
1

Developments in Model-Based
Reinforcement Learning

Alan Fern & Anurag Koul

Oregon State University

ICAPS Online Summer School 2020

2

Outline
Intro to Model-Based Reinforcement Learning (MBRL)

 Brief Introduction to Reinforcement Learning

 MBRL Choices – Types of Models

 MBRL Choices – Types of Planners

Class of Algorithms

 Class 1: Tabular Models with Optimal Planning

 Class 2: Simulation Models with Search-Based Planning

 Class 3: Simulation Models for Model-Free “Planning”

Research Directions from Planning Perspective

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟

𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Deep Reinforcement Learning (DRL)

Objective : learn to take action to maximize cumulative
future reward

Are we content with
reactive agents?

Why the sudden
excitement about DRL?

4

Observations Actions

????

World

fully
observable

instantaneous

deterministic

Classical Planning Assumptions
(primary focus of AI planning until early 90’s)

sole source
of change

Goal
achieve goal condition

5

Observations Actions

????

World

fully
observable

instantaneous

deterministic

Classical Planning Assumptions
(primary focus of AI planning until mid 90’s)

sole source
of change

Goal
achieve goal condition Greatly limits

applicability

6

Observations Actions

????

World

fully
observable

instantaneous

stochastic

Stochastic/Probabilistic Planning:
Markov Decision Process (MDP) Model

sole source
of change

Goal
maximize expected
reward over lifetime

We will primarily
focus on MDPs

7

State describes
all visible info

about cards
(discrete)

Action are the
different legal

card movements
(discrete)

????

Example MDP

Goal
win the game or

play max # of cards

8

World State
Action from
finite set????

Stochastic/Probabilistic Planning:
Markov Decision Process (MDP) Model

Goal
maximize expected
reward over lifetime

Probabilistic state
transition
(depends on action)

9

Markov Decision Processes

𝑜𝑜0
0.8𝒔𝒔𝟎𝟎

𝑜𝑜1

𝑜𝑜1

0.9

1.0

1.0

0.2

0.1

R=1

T s0, a0, s0 = Pr 𝑜𝑜0 𝑜𝑜0,𝑜𝑜0 = 0.2
T s0, a0, s1 = Pr 𝑜𝑜1 𝑜𝑜0,𝑜𝑜0 = 0.8
T s0, a1, s0 = Pr 𝑜𝑜0 𝑜𝑜0,𝑜𝑜1 = 1.0
T s0, a1, s1 = Pr 𝑜𝑜1 𝑜𝑜0,𝑜𝑜1 = 0.0
T s1, a0, s0 = Pr 𝑜𝑜0 𝑜𝑜1,𝑜𝑜0 = 0.9

….

𝒔𝒔𝟏𝟏

𝑅𝑅 𝑜𝑜0,𝑜𝑜0 = 𝑅𝑅(𝑜𝑜0,𝑜𝑜1) = 0
𝑅𝑅 𝑜𝑜1,𝑜𝑜0 = 𝑅𝑅(𝑜𝑜1,𝑜𝑜1) = 1

R=0

R=0 R=1

10

Tabular Representation

𝑜𝑜0
0.8𝒔𝒔𝟎𝟎

𝑜𝑜1

𝑜𝑜1

0.9

1.0

1.0

0.2

0.1

R=1

N states and M actions

Transition Function 𝑇𝑇(𝑜𝑜,𝑜𝑜, 𝑜𝑜′) stored as one 𝑁𝑁𝑁𝑁𝑁𝑁 table for each action

𝑂𝑂 𝑀𝑀𝑁𝑁2 space

Reward Function stored as 𝑂𝑂(𝑀𝑀𝑁𝑁) sized table

𝒔𝒔𝟏𝟏
R=0

R=0 R=1

11

What is a solution to an MDP?
MDP Planning Problem:

Input: an MDP (S,A,R,T)
Output: ????

12

What is a solution to an MDP?
MDP Planning Problem:

Input: an MDP (S,A,R,T)
Output: ????

 One Answer: Suppose we are given an initial starting
state 𝑜𝑜0.
 An open-loop plan from 𝑜𝑜0 is a sequence of actions

𝑜𝑜1,𝑜𝑜2,𝑜𝑜0, … that will be executed by the agent

 Should the solution to an MDP be open-loop plan in
general?
 Consider a single player card game like Blackjack/Solitaire.

No. When there is randomness we need to open our eyes
to see where we end up to select good actions.

13

Stationary Policies
1.0

A stationary policy 𝝅𝝅 selects an action for each state.

𝜋𝜋 ∶ 𝑆𝑆 → 𝐴𝐴

Can view as a sub-graph of the MDP.

