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Abstract

There has been recent success in solving quantum circuit
compilation (QCC) using automated reasoning techniques,
particularly using a combination of temporal planning and
constraint programming (CP). The existing approach uses a
fixed and equal time allocation for each solver in the hybrid
setup. As new quantum hardware and problems become avail-
able, predetermining an optimal time allocation that works
well across problems is challenging. Adapting the hybrid
approach to newer settings requires adaptive, intelligent al-
gorithm switching techniques. We present a metareasoning
strategy that monitors and predicts the performance of the
current solver to determine when to switch to the next solver.
We evaluate our switching strategy for QCC using a combi-
nation of temporal planner and CP solver. Empirical results
demonstrate the clear benefits of the switching strategy based
on metareasoning, compared to the existing fixed strategy.

1 Introduction
Quantum computing is an emerging paradigm with the
potential to solve certain problems faster than classical
computing. Quantum computers apply quantum operations
called quantum gates to qubits, which are the basic memory
units of quantum processors. General quantum algorithms
are typically specified as quantum circuits on an idealized ar-
chitecture in which a gate can act on any subset of qubits. In
an actual superconducting qubit device, physical constraints
impose restrictions on the sets of qubits on which gates can
operate. Many current chip designs feature qubits arranged
in a grid; a qubit shares gates with only the 4 or 8 ‘near-
est neighbors’. Thus, the idealized circuit must be compiled
to specific hardware by, among other operations, adding ad-
ditional gates that move qubit states (qstates) to locations
where the desired gate from the original circuit can act on
them. We refer to this as the “quantum circuit compilation”
(QCC) problem 1. The compilation must minimize the total
circuit execution time due to the short decoherence time of
near-term quantum hardware.

Venturelli et al. (2017) proposed solving QCC of Quan-
tum Alternating Operator Ansatz algorithm (QAOA) for
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1More recent work refers to this step of compilation as ‘routing’
to distinguish it from other compilation steps.

MaxCut as a temporal planning problem, which was then
solved using off-the-shelf domain-independent planners.
Recently, Booth et al. (2018) proposed solving this prob-
lem using a combination of a temporal planner and a con-
straint programming (CP) solver. The authors show that
warm-starting a CP solver with the planner’s solution pro-
duces considerable improvement over using either of them
in isolation. The results suggest that the hybrid approach is
a promising technique to solve different QCC problems. A
key limitation in the current hybrid approach of Booth et
al. (2018) is that each solver in the hybrid setting is allo-
cated a fixed and equal solving time that is independent of
the solvers, the problem size or complexity, and the total
solving time. As the chip design and gate architectures are
fast evolving, it is non-trivial to predetermine a fixed strategy
that works well across all problem configurations. Adapting
the hybrid approach to newer settings requires a more adap-
tive and intelligent algorithm-switching technique. How to
switch intelligently between solvers in the hybrid setting
where the subsequent solver is warm-started with solution
from the previous solver, such that the makespan value of
the final solution is minimized?

We present a meta-level control approach for switching
between a temporal planner (say P1) and CP solver (say P2)
for solving QCC, by monitoring and predicting the perfor-
mance of the solvers in real-time. Given a total time T for
solving the problem, an optimal switching strategy involves
identifying the time ts to switch from P1 to P2, such that the
final makespan produced by P2, when warm-started with a
solution from P1, is minimized. In practice, it is impossible
to accurately predict the performance of P2 a priori, when
warm-started with a solution of a particular quality and given
a fixed time for solving the problem. It is also impossible to
accurately predetermine how long P1 will take to produce
a solution of a given quality. Therefore, we propose an ap-
proximation, local monitoring, to switch between the solvers
in our hybrid setting by monitoring the performance of P1

and switching when a threshold in quality is reached (Fig-
ure 1). Empirical evaluation of our approach on the QCC of
QAOA for MaxCut problems demonstrates the advantages
of switching with local monitoring over the fixed equal time
allocation strategy, with a plan score improvement of up to
169% on N21 C problems, which are among the most diffi-
cult to solve.



