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Foreword

Planning is becoming a mature field in terms of base techniques and algorithms to solve goal-oriented tasks. It has been
successfully applied to many domains including classical domains such as logistics or mars rovers, or more recently in oil and
gas, as well as mining industry. However, very little work has been done in relation to financial institutions problems. Recently,
some big financial corporations have started AI research labs and researchers at those teams have found there are plenty of open
planning problems to be tackled by the planning community. For example, these include, trading markets, workflow learning,
generation and execution, transactions flow understanding, fraud detection and customer journeys.

The FinPlan workshop is the first workshop whose aims to bring together researchers and practitioners to discuss challenges
for Planning in Financial Services, and the opportunities such challenges represent to the planning research community. The
workshop consisted of three invited talks and short paper presentations. The invited talks were given by Tanveer Faruquie
(Capital One), Sarah Keren (Harvard University) and Shirin Sohrabi (IBM).

Daniel Borrajo, Daniele Magazzeni and Sameena Shah
October 2020
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Abstract

Can an asset manager plan the optimal timing for her/his
hedging strategies given market conditions? The standard ap-
proach based on Markowitz or other more or less sophisti-
cated financial rules aims to find the best portfolio alloca-
tion thanks to forecasted expected returns and risk but fails
to fully relate market conditions to hedging strategies deci-
sion. In contrast, Deep Reinforcement Learning (DRL) can
tackle this challenge by creating a dynamic dependency be-
tween market information and hedging strategies allocation
decisions. In this paper, we present a realistic and augmented
DRL framework that: (i) uses additional contextual informa-
tion to decide an action, (ii) has a one period lag between ob-
servations and actions to account for one day lag turnover of
common asset managers to rebalance their hedge, (iii) is fully
tested in terms of stability and robustness thanks to a repeti-
tive train test method called anchored walk forward training,
similar in spirit to k fold cross validation for time series and
(iv) allows managing leverage of our hedging strategy. Our
experiment for an augmented asset manager interested in siz-
ing and timing his hedges shows that our approach achieves
superior returns and lower risk.

Introduction
From an external point of view, the asset management (buy
side) industry is a well-suited industry to apply machine
learning as large amount of data are available thanks to
the revolution of electronic trading and the methodical
collection of data by asset managers or their acquisition
from data providers. In addition, machine based decision
can help reducing emotional bias and taking rational and
systematic investment choices (Kahneman 2011). However,
to date, the buy side industry is still largely relying on old
and traditional methods to make investment decisions and
in particular to choose portfolio allocation and hedging
strategies. It is hardly using machine learning in investment
decisions.
This is in sharp contrast with the ubiquitous usage of deep
reinforcement learning (DRL) in other industries and in par-
ticular its use for solving challenging tasks like autonomous
driving (Wang, Jia, and Weng 2018), learning advanced

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

locomotion and manipulation skills from raw sensory
inputs (Levine et al. 2015; 2016; Schulman et al. 2015;
2017; Lillicrap et al. 2015) or on a more conceptual
side for reaching supra human level in popular games
like Atari (Mnih et al. 2013), Go (Silver et al. 2016;
2017), StarCraft II (Vinyals et al. 2019), etc ...

It therefore makes sense to investigate if DRL can help
help in financial planning and in particular in creating aug-
mented asset managers. To narrow down our problem, we
are specifically interested in finding hedging strategies for
a risky asset. To make things concrete and more illustra-
tive, we represent this risky asset in our experiment with the
MSCI World index that captures large and mid cap securities
across 23 developed financial markets. The targeted hedging
strategies are on purpose different in nature and spirit. They
are appropriate under distinctive market conditions. Finan-
cial planning is therefore critical for deciding the appropriate
timing when to add and remove these hedging strategies.