𝑜𝑜0
0.8𝒔𝒔𝟎𝟎

𝑜𝑜1

𝑜𝑜1

0.9

1.0

1.0

0.2

0.1R=0

R=1

𝒔𝒔𝟏𝟏

R=0

R=1

14

Stationary Policies

𝑜𝑜0
0.8𝒔𝒔𝟎𝟎

𝑜𝑜1

1.0
0.2

𝒔𝒔𝟏𝟏

Example policy #1

𝜋𝜋 𝑜𝑜0 = 𝑜𝑜0 𝜋𝜋 𝑜𝑜1 = 𝑜𝑜1

R=0

R=1

15

Stationary Policies

𝒔𝒔𝟎𝟎

𝑜𝑜1
0.91.0

0.1
𝒔𝒔𝟏𝟏

R=1

R=0
Example policy #2

𝜋𝜋 𝑜𝑜0 = 𝑜𝑜1 𝜋𝜋 𝑜𝑜1 = 𝑜𝑜0

16

What is a solution to an MDP?
MDP Planning Problem:

Input: an MDP (S,A,R,T)
Output: a policy such that ????

We don’t want to output just any policy

We want to output a “good” policy

 One that accumulates a lot of reward

17

Value of a Policy
How good is a policy π?

How do we measure reward “accumulated” by 𝜋𝜋?

Value function 𝑉𝑉: 𝑆𝑆 → ℝ associates value with each

state (or each state and time for non-stationary 𝜋𝜋)

𝑉𝑉𝜋𝜋(𝑜𝑜) denotes value of policy 𝜋𝜋 at state s
Depends on immediate reward, but also what you achieve

subsequently by following 𝜋𝜋
An optimal policy is one that is no worse than any other

policy at any state

The goal of MDP planning is to compute an optimal
policy

Infinite Horizon Value

𝑜𝑜0
0.8𝒔𝒔𝟎𝟎

𝑜𝑜1

𝑜𝑜1

0.9

1.0

1.0

0.2

0.1
𝒔𝒔𝟏𝟏

Consider accumulating reward over an infinite horizon?

R=1R=0

R=0 R=1

19

Infinite Horizon

𝑜𝑜0
0.8𝒔𝒔𝟎𝟎

𝑜𝑜1

1.0
0.2

𝒔𝒔𝟏𝟏

Example policy: 𝜋𝜋 𝑜𝑜0 = 𝑜𝑜0, 𝜋𝜋 𝑜𝑜1 = 𝑜𝑜1

Do we have any problems here for infinite horizon?

R=1R=0

20

Discounted Infinite Horizon MDPs
Defining value as total reward is problematic with

infinite horizons 𝑜𝑜0 + 𝑜𝑜1 + 𝑜𝑜2 + 𝑜𝑜3 + ⋯
many or all policies have infinite expected reward
some MDPs are ok (e.g., zero-cost absorbing states)

Why is this bad?
Consider 𝜋𝜋1 that gets R=1 per step and 𝜋𝜋2 that gets R=2

per step
𝜋𝜋2 is clearly better, but infinite total reward can’t

distinguish between them (both get infinite value)

 “Trick”: introduce discount factor 0 ≤ β < 1

 future rewards discounted by β per time step
𝑜𝑜0 + 𝛽𝛽𝑜𝑜1 + 𝛽𝛽2𝑜𝑜2 + 𝛽𝛽3𝑜𝑜3 + ⋯

21

Discounted Infinite Horizon MDPs
Expected infinite horizon discounted reward

We avoid infinite values (consider getting max absolute
reward each step)

 Motivation: economic? prob of death? convenience?

],|[)(
0

sREsV
t

tt πβπ ∑
∞

=

=

max

0

max

1
1][)(RREsV

t

t

β
βπ −

=≤ ∑
∞

=

Maximum absolute reward

22

Notes: Discounted Infinite Horizon

Optimal policies guaranteed to exist (Howard, 1960)
 I.e. there is a policy that maximizes value at each state

Furthermore there is always an optimal stationary
policy
 Intuition: why would we change action at s at a new time

when there is always forever ahead

We define to be the optimal value function.
That is, for some optimal stationary π

)(* sV
)()(* sVsV π=

23

Computing an Optimal Value Function

Bellman equation for optimal value function

Bellman proved this is always true for an optimal
value function

)'(')',,(β),(max)(** ss VsasTasRsV
a

∑ ⋅+=

immediate reward discounted expected value
of best action assuming we
we get optimal value in future

24

Computing an Optimal Value Function
Bellman equation for optimal value function

How can we solve this equation for V*?
 The MAX operator makes the system non-linear

There are several classic optimal algorithms for
tabular representations
 Value Iteration
 Policy Iteration
 Reduction to Linear Programming

)'(')',,(β),(max)(** ss VsasTasRsV
a

∑ ⋅+=

Value Iteration

a1

a2 s4

s1

s3

s2

Vk

0.7
0.3

0.4

0.6

Compute
Expectations

Vk+1(s) s

Compute
Max

)'(')',,(),(max)(1 ss VsasTasRsV kk

a
∑ ⋅+=+ β

Computes a sequence of value functions using Bellman
Backup Operator

26

Value Iteration

Each iteration requires 𝑂𝑂 𝑀𝑀𝑁𝑁2 time.

Converges to to optimal value function

)'(')',,(),(max)(

0)(
1

0

ss VsasTasRsV

sV
kk

a
∑ −⋅+=

=

β

*lim VV k
k =∞→

27

How to Act
Given a V from value iteration that closely

approximates V*, what should we use as our
policy?

