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Lab 1: Plan Synthesis

• PS-1: Introductory Lecture.
• PS-2: Hands-on session.
• PS-3: Hands-on Session and Solution Walk-through.
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Lab 1: Plan Synthesis

Goals of this lab:

• Learn what domain-independent automated planning is.
• Gain hands-on experience modelling planning problems.

Outline:

• Domain-independent Automated Planning.
• Introduction to the Planning Domain Definition Language.
• Lab materials (inc. Online editor).
• PDDL2.1 Time and Numbers
• Lab materials (Exercise 4).
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Domain-independent Automated
Planning



What is Planning?

Short Definition: Planning is the act of thinking before acting.

Longer Definition: Planning is the process of choosing and
organising actions that lead towards a goal, based on a high-level
description of the world.
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Domain Specific vs. Domain-Independent Planning

Domain specific planning uses representation or methods that are
adapted to solving a specific problem.

• many important domains: path and motion planning,
manipulation planning, communication planning, etc.

Domain-independent planning uses a general representation and
technique that is applicable across different domains.

• still many kinds of general planning: online and offline; discrete
and continuous; deterministic and non-deterministic; fully- and
partially observable; sequential and temporal.
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What is automated planning used for?

5



Introduction to Planning Domain
Definition Language (PDDL)



Planning Domain Definition Language

The main components of a planning problem are:

• a description of how the world behaves and the capabilities of
the agent (e.g. the action library).

• a description of the initial situation (the initial state).
• a description of the desired situation (the goal)

A basic planning formalism represents the state of the world and
actions using propositional variables. Such a (classical) planning
problem is a tuple: < F,A, I,G >, where:

• F is a set of (Boolean) propositions.
• A is a set of deterministic actions.
• The set of states S is the power set of F, S = 2F.
• so ∈ S is the initial state.
• G : S→ {⊤,⊥} is the goal function.
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Planning Domain Definition Language

A (classical) planning problem is a tuple: < F,A, I,G >, where:

• F is a set of (Boolean) propositions.
• A is a set of deterministic actions.
• The set of states S is the power set of F, S = 2F.
• so ∈ S is the initial state.
• G : S→ {⊤,⊥} is the goal function.

Each action a ∈ A consists of:

• pre(a) ⊆ F (simple preconditions)
• add(a) ⊆ F (add effects)
• del(a) ⊆ F (delete effects)
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Planning Domain Definition Language

PDDL is a language for encoding classical planning tasks. Tasks are
separated into two files:

1. Domain File, which contains:
• Predicates that describe the properties of the world.
• Operators that describe the way in which the state can change.

2. Problem File, which contains:
• Objects: the things in the world.
• The initial state of the world.
• The goal specification.

F and A are found by applying the object terms to the predicates and
operators.
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Example: Domain File

(define (domain simple_switches)
(:requirements :typing)
(:types switch)
(:predicates

(off ?s - switch) (on ?s - switch))
(:action switch_on

:parameters (?s - switch)
:precondition (off ?s)
:effect (and (not (off ?s)) (on ?s))

)
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Example: Problem File

(define (problem more_switches)
(:domain simple_switches)
(:objects s1 s2 s3 - switch)
(:init (off s1) (off s2) (off s3))
(:goal (and (on s1) (on s2) (on s3)))

)
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Example: Plan

A plan for a classical planning problem is a sequence of actions that
are applicable from the initial state and lead to a a state that
satisfies the goal:

⟨a0, . . . ,an⟩

(switch_on s1)
(switch_on s2)
(switch_on s3)
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Online Editor: planning.domains



planning.domains

http://editor.planning.domains/
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planning.domains

http://editor.planning.domains/

• Simple switches:
http://editor.planning.domains/#read_session=jfespcjFc3

• More switches:
http://editor.planning.domains/#read_session=iseLBtK6jo

• Tricky Switches:
http://editor.planning.domains/#read_session=ob1iWAQRp
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PDDL2.1: Temporal Planning



Temporal Planning

• Up until now we have used classical planning: time is a
sequence of states and actions are instantaneous.

• When multiple things can be happening at a time, it is necessary
to model the duration and concurrency of actions and events.

• Actions and events may have complex inter-dependencies which
determine which combinations are possible.

• Literature: Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C. An
Introduction to the Planning Domain Definition Language, 2019.

• Literature: Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning – Theory and Practice, chapter 13-14.
Elsevier/Morgan Kaufmann, 2004.

