOpt cannot be efficiently computed, for C3
it is common to use a state-independent overapproximation
of interference. Alkhazraji et al. (2012) and Wehrle et al.
(2013) use a purely syntactic criterion: actions a and a′

potentially conflict in any state if there is a variable v ∈
vars(eff(a)) ∩ vars(eff(a′)) such that eff(a)[v] 6= eff(a′)[v].
Action a potentially disables a′ if there is a variable v ∈
vars(eff(a))∩vars(pre(a′)) such that eff(a)[v] 6= pre(a′)[v].
Two actions a and a′ then potentially interfere if they po-
tentially conflict, a potentially disables a′, or a′ potentially
disables a. With this definition, two actions potentially inter-
fere if there exists some state in which they interfere.

Wehrle and Helmert (2014) strengthen this approach with
mutex information: if the preconditions of two actions are
mutually exclusive, they cannot both be applicable in a
reachable state, so they never interfere in these states.

It is also already intractable to determine whether a given
action is an element of Opt. We can still determine a neces-
sary enabling set for a and Opt by collecting all achievers of
an atom that is not true in s but which a depends on. While
this set is not minimal, it can be computed efficiently and in-
deed this is the strategy employed by previous algorithms for
constructing strong stubborn sets in planning. Similarly, C1
is satisfied by picking an atom from the goal that is not true
in s and including all actions that achieve this atom, hence
including at least one action from every plan.

Existing Action-Centric Algorithm
To satisfy the properties of strong stubborn sets, previous
algorithms start from an action set that satisfies C1 and suc-
cessively add actions to satisfy C2 and C3 until a fixed point
is reached. We will adopt the same high-level approach but
will differ from this action-centric approach on a lower level.

Before we go into details, we first introduce and analyze
the action-centric algorithm. Previously published pseudo-
code (Alkhazraji et al. 2012; Al-Khazraji 2017) does not
have the level of detail we require for our discussion, but an
implementation by Wehrle and Helmert (2014) is available
as part of Fast Downward (Helmert 2006). We extracted the
pseudo-code as Algorithm 1 from Fast Downward 19.12.1

The algorithm collects all actions to be included in the
strong stubborn set for a non-goal state s in a collection stub-
born. The actions for which it still needs to ensure C2 and
C3 are tracked in a collection queue. To avoid clutter in the
pseudo-code, we assume that stubborn, queue and the com-
ponents of the task are globally accessible.

1http://www.fast-downward.org/Releases/19.12

94

Algorithm 1 Action-centric algorithm
1: function COMPUTESTUBBORNSET(s)
2: stubborn = empty collection
3: queue= empty collection

4: procedure MARKASSTUBBORN(a)
5: if a /∈ stubborn then
6: stubborn.add(a)
7: queue.add(a)

8: procedure ENQUEUEINTERFERERS(a)
9: for a′ ∈ A potentially interfering with a do

10: MARKASSTUBBORN(a′)

11: procedure ENQUEUEACHIEVERS(atom)
12: for a ∈ A with atom ∈ eff(a) do
13: MARKASSTUBBORN(a)

14: atom = some unsatisfied goal atom
15: ENQUEUEACHIEVERS(atom)
16: while queue is not empty do
17: a = queue.pop() . any element
18: if a is applicable in s then
19: ENQUEUEINTERFERERS(a)
20: else
21: . Enqueue a necessary enabling set for a
22: atom = some unsatisfied atom from pre(a)
23: ENQUEUEACHIEVERS(atom)
24: return stubborn

The overall process for generating a strong stubborn set
starts with collecting a set of actions to satisfy C1 (lines 14–
15). As long as the other conditions are not yet guaranteed
for some action a (lines 16–17), it includes further actions to
ensure C2 (lines 20–23) or C3 (lines 18–19), depending on
whether a is applicable in state s or not.

Whenever an action should be included in the result
(marked as stubborn), the algorithm checks if it has already
been included previously and if not includes it and enqueues
it for further processing into queue (lines 4–7).

As mentioned above, necessary enabling sets are gener-
ated by starting from an atom and collecting all actions that
achieve it (lines 11–13).

Complexity Analysis
In the complexity analysis, we use pmax for the maximal size
of a partial state occurring as precondition or effect of any
action. In typical planning tasks, this is quite a low number.
In general, it can be bounded by the number |V| of variables.

For an efficient implementation of Algorithm 1, we as-
sume that all state-independent information is precomputed
and stored once for every task (i.e., only once for the entire
search, not once for every node that is expanded). This af-
fects the set of achievers for every atom (used in line 12) and
the interference relation (used in line 9).

The achievers can be determined by one pass over all ac-
tions that scans the effect and registers the action accord-

ingly. This requires time O(|A|pmax) and the result can be
stored in space O(|P||A|).

Exploiting pre-sorted action preconditions and effects, the
interference relation can be computed in O(|A|2pmax), rang-
ing over all pairs of actions and syntactically testing their
potential interference in time O(pmax). With no influence on
Big-O, we can halve the effort by exploiting that the rela-
tion is symmetric. The result can be stored in O(|A|2). Fast
Downward uses a lazy implementation that only performs
the computation for an action once it is required.

We now analyze the time complexity of a single call
of COMPUTESTUBBORNSET. With suitable data structures
for stubborn (e.g., a bitset) and queue (e.g., an array-based
stack), MARKASSTUBBORN takes constant time. Then EN-
QUEUEINTERFERERS takes time O(|A|) because there are
at most |A| interfering actions which have been precom-
puted. Analogously, ENQUEUEACHIEVERS runs in O(|A|).

In lines 14 and 22 the algorithm selects an unsatisfied
atom from a partial state. Wehrle and Helmert (2014) dis-
cussed several such atom selection strategies—taken from
the literature and new—with different time requirements. To
stay general, we account for them with O(t), resulting in
time O(t + |A|) for lines 14–15.

Each iteration of the while loop takes time O(pmax) for
testing applicability plus O(t+ |A|) accounting for the more
expensive else-case of the if statement. As every action is
added to queue at most once, the overall runtime of COM-
PUTESTUBBORNSET is O(|A|(pmax + t + |A|)). The space
complexity for stubborn and queue is O(|A|).

New Atom-Centric Algorithm
The original fixed-point computation from Algorithm 1
tracks (in queue) actions that have already been included in
the stubborn set but for which it is not yet sure that C2 and
C3 are satisfied.

We now reconsider the overapproximation of the inter-
ference relation and necessary enabling sets and what this
implies for the computation of strong stubborn sets. We be-
gin with potential interference. Using the notion of sibling
atoms, we can paraphrase the set of actions that potentially
interfere with action a: it consists of all actions a′ s.t.

• a′ achieves a sibling of an atom in pre(a)
(a′ potentially disables a), or

• a′ depends on a sibling of an atom in eff(a)
(a potentially disables a′), or

• a′ achieves a sibling of an atom in eff(a)
(a and a′ potentially conflict).

Observation 1: We can characterize these actions by only
considering the occurrence of individual atoms in their pre-
condition or effect.

Observation 2: The same is true for the actions in the
necessary enabling set.

Observation 3: The order in which the actions are pro-
cessed is not important for the fixed-point computation.2

2The order can influence dynamic atom selection strategies, but
we are not aware of any work that aims for a specific order.

95

Algorithm 2 Atom-centric algorithm

1: function COMPUTESTUBBORNSET(s)
2: stubborn = empty collection
3: todo achievers, todo dependers= ∅
4: seen for achievers, seen for dependers= ∅

5: procedure HANDLEACTION(a, s)
6: if a /∈ stubborn then
7: stubborn.add(a)
8: if a is applicable in s then
9: ENQUEUEINTERFERERS(a)

10: else
11: . Enqueue a necessary enabling set for a
12: atom = an unsatisfied atom from pre(a)
13: ENQUEUEACHIEVERS(atom)

14: procedure ENQUEUEACHIEVERS(atom)
15: if atom /∈ seen for achievers then
16: todo achievers.add(atom)
17: seen for achievers.add(atom)

18: procedure ENQUEUEDEPENDERS(atom)
19: if atom /∈ seen for dependers then
20: todo dependers.add(atom)
21: seen for dependers.add(atom)

22: procedure ENQUEUEINTERFERERS(a)
23: for atom ∈ pre(a) do
24: for all siblings atom′ of atom do
25: ENQUEUEACHIEVERS(atom′)
26: for atom ∈ eff(a) do
27: for all siblings atom′ of atom do
28: ENQUEUEACHIEVERS(atom′)
29: ENQUEUEDEPENDERS(atom′)

30: atom = some unsatisfied goal atom
31: ENQUEUEACHIEVERS(atom)
32: while todo achievers is not empty or
33: todo dependers is not empty do
34: if todo achievers is not empty then
35: atom = todo achievers.pop()
36: for a ∈ A with atom ∈ eff(a) do
37: HANDLEACTION(a, s)
38: else
39: atom = todo dependers.pop()
40: for a ∈ A with atom ∈ pre(a) do
41: HANDLEACTION(a, s)
42: return stubborn

Based on these three observations, we propose the atom-
centric Algorithm 2. The core idea is to achieve synergy ef-
fects by deferring the inclusion of actions in the stubborn
set, instead tracking the atoms that characterize them.