Use V to define the Q-value function over
states and actions (one step look ahead)

Use greedy policy: (max action value)

),(maxarg)(asQs
a

=π

)'(')',,(),(),(ss VsasTasRasQ ∑ ⋅+= β

28

Main Takeaway - Known Models

A0

0.99

0.01

s0

s1

S2

A1

A0

0.1

0.9

1.0

1.0

0.2

0.8
1.0

R=0

R = -1

R = 1

Given a moderately-sized MDP model (up to millions of states),
we can compute optimal policies.

29

Unknown Models

A0s0

s1

S2

A1

A0

What if we don’t know the reward and transition functions?
(Like in many real-world domains.)

But we can take actions and observe their effects.

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟

𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Reinforcement Learning
Agent starts with no knowledge of environment.

Objective: learn optimal (or good enough) policy through interaction with
environment

Challenges:

• Sparse rewards

• Stochastic actions

• Credit assignment

• World large & complex

• Exploration

RL
Algorithm

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟

𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Reinforcement Learning
Agent starts with no knowledge of environment.

Objective: learn optimal (or good enough) policy through interaction with
environment

Challenges:

• Sparse rewards

• Stochastic actions

• Credit assignment

• World large & complex

• Exploration

Model-Free vs.
Model-Based

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟

𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Model-Free Reinforcement Learning
Model free approach to RL:
• Directly learn a value function or policy without explicitly learning a

model
• Useful when model is difficult to represent or learn, or too large for

planning
• Until recently model-free approaches reigned supreme in practice – that is

changing
Policy and/or
Value Function

For this lecture just know:

• Many model-free algorithms
-- often effective given
“enough” experience

• “enough” in practice can be
106 𝑜𝑜𝑜𝑜 107 transitions!

• Q-learning, PolicyGradient,
Actor-Critic (e.g. DQN,
PPO, DDPG,TD3,…)

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟

𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Model-Based Reinforcement Learning
Model-based approach to RL:
• continually learn an (approximate) MDP model from experience
• use model to somehow improve “experience efficiency”
• Intuition: fitting a model to experience is supervised learning– easier than

general RL
• Intuition: can leverage “planning” if we have a model

MBRL Approaches differ in:

• The type of model learned

• The type of planning done

• Some methods don’t do
anything that looks like
planning
(e.g. model-learning is just
“auxillary learning task” for
model-free learning)

• We focus on those w/
planning

Planner

model

Models: to use or not to use
Potential Advantages
use to “imagine” arbitrary amounts and types of experience
 leverage planning algorithms to identify good actions

(either for exploration or performance)
 learned dynamics can be independent of specific tasks

(i.e. reward functions) so generalize across tasks

Potential Disadvantages
 if model is inaccurate, performance could be hurt

(optimize for the wrong world)
planning can be computationally expensive

(trade-off: computational vs. experience efficiency)
 for very complex environments a model may be harder to

learn than the policy or value function

Model Learning

Model Choices: Representation
 Tabular Models

 much RL theory is in this setting
 challenges for enormous state-action spaces
 recent integrations with deep learning!

 Structured/Symbolic Models
 learn a model representation in a language

that can be “reasoned about” by planner
 E.g. PDDL/STRIPS, PPDDL, RDDL, ….
 What if language isn’t well-matched to world?
 Where do symbols come from?

 Black Box Simulators
 learn a black-box function that can simulate

transitions and rewards
 E.g. represent via neural network
 the most common approach today

N

N

PICK-UP(A,B)
PRE: clear(A), on(A,B)
ADD: holding(A), clear(B)
DEL: on(A,B), clear(A)

𝑜𝑜𝑡𝑡
𝑜𝑜𝑡𝑡

𝑜𝑜𝑡𝑡+1

Model Learning

Model Choices: Observational vs. Latent

 Observational Models
 maps raw observations and actions to predicted next observation & reward
 can be difficult with complex observations (e.g. images)
 many parts of observations are irrelevant to actions (e.g. dynamic backgrounds)

time t time t+1

Limited success for MBRL

𝑜𝑜𝑡𝑡

 Latent State Models
 Learn to encode raw observations into internal latent state representation
 Learn dynamics and reward in latent space
 Latent representation may ignore unimportant details of observations

𝑜𝑜𝑡𝑡

𝑜𝑜𝑡𝑡

𝑇𝑇 𝑜𝑜𝑡𝑡+1 𝑇𝑇 𝑜𝑜𝑡𝑡+2 𝑇𝑇

𝑜𝑜𝑡𝑡+1

Encoder

time t

Vector in 𝑅𝑅𝑛𝑛

𝑅𝑅

𝑜𝑜𝑡𝑡+1 𝑜𝑜𝑡𝑡+2

𝑜𝑜𝑡𝑡+2

𝑅𝑅

• Train so latent model can accurately predict future rewards

• Use of latent models is one key to recent MBRL successes

Model Choices: Observational vs. Latent

Model Learning

MBRL Planner Types
 (Near) Optimal Tabular Planning

 E.g. value iteration
 basis for much of RL theory
 recent uses w/ deep latent representations

 Monte-Carlo Planning
 only requires black-box simulator
 E.g. Monte-Carlo Tree Search (MCTS)
 effectiveness can be limited in same cases

where RL is hard (e.g. sparse rewards)

 Symbolic Planning
 requires structured/symbolic model

representation
 Sadly, so far there has been very little MBRL

work in this direction
 Happily, this may be an opportunity!

