
Lab 1: Plan Synthesis

Michael Cashmore
12/10/2020

ICAPS 2020 Online Summer School



Lab 1: Plan Synthesis

• PS-1: Introductory Lecture.
• PS-2: Hands-on session.
• PS-3: Hands-on Session and Solution Walk-through.

1



Lab 1: Plan Synthesis

Goals of this lab:

• Learn what domain-independent automated planning is.
• Gain hands-on experience modelling planning problems.

Outline:

• Domain-independent Automated Planning.
• Introduction to the Planning Domain Definition Language.
• Lab materials (inc. Online editor).
• PDDL2.1 Time and Numbers
• Lab materials (Exercise 4).

2



Domain-independent Automated
Planning



What is Planning?

Short Definition: Planning is the act of thinking before acting.

Longer Definition: Planning is the process of choosing and
organising actions that lead towards a goal, based on a high-level
description of the world.

3



What is Planning?

Short Definition: Planning is the act of thinking before acting.

Longer Definition: Planning is the process of choosing and
organising actions that lead towards a goal, based on a high-level
description of the world.

3



Domain Specific vs. Domain-Independent Planning

Domain specific planning uses representation or methods that are
adapted to solving a specific problem.

• many important domains: path and motion planning,
manipulation planning, communication planning, etc.

Domain-independent planning uses a general representation and
technique that is applicable across different domains.

• still many kinds of general planning: online and offline; discrete
and continuous; deterministic and non-deterministic; fully- and
partially observable; sequential and temporal.

4



Domain Specific vs. Domain-Independent Planning

Domain specific planning uses representation or methods that are
adapted to solving a specific problem.

• many important domains: path and motion planning,
manipulation planning, communication planning, etc.

Domain-independent planning uses a general representation and
technique that is applicable across different domains.

• still many kinds of general planning: online and offline; discrete
and continuous; deterministic and non-deterministic; fully- and
partially observable; sequential and temporal.

4



What is automated planning used for?

5



Introduction to Planning Domain
Definition Language (PDDL)



Planning Domain Definition Language

The main components of a planning problem are:

• a description of how the world behaves and the capabilities of
the agent (e.g. the action library).

• a description of the initial situation (the initial state).
• a description of the desired situation (the goal)

A basic planning formalism represents the state of the world and
actions using propositional variables. Such a (classical) planning
problem is a tuple: < F,A, I,G >, where:

• F is a set of (Boolean) propositions.
• A is a set of deterministic actions.
• The set of states S is the power set of F, S = 2F.
• so ∈ S is the initial state.
• G : S→ {⊤,⊥} is the goal function.

6



Planning Domain Definition Language

The main components of a planning problem are:

• a description of how the world behaves and the capabilities of
the agent (e.g. the action library).

• a description of the initial situation (the initial state).
• a description of the desired situation (the goal)

A basic planning formalism represents the state of the world and
actions using propositional variables. Such a (classical) planning
problem is a tuple: < F,A, I,G >, where:

• F is a set of (Boolean) propositions.
• A is a set of deterministic actions.
• The set of states S is the power set of F, S = 2F.
• so ∈ S is the initial state.
• G : S→ {⊤,⊥} is the goal function.

6



Planning Domain Definition Language

A (classical) planning problem is a tuple: < F,A, I,G >, where:

• F is a set of (Boolean) propositions.
• A is a set of deterministic actions.
• The set of states S is the power set of F, S = 2F.
• so ∈ S is the initial state.
• G : S→ {⊤,⊥} is the goal function.

Each action a ∈ A consists of:

• pre(a) ⊆ F (simple preconditions)
• add(a) ⊆ F (add effects)
• del(a) ⊆ F (delete effects)

7



Planning Domain Definition Language

PDDL is a language for encoding classical planning tasks. Tasks are
separated into two files:

1. Domain File, which contains:
• Predicates that describe the properties of the world.
• Operators that describe the way in which the state can change.