Related works
At first, reinforcement learning was not used in portfolio al-
location. Initial works focused on trying to make decisions
using deep networks to forecast next period prices, (Freitas,
De Souza, and Almeida 2009; Niaki and Hoseinzade 2013;
Heaton, Polson, and Witte 2017). Armed with the fore-
cast, an augmented asset manager could solve its finan-
cial planning problem to decide the optimal portfolio al-
locations. However, this initial usage of machine learn-
ing contains multiple caveats. First, there is no guarantee
that the forecast is reliable in the near future. On the con-
trary, it is a stylized fact that financial markets are non
stationary and exhibit regime changes (Salhi et al. 2015;
Dias, Vermunt, and Ramos 2015; Zheng, Li, and Xu 2019),
making the prediction exercise quite difficult and unreliable.
Second, it does not target specifically the financial plan-
ning question of finding the optimal portfolio based on some
reward metrics. Third, there is no consideration of online
learning to adapt to changing environment as well as the in-
corporation of transaction costs.
A second stream of research around deep reinforcement
learning has emerged to address these points (Jiang and
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Liang 2016; Jiang, Xu, and Liang 2017; Liang et al. 2018;
Yu et al. 2019; Wang and Zhou 2019; Liu et al. 2020;
Ye et al. 2020; Li et al. 2019; Xiong et al. 2019; Ben-
hamou et al. 2020a; 2020b). The dynamic nature of rein-
forcement learning makes it an obvious candidate for chang-
ing environment (Jiang and Liang 2016; Jiang, Xu, and
Liang 2017; Liang et al. 2018). Transaction costs can be
easily included in rules (Liang et al. 2018; Yu et al. 2019;
Wang and Zhou 2019; Liu et al. 2020; Ye et al. 2020;
Yu et al. 2019). However, these works, except (Ye et al.
2020) and (Benhamou et al. 2020a) rely only on time se-
ries of open high low close prices, which are known to be
very noisy. Secondly, they all assume an immediate action
after observing prices which is quite different from reality.
Most asset managers need a one day turnaround to manage
their new portfolio positions. Thirdly, except (Benhamou et
al. 2020a), they rely on a single reward function and do
not measure the impact of the reward function. Last but not
least, they only do one train and test period, never testing for
model stability.

Contributions
Our contributions are fourfold:

• The addition of contextual information. Using only
past information is not sufficient to learn in a noisy and
fast changing environment. The addition of contextual in-
formation improves results significantly. Technically, we
create two sub-networks: one fed with direct observations
(past prices and standard deviation) and another one with
contextual information (level of risk aversion in finan-
cial markets, early warning indicators for future recession,
corporate earnings etc...).

• One day lag between price observation and action. We
assume that prices are observed at time t but action only
occurs at time t + 1, to be consistent with reality. This
one day lag makes the RL problem more realistic but also
more challenging.

• The walk-forward procedure. Because of the non sta-
tionarity nature of time dependent data and especially fi-
nancial data, it is crucial to test DRL models stability.
We present a new methodology in DRL model evalua-
tion referred to as walk forward analysis that iteratively
trains and tests the model on extending data-set. This can
be seen as the analogy of cross validation for time se-
ries. This allows validating that selected hyper parameters
work well over time and that the resulting model is stable
over time.

• Model leverage. Not only do we do a multi inputs net-
work, we also do a multi outputs network to compute at
the same time the percentage in each hedging strategy and
the overall leverage. This is a nice feature of this DRL
model as it incorporates by design a leverage mechanism.
To make sure the leverage is in line with the asset manager
objective, we cap the leverage to the maximum authorized
leverage, which is in our case 3. This byproduct of the
method is another key difference with standard financial
methods like Markwitz that do not care about leverage

and only give a percentage for the hedging portfolio allo-
cation.

Background and mathematical formulation
In standard reinforcement learning, models are based on
Markov Decision Process (MDP) (Sutton and Barto 2018).
A Markov decision process is defined as a tuple M =
(X ,A, p, r) where:

• X is the state space,

• A is the action space,

• p(y|x, a) is the transition probability such that
p(y|x, a) = P(xt+1 = y|xt = x, at = a),

• r(x, a, y) is the reward of transition (x, a, y).