N

N

PICK-UP(A,B)
PRE: clear(A), on(A,B)
ADD: holding(A), clear(B)
DEL: on(A,B), clear(A)

𝑜𝑜𝑡𝑡
𝑜𝑜𝑡𝑡

𝑜𝑜𝑡𝑡+1

Model Learning

MBRL Planner Types
 Use Model-Free Reinforcement Learning as “Planner”

 Model-Free RL algorithm interacts with learned model to learn a policy
 Only requires black-box simulation model
 Can provide orders of magnitude more experience than real world
 By definition suffers in domains difficult for model-free RL (e.g. sparse reward)
 This is currently the most common type of MBRL approach!

𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Model-Free RL

Learned
Model

40

Outline
Intro to Model-Based Reinforcement Learning (MBRL)

 Brief Introduction to Reinforcement Learning

 MBRL Choices – Types of Models

 MBRL Choices – Types of Planners

Class of Algorithms

 Class 1: Tabular Models with Optimal Planning

 Class 2: Simulation Models with Search-Based Planning

 Class 3: Simulation Models for Model-Free “Planning”

Research Directions from Planning Perspective

41

Learning a Tabular Model from Data
Suppose we have a data set that contains many

sample transitions of taking actions in an MDP 𝑀𝑀

Each sample is a tuple (s,a,r,s’) --- after taking 𝑜𝑜 in
𝑜𝑜 we got reward 𝑜𝑜 and reached the next state 𝑜𝑜𝑠.

How can we estimate the MDP model �𝑀𝑀 ?
Reward Function

 𝑅𝑅 𝑜𝑜,𝑜𝑜 = 𝑜𝑜 if we have a tuple (𝑜𝑜,𝑜𝑜, 𝑜𝑜, 𝑜𝑜′), otherwise
 𝑅𝑅 𝑜𝑜,𝑜𝑜 is an arbitrary value such as 0

Approximate Transition Function

 𝑇𝑇 𝑜𝑜,𝑜𝑜, 𝑜𝑜’ = # 𝑜𝑜𝑜𝑜 𝑠𝑠,𝑎𝑎,𝑠𝑠′ 𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑛𝑛𝑠𝑠 𝑡𝑡𝑛𝑛 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎
𝑜𝑜𝑜𝑜 𝑠𝑠,𝑎𝑎 𝑡𝑡𝑛𝑛 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

 Various ways to handle zero counts

42

Naïve Model-Based Approach
1. Act Randomly for a (long) time and collect

(s,a,r,s’) tuples

2. Learn
 Transition function
 Reward function

3. Apply value/policy iteration to model to get policy

4. Follow resulting policy thereafter.
Will this work? (assume no dead-ends)

Yes, if we do step 1 long enough so learned model
is uniformly close enough to true model.

But data collection can be arbitrarily inefficient!

43

Idea: Use Planning for Efficient Exploration

1. Estimate model with currently available data
 Transition function
 Reward function

2. Use planning to derive an “exploration policy”
(should lead agent to unexplored parts of MDP)

3. Follow exploration resulting policy and collect
new transition data

4. Goto step 1

Yes, if we do step 1 long enough so learned model
is uniformly close enough to true model.

44

Idea: Use Planning for Efficient Exploration

 There is a class of MBRL algorithms based on the idea of
optimism in the face of uncertainty.

 Basically, if the agent has not explored a state “enough”,
then it pretends that state gives maximum reward when
planning
 So planner will try to reach such states

 Many of the theoretical results are based on this idea
We’ll only touch on the theory

45

Optimistic Exploration: Rmax Algorithm

1. Start with an optimistic model
(assign largest possible reward to “unexplored states”)
(actions from “unexplored states” only self transition)

2. Solve for optimal policy in optimistic model (standard VI)

3. Take greedy action according to policy

4. Update optimistic estimated model
(if a state becomes “known” then use its true statistics)

5. Goto 2

Agent always acts greedily according to a model that
assumes all “unexplored” states are maximally
rewarding

46

Rmax: Optimistic Model
 Let 𝑁𝑁 𝑜𝑜,𝑜𝑜 be the number of times that action 𝑜𝑜 has been tried

in state 𝑜𝑜
 A state-action pair (𝑜𝑜,𝑜𝑜) is “unexplored” if 𝑁𝑁 𝑜𝑜, 𝑜𝑜 < 𝑁𝑁𝑒𝑒
 A state 𝑜𝑜 is unexplored if for some action 𝑜𝑜, 𝑜𝑜,𝑜𝑜 is unexplored