2. Problem File, which contains:
• Objects: the things in the world.
• The initial state of the world.
• The goal specification.

F and A are found by applying the object terms to the predicates and
operators.

8



Example: Domain File

(define (domain simple_switches)
(:requirements :typing)
(:types switch)
(:predicates

(off ?s - switch) (on ?s - switch))
(:action switch_on

:parameters (?s - switch)
:precondition (off ?s)
:effect (and (not (off ?s)) (on ?s))

)

9



Example: Problem File

(define (problem more_switches)
(:domain simple_switches)
(:objects s1 s2 s3 - switch)
(:init (off s1) (off s2) (off s3))
(:goal (and (on s1) (on s2) (on s3)))

)

10



Example: Plan

A plan for a classical planning problem is a sequence of actions that
are applicable from the initial state and lead to a a state that
satisfies the goal:

⟨a0, . . . ,an⟩

(switch_on s1)
(switch_on s2)
(switch_on s3)

11



Online Editor: planning.domains



planning.domains

http://editor.planning.domains/

12



planning.domains

http://editor.planning.domains/

13



planning.domains

http://editor.planning.domains/

14



planning.domains

http://editor.planning.domains/

• Simple switches:
http://editor.planning.domains/#read_session=jfespcjFc3

• More switches:
http://editor.planning.domains/#read_session=iseLBtK6jo

• Tricky Switches:
http://editor.planning.domains/#read_session=ob1iWAQRp

15



PDDL2.1: Temporal Planning



Temporal Planning

• Up until now we have used classical planning: time is a
sequence of states and actions are instantaneous.

• When multiple things can be happening at a time, it is necessary
to model the duration and concurrency of actions and events.

• Actions and events may have complex inter-dependencies which
determine which combinations are possible.

• Literature: Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C. An
Introduction to the Planning Domain Definition Language, 2019.

• Literature: Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning – Theory and Practice, chapter 13-14.
Elsevier/Morgan Kaufmann, 2004.

• Resource: Planning wiki (https://planning.wiki/ref)
• Resource: Planning editor (planning.domains)

16



Temporal Planning

• Up until now we have used classical planning: time is a
sequence of states and actions are instantaneous.

• When multiple things can be happening at a time, it is necessary
to model the duration and concurrency of actions and events.

• Actions and events may have complex inter-dependencies which
determine which combinations are possible.

• Literature: Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C. An
Introduction to the Planning Domain Definition Language, 2019.

• Literature: Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning – Theory and Practice, chapter 13-14.
Elsevier/Morgan Kaufmann, 2004.

• Resource: Planning wiki (https://planning.wiki/ref)
• Resource: Planning editor (planning.domains)

16



Temporal Planning

• Up until now we have used classical planning: time is a
sequence of states and actions are instantaneous.

• When multiple things can be happening at a time, it is necessary
to model the duration and concurrency of actions and events.

• Actions and events may have complex inter-dependencies which
determine which combinations are possible.

• Literature: Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C. An
Introduction to the Planning Domain Definition Language, 2019.

• Literature: Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning – Theory and Practice, chapter 13-14.
Elsevier/Morgan Kaufmann, 2004.

• Resource: Planning wiki (https://planning.wiki/ref)
• Resource: Planning editor (planning.domains)

16



Temporal Planning

• Up until now we have used classical planning: time is a
sequence of states and actions are instantaneous.

• When multiple things can be happening at a time, it is necessary
to model the duration and concurrency of actions and events.

• Actions and events may have complex inter-dependencies which
determine which combinations are possible.

• Literature: Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C. An
Introduction to the Planning Domain Definition Language, 2019.

• Literature: Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning – Theory and Practice, chapter 13-14.
Elsevier/Morgan Kaufmann, 2004.

