Lab 1: Plan Synthesis

Michael Cashmore
12/10/2020

ICAPS 2020 Online Summer School

Lab 1: Plan Synthesis

- PS-1: Introductory Lecture.
- PS-2: Hands-on session.
- PS-3: Hands-on Session and Solution Walk-through.

Lab 1: Plan Synthesis

Goals of this lab:

- Learn what domain-independent automated planning is.
- Gain hands-on experience modelling planning problems.

Outline:

- Domain-independent Automated Planning.

- Introduction to the Planning Domain Definition Language.
- Lab materials (inc. Online editor).

- PDDL21 Time and Numbers

- Lab materials (Exercise 4).

Domain-independent Automated
Planning

What is Planning?

Short Definition: Planning is the act of thinking before acting.

What is Planning?

Short Definition: Planning is the act of thinking before acting.

Longer Definition: Planning is the process of choosing and
organising actions that lead towards a goal, based on a high-level
description of the world.

Domain Specific vs. Domain-Independent Planning

Domain specific planning uses representation or methods that are
adapted to solving a specific problem.

- many important domains: path and motion planning,
manipulation planning, communication planning, etc.

Domain Specific vs. Domain-Independent Planning

Domain specific planning uses representation or methods that are
adapted to solving a specific problem.

- many important domains: path and motion planning,
manipulation planning, communication planning, etc.

Domain-independent planning uses a general representation and
technique that is applicable across different domains.

- still many kinds of general planning: online and offline; discrete
and continuous; deterministic and non-deterministic; fully- and
partially observable; sequential and temporal.

What is automated planning used for?

Introduction to Planning Domain
Definition Language (PDDL)

Planning Domain Definition Language

The main components of a planning problem are:

- a description of how the world behaves and the capabilities of
the agent (e.g. the action library).

- a description of the initial situation (the initial state).

- a description of the desired situation (the goal)

Planning Domain Definition Language

The main components of a planning problem are:

- a description of how the world behaves and the capabilities of
the agent (e.g. the action library).

- a description of the initial situation (the initial state).

- a description of the desired situation (the goal)

A basic planning formalism represents the state of the world and
actions using propositional variables. Such a (classical) planning
problem is a tuple: < F,A,l,G >, where:

- Fis a set of (Boolean) propositions.

- Alis a set of deterministic actions.

- The set of states S is the power set of F, S = 2.
+ S, € Sistheinitial state.

- G:S— {T,L}isthe goal function.

Planning Domain Definition Language

A (classical) planning problem is a tuple: < F,A,[,G >, where:

- Fis a set of (Boolean) propositions.

- Als a set of deterministic actions.

- The set of states S is the power set of F, S = 2.
- 5, € Sis the initial state.

- G:S— {T,L}isthe goal function.

Each action a € A consists of:

- pre(a) C F (simple preconditions)
- add(a) C F (add effects)
- del(a) C F (delete effects)

Planning Domain Definition Language

PDDL is a language for encoding classical planning tasks. Tasks are
separated into two files:

1. Domain File, which contains:

- Predicates that describe the properties of the world.

- Operators that describe the way in which the state can change.
2. Problem File, which contains:

- Objects: the things in the world.
- The initial state of the world.
- The goal specification.

Fand A are found by applying the object terms to the predicates and
operators.

(define (domain simple_switches)
(:requirements :typing)
(:types switch)
(:predicates
(off ?s - switch) (on ?s - switch))
(:action switch_on
:parameters (?s - switch)
:precondition (off ?s)
:effect (and (not (off ?s)) (on ?s))

Example: Problem File

(define (problem more_switches)
(:domain simple_switches)
(:objects s1 s2 s3 - switch)
(:init (off s1) (off s2) (off s3))
(:goal (and (on s1) (on s2) (on s3)))

A plan for a classical planning problem is a sequence of actions that

are applicable from the initial state and lead to a a state that
satisfies the goal:

(ao,...,0an)

(switch_on s1)
(switch_on s2)
(switch_on s3)