 Optimistic Model Construction (only in the agents head):
 If 𝑁𝑁 𝑜𝑜,𝑜𝑜 < 𝑁𝑁𝑒𝑒 then 𝑇𝑇 𝑜𝑜,𝑜𝑜, 𝑜𝑜 = 1 and 𝑅𝑅 𝑜𝑜,𝑜𝑜 = 𝑅𝑅max
Unexplored states have max reward self loops

 If 𝑁𝑁 𝑜𝑜,𝑜𝑜 ≥ 𝑁𝑁𝑒𝑒 then 𝑇𝑇 𝑜𝑜,𝑜𝑜, 𝑜𝑜𝑠 and 𝑅𝑅 𝑜𝑜,𝑜𝑜 are estimated
from the 𝑁𝑁𝑒𝑒 experiences

Explored states are estimated from observed data

 For large enough Ne the explored states will have accurate
models

47

Optimistic Exploration

 Is Rmax provably efficient?
 If the model is ever completely learned (i.e. N(s,a) > Ne, for

all (s,a)), then the policy will be near optimal.
Theoretical results show that this will happen “quickly”

 Theoretical Guarantee (Roughly speaking):
There is a value of Ne (depending on n,m, and Rmax), such
that with high probability the Rmax algorithm will select at
most a polynomial number of actions with value less than ε of
optimal.

RL can be solved in poly-time in n, m, and Rmax!

48

Thoughts on Model-Based RL
Model-based methods like RMAX have established

some fundamental theory about finite-time
convergence to near optimal policies

But in practice they are difficult to use for large MDPs
Require storing and solving an estimated MDP model

How could we use these methods for enormous
MDPs?

Value Iteration
(maybe on GPU)

• Maps new observations to nearest (or k nearest) tabular states
• “nearest” is based on learned latent representation

Prior Experience = {(s,a,r,s’)} Latent State Representation Learning

Compilation to Tabular
Markov Decision Process (MDP)

Tabular Model

Policy

Tabular MBRL for Enormous Worlds

2

Tabular MBRL for Enormous Worlds
Efficient Model-Based Deep Reinforcement Learning with Variational State
Tabulation. Dane Corneil, Wulfram Gerstner, Johanni Brea. ICML 2018.

• Learn variational auto
encoder over
observaions with
Discrete Bottleneck

• Use as discrete state space

• Promising results in 3D
navigation domain

• Has not yet shown
robustness and scaling to
Atari.

Variational Auto Encoder

Learned Latent State Representation
(can be continuous)

(𝑠𝑠1, 𝑎𝑎1, 𝑠𝑠2, 𝑟𝑟)
(𝑠𝑠1, 𝑎𝑎2, 𝑠𝑠2, 𝑟𝑟)
(𝑠𝑠2, 𝑎𝑎1, 𝑠𝑠4, 𝑟𝑟)

……..

Experiential
Dataset

Build data
graph

Fill in unknown
sa pairs

Tabular MBRL for Enormous Worlds
DeepAveragers (soon to be on arxiv) also see my invited talk at ICAPS WS on
Bridging the Gap Between AI Planning and Reinforcement Learning

4

Tabular MBRL for Enormous Worlds
DeepAveragers (soon to be on arxiv) also see my invited talk at ICAPS WS
on Bridging the Gap Between AI Planning and Reinforcement Learning

Unseen States

Approximate for
unseen states

Value
Iteration

Solve MDP

(𝑠𝑠1,𝑎𝑎1, 𝑠𝑠2, 𝑟𝑟)

(𝑠𝑠1,𝑎𝑎2, 𝑠𝑠2, 𝑟𝑟)

(𝑠𝑠2, 𝑎𝑎1, 𝑠𝑠4, 𝑟𝑟)

⋮

Experiential
Dataset

Build data graph

Fill in unknown
sa pairs

based on theory of averagers”
using k nearest neighbors

Atari Results (only 100K transitions)
BCQ = model-free algorithm
DAC-BCQ = Value Iteration Policy using BCQ Representation

GPU implementation of VI easily scales to 3M states

Basic GPU VI implementation easily scales to 3M states
(currently limited to 10s of actions – memory constraints)

Atari Results (only 2.5M transitions)

BCQ and DQN = model-free algorithm
DAC-BCQ and DAC-DQN = model-based

MBRL Use Case (“zero-shot transfer”)

(A) Agent View of the world. (B) Top view of the world. Agent receives a
reward of +1 on reaching near the box. -1 for bumping into a wall. Episode

ends once goal is reached. Actions Available: Forward, Right, Left

A B

[Generated] Optimal policy for Point Goal Navigation Task.

Point Goal Navigation Task. Left action penalized

Point Goal Navigation Task. Right action penalized

Outline

Intro to Model-Based Reinforcement Learning (MBRL)
• Brief Introduction to Reinforcement Learning
• MBRL Choices – Types of Models
• MBRL Choices – Types of Planners

Class of Algorithms
• Class 1: Tabular Models with Optimal Planning
• Class 2: Simulation Models with Search-Based Planning
• Class 3: Simulation Models for Model-Free “Planning”

Research Directions from Planning Perspective

8

Most Famous Examples

AlphaGo → AlphaZero → MuZero

10

Reactive Policies vs. Deliberative Search

… …s
a2 a1

Single neural net
evaluation

Real env.
state/action
sequence

So far the output of RL has been a reactive policy.