We use two collections for this purpose: todo achievers
contains atoms for which all achievers should get included in
the stubborn set, todo dependers contains atoms for which
all actions that depend on the atom should get included.

We ensure that every atom gets added to each of
these collections at most once by tracking in sets
seen for achievers and seen for dependers what has already
been included earlier. ENQUEUEACHIEVERS demonstrates
this for todo achievers.

ENQUEUEINTERFERERS and ENQUEUEACHIEVERS
play exactly the same role as in the action-centric algo-
rithm, with the only difference that they do not directly
mark actions stubborn but instead mark the corresponding
atoms for further processing. This directly translates to the
initialization of the algorithm in lines 30 and 31.

The main loop (lines 33–41) processes the atoms from
todo achievers and todo dependers, initiating the previously
deferred handling of actions. HANDLEACTION adds the ac-
tion to the stubborn set and triggers the later inclusion of
interfering actions and necessary enabling sets to satisfy C2
and C3.

Theorem 1. Function COMPUTESTUBBORNSET(s) re-
turns a strong stubborn set for s.

Proof sketch. Including all achievers of an unsatisfied goal
atom ensures C1. Whenever set stubborn is extended in

HANDLEACTION, this procedure initiates the inclusion of
actions to satisfy C2 and C3. The overall fixed-point compu-
tation guarantees that these are indeed included before ter-
mination.

Complexity Analysis
For the analysis, we use pmax as before and dmax for the max-
imal size of all variable domains.

An efficient implementation of the algorithm precom-
putes the achievers and dependers of each atom (used in
lines 36 and 40) once for the entire search. As discussed
in the analysis of the action-centric algorithm, this requires
time O(|A|pmax) and space O(|P||A|) for storing the result.
In contrast to the action-centric algorithm, we do not need to
compute and store the interference relation.

With suitable data structures, ENQUEUEACHIEVERS and
ENQUEUEDEPENDERS take constant amortized time. As
each outer loop of ENQUEUEINTERFERERS iterates over at
most pmax atoms and the inner loop over all but one atom for
each of these variables, the procedure runs in O(pmaxdmax).
Again using t for the variable selection time, it is then easy
to see that HANDLEACTION runs in time O(pmaxdmax + t)
for actions that are not yet contained in stubborn and O(1)
for actions already contained in stubborn.

For the fixed-point iteration, each atom can be inserted
into todo achievers at most once and into todo dependers at
most once, causing runtime O(|P|) for all parts of the fixed-
point loop except the inner loops (lines 36–37 and 40–41).

The runtime for the inner loops can be bounded by the
total time spent inside HANDLEACTION. Every action can

96

time Action-centric Atom-centric

Precomp. O(|A|2pmax) O(|A|pmax)
Per node O(|A|2 + |A|(pmax + t)) O(|A|(pmaxdmax + t) + |P|)

space Action-centric Atom-centric

Precomp. O(|A|2 + |P||A|) O(|P||A|)
Per node O(|A|) O(|A|+ |P|)

Table 1: Overview of complexity results.

only be added to stubborn once, giving an upper bound of
O(|A|(pmaxdmax + t)) for the calls to HANDLEACTION that
add actions to the stubborn set. Each other call takes con-
stant time, and we can bound the total number of such calls
by O(|A||pmax|): across the execution of the algorithm, ev-
ery action is considered in lines 36–37 at most once for each
of its effects and in lines 40–41 at most once for each of its
preconditions. Hence, the overall runtime of COMPUTES-
TUBBORN is O(|A|(pmaxdmax + t)) + |P|.

The space complexity for todo achievers,
todo dependers, seen for achievers and seen for dependers
is O(|P|), for stubborn it is O(|A|).

Table 1 shows an overview of all complexity results. The
new algorithm clearly dominates the old one in the time and
space requirements for the precomputation. For the actual
computation of stubborn sets, the new algorithm needs more
space, but only linearly in the number of atoms. In the time
requirements the algorithms exhibit a very different profile,
which lets us expect that the new atom-centric algorithm
works better if variable domains are not too large and the
task has many more actions than atoms.

Enhancements
In this section, we discuss two possible enhancements of Al-
gorithm 2. The first one is based on the observation that the
algorithm frequently enqueues all siblings of an atom, the
second one is a new atom selection strategy.

Shortcut Handling of all Siblings
Since we frequently add all siblings of an atom to one of
the queues, we can expect a number of duplicates. Avoiding
this overhead should be particularly beneficial if variable do-
mains are large.

From the perspective of a variable, we can track some
compact (incomplete) information on what has already been
enqueued, for example in todo achievers. For this purpose,
we use a datastructure marked achieved that stores for each
variable v one of the following values:

d ∈ D(v) representing that all siblings of (v, d) have been
enqueued,

> representing that all atoms for this variable have been en-
queued, or

⊥ representing that we do not have any such information.

The information is incomplete in the sense that we do not
track the inclusion of individual atoms, so the value can for
example be ⊥ or some d ∈ D(v) although we have already

seen all atoms for the variable. To update and exploit the
stored information, we do not simply enqueue all siblings of
atom in lines 24–25 and 27–28 of Algorithm 2 but proceed
instead as follows:

1: (v, d) = atom
2: if marked achieved[v] = ⊥ then
3: for all siblings a of atom do
4: ENQUEUEACHIEVERS(a)
5: marked achieved[v] = d
6: else if marked achieved[v] = d′ /∈ {d,>} then
7: ENQUEUEACHIEVERS((v, d′))
8: marked achieved[v] = >

If we do not have sufficient information, we add all sib-
lings of atom as before, but remember that all values apart
from the one from atom have been added (lines 2–5). If we
know that all atoms (value >) or all siblings of atom (value
d) have already been added, we do not have to do anything.
Otherwise, we add the only missing sibling (whose value is
stored in marked achieved[v]) and remember that we now
have added all atoms (lines 6–8).

We proceed analogously when enqueueing all siblings of
an atom with ENQUEUEDEPENDERS in lines 27 and 29.

Atom Selection Strategy
If an action from the stubborn set is inapplicable, we need
to choose an unsatisfied atom from the action precondition
as seed for the inclusion of a necessary enabling set. Wehrle
and Helmert (2014) already discussed and evaluated several
strategies for this choice point.

We want to propose a new strategy, called quick skip. It
is easy to see that if the chosen atom has already been seen
(included in seen for achievers), the algorithm does not en-
queue anything within ENQUEUEACHIEVERS. This saves
computational effort and—maybe even more importantly—
it can potentially lead to more pruning because we do not
unnecessarily grow the stubborn set. Therefore, in line 12 of
Algorithm 2 the quick skip strategy chooses some atom from
pre(a) ∩ seen for achievers whenever this set is not empty.

This selection strategy is related to the static small and
dynamic small strategies by Wehrle and Helmert, both of
which aim to keep the resulting stubborn set small. The static
strategy prefers variables that appear in the effects of fewer
actions, the dynamic one prefers atoms with a minimal num-
ber of achieving actions that have not yet been included in
the stubborn set. Our proposed strategy is closer to dynamic
small but less specific. If there is an atom for which all
achieving actions have already been scheduled for inclusion,
the strategies are equal. Otherwise, our strategy can be com-
bined with any other strategy, leaving another choice point.

Experimental Evaluation
We implemented the atom-centric algorithm on top of Fast
Downward 19.12, which already contains an implementa-
tion of the action-centric algorithm (called “simple stub-
born sets” there). For the evaluation, we use the benchmarks
of all optimal tracks of all International Planning Compe-
titions from 1998 to 2018, amounting to 1827 tasks from
65 domains. Experiments were run on Intel Xeon Silver

97

101 102 103 104 105 106

101

102

103

104

Number of actions

N
u
m
b
er

of
at
o
m
s

Figure 1: Number of atoms vs. actions for all tasks in the
benchmark set. Each mark represents one task. Dashed di-
agonals show factors 2, 5, 10, and 100.

4114 CPUs using Downward Lab (Seipp et al. 2017). Each
planner run is limited to 1800 seconds and 3.5 GiB. The
benchmarks, code and experimental data are published on-
line (Röger et al. 2020b).

Before we compare different algorithms and configura-
tions, we evaluate whether the different time complexity of
the atom-centric algorithm is promising at all. For this pur-
pose, in Figure 1, we plot the number of atoms against the
number of actions in the SAS+ planning tasks produced by
Fast Downward. We see that the actions frequently outnum-
ber the atoms, often by several orders of magnitude, so the
trade-off looks promising indeed.

Action- vs. Atom-Centric Algorithm
In the first experiment, we examine how the plain action-
centric and atom-centric algorithms compare when they
compute the same information. Towards this end, we do not
use the mutex-based strengthening of interference and use
the same strategy for choosing unsatisfied atoms for both al-
gorithms, namely always picking the first unsatisfied atom
according to the fixed variable ordering of Fast Downward.

