
ICAPS2020 Summer School: Temporal Planning

Arthur Bit-Monnot1 and Andrea Micheli2

14 October 2020

1LAAS-CNRS, Toulouse, France. abitmonnot@laas.fr
2Fondazione Bruno Kessler, Trento, Italy. amicheli@fbk.eu



Lecture program

1. Introduction: what is temporal planning?
• Motivation
• Applications
• Complexity

2. Temporal reasoning
• Temporal Networks Generalities
• Point Algebra & Allen Algebra
• Simple Temporal Networks
• Advanced temporal reasoning frameworks

3. State-oriented techniques
• Languages & Complexity
• Time in forward search
• State-based SAT/SMT/MIP encoding

4. Time-oriented techniques
• Building blocks for action/timeline representation
• Search Process
• Planning as Scheduling

5. Conclusion

1/61



Introduction to temporal planning



What is AI Planning?

Given a model of a system and a goal to be reached, find a course of actions to drive

the system to the goal.

System Specification

Initial Configuration and Goal

Planner
Plan / Strategy

AI Planning is a purely deductive technique: all the information and all the solutions

are in the input, the planner reasons on the model and extracts them.
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Example

(taken from “Automated Planning and Acting” by M. Ghallab, D. Nau and P. Traverso)

3/61



Temporal Planning

• Time and temporal constraints must be considered

• Actions can overlap and interfere

• The key intuition is that we want to decide both what to do and when to do it:
we want to generate a Gantt-chart of activities

Example

Possible Plan:

• A: move(r1, d1, d3)
at 0 with duration 7

• B: load(r2, c3, p2)
at 8 with duration 9

time
0

A

B

A

B

20
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Why Temporal Planning?

• Optimal control in known (or partially-known) environments
(e.g. Factories, Warehouses)

• Mission planning
(e.g. Exploration rovers, UAV, AUV)

• Safety critical control and recovery
(e.g. Satellites)
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Time interpretation

Time is a first-class citizen and can be interpreted on different domains

• Discrete-time
• Events happen at discrete steps (e.g. Z)
• We do not model what happens between two steps
• A planner has to find a way to schedule events in the discrete steps
• Q: how many (non-overlapping) actions with duration > 0 can you fit in 10

time-units?
• Dense-time

• Events can happen in a dense continuum (e.g. Q or R)
• Q: how many (non-overlapping) actions with duration > 0 can you fit in 10

time-units?

Warning

Discrete-time seems simpler (and sometimes is), but consider that linear programming
over the rationals is polynomial (ellipsoid algorithm) while over the integers it is NP-
complete (integer programming)!
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Computational Complexity

Theorem ([Rintanen, 2007, Gigante et al., 2020a, Gigante et al., 2017])

Temporal planning with discrete time is EXPSPACE-Complete.

Theorem ([Gigante et al., 2020a, Bozzelli et al., 2020])

Temporal planning with dense time is undecidable.
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Temporal Reasoning



Why Temporal Reasoning?

start

Satellite’s visibility window

Sample

Analyze Transmit data

Move

Park at base

Answering questions about a (partial?) plan:

• Consistency (no deadlocks, meet deadlines, . . . )

• Occurrence times (earliest/latest start times, . . . )

• Relative ordering (action A before action B?)

• Dispatchability (strategy to execute the plan)
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Intervals and Timepoints

Interval

A contiguous subset of time, characterized
by a start time s and a duration d .

][
time

s d

Timepoint

A single point in time, typically related to
a particular instantaneous event.

timet

Interval as Timepoints

][
times e

subject to: e − s = d
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Temporal Networks

Graphical models where:
• nodes = temporal references

• timepoints, intervals
• edges = temporal relations

• before, after, ...

n2

n1 n3

r 12
r23

r13

Consistency: there exists a valid instantiation of all references (nodes)

Reasoning rules: Composition

n1 n2 n3
r12 r23

r12 ◦ r23

Intersection n1 n2

r12

r ′12

r12 ∩ r ′12
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Point Algebra: Qualitative ordering between timepoints

Ordering

Given 2 timepoints a and b, exactly
one of the following will be true:

• a < b (a before b)
• a > b (a after b)
• a = b (same occurrence time)

Relation

A relation a R−→ b restricts the set R
of possible ordering between a and b.