MDP assumes that the we know all the states of the en-
vironment and have all the information to make the optimal
decision in every state. The Markov property in addition im-
plies that knowing the current state is sufficient.
From a practical standpoint, the general RL setting is mod-
ified by taking a pseudo state formed with a set of past ob-
servations (ot−n, ot−n−1, . . . , ot−1, ot). In practice to avoid
large dimension and the curse of dimension, it is useful to re-
duce this set and take only a subset of these past observations
with j < n past observations, such that 0 < i1 < . . . < ij
and ik ∈ N is an integer. The set δ1 = (0, i1, . . . , ij) is
called the observation lags. In our experiment we typically
use lag periods like (0, 1, 2, 3, 4, 20, 60) for daily data,
where (0, 1, 2, 3, 4) provides last week observation, 20 is for
the one-month ago observation (as there is approximately
20 business days in a month) and 60 the three-month ago
observation.

Observations
Regular observations There are two types of observa-
tions: regular and contextual information. Regular observa-
tions are data directly linked to the problem to solve. In the
case of a trading framework, regular observations are past
prices observed over a lag period δ = (0 < i1 < . . . < ij).
To renormalize data, we rather use past returns computed as
rt =

pkt
pkt−1

− 1 where pkt is the price at time t of the asset
k. To give information about regime changes, our trading
agent receives also empirical standard deviation computed
over a sliding estimation window denoted by d as follows

σkt =
√

1
d

∑t
u=t−d+1 (ru − µ)

2, where the empirical mean

µ is computed as µ = 1
d

∑t
u=t−d+1 ru. Hence our regular

observations is a three dimensional tensor At =
[
A1
t , A

2
t

]

with A1
t =




r1t−ij ... r
1
t

... ... ...
rmt−ij .... r

m
t


, A2

t =




σ1
t−ij ... σ

1
t

... ... ...
σmt−ij .... σ

m
t




This setting with two layers (past returns and past volatili-
ties) is quite different from the one presented in (Jiang and
Liang 2016; Jiang, Xu, and Liang 2017; Liang et al. 2018)
that uses different layers representing closing, open high low
prices. There are various remarks to be made. First, high
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low information does not make sense for portfolio strate-
gies that are only evaluated daily, which is the case of all the
funds. Secondly, open high low prices tend to be highly cor-
related creating some noise in the inputs. Third, the concept
of volatility is crucial to detect regime change and is surpris-
ingly absent from these works as well as from other works
like (Yu et al. 2019; Wang and Zhou 2019; Liu et al. 2020;
Ye et al. 2020; Li et al. 2019; Xiong et al. 2019).

Context observation Contextual observations are addi-
tional information that provide intuition about current con-
text. For our asset manager, they are other financial data
not directly linked to its portfolio assumed to have some
predictive power for portfolio assets. Contextual observa-
tions are stored in a 2D matrix denoted by Ct with stacked
past p individual contextual observations. Among these ob-
servations, we have the maximum and minimum portfo-
lio strategies return and the maximum portfolio strategies
volatility. The latter information is like for regular obser-
vations motivated by the stylized fact that standard devi-
ations are useful features to detect crisis. The contextual

state writes as Ct =



c1t ... c

1
t−ik

... ... ...
cpt .... c

p
t−ik


. The matrix nature

of contextual states Ct implies in particular that we will use
1D convolutions should we use convolutional layers. All in
all, observations that are augmented observations, write as
Ot = [At, Ct], with At = [A1

t , A
2
t ] that will feed the two

sub-networks of our global network.

Action
In our deep reinforcement learning the augmented asset
manager trading agent needs to decide at each period in
which hedging strategy it invests. The augmented asset man-
ager can invest in l strategies that can be simple strategies or
strategies that are also done by asset management agent. To
cope with reality, the agent will only be able to act after one
period. This is because asset managers have a one day turn
around to change their position. We will see on experiments
that this one day turnaround lag makes a big difference in
results. As it has access to l potential hedging strategies, the
output is a l dimension vector that provides how much it
invest in each hedging strategy. For our deep network, this
means that the last layer is a softmax layer to ensure that
portfolio weights are between 0 and 100% and sum to 1,
denoted by (p1t , ..., p

l
t). In addition, to include leverage, our

deep network has a second output which is the overall lever-
age that is between 0 and a maximum leverage value (in our
experiment 3), denoted by lvgt. Hence the final allocation is
given by lvgt × (p1t , ..., p

l
t).