Blind Search With blind search, node expansions are ex-
tremely fast, so the relative overhead of computing stub-
born sets for each expansion is high. For this reason, we can
only expect to benefit from partial order reduction if it leads
to significant pruning. On our benchmark set, blind search
without pruning solves 710 instances, whereas coverage in-
creases by 26 instances with the atom-centric algorithm (cf.
left part of Table 2). Interestingly, computing the same in-
formation with the action-centric algorithm leads to a sig-
nificant coverage decline to 680 instances. As expected, in
both cases the total number of expansions is the same and
decreases by 17.9% compared to no pruning across all tasks
solved by all three configurations.

A closer look at the results per domain reveals that even
with our more efficient algorithm, using strong stubborn set
pruning is not always beneficial, losing 1–3 tasks in 11 do-
mains and even 5 instances in the freecell domain. The posi-
tive net benefit stems from the two parcprinter domains with
a coverage increase of 20 and 14 and the two woodworking
domains with an increase of 8 and 7 tasks. So it seems that

blind LM-cut SCP

ba
se

ac
tio

n

at
om

ba
se

ac
tio

n

at
om

ba
se

ac
tio

n

at
om

airport (50) 22 21 21 28 28 28 24 24 24
data-network (20) 7 6 7 12 12 12 14 13 14
freecell (80) 20 9 15 15 15 15 68 49 61
hiking (20) 11 8 11 9 9 9 14 11 13
miconic (150) 55 50 55 141 141 141 143 144 144
mprime (35) 19 18 19 22 22 22 31 30 31
nomystery (20) 8 7 8 15 14 15 20 20 20
openstacks-08 (30) 22 20 22 22 20 22 22 20 22
openstacks-11 (20) 17 15 17 17 15 17 17 15 17
org.-synth.-split (20) 10 9 9 16 15 15 10 9 9
parcprinter-08 (30) 10 30 30 19 30 30 19 30 30
parcprinter-11 (20) 6 20 20 14 20 20 15 20 20
parking-11 (20) 0 0 0 3 3 3 7 4 7
parking-14 (20) 0 0 0 4 3 4 6 4 6
pegsol-08 (30) 27 27 27 29 28 28 30 30 30
pegsol-11 (20) 17 17 17 19 18 18 20 20 20
petri-net-align. (20) 4 2 4 9 9 9 0 0 0
pipesworld-not. (50) 17 14 16 18 18 18 24 24 24
pipesworld-t. (50) 12 8 11 12 12 12 17 12 16
rovers (40) 6 7 7 9 10 10 8 9 9
satellite (36) 6 6 6 7 12 12 7 8 9
scanalyzer-08 (30) 12 8 9 16 14 15 18 16 18
scanalyzer-11 (20) 9 5 6 13 11 12 15 13 15
snake (20) 11 4 9 7 6 7 13 7 11
spider (20) 11 6 9 11 11 11 16 13 15
termes (20) 9 6 9 6 5 6 13 11 13
tetris (17) 9 6 7 6 6 5 11 9 10
tidybot-11 (20) 13 5 12 14 14 14 15 13 14
tidybot-14 (20) 6 0 4 9 8 8 10 5 9
transport-11 (20) 6 6 6 6 6 6 13 12 13
transport-14 (20) 7 6 7 6 6 6 9 8 8
trucks (30) 6 5 6 10 10 10 12 12 12
woodworking-08 (30) 8 16 16 18 27 27 26 30 30
woodworking-11 (20) 3 10 10 12 19 19 19 20 20
zenotravel (20) 8 7 8 13 13 13 13 13 13

sum (1088) 414 384 440 587 610 619 719 678 727
other domains (739) 296 296 296 373 373 373 417 417 417

total (1827) 710 680 736 960 983 992 1136 1095 1144

Table 2: Coverage of A∗ with the blind (left), LM-cut (mid-
dle), and SCP (right) heuristics, comparing vanilla search
(base) with the addition of plain action-centric (action) and
atom-centric (atom) pruning. We highlight maximum cover-
age separately for each heuristic.

these domains are especially suitable for partial order reduc-
tion, whereas in other domains the additional overhead does
not pay off. Indeed, in woodworking the goal is to process
a set of work pieces, each basically corresponding to an in-
dependent subtask. In parcprinter, the aim is to print a set
of pages using several components of an involved printing
system. The actions for the different pages can often be ar-
bitrarily interleaved, which can be avoided with partial order
reduction.

98

10−4 10−2 100 102 104

10−4

10−2

100

102

104

Action-centric

A
to
m
-c
en
tr
ic

Figure 2: Comparison of pruning time (within an A∗ search
with the SCP heuristic) of the action-centric and the atom-
centric algorithm for tasks solved by both approaches. Num-
bers are in seconds and specify the total time spent comput-
ing stubborn sets over all node expansions.

LM-Cut Wehrle and Helmert (2014) used A∗ search with
the LM-Cut heuristic (Helmert and Domshlak 2009) for
their evaluation. In this setting, stubborn set pruning is use-
ful overall (cf. middle part of Table 2). 960 tasks are solved
without pruning, 983 with the action-centric algorithm and
992 with the atom-centric computation. In a per-domain
comparison to the baseline without pruning we never lose
more than one task, but coverage increases in six domains.
However, this is again most prominent in the parcprinter
(+11 and +6) and the woodworking (+9 and +7) domains.
The advantage in comparison to the action-centric algorithm
stems from eight domains. Conversely, the action-centric
variant only solves one more instance in tetris.

Saturated Cost Partitioning We also conducted an anal-
ogous experiment for A∗ with a saturated cost partitioning
(SCP) heuristic (Seipp, Keller, and Helmert 2020) over pat-
tern databases (Edelkamp 2001) and Cartesian abstractions
(Seipp and Helmert 2018). The pattern databases were gen-
erated systematically up to pattern size 2 and via hill climb-
ing (Haslum et al. 2007). This SCP heuristic yields state-of-
the-art performance for optimal classical planning, because
it is both accurate and very fast to evaluate (much faster than
LM-cut, for example).

Similarly to the results for blind search, using the action-
centric algorithm decreases coverage (cf. right part of Ta-
ble 2). In contrast to the results for LM-cut, using the atom-
centric algorithm increases the total coverage by only 2
tasks, with a decrease by 1 task in 8 domains, by 2 in snake
and even by 7 in freecell. However, if we compare the action-
centric against the atom-centric algorithm, we see a clear ad-
vantage of the new one in 19 domains, while the opposite is
never the case.

Overall As both stubborn set algorithms compute the
same information, the difference in performance must be at-
tributed to the different computational overhead. Figure 2
compares the total time spent for computing stubborn sets

ds ss FD qs

+sib +sib +sib +sib

airport (50) 25 25 24 24 24 24 24 24
data-network (20) 13 13 14 14 14 14 14 14
freecell (80) 42 43 60 60 61 61 59 60
ged (20) 15 15 19 19 19 19 19 19
hiking (20) 11 11 12 12 13 13 12 12
logistics98 (35) 12 12 12 12 12 12 13 13
miconic (150) 144 143 144 144 144 144 143 144
mprime (35) 30 30 30 30 31 30 30 30
mystery (30) 18 18 19 19 19 19 19 19
openstacks-08 (30) 20 20 22 22 22 22 23 23
openstacks-11 (20) 15 15 17 17 17 17 18 18
openstacks-14 (20) 3 3 3 3 3 3 4 4
parcprinter-08 (30) 30 30 28 28 30 30 30 30
parcprinter-11 (20) 20 20 18 18 20 20 20 20
parking-11 (20) 4 4 7 7 7 7 7 7
parking-14 (20) 4 4 6 6 6 6 6 6
pipesworld-not. (50) 21 21 24 24 24 24 24 24
pipesworld-t. (50) 11 11 13 13 16 16 14 16
rovers (40) 11 11 10 10 9 9 9 9
scanalyzer-08 (30) 15 15 18 18 18 18 18 18
scanalyzer-11 (20) 12 12 15 15 15 15 15 15
snake (20) 4 4 10 10 11 11 10 11
spider (20) 12 12 14 14 15 15 15 15
termes (20) 10 10 12 12 13 13 13 13
tetris (17) 8 8 10 10 10 10 10 10
tidybot-11 (20) 12 13 14 14 14 14 14 14
tidybot-14 (20) 4 4 8 8 9 9 9 9
transport (20) 10 10 13 13 13 13 13 13

sum (927) 536 537 596 596 609 608 605 610
other domains (900) 535 535 535 535 535 535 535 535

total (1827) 1071 1072 1131 1131 1144 1143 1140 1145

Table 3: Coverage of A∗ with the SCP heuristic, comparing
atom selection strategies ds, ss, FD, and qs, and the combi-
nation with shortcut handling of siblings (sib).

for each task. This data stems from the experiment with the
SCP heuristic; the plots for the other configurations (blind
and LM-Cut) look similar. We see that with the atom-centric
algorithm we can obtain the same pruning power much
faster, often by more than an order of magnitude.