Figure 1: Illustration of local monitoring-based meta-level control for QCC.

The following are our primary contributions:

• Formalizing the problem of real-time intelligent switch-
ing between solvers in the hybrid setting for solving QCC
of QAOA as a metareasoning problem (Section 3);

• Presenting a local monitoring approach that switches
based on the performance of planner P1 by monitoring
and predicting its performance online (Section 4); and

• Evaluating the performance of our approach on QCC of
QAOA to solve Maxcut problems (Section 5).

2 Background and Related Work
Quantum Circuit Compilation General quantum algo-
rithms historically have been described in an idealized ar-
chitecture in which a gate can act on any subset of qubits.
However, in an actual superconducting qubit device, such as
the latest chips manufactured by IBM, Rigetti Computing,
Google and Intel (Corcoles et al. 2019; Murali et al. 2019;
Arute et al. 2019), physical constraints impose restrictions
on the sets of qubits on which gates can be performed. Re-
cently, a number of approaches have been explored for com-
piling idealized quantum circuits to realistic quantum hard-
ware utilizing various swap gate insertion strategies in noisy
intermediate-scale quantum (NISQ) devices, targeting algo-
rithms that can be executed in the near-term (Cowtan et
al. 2019; Zulehner, Paler, and Wille 2018b; Li, Ding, and
Xie 2019; Rasconi and Oddi 2019; Oddi and Rasconi 2018;
Gokhale et al. 2019; Itoko et al. 2019). We refer to this prob-
lem as “quantum circuit compilation” (QCC).

Early efforts in QCC focused on developing heuristic
compilation algorithms for nuclear magnetic resonance ar-
chitectures with the objective of minimizing circuit duration
(Maslov, Falconer, and Mosca 2008). Advances in quantum
technology coupled with improvements in fault-tolerance
have led to the design of larger devices and the develop-
ment of more sophisticated compilation approaches (Amy
et al. 2013; Shafaei, Saeedi, and Pedram 2013; Wille, Lye,
and Drechsler 2014; Lye, Wille, and Drechsler 2015).

Venturelli et al. (2017) proposed the first PDDL formu-
lation for solving QCC of Quantum Alternating operator
Ansatz algorithm (QAOA) for the MaxCut problem. The
authors modeled QCC as a temporal planning problem,
which was solved using off-the-shelf domain-independent
planners. As a follow-up to this work, Booth et al. (2018)
proposed solving QCC using a combination of a temporal

planner and a constraint programming (CP) solver. Warm-
starting a CP solver with a temporal planner’s solution
yielded considerable improvement over using either of the
solvers in isolation. While we focus on the compilation of
QAOA for Max-Cut in superconducting architectures, other
architecture-agnostic methodologies are also being investi-
gated and these typically require defining the desired circuit
a priori (Zulehner, Paler, and Wille 2018a).

Recent works (Oddi and Rasconi 2018; Rasconi and
Oddi 2019) showed further performance improvement on
the same benchmark set by utilizing domain-specific heuris-
tics within the greedy randomized, and later, genetic algo-
rithm. There are also efforts to solve QCC outside the tra-
ditional AI community (Maslov, Falconer, and Mosca 2008;
Amy et al. 2013; Shafaei, Saeedi, and Pedram 2013; Wille,
Lye, and Drechsler 2014; Lye, Wille, and Drechsler 2015;
Zulehner, Paler, and Wille 2018a).

Meta-level control Meta-level control of algorithms or
metareasoning is the process of reasoning about the perfor-
mance of the underlying algorithm. Metareasoning for time-
critical decisions offers a principled approach to balance
the trade-off between computation time and solution quality.
Existing metareasoning approaches typically target settings
with one anytime planner and the goal is to decide whether
to act on the current solution of the anytime algorithm or to
wait until the solution improves (Cserna, Ruml, and Frank
2017; Hansen and Zilberstein 2001; Hay and Russell 2011;
Horvitz and Rutledge 1991; Russell and Wefald 1991; Sveg-
liato, Wray, and Zilberstein 2018; Zilberstein 2008). In this
work, the metareasoner decides whether to continue with the
current solver or warm-start the next solver with the current
solution.