• Resource: Planning wiki (https://planning.wiki/ref)
• Resource: Planning editor (planning.domains)

16



PDDL2.1

Fox and Long introduced PDDL2.1 (and PDDL+) to increase the
expressiveness of PDDL to more realistic problems:

• Level 1: STRIPS and ADL.
• Level 2: Numeric variables and optimisation metrics.
• Level 3: Durative Actions.
• Level 4: Continuous Change.
• Level 5: Processes and Events.

Literature: Maria Fox and Derek Long. PDDL2.1 : An Extension to PDDL
for Expressing Temporal Planning Domains, Journal of Artificial
Intelligence Research, 2003.

17



PDDL2.1

Formally a Temporal Planning Problem is a tuple:
Π =< F, V,A, I,G >,

where:

• F is a set of (Boolean) propositions.
• V is a set of (Real) primitive numeric expressions
(PNEs/functions).

• A is a set of deterministic actions.
• I is the initial state.
• G : S→ {⊤,⊥} is the goal function.

18



PDDL2.1 State

A state is now a combination of time and both Boolean and numeric
variables: S is a tuple (time, slogical, snumeric).

• time ∈ R is the time of the state.
• slogical ⊆ F is the logical state.
• snumeric : V→ R⊥ the assignment to the numeric expressions,
where ⊥ denotes an undefined value.

For example: (0, Ilogical, x) is the initial state, where x assigns each
numeric function v ∈ V to a value in R⊥ (the initial numeric
assignments).

19



PDDL2.1 State Example

Below is an example initial state (with time = 0)

(:init
(at truck Rome)
(at car Paris)
(= (fuel-level truck) 100)
(= (fuel-level car) 100)

)

20



PDDL2.1 Durative Actions

An action consists of:

• an action name,
• (typed) parameters,
• a duration constraint,
• at start, over all, and at end conditions,
• at start, over all, and at end effects.

21



PDDL2.1 Comparisons and Effects

• Comparisons between numeric expressions can be used as
logical axioms:
(>= (fuel) (∗ (distance ?from ?to) (fuel_consumption)))

• Effects can modify functions by numeric expressions:
(decrease (fuel) (∗ (distance ?from ?to) (fuel_consumption)))

• Actions take an amount of time given by the value of the
numeric expression ?duration, which is constrained by a
comparison: (= ?duration (/ (distance ?from ?to) (?speed)))

Let’s look at an example of the syntax...

22



PDDL2.1 Comparisons and Effects

• Comparisons between numeric expressions can be used as
logical axioms:
(>= (fuel) (∗ (distance ?from ?to) (fuel_consumption)))

• Effects can modify functions by numeric expressions:
(decrease (fuel) (∗ (distance ?from ?to) (fuel_consumption)))

• Actions take an amount of time given by the value of the
numeric expression ?duration, which is constrained by a
comparison: (= ?duration (/ (distance ?from ?to) (?speed)))

Let’s look at an example of the syntax...

22



PDDL2.1 Comparisons and Effects

• Comparisons between numeric expressions can be used as
logical axioms:
(>= (fuel) (∗ (distance ?from ?to) (fuel_consumption)))

• Effects can modify functions by numeric expressions:
(decrease (fuel) (∗ (distance ?from ?to) (fuel_consumption)))

• Actions take an amount of time given by the value of the
numeric expression ?duration, which is constrained by a
comparison: (= ?duration (/ (distance ?from ?to) (?speed)))

Let’s look at an example of the syntax...

22



PDDL2.1 Comparisons and Effects

• Comparisons between numeric expressions can be used as
logical axioms:
(>= (fuel) (∗ (distance ?from ?to) (fuel_consumption)))

• Effects can modify functions by numeric expressions:
(decrease (fuel) (∗ (distance ?from ?to) (fuel_consumption)))

• Actions take an amount of time given by the value of the
numeric expression ?duration, which is constrained by a
comparison: (= ?duration (/ (distance ?from ?to) (?speed)))

Let’s look at an example of the syntax...