Single neural net
evaluation

But some environment seem like they require
“deliberation” at each decision step (e.g. Chess, Go)

11

Reactive Policies vs. Deliberative Search

… …s
a2 a1

Build look-ahead tree Build look-ahead tree

Real world
state/action
sequence

Let’s consider MBRL that uses tree search to select actions.

Let’s start with AlphaGo and AlphaZero.

Monte Carlo Tree Search

Leaf Eval

Both AlphaGo and AlphaZero use Monte-Carlo Tree Search

Evaluation Function
Simulation-Based
Model

Both assume a perfect simulation-based model is given!

Should this still be considered MBRL?

Monte Carlo Tree Search

If we don’t need to learn a model,
then what is left to learn?

Improved Tree
Expansion

Improved Leaf
Evaluation

Learn knowledge to
improve search!

Improving Tree Expansion

Input: Board Position

Output: probability of each move

Deep NN
Layers

Idea: learn neural
network that predicts
probability that each
action will lead to a win

That is, learn a
probabilistic policy.

Improving Leaf Evaluation

Input: Board Position

Output: probability of each move

Deep NN
Layers

Idea: learn neural
network that predicts
probability of win for a
board position

That is, learn a value
function.

Could just use max
probability over actions.

AlphaGo – Bootstrapping via Supervised Learning

Input: Board Position

Output: probability of each move

Deep NN Internal
Layers

Trained for 3 weeks on 30 million
expert moves

• 57% prediction accuracy!

Supervised Learning for Go

Input: Board Position

Output: probability of each move being played by an expert

AlphaGo has still not played a
game of Go!

Could it improve further by playing?

leading to a win

Use model-free RL!

18

AlphaGo - Learning from Self Play

Model-Free RL: learn from positive and negative
rewards (win = +1 and loss = 0 in Go)

Learning Network

Play 1000 Games

Frozen Network
ver 0

19

Learning from Self Play

Learning Network Frozen Network
ver 0

Transfer Improved Network
(brain transplant)

Model-Free RL: learn from positive and negative
rewards (win = +1 and loss = 0 in Go)

20

Learning from Self Play

Learning Network Frozen Network
ver 1

Play 1000 Games

Model-Free RL: learn from positive and negative
rewards (win = +1 and loss = 0 in Go)

21

Learning from Self Play

Reinforcement Learning : learn from positive and negative
rewards (win = +1 and loss = 0 in Go)

Learning Network Frozen Network
ver 1

Transfer Improved Network
(brain transplant)

22

Learning from Self Play

Learning Network Frozen Network
ver 2

Play 1000 Games

Model-Free RL: learn from positive and negative
rewards (win = +1 and loss = 0 in Go)

23

Learning from Self Play

Learning Network Frozen Network
ver 2

Transfer Improved Network
(brain transplant)

Model-Free RL: learn from positive and negative
rewards (win = +1 and loss = 0 in Go)

24

Learning from Self Play

Learning Network Frozen Network
ver 1,000,000

Eventually learns to play much better!

Model-Free RL: learn from positive and negative
rewards (win = +1 and loss = 0 in Go)

Monte Carlo Tree Search
Improved Tree
Expansion

Improved Leaf
Evaluation

There are 1001 ways to incorporate networks into tree search.
They tuned search approach via lots of experimentation.

26

March 2016 :
AlphaGo beats Lee Sedol 4-1

AlphaGo

• Deep Learning + Monte Carlo Tree Search + HPC

• Learn from 30 million expert moves and self play

• Highly parallel search implementation

But …. AlphaGo required
bootstrapping from human
experts.

We’d prefer to learn from scratch!

27

Learning from Self Play: AlphaGo

AlphaGo AlphaGo

AlphaGo used just the neural network to make decisions
during self-play.

Then inserted neural network into search for real games.

There seems to be a limit on the performance of a
single neural network with no search!

28

Learning from Self Play: AlphaZero
AlphaGo Zero AlphaGo Zero

AlphaGo Zero uses Search + Neural Net during
self-play.

Trains neural nets on decisions found by Search + Neural Net

No bootstrapping from human experts!

29

Learning from Self Play: AlphaZero
AlphaGo Zero AlphaGo Zero

Improved Decisions

+

Good Decisions

Train network to copy improved decisions
Bootstrap via
search rather than
human experts!

30

Learning from Self Play: AlphaZero
AlphaGo Zero AlphaGo Zero

But ……… AlphaGo and AlphaZero both assume
access to a perfect world model!

