Certified Unsolvability in Classical Planning

Bibliography

Salomé Eriksson Gabriele Röger Malte Helmert

University of Basel, Switzerland

ICAPS 2020

Certifying Algorithms and Proof Systems

 - introduces the concept of certifying algorithms
- Mohammad Abdulaziz, Peter Lammich. A Formally Verified Validator for Classical Planning Problems and Solutions. ICTAI 2018
 - plan validator built with theorem prover
 - shows that VAL/INVAL still contain bugs (fringe cases)
- Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift 1935
 - introduces the concept of natural deduction

Unsolvability Certificates

- Salomé Eriksson, Gabriele Röger, Malte Helmert. Unsolvability Certificates for Classical Planning. ICAPS 2017
 - inductive certificates
- Salomé Eriksson, Gabriele Röger, Malte Helmert. A Proof System for Unsolvable Planning Tasks. ICAPS 2018
 - first version of the unsolvability proof system
 - description and comparison of both inductive certificates and unsolvability proof system
 - augmentations to proof system
 - analysis of efficient verification with R-formalisms
Representation formalisms

- Adnan Darwiche, Pierre Marquis.
 A Knowledge Compilation Map. JAIR 2002
 - thorough analysis of different knowledge representations
 - describes operations for R-formalisms

- Stefan Edelkamp, Peter Kissmann.
 On the Complexity of BDDs for State Space Search: A Case Study in Connect Four. AAAI 2011
 - shows that information like mutexes cannot be efficiently encoded in one BDD

Planning techniques

- Marcel Steinmetz, Jörg Hoffmann.
 State space search nogood learning: Online refinement of critical-path dead-end detectors in planning. Artificial Intelligence 2017
 - iterative refinement of h^c specialized on finding dead-ends

- Malte Helmert, Patrik Haslum, Jörg Hoffmann, Raz Nissim.
 - translation from M&S representation to ADD

- Malte Helmert, Gabriele Röger, Silvan Sievers.
 On the Expressive Power of Non-Linear Merge-and-Shrink Representations. ICAPS 2015
 - non-linear merge strategies cannot be represented by ADDs

- Vidal Alcázar, Álvaro Torralba.
 A Reminder about the Importance of Computing and Exploiting Invariants in Planning. ICAPS 2015
 - description of the h^2 preprocessor used in many planners