Another related line of work utilizes metareasoning to
identify the most-suitable algorithm for a problem from a
portfolio of algorithms (Carchrae and Beck 2005; Lieder et
al. 2014). In contrast, we consider a portfolio in which suc-
cessive solvers acting on the problem are warm-started with
the solution produced by the former. The key challenge is
to identify when to switch from one solver to the next, by
reasoning about the quality of solution of the current solver
used to warm-start the subsequent solver.

3 Meta-Level Control of Solvers for QCC
We address the problem of real-time intelligent switching
between a pipeline of algorithms in a portfolio, specifically



for solving the QCC problem, using meta-level control. The
system consists of two components: a solver module that
solves the problem and a metareasoner module that reasons
about the solver module. The focus is on building a metarea-
soner to decide when to switch between a temporal planner
and a CP solver, for QCC.

Solver Module: Building on the existing work of Booth et
al. (2018), we consider the solver module as a hybrid with
two solvers, {P1, P2}, where P1 is a temporal planner and
P2 is a CP solver, to act on the QCC problem. P1 and P2

share a model of the QCC problem. We use the QCC model
described in Booth et al. (2018). The solvers have a fixed
ordering and act sequentially on the problem until the total
allotted solving time (T ) elapses. That is, P1 first operates on
the problem and when P1 is terminated, P2 is warm-started
with a solution found by P1, and runs until T is reached.

Metareasoning Module: The metareasoner M monitors
the solver to identify the time instant ts, 0 ≤ ts ≤ T ,
to switch from P1 to P2 such that the makespan m of the
temporal plan returned by P2 at T is minimized (Figure 1).
Let mP,t

π denote the plan makespan produced by a solver P
when warm-started with a plan π and time t allotted for solv-
ing the problem. We drop the subscript π when the solver is
not warm-started with a solution. The best makespan under
this setting is:

m∗=min
t
mP2,T−t
π

where π is the ‘best’ solution produced by P1 when executed
for time t. Then the optimal switching time is

t∗s=arg min
0≤t≤T

mP2,T−t
π

To accurately estimate the optimal switching time for a
given novel planning problem, the metareasoner is required
to have full knowledge of:

1. all the time points ti ≤ T at which P1 produces a new
solution πi; and

2. final solution quality (i.e., makespan value) mP2,T−ti
πi

re-
turned by P2 when warm-started with πi and with a time
limit T − ti.
However, it is impossible to accurately estimate these val-

ues a priori due to lack of information about the differences
in the way in which the search space is explored by each
solver, especially when it is an anytime algorithm and in the
setting where P2 is warm-started with a solution. Therefore,
in the rest of the paper, we will describe an algorithm to ap-
proximate ts with the following assumptions.

Assumption 1: Since we are minimizing plan makespan, the
makespan value of the solution produced by P1 is a reason-
able metric for determining the ‘best’ solution for warm-
starting P2.

At switching time ts, the plan π1 with the least makespan
among all solutions found by P1 until ts is the best plan for
warm-starting P2.

Assumption 2: The rate of solution quality improvement in
P1 is an accurate indicator for when P1 produces the best
solution to warm-start P2.

Thus, ts is determined by monitoring only the perfor-
mance of P1 to identify if it has produced the ‘best’ solution
for warm-starting P2.