Enhancements to the Action-Centric Algorithm
In the second experiment, we evaluate the two enhancements
to the atom-centric algorithm. The shortcut handling of sib-
lings (sib) does not change the behavior of the algorithm
and should hence only have an impact on runtime. The new
atom selection strategy quick skip (qs) should have a ten-
dency to produce smaller stubborn sets, so we would also
hope for more pruning. We compare the qs strategy to the
default strategy (FD) and the two strategies dynamic small
(ds) and static small (ss) by Wehrle and Helmert (2014), all
of them with and without the sib enhancement.

Table 3 shows that with the SCP heuristic, the dynamic
small and static small strategies solve many fewer tasks than

99

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

Atom-centric FD

A
to
m
-c
en
tr
ic

qs

elevators

logistics

movie

mystery

openstacks

parcprinter
rovers

satellite

woodworking

other domains

Figure 3: Comparison of pruning ratio of the atom-centric
algorithm with strategies FD and qs, using A∗ with SCP.

the Fast Downward and quick skip strategies. While the Fast
Downward strategy solves 4 more tasks in total than quick
skip, quick skip is better than Fast Downward with the LM-
cut and blind heuristics (+3 and +2, not shown in Table 3).
The shortcut handling of siblings only has a very mild im-
pact on coverage, sometimes negative, sometimes positive,
except for the new strategy quick skip where it is exclusively
beneficial (except for transport-14 with the blind heuris-
tic, not shown in Table 3). The combination of quick skip
with shortcut handling of siblings achieves the highest total
coverage with all three heuristics, and dominates the other
strategies also in a per-domain comparison, except for 7 do-
mains when using blind search, 3 domains when using A∗

with LM-cut, and 5 domains when using A∗ with SCP.
To analyze the pruning ratio of the different methods, we

run the search with pruning and accumulate the number of
successors of all expanded states as nall and sum up the size
of the corresponding stubborn sets as ngen. The pruning ra-
tio is then defined as 1− ngen/nall, giving values between 0
and 1, where 0 represents no pruning and 1 would mean that
all successors were pruned. Figure 3 plots the pruning ratio
of the atom-centric algorithm with the FD strategy (the best
previous selection strategy according to Table 3) to the new
quick skip strategy (both with SCP), highlighting domains
with larger differences. We observe consistent positive im-
pact on the pruning power, which is particularly pronounced
in the logistics and woodworking domains.

Comparison to the State of the Art
In the third experiment, we compare our best configuration
(atom-centric algorithm with qs and sib) to the configura-
tion reported as state of the art for computing strong stub-
born sets by Wehrle and Helmert (2014), namely “SSS-EC
full/mutex” (EC), which computes stubborn sets in a way
that dominates the expansion core method (Chen and Yao
2009) and enhances action interference with mutexes. With
our best configuration, total coverage increases significantly
for all three heuristics, in particular for the two faster-to-
compute ones (+51 with blind search, +9 with LM-Cut, +38
with SCP). A deeper analysis reveals that our configuration

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

EC

b
es
t

10−4 10−2 100 102 104

10−4

10−2

100

102

104

EC

b
es
t

Figure 4: Comparison of pruning ratio (left) and pruning
time (right) of EC vs. our best configuration with SCP.

is on-par with respect to pruning power, but requires a much
lower computation time. To illustrate this, we compare the
pruning ratio and pruning time for A∗ with SCP in Figure 4.
For the other heuristics the results look qualitatively similar.

Since not all domains are equally suited for partial-order
reduction, many recent IPC planners (e.g., Alkhazraji et al.
2014) disable pruning if after 1000 expanded states the prun-
ing ratio is at most 20%. We evaluated the impact of this
approach on our best configuration (atom-centric algorithm
with both enhancements) and on the previous state of the art
(EC). The method has only a mild impact on our algorithm:
overall, coverage increases, but in some domains fewer tasks
are solved. This is very different for the slower EC method,
which greatly benefits from this approach, bringing it almost
on par with our configuration.

Discussion and Future Work

We proposed an atom-centric algorithm that computes the
same stubborn sets as an earlier action-centric algorithm
with a different profile time and space complexity profile.
The new algorithm requires less space, and we saw that it
is much faster on common planning benchmarks. One lim-
itation of our algorithm is that it is no longer possible to
enhance the interference relation with mutex information.
However, already without any enhancements, our algorithm
outperforms the best previous algorithm (EC), which makes
use of such mutex information (1145 vs. 1107 solved tasks
with A∗ + SCP). The new atom selection strategy quick skip
does not only further speed up the computation but also leads
to smaller stubborn sets and thus to more pruning.

In classical planning, stubborn sets have not only been
used for state-space search but have also been adapted for
fork-decoupled search (Gnad, Hoffmann, and Wehrle 2019).
Beyond the classical planning fragment, they have been ap-
plied to fully observable non-deterministic planning (Win-
terer et al. 2017), planning with resources (Wilhelm, Stein-
metz, and Hoffmann 2018) as well as for goal recognition
design (Keren, Gal, and Karpas 2018). In future work, it
would be interesting to examine whether the general idea of
an atom-centric perspective can also be beneficially applied
in these settings.

100

Acknowledgments
We have received funding for this work from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment no. 817639).

References
Al-Khazraji, Y. 2017. Analysis of Partial Order Reduc-
tion Techniques for Automated Planning. Ph.D. Disserta-
tion, University of Freiburg.
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert, M.
2012. A stubborn set algorithm for optimal planning. In
Proc. ECAI 2012, 891–892.
Alkhazraji, Y.; Katz, M.; Mattmüller, R.; Pommerening, F.;
Shleyfman, A.; and Wehrle, M. 2014. Metis: Arming Fast
Downward with pruning and incremental computation. In
IPC-8 planner abstracts, 88–92.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Chen, Y., and Yao, G. 2009. Completeness and optimal-
ity preserving reduction for planning. In Proc. IJCAI 2009,
1659–1664.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 2001, 84–90.
Gnad, D.; Hoffmann, J.; and Wehrle, M. 2019. Strong
stubborn set pruning for star-topology decoupled state space
search. JAIR 65:343–392.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proc. AAAI
2007, 1007–1012.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS 2009, 162–169.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In Proc. AAAI 2008, 944–949.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Keren, S.; Gal, A.; and Karpas, E. 2018. Strong stubborn
sets for efficient goal recognition design. In Proc. ICAPS
2018, 141–149.
Röger, G.; Helmert, M.; Seipp, J.; and Sievers, S. 2020a.
An atom-centric perspective on stubborn sets. In Proc. SoCS
2020, 57–65.
Röger, G.; Helmert, M.; Seipp, J.; and Sievers, S. 2020b.
Code, benchmarks and experiment data for the SoCS 2020
paper “An Atom-Centric Perspective on Stubborn Sets”.
https://doi.org/10.5281/zenodo.3744571.
Seipp, J., and Helmert, M. 2018. Counterexample-guided
Cartesian abstraction refinement for classical planning. JAIR
62:535–577.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.

Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated cost
partitioning for optimal classical planning. JAIR 67:129–
167.
Valmari, A. 1989. Stubborn sets for reduced state space
generation. In Proc. APN 1989, 491–515.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Proc. ICAPS 2012, 297–305.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Proc.
ICAPS 2014, 323–331.
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller, R.
2013. The relative pruning power of strong stubborn sets
and expansion core. In Proc. ICAPS 2013, 251–259.
Wilhelm, A.; Steinmetz, M.; and Hoffmann, J. 2018. On
stubborn sets and planning with resources. In Proc. ICAPS
2018, 288–297.
Winterer, D.; Alkhazraji, Y.; Katz, M.; and Wehrle, M. 2017.
Stubborn sets for fully observable nondeterministic plan-
ning. In Proc. ICAPS 2017, 330–338.

101

Simplified Planner Selection

Patrick Ferber1,2
patrick.ferber@unibas.ch

University of Basel1 Saarland Informatics Campus2

Switzerland Saarland University
Germany

Abstract
There exists no planning algorithm that outperforms all oth-
ers. Therefore, it is important to know which algorithm works
well on a task. A recently published approach uses either im-
age or graph convolutional neural networks to solve this prob-
lem and achieves top performance. Especially the transforma-
tion from the task to an image ignores a lot of information.
Thus, we would like to know what the network is learning
and if this is reasonable. As this is currently not possible, we
take one step back. We identify a small set of simple graph
features and show that elementary and interpretable machine
learning techniques can use those features to outperform the
neural network based approach. Furthermore, we evaluate the
importance of those features and verify that the performance
of our approach is robust to changes in the training and test
data.