22



PDDL2.1 Durative Action Syntax

(:durative-action attend_lecture
:parameters (?s - student ?l - lecturer ?r - room)
:duration (<= ?duration 120)
:condition (and

(at start (awake ?s))
(at start (in ?l ?r))
(at start (in ?s ?r))
(over all (awake ?l)))

:effect (and
(at end (not (awake ?s)))))

23



PDDL2.1 Durative Action Syntax

(:durative-action attend_lecture

A durative action is defined differently from an instantaneous action
(use durative-action instead). You can include both types of action in
the domain.

24



PDDL2.1 Durative Action Syntax

:parameters (?s - student ?l - lecturer ?r - room)

The parameters of an action can be typed.

Types can be compiled away using unary type predicates. For
example:

(:objects student01)
(:init (is_a_student student01))

25



PDDL2.1 Durative Action Syntax

:parameters (?s - student ?l - lecturer ?r - room)

The parameters of an action can be typed.
Types can be compiled away using unary type predicates. For
example:

(:objects student01)
(:init (is_a_student student01))

25



PDDL2.1 Durative Action Syntax

:duration (<= ?duration 120)

Duration constraints are expressed as a comparison with the special
numeric expression ?duration.

• Comparison operators: <,>,<=, >=,=.

26



PDDL2.1 Durative Action Syntax

Numeric expressions are either:

• A constant value, e.g. 120,
• a PDDL function, e.g. (distance ?road),
• the unary operator (− expression)
• or a binary operation with operators: +,−, ∗, /.

27



PDDL2.1 Durative Action Syntax

:condition (and
(at start (awake ?s))
...)

• at start conditions must be true in the state that the action is
applied.

• at end conditions must be true in the state that the actions is
completed.

• over all conditions must be true throughout the duration of the
action.

Note that the value of a function must be made true at least a little
time (ϵ) before it is used to satisfy a condition. This is called epsilon
separation.

28



PDDL2.1 Durative Action Syntax

:effect (and
(at end (not (awake ?s))))

• Effects can be at start or at end.
• Numeric Effects can increase, decrease, or assign the values of
primitive numeric assignments. Example:
(assign (?fuel) (?max_fuel_capacity))

29



Temporal Planning Example

(define (domain matchcellar)
(:requirements :typing :durative-actions)
(:types match fuse)
(:predicates
(light ?m - match)
(handfree)
(unused ?m - match)
(mended ?f - fuse)

)

(:durative-action light_match
:parameters (?m - match)
:duration (= ?duration 8)
:condition (and
(at start (unused ?m)))

:effect (and
(at start (not (unused ?m)))
(at start (light ?m))
(at end (not (light ?m)))))

(:durative-action mend_fuse
:parameters (
?f - fuse
?m - match)

:duration (= ?duration 5)
:condition (and
(at start (handfree))
(over all (light ?m)))

:effect (and
(at start (not (handfree)))
(at end (mended ?f))
(at end (handfree)))))

30



Temporal Planning Example

(define (domain matchcellar)
(:requirements :typing :durative-actions)
(:types match fuse)
(:predicates
(light ?m)
(handfree)
(unused ?m - match)
(mended ?f - fuse)

)

(:durative-action light_match
:parameters (?m - match)
:duration (= ?duration 8)

:condition (and
(at start (unused ?m)))

:effect (and
(at start (not (unused ?m)))

(at start (light ?m))

(at end (not (light ?m)))))

(:durative-action mend_fuse
:parameters (
?f - fuse
?m - match)

:duration (= ?duration 5)
:condition (and

(at start (handfree))

(over all (light ?m)))
:effect (and

(at start (not (handfree)))

(at end (mended ?f))

(at end (handfree)))))

31



Temporal Planning Example

(define (problem fixfuse)
(:domain matchcellar)
(:objects
match1 match2 - match
fuse1 fuse2 - fuse)

(:init
(unused match1)
(unused match2)
(handfree))

(:goal (and
(mended fuse1))

)

32



Plan Timeline

0.00: light_match match1 [8.00]
0.01: fix_fuse fuse1 match1 [5.00]

33



Plan Timeline

Light Match

Mend Fuse

t0 t1 t2 t3

34



Plan Timeline

Light Match

Mend Fuse

t0 t1 t2 t3

(unused match)

¬(unused match)

(light match)

¬(light match)

(light match)

(handfree)¬(handfree) (handfree)

(mended fuse)

• Conditions are above the action and red.
• Over all conditions are below the middle of the action in red.
• Effects are below the action and in blue.