Relations:

R Meaning

{<} before

{>} after

{=} equal

{<,=} before or equal (≤)

{>,=} after or equal (≥)

{<,>} different ( 6=)

{} contradiction

{<,=, >} tautology (>)

Examples: a
{<}−−→ b a must be before b

a
{<,=}−−−−→ b a must be before or equal to b
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Point Algebra: Composition

Given A
rAB−−→ B

rBC−−→ C

• infer A
rAC−−→ C

• where rAC = rAB ◦ rBC

Composition table:

◦ < = >

< < < >
= < = >

> > > >

t1 t2 t3
< =

{<} ◦ {=}{<}
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Point Algebra: Intersection

Given A
r1−→ B and A

r2−→ B

• infer A
r−→ B

• where r = r1 ∩ r2

Property: A
r1−→ B and A

r2−→ B

• are weaker than A
r1∩r2−−−→ B

• become redundant and can be removed

n1 n2

{<,=}

{>,=}

{<,=} ∩ {>,=}{=}
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Point Algebra: Path Constistency

For each nodes i , j , k :

• rik ← rik ∩ (rij ◦ rjk)

• repeat to quiescence

j

i k

{<
} {=}

{<,=}

{<}

• Infers all pair-wise orderings

• Network is consistent if all pairs of edges have a valid ordering (i.e. no a
{}−→ b)
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Allen’s Interval Algebra [Allen, 1983]

Qualitative orderings between intervals

i

j

i before j

i

j

i meet j
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Allen’s Interval Algebra: Relations

Relation i . . . j

before (b)

i

j

meet (m)

i

j

overlap (o)

i

j

Relation i . . . j

start (s)

i

j

during (d)

i

j

finish (f)

i

j

equal (e)

i

j

+ all 6 inverse: i before j ⇔ j before’ i
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Allen’s Interval Algebra: Intersection & Composition

• Intersection operation (set
intersection)

• Composition matrix

I2

I1 I3

{b
} {m}

{b,m}

Can be expressed into Point Algebra by relations on start/end timepoints
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Simple Temporal Network (STN)

Quantitative ordering between timepoints

Allowed to bound the delay between two timepoints:

−10 ≤ tb − ta ≤ 10 ta and tb should not occur

more than 10s appart

a
[−10,10]−−−−−→ b

5 ≤ tb − ta ≤ 7 tb must occur between 5 and 7

seconds after ta

a
[5,7]−−→ b

Also known as difference logic in automated reasoning community
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STN: Composition & Intersection

Composition

t1 t2 t3

[l , u] [l ′, u′]

[l + l ′, u + u′]

Intersection n1 n2

[l , u]

[l ′, u′]

[l , u] ∪ [l ′, u′]

[max(l , l ′),min(u, u′)]
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STN: Distance Graph

Equivalent


1 ≤ tb − ta ≤ 2 ta tb

[1, 2]

−2 ≤ ta − tb ≤ −1 ta tb
[−2,−1]

Distance graph: only allow upper bounds on difference:

tb − ta ≤ 2 ta tb
2

ta − tb ≤ −1 ta tb
−1
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STN: Distance Graph

Original STN:

O a

b

c

[1, 2]

[5
, 1

0]

[2, 3]

Distance graph:

O a

b

c

2

−1

10

−5

3

−
2

Composition: (a
2−−→ b) ◦ (b

10−−→ c) = a
2+10−−−→ c

Intersection: (a
1−−→ b) ◦ (a

5−−→ b) = a
min(1,5)−−−−−→ b
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STN: Shortest Paths

O a

b

c

2

−1

10

−5

3

−
2

Length of shortest path from X to Y:

• = max delay from X to Y

• = −min delay from Y to X

Why?

• Path is a composition (sum) of edges

• Shortest path is the one with minimum length
(intersection = min)
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STN: Earliest/Latest start time of timepoints

Bellman-Ford Algorithm:
• One-to-All shortest path

• forward graph: max delay
• backward graph: min delay

• From ORIGIN timepoint

• Complexity: O(|N| × |E |)
• Incremental: [Cesta and Oddi, 1996]

Possible delay from O to . . . :

a [1, 2]

b [6, 12]

c [3, 5]

O a

b

c

2

−1

10

−5

3

−
2
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STN: Min/Max delays between all pairs of timepoints

Floyd-Warshall Algorithm:

• All-Pairs shortest path

• Complexity: O(|N|3)

• Incremental: [Planken, 2008]

Max delay from . . . to . . . :

O a b c

O 0 2 12 5

a -1 0 10 3

b -6 -5 0 -2

c -3 -2 8 0

O a

b

c

2

−1

10

−5

3

−
2
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STN Consistency

STN Consistency

An STN is consistent if and only if there is no cycle of negative length in the distance
graph.