4 Local Monitoring with Online Prediction
Since the metareasoner’s switching decisions are solely
based on its monitoring of the performance of P1, without
considering P2, we call this a local monitoring approach.
For practical purposes, the metareasoner monitors the per-
formance of P1 at discrete time intervals, every θ time units.
The decision to switch or continue is made every ∆t=η · θ
time units, where η is a constant, until the switch to P2 oc-
curs or until timeout. Since we consider a setting in which
P2 is warm-started withP1’s solution, the metareasoner does
not switch until P1 generates at least one solution.

Local monitoring with perfect information If the metar-
easoner has knowledge of the best (last) solution π∗P1

pro-
duced by P1, within T , then it can switch as soon as P1 has
produced a plan π with this makespan valuemP1,T . This is a
case of perfect information as mP1,T is known to the metar-
easoner a priori. Since the agent switches after finding the
best solution from P1 with perfect information, we refer to
this approach as BSPI.

Switching when the final makespan mP1,T is found may
not be the optimal switching time since it may result in very
little or no time for P2 to act on the problem. However it
is a reasonable proxy to guide the switching decision, based
on Assumption 1. A similar idealized strategy is described
in (Booth et al. 2018). In practice,mP1,T is unknown a priori
and it is also challenging to accurately estimate this value.
Therefore, we describe below an online approach to estimate
the makespan improvement on-the-fly.

Online Performance Prediction with Myopic Looka-
head: A popular technique in the existing metareasoning
literature to estimate the improvement in solution quality
is to utilize a performance profile (Hansen and Zilberstein
2001) of the planner. A performance profile is used to predict
the expected improvement in solution quality, typically as a
function of the current solution and computation time. Gen-
erating an accurate performance profile involves significant
preprocessing, which makes it unsuitable for novel settings
in which large amounts of preprocessing data are unavail-
able. We avoid the need for preprocessing by predicting the
makespan improvement of P1 online, based on its current
performance and using a myopic lookahead strategy.

Specifically, the metareasoner monitors the performance
of P1 every θ time units (say 1 second), and collects
the makespan value produced, if a solution is found. The
makespan values generated by P1 from start till time t,
[mP1,0, . . . ,mP1,t], are used to predict the makespan value
of the planner at t + ∆t. In this paper, we initialize mP1,0



Figure 2: An idealized illustration of different switching de-
cisions based on local monitoring—switching after P1 has
produced the best makespan possible, within T , reduces the
final makespan.

to some large constant K and use linear regression for fu-
ture makespan prediction. In practice, other prediction ap-
proaches may be used. Naturally, the prediction accuracy
improves as the metareasoner collects more data. The on-
line performance prediction does not involve preprocessing
and hence is compatible for use with any novel instance.

Cost-Sensitive Switching When using online prediction
with myopic lookahead, it is important to reason about
whether the projected reduction in makespan, if any, is sig-
nificant enough to postpone switching, by taking into ac-
count the time spent by the solver to achieve that improve-
ment. Intuitively, a solution with a particular makespan com-
puted in a minute has higher utility than a solution with the
same or slightly better makespan computed in an hour.

Figure 2 illustrates an ideal setting where switching with
the best makespan of P1 reduces the final makespan. In
this figure, P1 indicates the performance of the planner P1

when executed until time T with no switching. The various
switching decisions and their corresponding performances
are indicated by different colors. BSPI, indicated by the
green line, switches as soon as the makespan matches that
of the best (or last) solution that can be produced by P1

within T . Premature switching (earlier than BSPI switch-
ing) with a makespan value that is higher than the best value
of P1 may offer more computational time to P2, but often
at the price of starting with a significantly inferior solu-
tion. In practice, however, we observe that some problems
benefit from switching earlier with more time allotted to
P2. In our experiments, the ‘First’ switch performs better
than BSPI in 5/9 problems for the TFD+CP hybrid. Switch-
ing later than BSPI, after giving the metareasoner sufficient
time to confirm that the current makespan is indeed the best
makespan value P1 can produce within T , also affects the fi-
nal makespan value produced since switching later allocates
too little time to P2.

Therefore, the value of continuing with the current solver,
P1, is formalized with two components: (1) the expected
makespan improvement and (2) the cost of time.