35



Timed Initial Literals

Timed initial literals are defined in the initial state:

(:init
(at 20 (available match1))
(at 40 (not (available match1)))

)

leads to a time window in which match1 can be used.

36



Timed Initial Literals

40.01: light_match match1 [8.00]
40.02: fix_fuse fuse1 match1 [5.00]

37



Online Editor: Temporal Planning



planning.domains

Use the following plugins to enable a temporal solver and timeline
view:

The following link already has these enabled:
http://editor.planning.domains/#read_session=EWjbgnhuUd

38



Temporal Logistics

wp1 wp2 wp3

wp4 wp6 wp8

wp9 wp10 wp11

wp5 wp7

100 100

50 50

100 100

75

75

75 75

75

100

39



Temporal Logistics

wp1 wp2 wp3

wp4 wp6 wp8

wp9 wp10 wp11

wp5 wp7

100 100

50 50

100 100

75

75

75 75

75

100

package 3

package 1 package 2

package 4

40



Temporal Logistics

wp1 wp2 wp3

wp4 wp6 wp8

wp9 wp10 wp11

wp5 wp7

100 100

50 50

100 100

75

75

75 75

75

100

package 3

package 1 package 2

package 4

• Packages can be loaded into and unloaded from trucks (10 time
units).

• Drivers can walk between connected waypoints at a speed of 0.5.
• Drivers can get into and out of trucks (10 time units).
• Trucks with drivers can drive between connected waypoints at a
speed of 1.

41



Temporal Logistics

wp1 wp2 wp3

wp4 wp6 wp8

wp9 wp10 wp11

wp5 wp7

100 100

50 50

100

100

75

75

75 75

75

100

package 3

package 1 package 2

package 4
75

20

20

42



Temporal Logistics

wp1 wp2 wp3

wp4 wp6 wp8

wp9 wp10 wp11

wp5 wp7

100 100

50 50

100

100

75

75

75 75

75

100

package 3

package 1 package 2

package 4
75

20

20

• The plane starts in the sky waypoint, the boat starts in the
lighthouse waypoint.

• The boat and the plane don’t need drivers to move.
• They can only travel over the blue and yellow edges (connected
to the lighthouse and the sky).

• The boat travels at a speed of 1.5.
• The plane travels at a speed of 2.

43



Temporal Logistics

Goal:

wp1 wp2 wp3

wp4 wp6 wp8

wp9 wp10 wp11

wp5 wp7

100 100

50 50

100

100

75

75

75 75

75

100

package 3
package 1

package 4

75 package 2

20

20

44



Extra Challenges

• Each truck can only make a maximum of 7 trips.
• The plane must wait a minimum of 20 time units between trips.
• Each driver must return to waypoint 1 and disembark at least
once within each 400 time unit interval. This can be at the start
or end of the time interval, for example at: 399, 401, 850, . . ..

• Trucks can make any number of trips, but consume 1 unit of fuel
for each time unit they are travelling. Trucks can be refuelled at
stations in waypoints 3 and 9.

• Trucks also consume 0.1 fuel per time unit when they are not
driving.

Note: these extra challenges may create a problem that is too
difficult to solve within the time limit given to the online solver.

45


	Domain-independent Automated Planning
	Introduction to Planning Domain Definition Language (PDDL)
	Online Editor: planning.domains
	PDDL2.1: Temporal Planning
	Online Editor: Temporal Planning