1

Online Editor: planning.domains

planning.domains

http://editor.planning.domains/

PDDL Editor BiFile - ®Session~ @Import # Solve /Plugins @Help

: 1 |(de (problem simple_problem)
domain.pddl 2 (:domain hello_world)
3
problem.pddl 4- (:ohjects.
5 ;5 switches
6 switch_1 - switch
7)
8
B (:init
18 (off switch_1)
11)
12
13 - (:goal (and
14 (on switch_1)
15)
16)

planning.domains

http://editor.planning.domains/

Compute Plan

Domain domainpddl v m

Problem problem.pddl ~

Custom Planner URL http://solver.planning.domains

Cancel

planning.domains

http://editor.planning.domains/

PDDL Editor BiFile - ®Session~ @Import # Solve /Plugins

domain.pddl

Found Plan (output)

problem.pddl
(MtCh—on Mmh-l} (:action switch_on
Plan(1)

rparameters (switch_1)
:precondition
(and
(off suwitch 1)
)
reffect
(and
(not
(off switch_1)
)

(on switch_1)

14

planning.domains

http://editor.planning.domains/

- Simple switches:
http://editor.planning.domains/#read_session=jfespcjFc3

- More switches:
http://editor.planning.domains/#read_session=iseLBtK6jo

- Tricky Switches:
http://editor.planning.domains/#read_session=ob1iWAQRp

PDDL2.1: Temporal Planning

Temporal Planning

- Up until now we have used classical planning: time is a
sequence of states and actions are instantaneous.

16

Temporal Planning

- Up until now we have used classical planning: time is a
sequence of states and actions are instantaneous.

- When multiple things can be happening at a time, it is necessary
to model the duration and concurrency of actions and events.

- Actions and events may have complex inter-dependencies which
determine which combinations are possible.

16

Temporal Planning

- Up until now we have used classical planning: time is a
sequence of states and actions are instantaneous.

- When multiple things can be happening at a time, it is necessary
to model the duration and concurrency of actions and events.

- Actions and events may have complex inter-dependencies which
determine which combinations are possible.

- Literature: Haslum, P, Lipovetzky, N., Magazzeni, D., Muise, C. An
Introduction to the Planning Domain Definition Language, 2019.

- Literature: Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning — Theory and Practice, chapter 13-14.
Elsevier/Morgan Kaufmann, 2004.

16

Temporal Planning

- Up until now we have used classical planning: time is a
sequence of states and actions are instantaneous.

- When multiple things can be happening at a time, it is necessary
to model the duration and concurrency of actions and events.

- Actions and events may have complex inter-dependencies which
determine which combinations are possible.

- Literature: Haslum, P, Lipovetzky, N., Magazzeni, D., Muise, C. An
Introduction to the Planning Domain Definition Language, 2019.

- Literature: Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning — Theory and Practice, chapter 13-14.
Elsevier/Morgan Kaufmann, 2004.

- Resource: Planning wiki (https://planning.wiki/ref)
- Resource: Planning editor (planning.domains)

16

PDDL2.1

Fox and Long introduced PDDL2.1 (and PDDL+) to increase the
expressiveness of PDDL to more realistic problems:

- Level 1: STRIPS and ADL.

- Level 2: Numeric variables and optimisation metrics.

- Level 3: Durative Actions.

- Level 4: Continuous Change.

- Level 5: Processes and Events.
Literature: Maria Fox and Derek Long. PDDL2.1 : An Extension to PDDL

for Expressing Temporal Planning Domains, Journal of Artificial
Intelligence Research, 2003.

PDDL2.1

Formally a Temporal Planning Problem is a tuple:
N=<FkVAIG>,

where:
- Fis a set of (Boolean) propositions.

- Vis a set of (Real) primitive numeric expressions
(PNEs/functions).

- Alis a set of deterministic actions.
- | is the initial state.
- G:S—{T,L}isthe goal function.

PDDL2.1 State

A state is now a combination of time and both Boolean and numeric
variables: S is a tuple (time, Siogical> Snumeric)-

- time € R is the time of the state.

* Siogicat € F is the logical state.

* Spumeric - V — R the assignment to the numeric expressions,

where L denotes an undefined value.

For example: (0, lipgical; X) is the initial state, where x assigns each
numeric function v € Vto a value in R (the initial numeric
assignments).

19

PDDL2.1 State Example

Below is an example initial state (with time = 0)
(:init

(at truck Rome)

(at car Paris)

(= (fuel-level truck) 100)

(= (fuel-level car) 100)
)

20

PDDL2.1 Durative Actions

An action consists of:

- an action name,

- (typed) parameters,

- a duration constraint,

- at start, over all, and at end conditions,

- at start, over all, and at end effects.