Let r denote the rate of makespan improvement, calcu-
lated as r = (mP1,t−m′)

mP1,t with m′ denoting the predicted

makespan of P1 for time t′ = t+∆t, using linear regression
or any other approach that facilitates predicting the planner
performance. Let Ct denote the cost of time, which repre-
sents the computation cost for running the planner P1 until
t. The cost of time also indirectly represents the opportunity
cost of not using P2 and continuing with P1. Naturally, the
benefits of continuing with P1 diminishes as (1) r decreases
and (2) Ct increases. The loss function, which determines
the switching decision, is then defined as:

L(P1) = (1− r) ∗ Ct.

Definition 1 In cost-sensitive switching, the metareasoner
switches from P1 to P2 when the loss incurred by continuing
with P1 exceeds a predefined threshold τ : L(P1) ≥ τ .

Note that the metareasoner switches only when the loss of
continuing with P1 exceeds the predefined threshold, and
not necessarily because P2 is guaranteed to improve the per-
formance. In fact, the infeasibility of accurately estimating
the performance of P2 when warm-started with a particu-
lar solution is a key motivation for the local monitoring ap-
proach. Online performance prediction with myopic looka-
head and cost-sensitive switching form the basis of and sup-
port the design of our local monitoring approach—Local
Monitoring with Myopic Lookahead (LMML).

5 Empirical Evaluation
The main objective of our experiments is to validate the
performance of switching guided by local monitoring with
a myopic lookahead and cost-sensitive switching (LMML),
compared to the existing approaches.

Setup We evaluate our approach on the same benchmark
of QCC of QAOA to solve MaxCut problems used in previ-
ous work (Booth et al. 2018). Specifically, we evaluate per-
formance on QCC problems for random MaxCut problems
on quantum chips with either 8 or 21 qubits arranged in a
grid pattern. For each chip size (N = 8, N = 21), there are
three problem configurations: (1) base (B); (2) base + ini-
tialization (I); and (3) base + cross-talk constraints (C). For
N = 8, we also vary the number of times the circuit is re-
peatedly executed, denoted by P = {1, 2}. Problems with
P = 2 have more than twice the number of goals and much
longer plans2. We report results for the first 30 of the 50 in-
stances in each benchmark. The total allowed time (T ) for
solving the problem is 120 seconds for N = 8 and 600 sec-
onds for N = 21 problems (same as in (Booth et al. 2018)).
For P1 we use TFD (Eyerich, Mattmüller, and Röger 2009)
and POPF (Coles et al. 2010). For P2, we use the CP Op-
timizer with model from Booth et al. (2018). LMML is im-
plemented in Python and the experiments were run on an
Ubuntu machine with 16GB of RAM.

Baselines The performance of the local monitoring strat-
egy for switching is compared with four baselines:

2Between the two “phases”, indicated by P = 2, there are ad-
ditional goals that need to be achieved (Venturelli et al. 2019).



TFD POPF
Problem Set P BSPI Alone First Fixed LMML BSPI Alone First Fixed LMML

N8 B 1 0.961 0.891 0.978 0.956 0.972 0.951 0.870 0 .961 0.946 0.949
N8 I 1 0.976 0.897 0.805 0.968 0.974 0.936 0.857 0.928 0.924 0 .932
N8 C 1 0.972 0.899 0.963 0.956 0.971 0.963 0.766 0.961 0 .965 0.957
N8 B 2 0.967 0.904 0.907 0.959 0.946 0.942 0.837 0 .939 0.932 0.938
N8 I 2 0.969 0.860 0.887 0.963 0.964 0.871 0.743 0.855 0.872 0 .875

N8 C ∗ 2 0.893 0.873 0.913 0.879 0.901 0.888 0.634 0 .896 0.879 0.890
N21 B 1 0.641 0.539 0 .644 0.631 0.640 0.990 0.903 0.967 0.976 0.981
N21 I 1 0.508 0.434 0 .513 0.442 0.502 0.993 0.933 0.951 0.979 0.976