Reward
There are multiple choices for our reward and it’s a key point
for the asset manager to decide the reward corresponding to
his her risk profile.

• A straightforward reward function is to compute the final
net performance of the combination of our portfolio com-
puted as the value of our portfolio at the last train date

tT over the initial value of the portfolio t0 minus one:
PtT

Pt0
− 1.

• Another natural reward function is to compute the Sharpe
ratio. There are various ways to compute Sharpe ratio and
we take explicitly the annualized Sharpe ratio. This annu-
alized Sharpe ratio computed from daily data is defined
as the ratio of the annualized return over the annualized
volatility µ/σ. The intuition of the Sharpe ratio is to ac-
count for risk when comparing returns with risk is repre-
sented by volatility.

• The last reward we are interested in is the Sortino ra-
tio. This metric is a variation of the Sharpe ratio where
the risk is computed by the downside standard devia-
tion whose definition is to compute the standard devi-
ation only on negative daily returns (r̃t)t=0..T . Hence
the downside standard deviation is computed by

√
250 ×

StdDev[(r̃t)t=0..T ].

Convolutional network

The similarities with image recognition (where pixels are
stored in 3 different matrices representing red, green and
blue image) enable us using convolution networks for our
deep neural network. The analogy goes even further as it
is well known in image recognition that convolutional net-
works achieve strong performances thanks to their capac-
ity to extract meaningful features and to have very limited
parameters hence avoiding over-fitting. Indeed, convolution
allows us to extract features; blindly weighting locally the
variables over the tensor. There is however something to no-
tice. We use a convolution layer with a convolution window
or kernel with a single row and a resulting vertical stride of
1. This particularity enables us to avoid mixing data from
different strategies. We only mix data of the same strate-
gies but for different observation dates. Recall that in convo-
lution network, the stride parameter controls how the filter
convolves around our input. Likewise the size of the win-
dow also referred to as the kernel size controls how the filter
applies to data. Thus, a kernel with a row of 1 and a stride
with a row of 1 allows us to detect the vertical (temporal)
relation for each strategy by shifting one unit at a time, with-
out mixing any data from different strategies. This concept
is illustrated in figure 1. Because of this peculiarity, we can
interpret our 2-D convolution as an iteration over a 1-D con-
volution network for each variable.

Figure 1: 2-D Convolution with stride of 1
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Multi inputs and outputs
We display in figure 2 the architecture of our network. Be-
cause we feed our network with both data from the strate-
gies to select but also contextual information, our network is
a multiple inputs network.

Figure 2: network architecture obtained via tensorflow plot-
model function. Our network is very different from standard
DRL networks that have single inputs and outputs. Contex-
tual information introduces a second input while the lever-
age adds a second output

Additionally, as we want from these inputs to provide
not only percentage in the different hedging strategies (with
a softmax activation of a dense layer) but also the overall
leverage (with a dense layer with one single ouput neurons),
we also have a multi outputs network. Additional hyperpa-
rameters that are used in the network as L2 regularization
with a coefficient of 1e-8.

Adversarial Policy Gradient
To learn the parameters of our network depicted in 2, we
use a modified policy gradient algorithm called adversarial
as we introduce noise in the data as suggested in (Liang et
al. 2018).. The idea of introducing noise in the data is to
have some randomness in each training to make it more
robust. This is somehow similar to drop out in deep net-
works where we randomly pertubate the network by ran-
domly removing some neurons to make it more robust and
less prone to overfitting. A policy is a mapping from the
observation space to the action space, π : O → A. To
achieve this, a policy is specified by a deep network with
a set of parameters ~θ. The action is a vector function of
the observation given the parameters: ~at = π~θ(ot). The
performance metric of π~θ for time interval [0, t] is defined

as the corresponding total reward function of the inter-
val J[0,t](π~θ) = R

(
~o1, π~θ(o1), · · · , ~ot, π~θ(ot), ~ot+1

)
. After

random initialization, the parameters are continuously up-
dated along the gradient direction with a learning rate λ:
~θ −→ ~θ + λ∇~θJ[0,t](π~θ). The gradient ascent optimization
is done with standard Adam (short for Adaptive Moment Es-
timation) optimizer to have the benefit of adaptive gradient
descent with root mean square propagation (Kingma and Ba
2014). The whole process is summarized in algorithm 1.