1 Introduction
Planning is concerned with finding a sequence of actions that
leads from some initial state to a goal. Over the last decades
researchers invented a zoo of different algorithms. All of
those exhibiting different strengths and weaknesses. No sin-
gle algorithm excels on all tasks. To combine the strengths
of multiple planning algorithms, in the further course called
planners, the idea of having a portfolio of planners to solve
a task has emerged. The most common type of portfolios is
based on the idea that a planner solves a task either quickly
or not at all. Thus, if a planner is not quickly finding a so-
lution, then we could try another planner. Those portfolios
posses a set of complementing planners and for each planner
they predefined how long the planner runs and in which or-
der they are executed (Helmert et al. 2011; Seipp et al. 2015;
Howe et al. 1999). The disadvantage of this approach is that
it splits the available time among the planners in its portfo-
lio. It can happen that for some tasks no planners in a port-
folio can quickly solve the task. In this case, it would be
better to choose the single planner with the highest chance
to solve the task and let it run for all the available time. A
second portfolio approach has a collection of planners and
predicts for a given task how long each planner requires for
solving the task or how confident the model is that a plan-
ner will solve the task. Then, a single planner is selected
and executed. The main obstacle in this approach is finding

a good representation of the task for the predicting model.
Fawcett et al. (2014) gathered a large set of handcrafted fea-
tures. They trained models on those features to predict for
some planners how long the planners require to solve a given
task. To avoid handcrafting features and potentially ignoring
important features Sievers et al. (2019a) translated a given
task into a graph which can potentially be translated back
into the original task. They interpreted the adjacency ma-
trix of the graph as image, scale the image down to 128x128
pixels, and train a convolutional neural network (CNN) to
predict which planner will solve the given task. The idea is
that the neural network detects automatically good features.
The success of their approach is astonishing. The interpreta-
tion of the graph as an 128x128 pixel image ignores a lot of
information. Many entries of the adjacency matrix are com-
bined in the same pixel and the information which type a
node has is discarded. The success of their CNN shows that
the remaining information in the image are sufficient for the
planner selection. In a succeeding paper, the input transfor-
mation from a graph to an image was eliminated by using
graph convolution networks (GCN) (Kipf and Welling 2017)
and feeding the graph directly into the neural network (Ma et
al. 2020). This caused a modest performance improvement
and implies that the images contains sufficient information.

The obvious questions are: What could be the features the
neural networks are learning from these graphs resp. im-
ages? Can we use those features in combination with sim-
pler machine learning techniques and achieve similar or even
better performance? Neural networks are complex function
approximators (Cybenko 1989). Today, we are not able to
understand which features they have learned. We modify the
questions and show that we can find simple features in the
graphs such that simple machine learning techniques outper-
form the neural network based approach. We evaluate how
important our features are and verify that our models are ro-
bust to changes in the training and test data.

The rest of the paper is structured as follows. Section 2
provides background on planning and on the graph encod-
ings we are working with. Section 3 explains the training
setup of our experiments. The experiments and their results
are described in section 4 and we summarize our findings in
section 5.

102

2 Background
A PDDL task ΠPDDL (McDermott et al. 1998) is defined as
a tuple (P,A,ΣC ,ΣO, I, G). P is a set of first-order pred-
icates. A is a set of action schemas. ΣC is a set of constant
objects, ΣO is a set of non-constant objects. Σ = ΣC ∪ΣO.
An action schema a ∈ A with the parameters p1, ..., pn is
a triple (prea , adda, dela) with prea ⊆ P , adda ⊆ P , and
dela ⊆ P and all variables in prea, adda, and dela are in
ΣC ∪ {p1, ..., pn}. I is the initial state and G the goal. Both
are sets of atomic statements over P using Σ.

Any PDDL task can be translated into a SAS+ task
(Bäckström and Nebel 1995). A SAS+ task is a tuple
(V,A, s0, s∗) with V is a set of variables. Each variable
v ∈ V has a finite domain dom(v). A fact is a pair (v, v′)
with v ∈ V and v′ ∈ dom(v). A state assigns every vari-
able v ∈ V a value from its domain. A partial assignment
assigns every variable in a subset of V a value from their
domains. A is the set of actions with each action a ∈ A is
a pair (prea, eff a) and prea, eff a are partial states. s0 is a
state which is called the initial state, and s∗ is a partial as-
signment which is called the goal.

We use the previous formalisms to define graph encodings
that describe a given task. The problem description graph
(PDG) (Pochter, Zohar, and Rosenschein 2011) is an undi-
rected graph which contains for every fact and variable one
node and for every action two nodes (one representing the
preconditions and one representing the effects of the action).
For every value in the domain of a variable the associated
node is connected to the node of the variable. Every precon-
dition and effect node associated to the same operator are
connected. The nodes associated to the facts in the precon-
dition of an action are connected to the precondition node
of an action. The same is done for the facts in the effect of
an action. Additionally, we add two special nodes, one is
connected to all nodes representing facts that are true in the
initial state; the other is connected to all nodes representing
facts that are true in the goal.

The second encoding is based on the abstract structure
graph (ASG) of the task (Sievers et al. 2019b). An abstract
structure is defined as either a symbol (specific elements are
symbols), as a list of abstract structures, or as a set of ab-
stract structures. For a given PDDL file, each object and
variables becomes a symbol, but also further elements of
the PDDL task become symbols. The more complex parts
of the PDDL are constructed from those symbols. E.g. the
fact on(a, b) is constructed as a list containing the symbols
on, a, and b. The abstract structure of a PDDL file is written
as graph by creating a node for every symbol and every ab-
stract structure and adding a directed edge X → Y between
two nodes X and Y if X requires for its definition Y. A PDDL
description of a planning task can be directly translated into
an ASG and the ASG can be translated back into the same
PDDL description.

3 Training
To make our results comparable Ma et al. (2020), we per-
form all experiments on the data set published by Ferber
et al. (2019) which extends the data produced by Katz et

al. (2018). Our code, new data sets, and experimental results
are online available(Ferber 2020).

The data set contains tasks from the classical planning
tracks of the International Planning Competitions (IPC) un-
til 2018. Additionally, it includes the domains BRIEFCASE-
WORLD, FERRY, and HANOI from the IPP benchmark col-
lection (Köhler 1999), the domain GEDP (Haslum 2011),
domains from the conformant-to-classical planning compi-
lation (T0) (Palacios and Geffner 2009), and the domain
FSC (Bonet, Palacios, and Geffner 2009).

For each task the runtimes of 29 optimal planners are mea-
sured. The measurements were limited to 30 minutes and at
most 7744MiB of memory. We restrict ourselves to the sub-
set of 17 planners that Ma et al. (2020) used. Those are 16
Fast Downward (Helmert 2006) configurations. All config-
urations are using A* search (Hart, Nilsson, and Raphael
1968) and strong stubborn sets (Wehrle and Helmert 2014).
Each of the following eight heuristics is used twice, once
with structural symmetries pruning (Shleyfman et al. 2015)
using DKS (Domshlak, Katz, and Shleyfman 2012) and
once with structural symmetries pruning using orbital space
search (OSS) (Domshlak, Katz, and Shleyfman 2015): blind
heuristic, LM-cut (Helmert and Domshlak 2009), iPDB
(Haslum et al. 2007), a zero-one cost partitioning pattern
data base (01-PDB) using a genetic algorithm to compute
the pattern (Edelkamp 2006), and four Merge & Shrink
(M&S) heuristics (Dräger, Finkbeiner, and Podelski 2006;
Helmert et al. 2014; Sievers 2017) using bisimulation (BS)
(Nissim, Hoffmann, and Helmert 2011), full pruning (Siev-
ers 2017), Θ-combinability (Sievers, Wehrle, and Helmert
2014), partial abstractions (Sievers 2018), DFP (Sievers,
Wehrle, and Helmert 2014), and merging based on either
strongly connected components (SCC) of the causal graph
(Sievers, Wehrle, and Helmert 2016), maximum intermedi-
ate abstraction size minimizing (MIASM) (Fan, Müller, and
Holte 2014), or score-based MIASM (sbMIASM) (Sievers,
Wehrle, and Helmert 2016). The 17th planner is SymBA*
(Torralba et al. 2014). Every planner except for 2 M&S con-
figurations use h2 mutex detection (Alcázar and Torralba
2015).

We removed all tasks from the data set that were not
solved by any of the selected planners. 2,439 tasks remain;
145 of those tasks belong to the IPC 2018. For each task the
data set contains its PDG, called grounded, and its encoding
as ASG, called lifted. Because our machine learning tech-
niques do not work on graphs, we extract the following 21
basic properties from every graph:
• the number of nodes
• the number of edges

• the graph density (#edges
#nodes∗(#nodes−1))

• the number of connected components
• the size of the largest connected component
• the minimum, mean, median, and maximum eccentricity

of its nodes (the eccentricity of a node is its maximum
distance to any other node; the minimum eccentricity of a
graph is called radius, the maximum eccentricity is called
diameter)

103

LR RF MLP Delfi

0 0.1 1 2 5 50 3 5 CNN GNN

Binary 57.0(0.8) 86.2(0.0) 82.1(0.0) 84.8(0.0) 88.3(0.0) 69.9(4.3) 76.6(8.2) 77.4(8.2) 73.1 80.7
Log 62.8(0.0) 67.6(0.0) 89.0(0.0) 80.7(0.0) 81.4(0.0) 66.6(2.4) 64.8(0.0) 64.2(1.9) – –
Time 56.4(0.7) 55.2(0.0) 55.2(0.0) 52.4(0.0) 55.2(0.0) 72.1(3.1) 68.3(4.6) 67.4(2.0) – –

LR RF MLP Delfi

0 0.1 1 2 5 50 3 5 CNN GNN

Binary 65.5(0.0) 66.2(0.0) 70.3(0.0) 64.8(0.0) 61.4(0.0) 70.9(4.5) 61.4(0.0) 61.4(0.0) 86.9 87.6
Log 58.6(0.0) 69.7(0.0) 69.7(0.0) 69.7(0.0) 70.3(0.0) 73.7(3.5) 65.2(1.0) 64.8(0.0) – –
Time 65.5(0.0) 74.5(0.0) 71.0(0.0) 69.7(0.0) 70.3(0.0) 79.6(5.3) 67.9(5.9) 70.3(4.6) – –

Table 1: Mean coverage and standard deviation (in %) on the IPC 2018 tasks which are solved by at least one planner. Linear
regression (LR) uses L1 regularization weights from 0 to 5; random forest (RF) have 50 trees; and the multi-layer perceptrons
(MLP) have 3 resp. 5 hidden layers. The last column shows the published performance of the image (CNN) resp. graph (GCN)
based versions of Delfi on binary labels. Top: Performance on the grounded graphs. Bottom: Performance on the lifted graphs.