Deadlock: A before B & B before A:

A B

-1

-1

Deadline: D at most 10 after A

A B C D
-5 -5 -5

10

Edges of a negative cycle constitute an unsatisfiable subset of constraints.

• To make the STN consistent, at least one of those constraints must be relaxed

• Can be provided by classical algorithms (Bellman-Ford, . . . )

• Exploited by some planners [Rankooh and Ghassem-Sani, 2015]
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Beyond the Simple Temporal Network

STN extensions:

• STN with Uncertainty [Vidal and Fargier, 1999]

• Disjunctive STN [Tsamardinos and Pollack, 2003]

• Conditional STN [Combi et al., 2013]

• Multi-Agent STN [Casanova et al., 2015]

• Time-Dependent STN [Pralet and Verfaillie, 2012]

Execution of an STN (dispatching): [Tsamardinos and Pollack, 2003]
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State-oriented techniques



Action-based languages

PDDL: [Fox and Long, 2003]
1 (define (domain moves)
2 (: requirements :strips :typing)
3 (:types dock robot)
4 (: predicates
5 (loc ?r - robot ?d - dock)
6 (occupied ?x - dock))
7
8 (:durative -action move
9 :parameters(

10 ?r - robot
11 ?src ?dst - dock)
12 :duration (and (>= ?duration 5)
13 (<= ?duration 10))
14 :precondition
15 (and (at start (not (occupied ?dst)))
16 (at start (loc ?r ?src)))
17 :effect
18 (and (at end (not (occupied ?src)))
19 (at start (occupied ?dst))
20 (at start (not (loc ?r ?src)))
21 (at end (loc ?r ?dst)))))
22
23 (define (problem p) (: domain moves)
24 (: objects r1 r2 - robot
25 d1 d2 d3 - dock)
26 (:init (occupied d1) (occupied d2)
27 (loc r1 d1) (loc r2 d2))
28 (:goal (loc r1 d2)))

ANML [Smith et al., 2008]
1 type Dock;
2
3 fluent boolean occupied(Dock d);
4
5 type Robot with {
6 fluent Dock loc;
7
8 action move(Dock dst) {
9 duration >= 5 and duration <= 10;

10 [start] not occupied(dst);
11 [end] loc := dst;
12 [end] occupied(loc) := false;
13 [end] occupied(dst) := true;
14 };
15 };
16
17 instance Robot r1 , r2;
18 instance Dock d1 , d2 , d3;
19
20 [start] occupied(d1) := true;
21 [start] occupied(d2) := true;
22 [start] r1.loc := d1;
23 [start] r2.loc := d2;
24
25 [end] r1.loc == d2;

Point-based languages: NDL [Rintanen, 2015b] and TPP [Micheli and Scala, 2019]. 27/61



Epsilon, or non epsilon, that is the question

Some languages (most notably PDDL 2.1 and PDDL+) require “ε-separation”

• When two events interfere (e.g. they cannot be freely reordered) they need to be
separated by a minimum quantum of time ε

• For example, consider the event of taking the phone and the event of placing a call:
one must causally happen before the other

• If ε is fixed a-priori, the time interpretation is effectively discrete
[Gigante et al., 2020a]

• If the planner needs to find an ε that works then time interpretation might be
dense
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Required concurrency [Cushing et al., 2007]

Definition

A plan is concurrent when there exists a time t at which more than one action is
running, otherwise the plan is sequential. A solvable planning problem has required
concurrency when all solutions are concurrent.

Matchcellar

You have some matches and a number of
fuses to mend in a dark room. You can
only mend a fuse while a match is lit.
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Computational Complexity without Action Self-Overlapping

Theorem ([Rintanen, 2007, Gigante et al., 2020a])

Action-based temporal planning without action self-overlapping is PSPACE-Complete.

Action self-overlapping

A plan contains action self-overlapping if there exists a time t at which two or more
instances of the same ground action are running:

time
0 7

A

156

A

20

Action self-overlapping is rarely useful in practice [Fox and Long, 2007].
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Post-process time: the YAHSP2 approach [Vidal, 2011]

For temporally-simple problems, one can just ignore time and temporal constraints

1. Find a plan π for the classical planning problem having one instantaneous action
for each durative action with the same (pre)conditions and effects

2. Post-process the plan, attaching durations to actions and de-ordering
[Bäckström, 1998] the events to reduce the makespan.