Algorithm 1 Adversarial Policy Gradient
1: Input: initial policy parameters θ, empty replay bufferD
2: repeat
3: reset replay buffer
4: while not terminal do
5: Observe observation o and select action a = πθ(o)

with probability p and random action with proba-
bility 1− p,

6: Execute a in the environment
7: Observe next observation o′, reward r, and done

signal d to indicate whether o′ is terminal
8: apply noise to next observation o′
9: store (o, a, o′) in replay buffer D

10: if Terminal then
11: for however many updates in D do
12: compute final reward R
13: end for
14: update network parameter with Adam gradient

ascent ~θ −→ ~θ + λ∇~θJ[0,t](π~θ)
15: end if
16: end while
17: until convergence

In our gradient ascent, we use a learning rate of 0.01,
an adversarial Gaussian noise with a standard deviation of
0.002. We do up to 500 maximum iterations with an early
stop condition if on the train set, there is no improvement
over the last 50 iterations.

Walk forward analysis
In machine learning, the standard approach is to do k-fold
cross validation as shown in figure 3. This approach breaks
the chronology of data and potentially uses past data in the
test set. Rather, we can take sliding test set and take past
data as training data as show in the two sub-figures on the
right of figure 4. To ensure some stability, we favor to add
incrementally new data in the training set, at each new step.
This method is sometimes referred to as anchored walk for-
ward as we have anchored training data. The negative effect
of using extending training data set is to adapt slowly to new
information. To our experience, because we do not have so
much data to train our DRL model, we use anchored walk
forward to make sure we have enough training data. Last but
not least, as the test set is always after the train set, walk for-
ward analysis gives less steps compared to cross validation.
In practice for our data set, we train our models from 2000
to end of 2006 (to have at least seven years of data) and use
a repetitive test period of one year.
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Figure 3: k-fold cross validation

Test

Test

Test

Test# 1:

# 2:

# 3:

# 4:

Figure 4: anchored walk forward

Experiments
Goal of the experiment
We are interested in planing a hedging strategy for a risky
asset. The experiment is using daily data from 01/05/2000
to 19/06/2020. The risky asset is the MSCI world index. We
choose this index because it is a good proxy for a wide range
of asset manager portfolios. The hedging strategies are 4
SG-CIB proprietary systematic strategies further described
below .

Data-set description
Systematic strategies are similar to asset managers that in-
vest in financial markets according to an adaptive, pre-
defined trading rule. Here, we use 4 SG CIB proprietary
’hedging strategies’, that tend to perform when stock mar-
kets are down:

• Directional hedges - react to small negative return in eq-
uities,

• Gap risk hedges - perform well in sudden market crashes,

• Proxy hedges - tend to perform in some market config-
urations, like for example when highly indebted stocks
under-perform other stocks,

• Duration hedges - invest in bond market, a classical diver-
sifier to equity risk in finance.

The underlying financial instruments vary from put op-
tions, listed futures, single stocks, to government bonds.
Some of those strategies are akin to an insurance contract
and bear a negative cost over the long run. The challenge
consists in balancing cost versus benefits.