• the minimum, mean, median, and maximum degree of its
nodes

• the minimum, mean, median, and maximum in-degree of
its nodes

• the minimum, mean, median, and maximum out-degree
of its nodes

We selected those properties because they are easy to un-
derstand and fast to compute. The values of some properties
can greatly differ, e. g. the number of nodes in the grounded
graphs vary between 6 and 87,000. Thus, we augment our
set of features, by adding the logarithm of each property (
given that the property is always non-zero) and by normaliz-
ing each property into the range of 0 to 1. Finally, for every
graph we obtain a feature vector with 60 elements. For the
runtime, we have the same issues as we had for some prop-
erties. The scale of the runtime can vary between fractions
of a second and up to half an hour. Therefore, we train the
models with three different label transformations: With the
original runtime, with the logarithm of the runtime, and with
the binary information whether a planner was able to solve
a task within the resource limits.

We train plain linear regression models (Galton 1886) and
models with L1 regularization (Tibshirani 1996). Linear re-
gression learns for every feature (each property and their
transformations) a weight. The output is the weighted sum
of the features. L1 regularization adds the L1 norm of the
weights as penalty to the optimization process. This causes
unnecessary large feature weights to decrease and can filter
out irrelevant features. The L1 norm can be scaled with a
parameter to make the filtering weaker or stronger.

Second, we train random forests (Breiman 2001). Those
are ensembles of decision trees. During training, we opti-
mize each decision tree individually. The final output of the
random forest is an averaged decision over all its trees.

The last kind of models we train are multi-layer percep-
tron. Those are simple neural network consisting of multi-

ple layers of neurons. Each layer is densely connected to
the next layer. The value for each neuron is the weighted
sum of the neurons connected to it (c. f. linear regression).
The value of the neuron is modified by a non-linear function
(e. g. ReLU(x) = max(0, x)) and is forwarded to the next
neurons. We use the Adam optimizer (Kingma and Ba 2015)
with a learning rate of 0.001 to optimize the weights of the
network.

4 Experiments
First, we evaluate how good our simple techniques are at
choosing a single planner to solve a given task and compare
our results to previous work. Then, we investigate which
features have been used and how important those features
are. Next, we examine which planners were actually chosen
by our models, and we end by evaluating whether our tech-
niques are robust to changes in the data.

One of our feature augmentations normalizes the values of
the graph properties. The test data was not used for finding
the normalization parameters. All training configurations are
run 10 times and their mean coverage as well as their stan-
dard deviation are reported. The experiments are run with 3
GB of memory on a single core of an Intel Xeon E5-2660
CPU. The linear regression models finished training in at
most 13 seconds, the random forest models in at most 48
seconds, and the neural networks in at most 20 minutes.

Performance on IPC 2018 Tasks
First, we evaluate how good simple machine learning tech-
niques are at choosing a planner to solve a given task. Like
Ma et al. (2020) we use the tasks from the IPC 2018 as test
data and all other tasks for training. Neither linear regression
nor random forests support validation data, thus, we do not
use validation data for the multi-layer perceptrons either.

We train 5 linear regression configurations with L1 regu-
larization weights from 0 to 5, a single random forest with
50 trees, and 2 neural network configurations with 3 resp. 5

104

hidden layers and 30 neurons in each layer. We use the sig-
moid activation function and the cross-entropy loss to train
the networks which make binary decisions. For all other net-
works we use the ReLU activation function and the mean
squared error loss.

Table 1 shows the performance of all models on the fea-
tures of the grounded (top) and lifted (bottom) graphs. The
two simplest baselines are selecting a random planner for
each task which has a coverage of 60.6% and selecting al-
ways the planner which performed best on the training data
which has a coverage of 64.8%. Most of our trained mod-
els outperform both of those baselines. This shows that even
simple models can learn useful information. In the grounded
setting, linear regression outperforms all other techniques if
it is trained on binary or logarithmically transformed labels;
on the true labels it is not able to learn anything and per-
forms even worse than the random baseline. Notable, linear
regression with our features is even outperforming the Delfi
baselines. This does not mean that Delfi is approximating
our features, but, it shows that even simple machine learn-
ing techniques with understandable features obtain top per-
formances.

The lifted setting is more difficult for linear regression. Its
performance is worse in general. In this setting our best per-
forming models are random forests, but even those are not
able to outperform the Delfi baselines on the lifted graphs.
This means the neural networks of Delfi on the lifted graphs
are able to exploit some features that we do not know about.
It is an advantage of Delfi that the user does not need to de-
fine a set of properties.

Feature Reduction
Now that we have well performing models, the questions
arise which features are required by the models and how im-
portant are those features? The answers help us to under-
stand which properties of the graphs describe useful infor-
mation and which properties can be skipped to speed up the
predictions.

Linear regression models allow us to easily investigate
their learned weights, thus, we will take a look into the best
performing linear regression models for grounded and for
the lifted graphs. Additionally, we add the best grounded
configuration with binary labels and the lifted configuration
with logarithmically transformed labels and and L1 weight
of 1 to the comparison. We cannot interpret the magnitude
of a weight as importance, because the magnitude of our
features varies greatly. Instead, for every feature we sum up
how often it has been used by the models. For each config-
uration we have trained 10 models and each model has in-
ternally one linear regression model for each of the 17 plan-
ners. Thus, the maximum number of times a feature can be
used is 170. The more frequently a feature has been used
the more beneficial we can expect it to be. Table 2 shows
those sums. Our first observation is that many configurations
do not use any normalized feature and rarely use a logarith-
mically scaled feature. Those transformed features are good
candidates to be exclude from training to speed up the pre-
dictions.

Upon closer inspection we see that the more precise we

Grounded Lifted

Features Binary Log Log Time

#nodes 0 170 170 170
#edges 170 170 170 170
density 0 0 0 0

#conn. comp. 0 0 0 170
max(|conn. comp|) 170 170 170 170

radius 80 150 170 170
mean eccentricity 50 0 160 170

median eccentricity 20 20 40 170
diameter 50 20 110 170

min. degree 0 0 0 142
mean degree 0 20 0 169

median degree 0 0 0 117
max. degree 110 170 160 170

min. in-degree 0 0 0 0
mean in-degree 0 0 0 79

median in-degree 0 0 0 0
max. in-degree 40 150 160 170

min. out-degree 0 0 0 0
mean out-degree 0 0 0 31

median out-degree 0 0 0 140
max. out-degree 130 140 170 170

log(#nodes) 0 0 0 170
log(#edges) 0 20 0 140
log(density) 0 50 0 160

log(#conn. comp.) 0 0 0 160
log(max(|conn. comp|)) 0 140 0 160

log(radius) 0 0 0 170
log(mean eccentricity) 0 0 0 170

log(median eccentricity) 0 0 0 170
log(diameter) 0 0 0 170

log(min. degree) 0 0 0 140
log(mean degree) 0 0 0 90

log(median degree) 0 0 0 170
log(max. degree) 0 0 0 140

log(max. in-degree) 0 0 0 169
log(mean out-degree) 0 0 0 50

log(median out-degree) 0 0 0 140
log(max. out-degree) 0 10 140 170

norm(#nodes) 0 0 0 66
norm(#edges) 0 0 0 170
norm(density) 0 0 0 170

norm(#conn. comp.) 0 0 0 120
norm(max(|conn. comp|)) 0 0 0 104

norm(radius) 0 0 0 152
norm(mean eccentricity) 0 0 0 102

norm(median eccentricity) 0 0 0 152
norm(diameter) 0 0 0 152

norm(min. degree) 0 0 0 170
norm(mean degree) 0 0 0 170

norm(median degree) 0 0 0 170
norm(max. degree) 0 0 0 110

norm(mean in-degree) 0 0 0 110
norm(max. in-degree) 0 0 0 152

norm(mean out-degree) 0 0 0 118
norm(median out-degree) 0 0 0 137

norm(max. out-degree) 0 0 0 10

Table 2: Feature usages for linear regression configurations.
The lifted log configuration uses the same L1 weight as
the grounded log configuration. All other configurations use
their best L1 weight. Four unused features are omitted.