21

PDDL2.1 Comparisons and Effects

- Comparisons between numeric expressions can be used as
logical axioms:
(>= (fuel) (= (distance ?from ?to) (fuel_consumption)))

22

PDDL2.1 Comparisons and Effects

- Comparisons between numeric expressions can be used as
logical axioms:

(>= (fuel) (= (distance ?from ?to) (fuel_consumption)))

- Effects can modify functions by numeric expressions:
(decrease (fuel) (x (distance ?from ?to) (fuel_consumption)))

22

PDDL2.1 Comparisons and Effects

- Comparisons between numeric expressions can be used as
logical axioms:
(>= (fuel) (= (distance ?from ?to) (fuel_consumption)))

- Effects can modify functions by numeric expressions:
(decrease (fuel) (x (distance ?from ?to) (fuel_consumption)))

- Actions take an amount of time given by the value of the
numeric expression ?duration, which is constrained by a
comparison: (= ?duration (/ (distance ?from ?to) (?speed)))

22

PDDL2.1 Comparisons and Effects

- Comparisons between numeric expressions can be used as
logical axioms:
(>= (fuel) (= (distance ?from ?to) (fuel_consumption)))

- Effects can modify functions by numeric expressions:
(decrease (fuel) (x (distance ?from ?to) (fuel_consumption)))

- Actions take an amount of time given by the value of the
numeric expression ?duration, which is constrained by a
comparison: (= ?duration (/ (distance ?from ?to) (?speed)))

Let’s look at an example of the syntax...

22

PDDL2.1 Durative Action Syntax

(:durative-action attend_lecture
:parameters (?s - student ?1 - lecturer ?r - room)
:duration (<= ?duration 120)
:condition (and
(at start (awake ?s))
(at start (in ?1 ?r))
(at start (in ?s ?r))
(over all (awake ?1)))
:effect (and
(at end (not (awake ?s)))))

23

PDDL2.1 Durative Action Syntax

(:durative-action attend_lecture

A durative action is defined differently from an instantaneous action
(use durative-action instead). You can include both types of action in
the domain.

24

PDDL2.1 Durative Action Syntax

:parameters (?s - student ?1 - lecturer ?r - room)

The parameters of an action can be typed.

25

PDDL2.1 Durative Action Syntax

:parameters (?s - student ?1 - lecturer ?r - room)

The parameters of an action can be typed.

Types can be compiled away using unary type predicates. For
example:

(:objects student01)
(:init (is_a_student student01))

25

PDDL2.1 Durative Action Syntax

sduration (<= ?duration 120)

Duration constraints are expressed as a comparison with the special
numeric expression ?duration.

- Comparison operators: <, >, <=,>=,=.

26

PDDL2.1 Durative Action Syntax

Numeric expressions are either:

- A constant value, e.g. 120,
- a PDDL function, e.g. (distance ?road),
- the unary operator (— expression)

- or a binary operation with operators: +, —, x, /.

27

PDDL2.1 Durative Action Syntax

:condition (and
(at start (awake ?s))
.)

- at start conditions must be true in the state that the action is
applied.

- at end conditions must be true in the state that the actions is
completed

- over all conditions must be true throughout the duration of the
action.

Note that the value of a function must be made true at least a little
time (e) before it is used to satisfy a condition. This is called epsilon
separation.

28

PDDL2.1 Durative Action Syntax

ceffect (and
(at end (not (awake ?s))))

- Effects can be at start or at end.

- Numeric Effects can increase, decrease, or assign the values of
primitive numeric assignments. Example:
(assign (?fuel) (?max_fuel_capacity))

29

Temporal Planning Example

(define (domain matchcellar)
(:requirements :typing :durative-actions)
(:types match fuse)
(:predicates

(light ?m - match) (:durative-action mend_fuse
(handfrée) :parameters (
? -
(unused ?m - match) ?; B ;”iih)
(mended ?f - fuse) ’ ma .
) :duration (= ?duration 5)
:condition (and
(:durative-action light_match (at start (hgndfrie))
:parameters (?m - match) (over all (light ?m)))
:duration (= ?duration 8) seffect (and
e (at start (not (handfree)))
: 2
(at start (unused ?m))) (at end (mended ?f))
:effect (and (at end (handfree)))))

(at start (not (unused ?m)))
(at start (light ?m))
(at end (not (light ?m)))))

30

Temporal Planning Example

(define (domain matchcellar)
(:requirements :typing :durative-actions)
(:types match fuse)