Example

Time-abstracted plan: A;B

(Suppose start(A) supports start(B))

time
0

A

B

A

B

Drawback: incomplete for problems with required concurrency; non-makespan optimal

for temporally-simple
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[Bäckström, 1998] the events to reduce the makespan.

Example

Time-abstracted plan: A;B

(Suppose start(A) supports start(B))

time
0

A

B

7

A

101

B

Drawback: incomplete for problems with required concurrency; non-makespan optimal

for temporally-simple

31/61



Post-process time: the YAHSP2 approach [Vidal, 2011]

For temporally-simple problems, one can just ignore time and temporal constraints

1. Find a plan π for the classical planning problem having one instantaneous action
for each durative action with the same (pre)conditions and effects

2. Post-process the plan, attaching durations to actions and de-ordering
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Snap actions

Basic idea: split each durative action A into two instantaneous actions: start(A) and

end(A)

A ⇒ start(A) end(A)

The search method needs to ensure that for each start(A) there exists exactly one

end(A) and that durative conditions are respected.
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The problem with time and heuristic search

I

· · · · · ·
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Splitting over (dense) time!
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Decision Epoch Planning

Idea

• Augment the planning state with an
agenda of open actions and a
timestamp t

• At each step, we can either start a
new action instance or advance time

• Time can advance only to the first
event in the agenda: the agenda is
then updated to reflect this time
pass

• A goal state must satisfy the goal
conditions and have an empty
agenda

Suppose dur(A) = 5 and dur(B) = 2

t = 0
{}

t = 0
{5:end(A)}

t = 0
{2:end(B)}

t = 5
{0:end(A)}

t = 0
{5:end(A),
2:end(B)}

t = 5
{}

t = 2
{3:end(A),
0:end(B)}

sta
rt(

A) start(B)

ela
pse

start(B)

elap
se

en
d

(A
)

Several planners use decision epoch: SAPA [Do and Kambhampati, 2003], TLPlan

[Bacchus and Ady, 2001], TFD [Eyerich et al., 2012], ...
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Decision Epoch is still incomplete [Cushing et al., 2007]

Decision Epoch planners cannot start actions at arbitrary times: only at the start or

end of another action in the agenda

A[10]

B[5]

C[3]

?x

?x
g1!

g2!
?o

x!, ¬o! ¬x!
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Forward heuristic search with symbolic time

Idea

• Augment the planning state with an
agenda of future events and an STN
of past and future time-points

• Time advance is implicit: a path in
the search tree represents a total
(sometimes a partial) order of the
events

• A goal state must satisfy the goal
conditions, have an empty agenda
and have a consistent STN

Suppose dur(A) = 5 and dur(B) = 2

I

A family of planners use this approach: Crikey [Coles et al., 2009], POPF

[Coles et al., 2010], COLIN [Coles et al., 2012], OPTIC [Benton et al., 2012].

TAMER [Valentini et al., 2020] also uses this idea for ANML.
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Have I been here before?

One important note: in planning we are used to graph search spaces, but how can we

recognize that two states with temporal information are equal?

• In Decision-epoch is simple: two states are equal if the have the same fluent
assignment, the same agenda and the same timestamp

• In forward heuristic search with symbolic time it is hard: we need to understand if
two STNs are isomorphic to decide if two states are equal

• We can under-approximate equality [Coles and Coles, 2016]
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Heuristics for temporal planning

• Classical planning relaxations [Vidal, 2011, Valentini et al., 2020]

• Relax the temporal aspects of the planning domain and use h+, hadd , ...

• Context-enhanced Additive Heuristic for Temporal Planning [Eyerich et al., 2012]
• Transform decision-epoch times into action costs and use hcea

[Helmert and Geffner, 2008]

• Temporal Relaxed Planning Graph [Coles et al., 2010, Coles and Coles, 2017]
• Compute approximated the plan length using TRPG generated by computing

minimal time of fact and action layers
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Temporal Planning as satisfiability

As in SATPlan [Kautz and Selman, 1992]: encode the bounded planning problem as a

formula

• Any model of the formula encodes a valid plan

• If the formula is unsatisfiable, either the problem is unsolvable or the bound is
insufficient and needs to be increased

In order to encode time, SAT is not enough, we need numeric quantities and linear

arithmetic: SMT(LA)
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SMT at-a-glance

Satisfiability Modulo Theory (SMT) [Barrett et al., 2009] is the problem of deciding

the satisfiability of a first-order formula expressed in a given (decidable) theory T .