N21 C ∗∗ 1 0.814 0.428 0 .816 0.297 0.801 0.974 0.619 0.969 0.823 0.949

Summed Score 7.701 6.725 7.424 7.050 7.671 9.508 7.162 8.427 8.296 8.447

Table 1: Performance comparison with four baselines, including the “perfect-information” BSPI approach. Bold values indicate
best performance across all approaches that can be implemented in practice (i.e., all except BSPI), while italics values indicate
best performance among all implementable approaches for the ‘runner up’ planner. Note: plan scores are averaged only over
those instances solved by all approaches. ∗ POPF solved only 26 instances. ∗∗ POPF solved only 16 instances.

• P1 alone: P1 solves the problem until T and does not
switch to P2;

• First: switch to P2 as soon as P1 produces a solution;
• Equal time: each solver is allocated equal time to solve

the problem and P2 is warm-started with the best solution
produced by P1 in time T/2; and

• Best solution from P1 with perfect information (BSPI):
in our implementation, we first run P1 alone until T and
record time t∗, we then run the hybrid setting that switch
from P1 to P2 at t∗.

Algorithm Parameters The metareasoner monitors the
performance of P1 every θ = 1 second and the decision
to switch or to continue is made every ∆t = 5 seconds.
Motivated by the work on metareasoning for anytime algo-
rithms (Hansen and Zilberstein 2001), we use an exponen-
tial function for cost of time, Ct = eα·t, with normalization
α = 1

30 for N = 8 and α = 1
60 for N = 21 problems with

τ = e0.33 for N = 8 and τ = e3 for N = 21. The main
purpose of α is to convert seconds to minutes for Ct calcu-
lation. The values for τ and α are based on our observation
of the average time taken, in minutes, for all the planners to
produce at least the first solution across all problem variants
(B, I, C) on sample problems from the data set. No extensive
pre-processing is involved in computing these values.

The temporal planners typically solve the N = 8 prob-
lems within the first 30 seconds and no new solution is pro-
duced thereafter and hence we use a relatively larger α and a
smaller τ . We also tested with higher values of T and lower
∆t (increasing the frequency of the option to switch), which
did not significantly improve the solution quality. Tuning τ
and α for each problem configuration and the planner, using
standard hyperparameter tuning methods, improved the per-
formance. However, we test and report results with the same
τ and α for all planners and variants for each chip size (N=8,
21). This somewhat-conservative value allows us to compare
the performance of each approach uniformly across settings.

Makespan prediction: Every ∆t = 5 seconds, the metar-
easoner predicts the makespan of P1 at the next decision

epoch, t+ 5 seconds. The prediction is performed using lin-
ear regression over the set of samples collected at every 1
second until t. Therefore, as the number of samples increase,
the prediction is expected to be better. We use the Python
sklearn package for linear regression.

6 Results Analysis
We evaluate the performance of our proposed switching
strategy based on its effectiveness and adaptability. The ef-
fectiveness is measured using plan score metric. The plan
score (max = 1.00) is calculated as: if the best-known
makespan for instance i isMi, then for a given solverX that
returns a plan mi

X , Score(i,X) = Mi

mi
X

. This metric offers a
principled approach to evaluate the consistency and relative
performance of the different techniques and has been used in
the International Planning Competition (IPC) to grade plan-
ners’ performance on the IPC benchmarks. The adaptability
of our approach is analyzed empirically using the switch-
ing times for different planners and problem configurations,
along with the resulting makespan values.

6.1 Effectiveness of local monitoring
Table 1 shows the plan scores of the different switching tech-
niques considered. The objective is to evaluate if and when
our switching strategy improves the performance, compared
to the the existing approaches, irrespective of the planner
used as P1. In Table 1 we highlight in bold the best perfor-
mance across planners, and in italics the best performance
achieved for each individual planner. We highlight in bold
and italics for a technique that can be implemented in prac-
tice for each planner, which excludes BSPI since it is in-
feasible to implement in practice due to lack of information
regarding the best makespan value of P1 a priori.