(:predicates (:durative-action mend_fuse

(light ?m) :parameters (

(handfree) ?f - fuse

(unused ?m - match) ?m - match)

(mended ?f - fuse) :duration (= ?duration 5)
) :condition (and
(:durative-action light_match (at start (handfree))

:parameters (?m - match) Coveriail (1ight 2m)))

:effect (and
(at start (not (handfree)))

:duration (= ?duration 8)
:condition (and

?
(at start (unused 7m))) (at end (mended ?f))
:effect (and

(at start (not (unused ?m))) B (handfree)))))
(at start (light ?m))
(at end (not (light ?m)))))

31

mporal Planning Example

(define (problem fixfuse)
(:domain matchcellar)
(:objects

matchl match2 - match
fusel fuse2 - fuse)
(:init
(unused matchi1)
(unused match2)
(handfree))
(:goal (and
(mended fusel))

32

Plan Timeline

0.00: light_match matchl [8.00]
0.01: fix_fuse fusel matchl [5.00]

33

Plan Timeline

Light Match

| Mend Fuse |

34

Plan Timeline

(unused match)

Light Match

—(unused match) = (light match)

(light match)
(light match)

Mend Fuse

—(handfree) (handfree) (handfree)

(mended fuse)

to t t i3
- Conditions are above the action and red.
- Over all conditions are below the middle of the action in red.
- Effects are below the action and in blue.

35

Timed Initial Literals

Timed initial literals are defined in the initial state:
(:init
(at 20 (available matchl))

(at 40 (not (available matchl)))
)

leads to a time window in which match1 can be used.

36

Timed Initial Literals

40.01: light_match matchl [8.00]
40.02: fix_fuse fusel matchl [5.00]

37

Online Editor: Temporal Planning

planning.domains

Use the following plugins to enable a temporal solver and timeline

view:

problems. Christian Muise (plugin)

Plugin URL

Plugins
Plugin
Misc PDDL
G s
T ewer

Temporal Setup
Solver
Drag and Drop

Save Tabs

Description r Status

Adds a number of utilities to the editor for generating ~ Ch
PDDL

imeline of a plan from a temporal
output

plan

Sets up the editor for temporal planning.

Calls

Allow

Plugin to save the state of the PDDL files when saving ~ Ch
the plugin setup.

The following link already has these enabled:

http://editor.planning.domains/#read_session=EWjbgnhuUd

38

Temporal Logistics

100

wp10

N

100

39

Temporal Logistics

O,

? wp3

package 2

st

package 4

N

wp11

N

&

40

Temporal Logistics

- Packages can be loaded into and unloaded from trucks (10 time
units).

- Drivers can walk between connected waypoints at a speed of 0.5.

- Drivers can get into and out of trucks (10 time units).

- Trucks with drivers can drive between connected waypoints at a
speed of 1.

41

mporal Logistics

wp:

)

ackage 1
P g¢ 75

wp6
50 \ é 50
o O

package 3

42

Temporal Logistics

- The plane starts in the sky waypoint, the boat starts in the
lighthouse waypoint.

- The boat and the plane don’t need drivers to move.

- They can only travel over the blue and yellow edges (connected
to the lighthouse and the sky).

- The boat travels at a speed of 1.5.
- The plane travels at a speed of 2.

43

Temporal Logistics

Goal:

Y

wp2 wp3
100 \

package 4
75 75 -
o
wp6 wp7 wp8
e\ =
75 package 2
75 75
) w0 (.

wp9 wp10
100

package 3 20

7
"

I

Extra Challenges

- Each truck can only make a maximum of 7 trips.
- The plane must wait @ minimum of 20 time units between trips.

- Each driver must return to waypoint 1 and disembark at least
once within each 400 time unit interval. This can be at the start
or end of the time interval, for example at: 399, 401, 850,

- Trucks can make any number of trips, but consume 1 unit of fuel
for each time unit they are travelling. Trucks can be refuelled at
stations in waypoints 3 and 9.

- Trucks also consume 01 fuel per time unit when they are not
driving.

Note: these extra challenges may create a problem that is too
difficult to solve within the time limit given to the online solver.

45

	Domain-independent Automated Planning
	Introduction to Planning Domain Definition Language (PDDL)
	Online Editor: planning.domains
	PDDL2.1: Temporal Planning
	Online Editor: Temporal Planning