Example

φ =̇ (x > 2) ∧ (x < 8) ∧ ((x < 1) ∨ (x > 7))

• Is satisfiable in the theory of linear rational arithmetic because {x =̇ 7.5} |= φ

• Is unsatisfiable in the theory of integer arithmetic

Practical features

• Many theories are supported
• Efficient and well-supported implementations
• Common language to express problems (SMT-LIB)
• Annual solver competitions since 2003
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Encoding temporal planning in SMT [Shin and Davis, 2005, Rintanen, 2015a]

Each encoding is different and has strengths and weaknesses, here is a general gist:

• Fluent values are represented at each step by SMT variables: v i for each i ∈ 1, · · · , k
• A step corresponds to one time point in the timeline

• For every action a and every step i there is a Boolean state variable ai indicating if the
action is taken at that step

• The absolute time of each step needs to be represented (e.g. ti ∈ Q)

• Action durations are enforced with LRA/LIA
• e.g.

∧k
i=0 s ia →

∨k
j=i+1(e j

a ∧ t j − t i = dur(a))

• Snap action conditions are checked at the correct step (e.g.
∧k

i=0 ai → Jpre(a)Ki )
• The effects of an action are expressed as condition of the (next step) values

• e.g.
∧k

i=0 ai → Jeff (a)Ki+1

• There are constraints preventing a co-occurrence of two actions that interfere

• e.g.
∧k

i=0 ai ↔ ¬bi

• A “frame-axiom” enforces that values can only change when there is an effect

• e.g.
∧k−1

i=0 v i 6= v i+1 → ai
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Planners using satisfiability encodings

• TM-LPSAT [Shin and Davis, 2005] planning with processes and continuous
change using SMT

• Planning with clock variables in SMT [Rintanen, 2015a]

• LCP [Bit-Monnot, 2018], an SMT-based domain independent planner for ANML

• MIP-based temporal planning [Dimopoulos and Gerevini, 2002]
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Advanced: Intermediate Condition and Effects

Intermediate conditions and effects (ICEs)

Actions with conditions and effects defined at arbitrary moments during the action’s
duration.

done == false done := true picked == true

make_treatment

done == true picked := true

pick

0 60 70 90 100
time

Supported by ANML: LCP [Bit-Monnot, 2018] and TAMER [Valentini et al., 2020].
43/61



Time-oriented techniques



Reflecting on state-oriented forward search

Key questions in (temporal) planning:

What actions?
}

Tied by grounding into operators
Which parameters?

When?
}

Fixed by progression search

In state-oriented forward search, all 3 decisions made at once:

• necessary for extracting a state

• error prone (high branching factor)

• enables extremely helpful search heuristics
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Plans & Partial Orders

start end

move(Alice,A,B)

move(Bob,C,D)

loc(Alice)

loc(Bob)

A moving B

C moving D

The sequence of traversed states changes with the (arbitrary) ordering between actions.
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Timelines

Timeline

A timeline denotes the evolution of a particular state variable through time.

loc(Alice): A moving B

loc(Bob): C moving D

Token

A timeline is filled with tokens, that give the value of the state variable over an interval
of time.

loc(Alice) = A

ts te
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Action-based vs Timeline-based models

Action-based model:

When some conditions hold, then you
can produce this effect

action A:
pre: at = L1
eff: at = L3

action B:
pre: at = L2
eff: at = L3

Planners: IxTeT, FAPE, CPT, LCP

Timeline-based model:

The presence of a token implies addi-
tional conditions.

at = L3 ⇒

at = L1∃ s.t. at = L1 at = L3

meet

∨
at = L2∃ s.t. at = L2 at = L3

meet

Planners: Europa, ASPEN, CHIMP

Action-based models can be expressed as timeline-based models [Gigante et al., 2016]
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Tokens: Effects & Conditions

Effect tokens

Value v of a state variable sv over a tem-
poral interval [ts , te ]

sv = v

ts te

Usage:

• Action effects
• Initial facts
• Timed initial literals

(e.g. satellite visible during
[120,420])

Condition tokens

State variable sv must have value v over
[ts , te ] but it has not been established yet.