End the trilogy with MuZero – learns latent space simulation model +
knowledge to control tree-search in latent space

 Latent State Model
 Learns to encode observations to a latent state space from self-play
 Learns dynamics and reward function in latent space

𝑠𝑠𝑡𝑡

𝑎𝑎𝑡𝑡

𝑇𝑇 𝑠𝑠𝑡𝑡+1 𝑇𝑇 𝑠𝑠𝑡𝑡+2 𝑇𝑇

𝑟𝑟𝑡𝑡+1

Encoder

time t

Vector in 𝑅𝑅𝑛𝑛

𝑅𝑅

𝑎𝑎𝑡𝑡+1 𝑎𝑎𝑡𝑡+2

𝑟𝑟𝑡𝑡+2

𝑅𝑅

MuZero – Learn Latent State Model

MuZero – Tree Search in Latent Space

𝑠𝑠𝑡𝑡

Encoder

Build tree with learned latent
transitions and rewards

𝑇𝑇

𝑅𝑅

MuZero – Tree Search in Latent Space

𝑠𝑠𝑡𝑡

Encoder

𝑇𝑇

𝑅𝑅

Improved Tree
Expansion

Improved Leaf
Evaluation

Now run AlphaZero to learn search control

In parallel with model learning!

Results

AlphaZero

MuZero

Muzero gets better
performance despite
having smaller architecture
than AlphaZero.

35

Outline
Intro to Model-Based Reinforcement Learning (MBRL)

 Brief Introduction to Reinforcement Learning

 MBRL Choices – Types of Models

 MBRL Choices – Types of Planners

Class of Algorithms

 Class 1: Tabular Models with Optimal Planning

 Class 2: Simulation Models with Search-Based Planning

 Class 3: Simulation Models for Model-Free “Planning”

Research Directions from Planning Perspective

36

Basic Template

Learns from both real and
imagined transitions

1001 variations of this idea
….. and growing every day

Replay
Buffer

Learn
Model

Model-Free
RL

Environment Interaction

Agent

observation, reward

action store
transitions

Sample rollout/
transitions

updated
agent

Simulated
rollouts/transitions

real env.
data

Sometimes called
“imagined” transitions

Advantage: can handle continuous
action domains by using appropriate
model-free RL agent!

37

Dyna-Q

Q-learning or SARSALong before the era of Deep RL

Many deep adaptations

Replay
Buffer

Learn
Model

Model-Free
RL

Environment Interaction

Agent

observation, reward

action store
transitions

Sample rollout/
transitions

updated
agent

Simulated
rollouts/transitions

real env.
data

Generate k imagined
samples for every real
one

Richard S. Sutton. (1990). Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In International Conference on Machine Learning.

Tablular
or Linear

38

Simulated Policy Learning
(SimPle)

Proximial Policy
Optimization (PPO)

Replay
Buffer

Learn
Model

Model-Free
RL

Environment Interaction

Agent

observation, reward

action store
transitions

Sample rollout/
transitions

updated
agent

Simulated
rollouts/transitions

real env.
data

Result: showed improvement over
model-free, but fails on really hard
games (poor reconstructions)

Kaiser et al. (2020). Model-Based RL for Atari.
International Conference on Learning Representations.

Learns model
over pixel
observations

39

Dream to Control
(Dreamer)

Somewhere between model-free and model-based!

Optimization via policy gradients that “back propogate”
through learned model (a differentiable neural net)

Replay
Buffer

Learn
Model

Model-Free*
RL

Environment Interaction

Agent

observation, reward

action store
transitions

Sample rollout/
transitions

updated
agent

Simulated
rollouts/transitions

real env.
data

Hafner et al. (2020). Dream to Control: Learning
Behaviors by Latent Imagination. International
Conference on Learning Representations.

Learns latent
state space
model

40

Policy Optimization – Not Quite Model-Free

policy parameters 𝜙𝜙 update:
(analytic gradient via auto-differentiation)

Back prop after imagined policy simulation

41

Dreamer Results: Focused on Continuous Control
(a current state-of-the-art approach)

42

Outline
Intro to Model-Based Reinforcement Learning (MBRL)

 Brief Introduction to Reinforcement Learning

 MBRL Choices – Types of Models

 MBRL Choices – Types of Planners

Class of Algorithms

 Class 1: Tabular Models with Optimal Planning

 Class 2: Simulation Models with Search-Based Planning

 Class 3: Simulation Models for Model-Free “Planning”

Research Directions from Planning Perspective

Model Learning

Model Choices: Representation
 Tabular Models

 much RL theory is in this setting
 challenges for enormous state-action spaces
 recent integrations with deep learning!

 Structured/Symbolic Models
 learn a model representation in a language

that can be “reasoned about” by planner
 E.g. PDDL/STRIPS, PPDDL, RDDL, ….
 What if language isn’t well-matched to world?
 Where do symbols come from?