• Resource: Planning wiki (https://planning.wiki/ref)
• Resource: Planning editor (planning.domains)
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PDDL2.1

Fox and Long introduced PDDL2.1 (and PDDL+) to increase the
expressiveness of PDDL to more realistic problems:

• Level 1: STRIPS and ADL.
• Level 2: Numeric variables and optimisation metrics.
• Level 3: Durative Actions.
• Level 4: Continuous Change.
• Level 5: Processes and Events.

Literature: Maria Fox and Derek Long. PDDL2.1 : An Extension to PDDL
for Expressing Temporal Planning Domains, Journal of Artificial
Intelligence Research, 2003.
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PDDL2.1

Formally a Temporal Planning Problem is a tuple:
Π =< F, V,A, I,G >,

where:

• F is a set of (Boolean) propositions.
• V is a set of (Real) primitive numeric expressions
(PNEs/functions).

• A is a set of deterministic actions.
• I is the initial state.
• G : S→ {⊤,⊥} is the goal function.
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PDDL2.1 State

A state is now a combination of time and both Boolean and numeric
variables: S is a tuple (time, slogical, snumeric).

• time ∈ R is the time of the state.
• slogical ⊆ F is the logical state.
• snumeric : V→ R⊥ the assignment to the numeric expressions,
where ⊥ denotes an undefined value.

For example: (0, Ilogical, x) is the initial state, where x assigns each
numeric function v ∈ V to a value in R⊥ (the initial numeric
assignments).
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PDDL2.1 State Example

Below is an example initial state (with time = 0)

(:init
(at truck Rome)
(at car Paris)
(= (fuel-level truck) 100)
(= (fuel-level car) 100)

)
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PDDL2.1 Durative Actions

An action consists of:

• an action name,
• (typed) parameters,
• a duration constraint,
• at start, over all, and at end conditions,
• at start, over all, and at end effects.
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PDDL2.1 Comparisons and Effects

• Comparisons between numeric expressions can be used as
logical axioms:
(>= (fuel) (∗ (distance ?from ?to) (fuel_consumption)))

• Effects can modify functions by numeric expressions:
(decrease (fuel) (∗ (distance ?from ?to) (fuel_consumption)))

• Actions take an amount of time given by the value of the
numeric expression ?duration, which is constrained by a
comparison: (= ?duration (/ (distance ?from ?to) (?speed)))

Let’s look at an example of the syntax...
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PDDL2.1 Durative Action Syntax

(:durative-action attend_lecture
:parameters (?s - student ?l - lecturer ?r - room)
:duration (<= ?duration 120)
:condition (and

(at start (awake ?s))
(at start (in ?l ?r))
(at start (in ?s ?r))
(over all (awake ?l)))

:effect (and
(at end (not (awake ?s)))))
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PDDL2.1 Durative Action Syntax

(:durative-action attend_lecture

A durative action is defined differently from an instantaneous action
(use durative-action instead). You can include both types of action in
the domain.
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PDDL2.1 Durative Action Syntax

:parameters (?s - student ?l - lecturer ?r - room)

The parameters of an action can be typed.

Types can be compiled away using unary type predicates. For
example:

(:objects student01)
(:init (is_a_student student01))
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PDDL2.1 Durative Action Syntax

:parameters (?s - student ?l - lecturer ?r - room)

The parameters of an action can be typed.
Types can be compiled away using unary type predicates. For
example:

(:objects student01)
(:init (is_a_student student01))
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PDDL2.1 Durative Action Syntax

:duration (<= ?duration 120)

Duration constraints are expressed as a comparison with the special
numeric expression ?duration.

• Comparison operators: <,>,<=, >=,=.
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PDDL2.1 Durative Action Syntax

Numeric expressions are either:

• A constant value, e.g. 120,
• a PDDL function, e.g. (distance ?road),
• the unary operator (− expression)
• or a binary operation with operators: +,−, ∗, /.
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PDDL2.1 Durative Action Syntax

:condition (and
(at start (awake ?s))
...)

• at start conditions must be true in the state that the action is
applied.

• at end conditions must be true in the state that the actions is
completed.

• over all conditions must be true throughout the duration of the
action.