In practice, asset managers have to decide how much of
these hedging strategies are needed on top of an existing

portfolio to achieve a better risk reward. The decision mak-
ing process is often based on contextual information, such
as the economic and geopolitical environment, the level of
risk aversion among investors and other correlation regimes.
The contextual information is modeled by a large range of
features :
• the level of risk aversion in financial markets, or market

sentiment, measured as an indicator varying between 0 for
maximum risk aversion and 1 for maximum risk appetite,

• the bond/equity historical correlation, a classical ex-
post measure of the diversification benefits of a dura-
tion hedge, measured on a 1-month, 3-month and 1-year
rolling window,

• The credit spreads of global corporate - investment grade,
high yield, in Europe and in the US - known to be an early
indicator of potential economic tensions,

• The equity implied volatility, a measure of the ’fear fac-
tor’ in financial market,

• The spread between the yield of Italian government bonds
and the German government bond, a measure of potential
tensions in the European Union,

• The US Treasury slope, a classical early indicator for US
recession,

• And some more financial variables, often used as a gauge
for global trade and activity: the dollar, the level of rates
in the US, the estimated earnings per shares (EPS).

A cross validation step selects the most relevant features.
In the present case, the first three features are selected. The
rebalancing of strategies in the portfolio comes with trans-
action costs, that can be quite high since hedges use op-
tions. Transactions costs are like frictions in physical sys-
tems. They are taken into account dynamically to penalise
solutions with a high turnover rate.

Evaluation metrics
Asset managers use a wide range of metrics to evaluate the
success of their investment decision. For a thorough review
of those metrics, see for example (Cogneau and Hübner
2009). The metrics we are interested in for our hedging prob-
lem are listed below:
• annualized return defined as the average annualized com-

pounded return,
• annualized daily based Sharpe ratio defined as the ratio

of the annualized return over the annualized daily based
volatility µ/σ,

• Sortino ratio computed as the ratio of the annualized re-
turn over the downside standard deviation,

• maximum drawdown (max DD) computed as the maxi-
mum of all daily drawdowns. The daily drawdown is com-
puted as the ratio of the difference between the running
maximum of the portfolio value (RMT = maxt=0..T (Pt)
) and the portfolio value over the running maximum of the
portfolio value. Hence DDT = (RMT −PT )/RMT and
MDDT = maxt=0..T (DDt). It is the maximum loss in
return that an investor will incur if she/he invested at the
worst time (at peak).
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Baseline
Pure risky asset This first evaluation is to compare our
portfolio composed only of the risky asset (in our case, the
MSCI world index) with the one augmented by the trading
agent and composed of the risky asset and the hedging over-
lay. If our agent is successful in identifying good hedging
strategies, it should improve the overall portfolio and have a
better performance than the risky asset.

Markowitz In Markowitz theory (Markowitz 1952), risk
is represented by the variance of the portfolio. Hence the
Markowitz portfolio consists in maximizing the expected re-
turn for a given level of risk, represented by a given variance.
Using dual optimization, this is also equivalent to minimize
variance for a given expected return, which is solved by stan-
dard quadratic programming optimization. Recall that we
have l possible strategies and we want to find the best al-
location according to the Sharpe ratio. Let w = (w1, ..., wl)
be the allocation weights with 1 ≥ wi ≥ 0 for i = 0...l,
which is summarized by 1 ≥ w ≥ 0, with the additional
constraints that these weights sum to 1:

∑l
i=1 wi = 1.

Let µ = (µ1, ..., µl)
T be the expected returns for our l strate-

gies and Σ the matrix of variance covariances of the l strate-
gies’ returns. Let rmin be the minimum expected return. The
Markowitz optimization problem to solve that is done by
standard quadratic programming is the following:

Minimize wTΣw

subject to µTw ≥ rmin,
∑

i=1...l

wi = 1, w ≥ 0

The Markowitz portfolio is a good benchmark very often
used in portfolio theory as it allows investors to construct
more efficient portfolios by controlling the variance of their
strategies. One of the famous critic of this theory is that it
controls the variance (and then the standard deviation) of the
portfolio but it doesn’t allow controlling a better risk indica-
tor which is the downside standard deviation (representing
the potential loss that may arise from risk compared to a
minimum acceptable return). Another limitation of this the-
ory relies on the fact that it works under the assumption that
investors are risk-averse. In other words, an investor prefers
a portfolio with less risk for a given level of return and will
only take on high-risk investments if he can expect a larger
reward.