LMML is best on 4 of the 9 problem classes, while Fixed
is better on 3 classes. LMML is better than other strategies
for either planner when considering performance across all
problem classes; more so for TFD than POPF. While BSPI
has the highest overall score, which indicates that waiting
for P1 to find the best possible plan within T in general
is the best strategy for the hybrid planner + CP setting for



Problem P Hybrid Fixed Strategy First BSPI LMML

N8-B 1
TFD+CP 17.63± 1.54 17.23± 1.76 17.56± 1.84 17.33± 1.64

POPF+CP 17.87± 2.03 17.57± 1.93 17.77± 2.03 17.8± 2.02

N8-I 1
TFD+CP 14.94± 1.93 18.00± 3.53 14.8± 1.83 14.83± 1.84

POPF+CP 15.80± 2.66 15.70± 2.58 15.57± 2.51 15.63± 2.55

N8-C 1
TFD+CP 22.87± 1.65 22.73± 2.24 22.47± 1.48 22.51± 1.54

POPF+CP 22.77± 2.22 22.80± 2.27 22.77± 2.33 22.93± 2.61

N8-B 2
TFD+CP 35.47± 4.49 37.80± 6.04 35.13± 4.53 35.93± 4.60

POPF+CP 36.57± 5.03 36.30± 5.26 36.17± 5.11 36.33± 5.09

N8-I 2
TFD+CP 30.80± 4.80 33.83± 6.14 30.56± 4.49 30.73± 4.56

POPF+CP 34.06± 4.82 34.70± 4.55 34.06± 4.71 33.93± 4.75

N8-C 2
TFD+CP 53.84± 12.92 50.94± 7.07 52.37± 11.26 51.91± 11.26

POPF+CP 52.69± 7.40 51.69± 7.51 52.19± 7.52 51.96± 7.11

N21-B 1
TFD+CP 57.87± 11.44 57.01± 12.21 57.17± 11.86 57.24± 11.86

POPF+CP 36.47± 4.48 36.80± 4.51 35.94± 4.43 36.24± 4.36

N21-I 1
TFD+CP 64.93± 11.69 63.24± 11.92 63.93± 12.21 64.35± 11.64

POPF+CP 32.07± 5.18 33.07± 5.12 31.54± 4.83 32.24± 5.48

N21-C 1
TFD+CP 162.47± 38.54 68.44± 12.35 68.62± 12.31 68.89± 12.76

POPF+CP 71.81± 36.87 58.44± 8.71 57.54± 8.79 58.67± 9.37

Table 2: Average makespan, along with standard deviation, of different switching techniques.

solving QCC, plan scores for dynamic switching are com-
parable to that of BSPI in most problem sets, and better than
that of BSPI in some cases (for instance TFD with First out-
performs BSPI on N = 8, B,P = 1). This highlights the
problem in ignoring performance of P2, and also the po-
tential that spending more time on P2 may be beneficial in
some instances. Overall, dynamic switching (either First or
LMML) is better than Alone or Fixed in all but two problem
classes and is comparable to that of BSPI which is infeasible
to implement in practice.

6.2 Adaptability of local monitoring
Table 2 shows the average makespan values of the dif-
ferent techniques on all problem variants, along with the
standard deviation. Figure 3 plots the switching times for
N = 21,P = 1 problems. These results enable us to un-
derstand the performance and behavior of local monitoring
strategy, beyond the plan score metric.

Each planner explores the search space differently. As a
result, the frequency of producing solutions and their quality
can be very different for different planners acting on a given
problem. In general, we observe that the difficulty of solving
the problem increases with N and more constraints. That
is, I and C settings are more challenging to solve than B
and N = 21 is more difficult than solving N = 8. This was
evident in the frequency and number of solutions produced
by P1. The performances of the First switch and the BSPI
strategies in Tables 1, 2 and Figure 3 illustrate this.