sv = v

ts te

Usage:

• Action’s condition
• Goals
• Temporally extended goals
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Actions as a set of tokens

pick(r: robot, o: object, l: loc)

start: ts

end: te

duration: 4 (= te − ts)

conditions: [ts , te ] at(r) = l

[ts − 1, te − 1] at(o) = l

effects: [te − 1, t ′] at(o) = grip

[ts , te ] busy(r) = true

pick(r, o, l)

ts te

at(r)=l

ts te

at(o)=l

ts − 1 te − 1

at(o)=grip

te − 1 t ′

busy(r)=true

ts te

t′: artificial, unbounded, timepoint to reason about the end of the effect
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Timeline consistency: Threat (Conflicting assignment)

Two distinct tokens

sv1 = v1

t1
s t1

e

sv2 = v2

t2
s t2

e

should not concurrently impose a value to the same variable

sv 1 6= sv 2 ∨ t1
e < t2

s ∨ t2
e < t1

s
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Timeline consistency: Unsupported conditions

A condition token

sv1 = v1

t1
s t1

e

should be established by an effect token

sv2 = v2

t2
s t2

e

such that

sv 1 = sv 2 ∧ v 1 = v 2 ∧ t2
s ≤ t1

s ≤ t1
e ≤ t2

e
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Search Process

• Start from a empty plan, containing only the tokens representing the initial
facts ands goals

• Such partial plan is flawed: it might contains violations of the consistency rules
• unsupported condition
• conflicting assignment

• PSP algorithm: refines the partial plan until no flaw remains

Partial plan:

• Set of actions
• Set of timelines and

associated tokens
• STN to maintain

constraints between
timepoints

PSP(pplan):

1. if flaws(pplan) = ∅

• return pplan (solution)

2. flaw = pick arbitrary in flaws(pplan)
3. if resolvers(flaw) = ∅

• return failure (unsolvable flaw)

4. nondeterministically choose R ∈ resolvers(pplan)
5. pplan’ = apply-resolver(R, pplan)
6. return PSP(pplan’)
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Searching in the space of partial plans/timelines

at(o)=l2at(o)=l1

at(r)=l1

empty

plan

Search Tree

Flaw unsupported condition
at(o)=l2

:

→ Insert action
place(r,o,l2)

and unify with effect
at(o)=l2

place(r,o,l2)

at(o)=grip at(o)=l2

at(r)=l2

busy(r)=true

Flaw unsupported condition
at(o)=grip

:

→ Insert action
pick(r,o,l1)

and unify with effect
at(o)=grip

Insert action
pick(r,o,l2)

and unify with effect
at(o)=grip

pick(r,o,l1)

at(o)=gripat(o)=l1

at(r)=l1

busy(r)=true

Flaw unsupported condition
at(o)=l1

:

→ Unify with existing
at(o)=l1

Insert action
place(r,o,l1)

and unify with effect
at(o)=l1

at(o)=l1

Flaw unsupported condition
at(r)=l1

:

→ Unify with existing
at(r)=l1

Insert action
move(r,l2,l1)

and unify with effect
at(r)=l1

at(r)=l1

Flaw unsupported condition
at(r)=l2

:

→ Insert action
move(r,l1,l2)

and unify with effect
at(r)=l2

move(r,l1,l2)

at(r)=l2at(r)=l1

busy(r)=true

Flaw unsupported condition
at(r)=l1

:

→ Unify with existing
at(r)=l1

Insert action
move(r,l2,l1)

and unify with effect
at(r)=l1

at(r)=l1

Flaw conflicting
busy(r)=true

and
busy(r)=true

:

→ Force ordering
X

Flaw :
→
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Search Control

PSP generates a search tree which can be explored:

• In Depth-First (common option among timeline-based planners)

• Through heuristic search (A∗,Aε, weighted A∗)

Choices to make:

• Which flaw to fix?
• (often) with least resolvers (minimize branching factor)

• Which partial plan (A∗) or resolver (DFS) ?
• Domain specific (common in timeline-based)
• Least-commitment (IxTeT)
• Distance to consistency [Bernardini and Smith, 2008, Bit-Monnot et al., 2020]
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Lifted planning: delay parameter bindings

Lifted planning

• Action parameters are variables whose value are constrained
• The STN is complemented with a binding constraint network that maintain the

possible values of parameters.
Planners: FAPE, IxTeT, Europa, LCP

Ground actions:
Flaw unsupported condition

at(o)=grip
:

→ Insert action
pick(r,o,l1)

and unify with effect
at(o)=grip

Insert action
pick(r,o,l2)

and unify with effect
at(o)=grip

Lifted actions:
Flaw unsupported condition

at(o)=grip
:

→ Insert action
pick(r?,o?,l?)

and unify with effect
at(o?)=grip

(o? = o)

(single resolver, choice is postponed)

Other CSP-based extensions:

• Resource reasoning [Laborie, 2003]

• Spatial reasoning [Mansouri and Pecora, 2014]
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Planning as Scheduling

Temporal Planning


What? (which actions?)

How? (which parameters?)
}

Scheduling
When?

• Mature and efficient tooling in Operations Research and Constraint Programming
communities

• Many (most?) planning problems are naturally handle as scheduling.

A good entry point: CPOptimizer [Laborie et al., 2018]
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Conclusions



Take-away message

Summary

• Temporal Planning = Deciding what to do + deciding when to do it
• State-oriented techniques

• Strong heuristic guidance
• Risk of temporal over-commitment
• Harder to support complex temporal constraints

• Time-oriented techniques
• Harder to provide heuristic guidance
• Least commitment planning
• Can support complex temporal constraints

Temporal planning is an active area of research

• Continuous change: resources changing continuously
• Temporal uncertainty
• Combination of temporal planning with other extensions of classical planning:

• Optimal temporal planning
• Temporal planning with trajectory preferences
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Thank you!
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IBM ILOG CP optimizer for scheduling.
Constraints, 23(2):210–250.

Mansouri, M. and Pecora, F. (2014).
More Knowledge on the Table: Planning with Space, Time and Resources
for Robots.
In ICRA.



References xi

Micheli, A. and Scala, E. (2019).
Temporal planning with temporal metric trajectory constraints.
In AAAI 2019, pages 7675–7682.

Planken, L. (2008).
New Algorithms for the Simple Temporal Problem.
Master Thesis, Delft University.

Pralet, C. and Verfaillie, G. (2012).
Time-dependent simple temporal networks.
In Milano, M., editor, Principles and Practice of Constraint Programming, pages
608–623, Berlin, Heidelberg. Springer Berlin Heidelberg.

Rankooh, M. F. and Ghassem-Sani, G. (2015).
ITSAT: An Efficient SAT-Based Temporal Planner.
JAIR, 53:541–632.



References xii

Rintanen, J. (2007).
Complexity of concurrent temporal planning.
In ICAPS.

Rintanen, J. (2015a).
Discretization of temporal models with application to planning with SMT.
In AAAI, pages 3349–3355.

Rintanen, J. (2015b).
Models of action concurrency in temporal planning.
In IJCAI, pages 1659–1665.

Shin, J. and Davis, E. (2005).
Processes and continuous change in a sat-based planner.
Artif. Intell., 166(1-2):194–253.



References xiii

Smith, D., Frank, J., and Cushing, W. (2008).
The anml language.
In KEPS 2008.

Tsamardinos, I. and Pollack, M. E. (2003).
Efficient solution techniques for disjunctive temporal reasoning problems.
Artificial Intelligence, 151(1):43 – 89.

Valentini, A., Micheli, A., and Cimatti, A. (2020).
Temporal planning with intermediate conditions and effects.
In AAAI.

Vidal, T. and Fargier, H. (1999).
Handling Contingency in Temporal Constraint Networks: From Consistency
to Controllabilities.
Journal of Experimental and Theoretical Artificial Intelligence, 11.



References xiv

Vidal, V. (2011).
Yahsp2: Keep it simple, stupid.
In Proceedings of the 7th International Planning Competition (IPC-2011), pages
83–90.



Backup Slides

Backup Slides



Complexity Results for Timeline-based planning

• Timeline-based planning over discrete time is EXPSPACE-complete,
NEXPTIME-complete if plan horizon is known in advance (see
[Gigante et al., 2017])

• Qualitative timeline-based planning over discrete time is PSPACE-complete (see
[Della Monica et al., 2020])

• Timeline-based planning over dense time is undecidable, with many decidable
fragments ranging from EXPSPACE- to NP-complete (see [Bozzelli et al., 2020])

• Timeline-based games (i.e. playing against the nondeterministic environment) are
2EXPTIME-complete (see [Gigante et al., 2020b])
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