105

Features Grounded Lifted

#nodes 1 A
#edges 2 A
density 3 B

#conn. comp. 4 C
max(|conn. comp|) 1 A

radius 5 A
mean ecc. 5 A

median ecc. 5 A
diameter 5 A
min. deg. 6 D

mean deg. 7 E
median deg. 8 F

max. deg. 9 G
min. indeg. 10 H

mean indeg. 7 E
median indeg. 11 I

max. indeg. 12 G
min. outdeg. 13 J

mean outdeg. 7 E
median outdeg. 14 K

max. outdeg. 9 G

Table 3: Groups of features with a high (> 0.95) positive or
negative Pearson Correlation.

Feature Group Grounded Feature Group Lifted

1 -2.8% A 9.0%
2 -6.2% B -0.7%
3 0.0% C 0.0%
4 0.0% D 0.0%
5 0.0% E -5.5%
6 0.0% F -1.4%
7 -2.8% G -4.8%
8 0.0% H 0.0%
9 -18.6% I 0.0%

10 0.0% J 0.0%
11 0.0% K 0.0%
12 -4.8%
13 0.0%
14 0.0%

Baseline 89.0% 74.5%

Table 4: Performance degradation for the best grounded and
lifted linear regression configuration, if a group of highly
correlated features is removed.

want to predict the runtimes, the more features the linear
regression is using. For the prediction of a binary label the
models do not use any transformed feature. To predict the
logarithm of the runtimes, some transformed features are
used. And to predict the actual runtime, almost all features
are used. This trend could be seen in multiple configurations
and is independent of using the grounded or the lifted en-
coding.

A final, less obvious observation is that there are some
groups of features for which a trained regressor is only se-
lecting some members of each group. This can be especially
well seen with the features radius, mean eccentricity, me-
dian eccentricity, and diameter. Experiments have shown
that removing one of those features has close to no impact
on the performance. It turned out that some properties of
the graph are strongly linearly correlated. We calculated for
each pair of features their Pearson correlation and grouped
features together which have an absolute Pearson correlation
greater than 0.95. Table 3 shows for both encodings which
features are grouped together.

To understand how important each feature group is for
the final performance, we retrain the models but withhold a
single feature group. Table 4 shows how much the perfor-
mance of an model changes if a feature group is left out. For
the grounded graphs, the most important feature is by far
the maximum degree in the graph, the second most impor-
tant feature is the number of edges. For the lifted graphs, the
features ’mean degree’, ’mean in-degree’, and ’mean out-
degree’ are the most important. But nearly as important are
the features ’maximum degree’ and ’maximum out-degree’.
Some features groups can be removed without any impact
on the test performance and removing feature group ’A’ even
improves the coverage. Ideally, the L1 regularization would
assign those features a weight of zero. This might not hap-
pen for two reasons. First, the test tasks - from the IPC 2018
- come from a different data distribution than the training
tasks. Thus, features useful for the training tasks might not
be useful on the test tasks. Secondly, the loss optimized by
the linear regression is not the metric we are comparing. The
models try to optimize their prediction for every planner, we
are only interested in selecting a single planner to solve the
task.

Planner choices
To better understand how the models obtain peak perfor-
mance, we examine which planners are chosen. We want to
understand whether those models have learned to choose the
right planner for a task. The models do not predict planners
at random, because their coverage is not close to the random
baseline.

Table 5 shows how often a planner was selected by the
best grounded and the best lifted linear regression model.
For each planner it shows additionally their coverage on all
test tasks (CovT) and their coverage on those tasks for which
they were selected (CovC). For both configurations we see
that the models chose their predictions from a subgroup of
(mostly) good planners. We have trained 15 linear regression
configuration for the grounded and again 15 configurations
for the lifted graph encoding. Could it be that by chance

106

lifted

grounded

agricola
caldera data-

network
nurikabe

os
petri-net

settlers
snake

spider
termes

SymBA*
h2 + DKS + LM-cut
h2 + OSS + LM-cut
h2 + DKS + iPDB
h2 + DKS + M&S-BS-sbMIASM
h2 + DKS + M&S-BS-SCC-DFP
h2 + OSS + iPDB
h2 + OSS + 01-PDB
h2 + DKS + M&S-SCC-DFP

Figure 1: Shows for each task in the test data which planner was selected by the best linear regression configuration for the
lifted and grounded graphs. All tasks are sorted by domains and within their domains by name.

Usage CovT CovC Planner (grounded)

39.3% 82.1% 84.7% SymBA*
24.8% 64.8% 91.7% h2 + DKS + LM-cut
21.4% 70.3% 80.6% h2 + OSS + iPDB
10.3% 59.3% 80.0% h2 + OSS + 01-PDB
1.4% 70.3% 100.0% h2 + DKS + iPDB
1.4% 52.4% 100.0% h2 + DKS + M&S-SSC-DFP
1.4% 64.8% 50.0% h2 + OSS + LM-cut

Usage CovT CovC Planner (lifted)

28.3% 82.1% 73.2% SymBA*
22.5% 64.8% 66.3% h2 + OSS + LM-cut
15.9% 70.3% 100.0% h2 + DKS + iPDB
15.2% 65.5% 63.6% h2 + DKS + M&S-BS-SCC-DFP
9.2% 64.8% 62.7% h2 + DKS + LM-cut
6.2% 69.7% 77.8% h2 + DKS + M&S-BS-sbMIASM
2.8% 70.3% 100.0% h2 + OSS + iPDB

Table 5: Distribution of how often a planner was selected
(Usage), the fraction of tasks, the planner solves from the
test tasks (CovB), and the fraction of tasks the planner solves
when being chosen (CovC) by the best grounded (top) resp.
lifted (bottom) linear regression model.

some models found a subgroup of good planners and ran-
domly chooses planners from its subgroup? If this would be
the case, then for each selected planner the coverage on the
tasks it was selected for should be approximately the same
as its coverage on all test tasks. We see that this is clearly
not the case. The models have learned to predict for a task
which planner is good. Especially in the grounded setting, if
the model selects a planner for a task, then the probability of
the planner to solve the task is much higher than the planners
coverage probability on all test tasks.

A model that has learned which planner is good for a task
should assign the same planner to similar tasks. This means,
especially within the same domain it should reliably select
the same planner. As each domain contains tasks of vary-
ing difficulty, it might happen that within the same domain
multiple planners are selected, but this should be noticeably
different from randomly choosing a planner. Figure 1 shows
for every task of the test set which planner was selected. The
tasks are grouped by domains and within domains ordered as
defined in the IPC 2018. We see that for many domains the
models select a single planner. There are also some domains
in which the models start with one planner and at one point
switch to another planner.

We can conclude that the models have detected some
structure in the features of each task and learned to exploit
this to select a good subset of planners and to predict a good
planner for a task or even for a set of similar tasks.

Robustness
Until now all experiments have been performed on the same
training and test data. One might argue that our results are
by chance and with different data the results look different.
Thus, we end with two experiments which show that our
findings are robust even with changes in the data.

To verify that our performance on the test data does not
change significantly with different training data, we split the
training data into 10 folds, but enforce that all tasks of the
same domain will be assigned to the same fold. Every con-
figuration is trained 10 times, but each time a different fold is
ignored. If our approach is robust to changes in the training
data, then the performance should not change much. Table 6
shows that indeed the configurations still perform similarly

107

LR RF MLP

0 0.1 1 2 5 50 3 5

Binary 60.6(5.5) 81.8(6.1) 82.0(5.3) 82.6(5.4) 84.6(5.7) 70.4(3.8) 75.6(7.8) 73.9(7.9)
Log 63.1(5.7) 67.2(6.3) 81.1(8.1) 78.5(6.4) 79.8(6.0) 68.8(5.7) 64.8(0.2) 67.0(3.4)
Time 60.0(4.9) 56.1(5.0) 56.0(4.8) 55.5(5.1) 57.3(5.3) 71.5(5.9) 68.7(5.2) 68.8(5.5)

LR RF MLP

0 0.1 1 2 5 50 3 5

Binary 63.6(4.0) 70.3(4.7) 70.6(3.5) 70.7(5.2) 66.1(6.0) 73.4(5.1) 63.2(3.7) 64.7(6.4)
Log 58.5(3.8) 69.8(3.1) 68.8(2.9) 69.6(3.0) 70.3(1.8) 74.1(6.0) 64.8(0.0) 64.8(0.0)
Time 63.7(3.7) 73.2(3.8) 70.3(2.9) 69.7(3.2) 70.6(3.6) 77.4(6.1) 66.3(2.4) 69.0(4.1)

Table 6: Mean coverage and standard deviation (in %) on the IPC 2018 tasks. The training data is split into 10 folds such that
all tasks of the same domain are in the same fold. For each experiment repetition a different fold is ignored. Top: Performance
on the grounded graphs. Bottom: Performance on the lifted graphs.