The differences in switching times affect the time allo-
cated to P2, as well as the quality of the solution used to
warm-start P2, which affects the overall performance. Fig-

ure 3 clearly shows that LMML adapts the switching time to
each planner’s best behavior. TFD switches at close to T/2
for all approaches, while POPF switches mostly before T/2
except for the ‘C’ (crosstalk) instances. Similar trends were
observed for other instance classes.

Figure 3 indicates that First and BSPI are nearly indis-
tinguishable from each other most of the time, but on occa-
sion BSPI switches a little later than First. Instances where
BSPI and First switch at the same time indicate that the
planner produces only one solution in the allotted time (fa-
voring First, which can switch immediately, over LMML,
which must wait for the cost of time to dominate and prompt
switching). In other instances, BSPI switches when the so-
lution with best makespan possible has been found. The
switching times of BSPI and LMML are close for TFD+CP;
LMML switches a bit later on the ‘I’ and ‘B’ instances and
a bit earlier on the ‘C’ instances. For POPF+CP, there is a
∼100 second interval between the switching times of BSPI
and LMML, in most problems. However, we observe that
the overall performances of BSPI and LMML, in terms of
makespan, are comparable (Table 2). This happens because
POPF does not produce any new solutions in this time inter-
val, or the solutions produced have very similar makespan
values.

These results show that local monitoring approach adapts
the switching time to the performance of P1 and that predict-
ing the performance of P1 online works well in practice, but
it may not always be the best strategy. For some problems,
switching early is better, favoring First, and LMML is able
to adapt and switch earlier in those problems (not as early as
First, but close). For other problems, switching late is bet-



(a) TFD+CP, B (b) TFD+CP, I (c) TFD+CP, C

(d) POPF+CP, B (e) POPF+CP, I (f) POPF+CP, C

Figure 3: Switching times on N = 21, P = 1 problems.

ter and favoring BSPI; again, LMML is also able to adapt
and switch late and trail closely the best strategy in those
scenarios (not as good as BSPI, but close).

7 Conclusion and Future Work
We present a metareasoning approach for deciding when
to switch between solvers for the QCC problem. Our local
monitoring approach with limited lookahead, LMML, mon-
itors the decrease in makespan and decreasing time remain-
ing to run the second solver, and switches when a loss func-
tion parameterized by these values reaches a critical thresh-
old. This approach approximates the idealized strategy in
which perfect information is available, BSPI, and can be
easily implemented in practice. Our results demonstrate the
benefits of switching using metareasoning approaches, com-
pared to the fixed strategy. Tables 1 and 2 demonstrate the
effectiveness of dynamic switching over the fixed strategy.
Figure 3 shows that LMML adapts the switching time based
on the planner performance.

Future Work There are a number of interesting directions
for future work. First, we assumed that the makespan value
of a solution is a good indicator for deciding when to switch.
There could be other features of plans that are better indica-
tors of good plans to warm-start the next solver, which are
especially useful when planners produce only one solution
in the allotted time. Any future developments in identifying
characteristics of a solution that boosts the performance of
P2 can be leveraged by our approach. Second, we focus in
this paper on the planner+CP setting for QCC of MaxCut

problem but the overall framework does not limit itself to
a particular solver or a particular planning domain. Candi-
date solvers for P2 that can be warm-started with a complete
plan and which can effectively handle other planning do-
mains will allow us to expand our evaluation benchmarks.
Third, generalizing our approach to multi-solver portfolio
may require developing metareasoning techniques that can
effectively monitor multiple solvers, and a more principled
approach to determine the parameters for the metareasoner.
Finally, designing a metareasoning strategy specifically for
stochastic planners such as LPG will help expand the poten-
tial candidates for P1.
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