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Abstract

Motivated by the challenges faced by a logistics company,
we present a new variant of the dynamic capacitated pickup
and delivery problem with time windows (PDPTW) where
excessive changes of unaffected routes are undesirable. In
real-life scenarios, different dynamism sources such as can-
celed requests, change of demands, change of pickup, or de-
livery time windows often disrupt the existing planning of
routes. The static PDPTW is solved with the current infor-
mation about the problem well before executing the routes,
such as the previous night. We present an algorithmic idea
of a dynamic solver quickly addressing changes that occur
due to the dynamism while avoiding excessive modifications
to the previous solution. Since the company has not yet the
dynamic data, new dynamic instances are generated from the
existing static PDPTW instances in the literature. Preliminary
results demonstrate that we can quickly incorporate the re-
quired changes. Future perspectives of this ongoing work are
discussed in the end.

Introduction
The pickup and delivery problem with time windows
(PDPTW) is a generalization of the classical vehicle rout-
ing problem and the vehicle routing problem with time win-
dows (Savelsbergh and Sol 1995; Braekers, Ramaekers, and
Nieuwenhuyse 2016). PDPTW is a combinatorial optimiza-
tion problem with applications in transportation and logis-
tics having significant economic importance.

In PDPTW, a given homogeneous or heterogeneous fleet
of vehicles is used to satisfy a set of transportation requests.
Each request is a pair of a pickup location and a delivery
location, and a fixed amount of commodity has to be trans-
ported between them. This article considers a single depot
from where the homogeneous fleet of vehicles starts their
routes and again travels back to the depot. Each location
is associated with a time window within which the vehicle
must arrive at the location. If a vehicle arrives at a location
before starting its time window, the vehicle must wait for
loading or unloading. The time required for loading or un-
loading is known as the service time. Each vehicle has its
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loading capacity limit beyond which it cannot carry a com-
modity. The solution to an instance of PDPTW is a set of
routes that obeys some constraints. In each route, only one
vehicle is used. A single vehicle must do the pickup at first
and then the corresponding delivery of a transportation re-
quest. The total load of a vehicle must be at most its load-
ing capacity at any time. Additionally, the time window of
each location must be maintained. The primary objective of
PDPTW is to minimize the number of vehicles used (i.e., the
number of routes), and the secondary objective aims to min-
imize the total distance traveled by all the vehi:les (Curtois
et al. 2018).

Our present work considers the dynamic PDPTW, which
can be regarded as a series of some static PDPTWs (Gen-
dreau et al. 1999). In the literature, a problem is said to
be dynamic when input data on the problem known to the
decision maker is updated concurrently with the determi-
nation of the routes (Psaraftis, Wen, and Kontovas 2016).
The sources of dynamism may be the cancellation of re-
quests, change of demands, change of pickup, or delivery
time windows. Although any changes to the unprocessed
routes are considered in the literature on dynamic problems,
we do not allow arbitrary modifications to all the routes as
some routes may already be fixed due to external transport
providers. Surprisingly, we are not aware of any approaches
where some prohibition or minimizing changes exist to un-
processed requests and routings.

This problem is directly motivated by the dynamic prob-
lem existing in the logistics company Wereldo. This paper
formulates a base version of their dynamic problem and dis-
cusses an algorithmic idea for our approach. Preliminary
results show that our dynamic solver can quickly address
required changes for generated problem instances. Further-
more, we will discuss perspectives for future extension of
this problem and approach to consider complex real-life sce-
narios.

Dynamic Problem with Limited Changes
Based on discussions with the company, we propose a new
variant of the dynamic PDPTW. Here, a feasible solution
(i.e., the set of routes) is computed overnight for available
transportation requests. The most recent changes must be



incorporated by the dispatcher, who starts his work with the
existing solution, having possibly removed requests due to
the changes. Such an initial solution is incomplete as new
requests may have arrived, and modified requests were re-
moved from existing routes. On top of that, we have in-
formation about vehicles which routes were affected by the
changes. For this paper, we will work with a homogeneous
fleet of vehicles and a single depot.

The primary objective is to minimize the number of
routes, while the secondary objective aims to reduce the ve-
hicles’ total traveled distance. All the constraints for a static
PDPTW are maintained here. Moreover, an additional con-
straint is added, which prohibits the removal of requests
from the unaffected routes. It corresponds to the real-world
scenarios where excessive changes to the unaffected routes
are undesirable. However, the insertion of new requests to
the unaffected routes and reordering existing requests within
its routes are allowed. Any changes to the affected routes are
allowed.

Sketch of Solution Methodology
This section provides a sketch of the solution methodology
for solving the dynamic PDPTW described in the previ-
ous section. It is based on the iterated greedy heuristic pro-
posed in (Qu and Curtois 2017), which is combined with an
intra-route neighborhood operator introduced in (Li and Lim
2003). The operator is a hill climbing algorithm that can im-
prove the existing solution in a local neighborhood.