Note that the value of a function must be made true at least a little
time (ϵ) before it is used to satisfy a condition. This is called epsilon
separation.
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PDDL2.1 Durative Action Syntax

:effect (and
(at end (not (awake ?s))))

• Effects can be at start or at end.
• Numeric Effects can increase, decrease, or assign the values of
primitive numeric assignments. Example:
(assign (?fuel) (?max_fuel_capacity))
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Temporal Planning Example

(define (domain matchcellar)
(:requirements :typing :durative-actions)
(:types match fuse)
(:predicates
(light ?m - match)
(handfree)
(unused ?m - match)
(mended ?f - fuse)

)

(:durative-action light_match
:parameters (?m - match)
:duration (= ?duration 8)
:condition (and
(at start (unused ?m)))

:effect (and
(at start (not (unused ?m)))
(at start (light ?m))
(at end (not (light ?m)))))

(:durative-action mend_fuse
:parameters (
?f - fuse
?m - match)

:duration (= ?duration 5)
:condition (and
(at start (handfree))
(over all (light ?m)))

:effect (and
(at start (not (handfree)))
(at end (mended ?f))
(at end (handfree)))))
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Temporal Planning Example

(define (domain matchcellar)
(:requirements :typing :durative-actions)
(:types match fuse)
(:predicates
(light ?m)
(handfree)
(unused ?m - match)
(mended ?f - fuse)

)

(:durative-action light_match
:parameters (?m - match)
:duration (= ?duration 8)

:condition (and
(at start (unused ?m)))

:effect (and
(at start (not (unused ?m)))

(at start (light ?m))

(at end (not (light ?m)))))

(:durative-action mend_fuse
:parameters (
?f - fuse
?m - match)

:duration (= ?duration 5)
:condition (and

(at start (handfree))

(over all (light ?m)))
:effect (and

(at start (not (handfree)))

(at end (mended ?f))

(at end (handfree)))))
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Temporal Planning Example

(define (problem fixfuse)
(:domain matchcellar)
(:objects
match1 match2 - match
fuse1 fuse2 - fuse)

(:init
(unused match1)
(unused match2)
(handfree))

(:goal (and
(mended fuse1))

)
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Plan Timeline

0.00: light_match match1 [8.00]
0.01: fix_fuse fuse1 match1 [5.00]
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Plan Timeline

Light Match

Mend Fuse

t0 t1 t2 t3
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Plan Timeline

Light Match

Mend Fuse

t0 t1 t2 t3

(unused match)

¬(unused match)

(light match)

¬(light match)

(light match)

(handfree)¬(handfree) (handfree)

(mended fuse)

• Conditions are above the action and red.
• Over all conditions are below the middle of the action in red.
• Effects are below the action and in blue.
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Timed Initial Literals

Timed initial literals are defined in the initial state:

(:init
(at 20 (available match1))
(at 40 (not (available match1)))

)

leads to a time window in which match1 can be used.
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Timed Initial Literals

40.01: light_match match1 [8.00]
40.02: fix_fuse fuse1 match1 [5.00]
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Online Editor: Temporal Planning



planning.domains

Use the following plugins to enable a temporal solver and timeline
view:

The following link already has these enabled:
http://editor.planning.domains/#read_session=EWjbgnhuUd
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Temporal Logistics
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Temporal Logistics

wp1 wp2 wp3
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• Packages can be loaded into and unloaded from trucks (10 time
units).

• Drivers can walk between connected waypoints at a speed of 0.5.
• Drivers can get into and out of trucks (10 time units).
• Trucks with drivers can drive between connected waypoints at a
speed of 1.
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Temporal Logistics
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Temporal Logistics
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• The plane starts in the sky waypoint, the boat starts in the
lighthouse waypoint.

• The boat and the plane don’t need drivers to move.
• They can only travel over the blue and yellow edges (connected
to the lighthouse and the sky).

• The boat travels at a speed of 1.5.
• The plane travels at a speed of 2.
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Temporal Logistics

Goal:
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Extra Challenges

• Each truck can only make a maximum of 7 trips.
• The plane must wait a minimum of 20 time units between trips.
• Each driver must return to waypoint 1 and disembark at least
once within each 400 time unit interval. This can be at the start
or end of the time interval, for example at: 399, 401, 850, . . ..

• Trucks can make any number of trips, but consume 1 unit of fuel
for each time unit they are travelling. Trucks can be refuelled at
stations in waypoints 3 and 9.

• Trucks also consume 0.1 fuel per time unit when they are not
driving.

Note: these extra challenges may create a problem that is too
difficult to solve within the time limit given to the online solver.
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