Follow the winner This is a simple strategy that consists
in selecting the hedging strategy that was the best performer
in the past year. If there is some persistence over time of
the hedging strategies’ performance, this simple methodol-
ogy works well. It replicates standard investors behavior that
tends to select strategies that performed well in the past.

Follow the loser As it name stands for, follow the loser is
exactly the opposite of follow the winner. It assumes that
there is some mean reversion in strategies’ performance,
meaning that strategies tend to perform equally well on long
term and mean revert around their trend. Hence if a strategy

did not perform well in the past, and if there is mean rever-
sion, there is a lot of chance that this strategy will recover
with its pairs.

Results and discussion

Figure 5: performance of all models

We compare the performance of the following 5 mod-
els: DRL model based on convolutional networks with con-
textual states (Sentiment indicator, 6 month correlation be-
tween equity and bonds and credit main index), same DRL
model without contextual states, follow the winner, follow
the loser and Markowitz portfolio. The resulting graphics
are displayed in figure 5 with the risky asset position alone
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Figure 6: DRL weights

Figure 7: Follow the winner weights

Figure 8: Markowitz weights

Table 1: Models comparison over 3 and 5 years
3 Years

return Sortino Sharpe max DD
Risky asset 10.27% 0.34 0.38 - 0.34
DRL 22.45% 1.18 1.17 -0.27
Winner 13.19% 0.66 0.72 -0.35
Loser 9.30% 0.89 0.89 -0.15
DRL no context 8.11% 0.42 0.47 -0.34
Markowitz -0.31% -0.01 -0.01 -0.41

5 Years
return Sortino Sharpe max DD

Risky asset 9.16% 0.54 0.57 - 0.34
DRL 16.42% 0.98 0.96 -0.27
Winner 10.84% 0.65 0.68 -0.35
Loser 7.04% 0.78 0.76 -0.15
DRL no context 6.87% 0.44 0.47 -0.34
Markowitz -0.07% -0.00 -0.00 -0.41

in blue and the other models in orange, green and red. To
make figures readable, we first show the two DRL mod-
els, with the risky asset and clearly see the impact of con-
textual information as the DRL model (in orange) is well
above the green curve (the same model without contextual
information) and is also well above the risky asset position
alone (the blue curve). We then plot more traditional models
like Markowitz, follow the Winner (entitled for space reason
Winner) and follow the Loser (entitled for the same reason
Loser). We finally plot the two best performers: the DRL
and the Follow the Winner model, emphasizing that the dif-
ference between DRL and Follow the Winner is mostly in
years 2018 to 2020 that exhibit regime changes, with in par-
ticular the recent Covid crisis.

Out of these 5 models, only DRL and Follow the win-
ner are able to provide significant net performance increase
compared to the risky asset alone thanks to an efficient hedg-
ing strategy over the 2007 to 2020 period. The DRL model is
in addition able to better adapt to the Covid crisis and to have
better efficiency in net return but also Sharpe and Sortino
ratios over 3 and 5 years as shown in table 1. In addition,
on the last graphic of figure 5, we can remark that the DRL
model has a tendency to move away from the blue curve (the
risky asset) continuously and increasingly whereas the fol-
low the winner model has moved away from the blue curve
in 2015 and 2016 and tends to remain in parallel after this
period, indicating that there is no continuous improvement
of the model. The growing divergence of the DRL from the
blue curve is a positive sign of its regular performance whci
is illustrated in numbers in table 1.

Moreover, when comparing the weights obtained by the
different models (figures 6, 7, and 8), we see that the bad
performance of Markowitz can be a consequence of its di-
versification as it takes each year a non null position in the
four hedging strategies and tends to change this allocation
quite frequently. The rapid change of allocation is a sign of
unstability of this method (which is a well known drawback
of Markowitz).

In contrast, DRL and Follow the winner models tends to
choose only one or two strategies, in a stock picking manner.
DRL model tends to choose mostly duration hedge and is
able to dynamically adapt its behavior over the last 3 years
and to better manage the Covid crisis with a mix allocation
between duration and proxy hedge.