LR RF MLP

0 0.1 1 2 5 50 3 5

Binary 85.6(8.3) 77.3(17.5) 76.3(17.2) 76.0(17.0) 76.6(18.0) 83.4(6.5) 76.8(17.2) 79.7(16.8)
Log 86.7(7.8) 85.9(8.4) 82.4(8.5) 78.2(15.6) 77.8(16.2) 83.4(9.5) 83.8(8.6) 84.8(6.5)
Time 86.3(8.5) 84.2(8.5) 84.3(8.6) 84.5(9.0) 84.3(8.8) 79.2(17.7) 84.9(4.4) 83.3(6.5)

LR RF MLP

0 0.1 1 2 5 50 3 5

Binary 81.5(4.1) 75.8(15.4) 75.6(16.5) 74.1(15.2) 73.4(15.4) 77.6(13.3) 72.7(16.1) 72.2(16.1)
Log 81.0(9.9) 73.8(15.5) 82.3(7.8) 82.5(7.8) 82.7(7.8) 75.9(13.6) 82.2(8.5) 82.2(8.5)
Time 82.4(5.6) 78.7(10.6) 74.4(15.6) 74.6(16.8) 74.4(16.7) 78.9(13.2) 81.5(7.7) 78.9(9.0)

Table 7: Mean coverage and standard deviation (in %) on a random test fold. The data set - including the tasks from the IPC
2018 - is split into 10 folds such that all tasks of the same domain are in the same fold. For each experiment repetition a
different fold is selected as test set. The other folds are used for training. Top: Performance on the grounded graphs. Bottom:
Performance on the lifted graphs.

108

well. The performance might have decreased a bit, because
1/10th of the training data was ignored. The standard devia-
tion shows us that depending on which part of the training
data is ignored the coverage can moderately vary.

Finally, we also change the test data. We split the whole
data set into 10 folds, still keeping tasks from the same do-
main in the same fold. We train for each configuration 10
models. Each model uses a different fold as test data and
trains on the remaining nine folds. Table 7 shows that our
coverage increases. This might be because the tasks in the
IPC 2018 were quite different from those tasks of previous
IPCs, thus, learning from tasks of previous IPCs to select
planners for tasks of the IPC 2018 is a difficult challenge.
Changing the test data could make the learning easier. An-
other reason could be that planners in the data set were se-
lected because they are good planners and their goodness
could have been measured by using the old tasks of the IPC.

5 Summary and Future Work
We have shown that we can use simple machine learning
techniques like linear regression to predict for a given tasks
which planner to run to solve the task. In the grounded set-
ting this even outperformed the image resp. graph convolu-
tion based baselines. Thus, we can have explainable deci-
sions while still keeping top performance. At the same time
this is not a justification to forget the image resp. graph con-
volution approaches. In the lifted setting those perform still
better and have the advantage that the user does not need to
come up with a set of good features, but the neural networks
learn those features themselves.

Additionally to training those models, we studied which
features are relevant for the predictions and how important
they are. In the grounded setting the maximum degree of
the graph was the most important information. On the other
hand in the lifted setting there was no single feature with a
similarly large impact. Finally, we verified that the models
learned which planners to run for a domain.

Some future work is to use more fine grained features of
the graph, e.g. number of operator nodes, such that we can
reason which properties of the task instead of which property
of the graph determine the planner choices.

Acknowledgments
Patrick Ferber was funded by DFG grant 389792660 as part
of TRR 248 (see https://perspicuous-computing.science).
This work was supported by the Swiss National Science
Foundation (SNSF) as part of the project “Certified Correct-
ness and Guaranteed Performance for Domain-Independent
Planning” (CCGP-Plan).

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the im-
portance of computing and exploiting invariants in planning. In
Proc. ICAPS 2015, 2–6.

Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–655.

Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic deriva-
tion of memoryless policies and finite-state controllers using
classical planners. In Proc. ICAPS 2009, 34–41.
Breiman, L. 2001. Random forests. Machine Learning 45(1):5–
32.
Cybenko, G. 1989. Approximation by superpositions of a sig-
moidal function. Mathematics of Control, Signals and Systems
2(4):303–314.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. Enhanced
symmetry breaking in cost-optimal planning as forward search.
In Proc. ICAPS 2012, 343–347.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2015. Symme-
try breaking in deterministic planning as forward search: Orbit
space search algorithm. Technical Report IS/IE-2015-03, Tech-
nion.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In Proc.
SPIN 2006, 19–34.
Edelkamp, S. 2006. Automated creation of pattern database
search heuristics. In Proc. MoChArt 2006, 35–50.
Fan, G.; Müller, M.; and Holte, R. 2014. Non-linear merging
strategies for merge-and-shrink based on variable interactions.
In Proc. SoCS 2014, 53–61.
Fawcett, C.; Vallati, M.; Hutter, F.; Hoffmann, J.; Hoos, H.; and
Leyton-Brown, K. 2014. Improved features for runtime pre-
diction of domain-independent planners. In Proc. ICAPS 2014,
355–359.
Ferber, P.; Mai, T.; Huo, S.; Chen, J.; and Katz, M. 2019. Ipc:
A benchmark data set for learning with graph- structured data.
In In Proceedings of the ICML-2019 Workshop on Learning and
Reasoning with Graph-Structured Representations.
Ferber, P. 2020. Supplemental material for the HSDIP workshop
paper “Simplified Planner Selection”. https://doi.org/10.5281/
zenodo.4061613.
Galton, F. 1886. Regression towards mediocrity in hereditary
stature. Journal of the Anthropological Institute of Great Britain
and Ireland 15:246–263.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2):100–
107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern database
heuristics for cost-optimal planning. In Proc. AAAI 2007, 1007–
1012.
Haslum, P. 2011. Computing genome edit distances using
domain-independent planning. In ICAPS 2011 Scheduling and
Planning Applications woRKshop, 45–51.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths
and abstractions: What’s the difference anyway? In Proc. ICAPS
2009, 162–169.
Helmert, M.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011. Fast
Downward Stone Soup. In IPC 2011 planner abstracts, 38–45.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-shrink abstraction: A method for generating lower
bounds in factored state spaces. JACM 61(3):16:1–63.

109

Helmert, M. 2006. The Fast Downward planning system. JAIR
26:191–246.
Howe, A. E.; Dahlman, E.; Hansen, C.; Scheetz, M.; and von
Mayrhauser, A. 1999. Exploiting competitive planner perfor-
mance. In Proc. ECP 1999, 62–72.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018.
Delfi: Online planner selection for cost-optimal planning. In
IPC-9 planner abstracts, 57–64.
Kingma, D. P., and Ba, J. 2015. Adam: A method for stochastic
optimization. In Proc. ICLR 2015.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classifi-
cation with graph convolutional networks. In 5th International
Conference on Learning Representations (ICLR 2017).
Köhler, J. 1999. Handling of conditional effects and negative
goals in IPP. Technical Report 128, University of Freiburg, De-
partment of Computer Science.
Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M. 2020. On-
line planner selection with graph neural networks and adaptive
scheduling. In Proc. AAAI 2020, 5077–5084.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL – The
Planning Domain Definition Language – Version 1.2. Technical
Report CVC TR-98-003/DCS TR-1165, Yale Center for Com-
putational Vision and Control, Yale University.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing perfect heuristics in polynomial time: On bisimulation and
merge-and-shrink abstraction in optimal planning. In Proc. IJ-
CAI 2011, 1983–1990.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty away
in conformant planning problems with bounded width. JAIR
35:623–675.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing problem symmetries in state-based planners. In Proc. AAAI
2011, 1004–1009.
Seipp, J.; Sievers, S.; Helmert, M.; and Hutter, F. 2015. Auto-
matic configuration of sequential planning portfolios. In Proc.
AAAI 2015, 3364–3370.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and Wehrle,
M. 2015. Heuristics and symmetries in classical planning. In
Proc. AAAI 2015, 3371–3377.
Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Fer-
ber, P. 2019a. Deep learning for cost-optimal planning: Task-
dependent planner selection. In Proc. AAAI 2019, 7715–7723.
Sievers, S.; Röger, G.; Wehrle, M.; and Katz, M. 2019b. The-
oretical foundations for structural symmetries of lifted PDDL
tasks. In Proc. ICAPS 2019, 446–454.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
label reduction for merge-and-shrink heuristics. In Proc. AAAI
2014, 2358–2366.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An analysis
of merge strategies for merge-and-shrink heuristics. In Proc.
ICAPS 2016, 294–298.
Sievers, S. 2017. Merge-and-shrink Abstractions for Classical
Planning: Theory, Strategies, and Implementation. Ph.D. Dis-
sertation, University of Basel.
Sievers, S. 2018. Fast Downward merge-and-shrink. In IPC-9
planner abstracts, 85–90.

Tibshirani, R. 1996. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B (Method-
ological) 58(1):267–288.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A symbolic bidirectional A*
planner. In IPC-8 planner abstracts, 105–109.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Proc. ICAPS
2014, 323–331.

110