Since it is possible to process any changes on affected ve-
hicles (with removed or modified requests), their requests
are removed from the initial solution. Also, modified re-
quests are added to unassigned requests. The algorithm starts
with an incomplete solution and tries to insert all unassigned
requests into existing routes. A pool of feasible insertions
is computed for each unassigned request. An insertion is
picked based on the increase of the solution cost caused by
the insertion. If no insertions are possible, and the vehicle
limit has not been reached, a new vehicle is added. This pro-
cess is repeated until all requests are assigned or until no in-
sertions are feasible, and the vehicle limit has been reached.
If a new feasible solution was found, the intra-route neigh-
borhood operator is applied to improve it by reordering re-
quests inside particular routes. The overall procedure is re-
peated until the time limit is exceeded, e.g., 5 seconds. Ad-
ditional optimizations are also tested to make the runtime
faster and to improve the quality of solutions.

Benchmark Instances
To our knowledge, there is no standard reference benchmark
for the dynamic PDPTW, which would allow us to compare
the proposed methods objectively. Various works use the dy-
namic extension of Solomon’s benchmarks (Solomon 1987),
having up to 100 customers only. Still, time windows are
available here. Larger problems with up to 385 customers
derived by (Kilby, Prosser, and Shaw 1998) are also avail-
able. However, these do not consider even time windows.

Since the company currently does not have any dynamic
data, the dynamic PDPTW is generated from the well-

known benchmark dataset for the static PDPTW (Li and
Lim 2003) available at SINTEF’s website1. We will take
the static problem together with its best existing solutions.
We apply two types of modifications to these solutions. We
either cancel a fixed number of requests or change the de-
mands of a fixed number of requests by multiplying their de-
mand with a random number from [0.75, 1.25]. Two heuris-
tics are used for selecting these requests from the existing
solutions. In the first heuristic, they are chosen randomly.
In the second heuristic, a route is randomly selected, and
several other routes are selected based on their proximity to
the first route. From these routes, the required number of re-
quests is removed/modified randomly.

We apply our solver on the generated problems with ini-
tial partial solutions and unassigned transportation requests
given by modified requests. Random instances generated by
the first heuristics are considered together with instances
where requests from close routes were modified or removed.
This specific modification is realized to make sure that there
is some opportunity for improvement of the solution. It
might not be the case for the first random instances since
the best-known solutions, together with changes spread over
time and space, might be tough to improve.

Preliminary Results and Discussions
To demonstrate our current approach, we will present some
preliminary results on instances with 200 requests, i.e., 400
locations to be served. In Figure 1, we present experiments
with 10, 20, and 30 canceled requests generated from three
static instances1 lc1 4 5, lr1 4 4, and lrc1 4 6 for clustered
locations (LC), randomly distributed locations (LR), and a
combination of both (LRC), respectively. Canceled requests
are selected using the second heuristics taking into account
their proximity. One hundred dynamic data instances are
generated for each number of canceled requests and each
static instance. Each run of the solver was limited by 5,000
iterations in total (one iteration corresponds to the insertion
of one request), which corresponds up to 3 seconds on a
standard computer (CPU Intel Core i7-5600U at 2.6 GHz).

We compare our results with the initial solution. Since
only request cancellations are considered in this experiment,
the valid and complete initial solution can be created from
the best-known solutions available at the SINTEF website1

by removing canceled requests. Figure 1 shows that our
solver reduces the number of used vehicles compared to the
initial solution on clustered (LC) and random-clustered in-
stances (LRC). On random instances (LR), the number of
vehicles was not decreased, but the total distance (secondary
objective) was reduced in most cases.

Future Perspectives
This work introduces an initial step in the long-term project
in cooperation with the company Wereldo, aiming to de-
velop the solution approach while sharing our experiences
and working on real-life data. There are various directions
where we would like to extend our dynamic approach, and
we will discuss the most important of them here.

1http://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark



Figure 1: Comparison on instances with canceled requests

We plan to study the impact of changes on affected routes
when they are still feasible (e.g., demand is decreased, or
request is canceled). Based on the discussion with the com-
pany, it may still be desirable to keep some of these routes
stable when the profit from rearrangement is negligible.

It is necessary to consider heterogeneous vehicles hav-
ing different capacities (Baldacci, Battarra, and Vigo 2008;
Brandao 2011). Variable cost related to the distance traveled
is sometimes considered (Liu 2013; Brandao 2011), studies
where the cost of transportation reflects the current load of
vehicles or the minimal cost of vehicles are not so common.
Based on the data model from the company, we plan to take
into account the cost optimization based on market prices.

Our ultimate problem consists of the routing problems
coming from various customers, having potentially own ve-
hicle fleet. Particular customers may share their vehicle
fleets as well as use external transport providers. Indeed,
it introduces a large scale problem (Arnold, Gendreau, and
Sörensen 2019). Even before working on scalability issues,
we must work on additional problem complexities. A com-
mon problem is introduced by the inclusion of multiple de-
pots (Montoya-Torres et al. 2015). Also, consideration of
separate outbound requests (from depot to customers) or in-
bound requests (from customers to depot) is necessary.

Finally, we need to consider both the dynamic and static
solution approaches, which, however, introduces a different
part of our work.

Conclusion
Motivated by problems existing in the logistics company, a
new variant of dynamic PDPTW was introduced where ex-
cessive changes of unaffected routes are avoided. A sketch
of the solution methodology was presented, and benchmark
problems were proposed to verify our ideas before having
real-life data from the company. We have presented initial
experiments and concluded our ongoing work by the discus-
sion of long-term perspectives.
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