 Black Box Simulators
 learn a black-box function that can simulate

transitions and rewards
 E.g. represent via neural network
 the most common approach today

N

N

PICK-UP(A,B)
PRE: clear(A), on(A,B)
ADD: holding(A), clear(B)
DEL: on(A,B), clear(A)

𝑠𝑠𝑡𝑡
𝑎𝑎𝑡𝑡

𝑠𝑠𝑡𝑡+1

Model Learning

MBRL Planner Types
 (Near) Optimal Tabular Planning

 E.g. value iteration
 basis for much of RL theory
 recent uses w/ deep latent representations

 Monte-Carlo Planning
 only requires black-box simulator
 E.g. Monte-Carlo Tree Search (MCTS)
 effectiveness can be limited in same cases

where RL is hard (e.g. sparse rewards)

 Symbolic Planning
 requires structured/symbolic model

representation
 Sadly, so far there has been very little MBRL

work in this direction
 Happily, this may be an opportunity!

N

N

PICK-UP(A,B)
PRE: clear(A), on(A,B)
ADD: holding(A), clear(B)
DEL: on(A,B), clear(A)

𝑠𝑠𝑡𝑡
𝑎𝑎𝑡𝑡

𝑠𝑠𝑡𝑡+1

Value Iteration
(maybe on GPU)

• Maps new observations to nearest (or k nearest) tabular states
• “nearest” is based on learned latent representation

Prior Experience = {(s,a,r,s’)} Latent State Representation Learning

Compilation to Tabular
Markov Decision Process (MDP)

Tabular Model

Policy

Tabular MDPs are Trivially Symbolic – Move Beyond This

SAT Solver

Prior Experience = {(s,a,r,s’)} Latent State Representation Learning

Compilation to Satisfiability
Problem

Sat Problem

Plan

Latent Space SAT Encodings?

FF Plan, Lama,
Prost, …..

Prior Experience = {(s,a,r,s’)} Latent State Representation Learning

Compilation to PDDL/RDDL

PDDL/RDDL Problem

Plan

Latent Space PDDL/RDDL Encodings?

Action1(A,B)
PRE: p1(A), r2(A,B)
ADD: p3(A), p2(B)
DEL: r1(A,B), p2(A)

48

Leveraging Symbolic Structure/Solvers
for Deep MBRL

Where can we demonstrate the value of integrating ICAPS style
planning and Deep Representaion Learning?

Hope to see Ph.D. Theses coming out on this soon!

49

Questions?

	Slide Number 1
	Outline
	Deep Reinforcement Learning (DRL)
	Classical Planning Assumptions�(primary focus of AI planning until early 90’s)
	Classical Planning Assumptions�(primary focus of AI planning until mid 90’s)
	Stochastic/Probabilistic Planning: Markov Decision Process (MDP) Model
	Example MDP
	Stochastic/Probabilistic Planning: Markov Decision Process (MDP) Model
	Markov Decision Processes
	Tabular Representation
	What is a solution to an MDP?
	What is a solution to an MDP?
	Stationary Policies
	Stationary Policies
	Stationary Policies
	What is a solution to an MDP?
	Value of a Policy
	Infinite Horizon Value
	Infinite Horizon
	Discounted Infinite Horizon MDPs
	Discounted Infinite Horizon MDPs
	Notes: Discounted Infinite Horizon
	Computing an Optimal Value Function
	Computing an Optimal Value Function
	Value Iteration
	Value Iteration
	How to Act
	Main Takeaway - Known Models
	Unknown Models
	Reinforcement Learning
	Reinforcement Learning
	Model-Free Reinforcement Learning
	Model-Based Reinforcement Learning
	Models: to use or not to use
	Model Learning
	Model Learning
	Slide Number 37
	Model Learning
	Model Learning
	Outline
	Learning a Tabular Model from Data
	Naïve Model-Based Approach
	Idea: Use Planning for Efficient Exploration
	Idea: Use Planning for Efficient Exploration
	Optimistic Exploration: Rmax Algorithm
	Rmax: Optimistic Model
	Optimistic Exploration
	Thoughts on Model-Based RL
	summer-school-2020-model-based-rl-part2.pdf
	Slide Number 1
	Tabular MBRL for Enormous Worlds
	Slide Number 3
	Tabular MBRL for Enormous Worlds
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Outline
	Slide Number 9
	Reactive Policies vs. Deliberative Search
	Reactive Policies vs. Deliberative Search
	Monte Carlo Tree Search
	Monte Carlo Tree Search
	Improving Tree Expansion
	Improving Leaf Evaluation
	AlphaGo – Bootstrapping via Supervised Learning
	Supervised Learning for Go
	AlphaGo - Learning from Self Play
	Learning from Self Play
	Learning from Self Play
	Learning from Self Play
	Learning from Self Play
	Learning from Self Play
	Learning from Self Play
	Monte Carlo Tree Search
	Slide Number 26
	Learning from Self Play: AlphaGo
	Learning from Self Play: AlphaZero
	Learning from Self Play: AlphaZero
	Learning from Self Play: AlphaZero
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Outline
	Basic Template
	Dyna-Q
	Simulated Policy Learning (SimPle)
	Dream to Control �(Dreamer)
	Policy Optimization – Not Quite Model-Free
	Dreamer Results: Focused on Continuous Control�(a current state-of-the-art approach)
	Outline
	Model Learning
	Model Learning
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Leveraging Symbolic Structure/Solvers �for Deep MBRL
	Questions?