In terms of the smallest maximum drawdown, the fol-
low the loser model is able to significantly reduce maxi-
mum drawdown but at the price of a lower return, Sharpe
and Sortino ratios. Removing contextual information deteri-
orates model performances significantly and is illustrated by
the difference in term of return, Sharpe, Sortino ratio and
maximum drawdown between the DRL and the DRL no
context model. Last but not least, Markowitz model is not
able to adapt to the new regime change of 2015 onwards de-
spite its good performance from 2007 to 2015. It is the worst
performer over the last 3 and 5 years because of this lack of
adaptation.

For all models, we use the walk forward analysis as de-
scribed earlier. Hence, we start training the models from
2000 to end of 2006 and use the best model on the test set
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in 2007. We then train the model from 2000 to end of 2007
and use the best model on the test set in 2008 and etc ... In
total, we do 14 training (from 2007 to 2020). This process
ensures that we detect models that are unstable overtime and
is similar in spirit to delayed online training. We also pro-
vide in table 2 different configurations (adversarial training,
use of context, and use of day lag), which leads to a total
of 16 models. The frist 8 models are the ones with a daylag
sorted in order of decreasing performance. The best model is
the one with a reward in net profit, adversarial training, use
of context information with a total performance of 81.8 %.
We also provide the corresponding same models but with no
day lag (model 9 to 16). These models are theoreticall and
not considered as they do not cope with reality.

Table 2: Model comparison based on reward function, ad-
versarial training (noise in data) and use of contextual state

# reward adversarial? context? day lag performance

1 Net Profit Yes Yes Yes 81.8%
2 net profit No Yes Yes 75.2%
3 Sortino No Yes Yes 26.5%
4 Sortino Yes Yes Yes 26.3%
5 Sortino Yes No Yes -16.7%
6 net profit Yes No Yes -29.5%
7 Sortino No No Yes -45.0%
8 net profit No No Yes -47.7%

9 net profit Yes Yes No 193.8%
10 net profit No Yes No 152.3%
11 Sortino No Yes No 45.3%
12 Sortino Yes Yes No 29.3%
13 Sortino Yes No No 16.9%
14 net profit Yes No No 13.9%
15 Sortino No No No 10.6%
16 net profit No No No 8.6%

Impact of context

In table 2, we provide a list of 16 models based on the fol-
lowing choices: the choice of the reward function (net profit
or Sortino), the use of adversarial training with noise in data
or not, the use of contextual states, and the use of day lag
between observations and actions.

We see that the best DRL model with the day-lag turnover
constraint is the one using convolutional networks, adversar-
ial training, contextual states and net profit reward function.
These 4 parameters are meaningful for our DRL model and
change model performance substantially as illustrated by the
table with a difference between model 1 (the best model) and
model 8 (the worst model) of 129.5 % (=81.8 % - (-47.7 %)).

To measure the impact of the contextual information for
our best model, we can measure it simply by doing the dif-
ference between model 1 and model 6 (as there are the same
model except the presence or absence of contextual informa-
tion). We find a significant impact as it accounts for 111.4 %
(=81.8 % - (-29.5 %)). It is quite intuitive that adding a con-
text should improve the model as we provide more meaning-
ful information to the model.

Impact of one day lag
Our model accounts for the fact that asset managers can-
not immediately change their position at the close of the fi-
nancial markets. It is easy to measure the impact of the one
day lag as we simply need to take the difference of perfor-
mance between model 9 and model 1. We find an impact
of the one day lag of 112 % (= 193.8 % - 81.8%). This
is like for contextual information substantial. It is not sur-
prising that a delayed action (with one period lag) after ob-
servation makes the learning process more challenging for
the DRL agent as influence of variables tends to decrease
with time. Surprisingly, this salient modeling characteristic
is ignored in existing literature (Jiang, Xu, and Liang 2017;
Liang et al. 2018; Yu et al. 2019; Wang and Zhou 2019;
Liu et al. 2020; Ye et al. 2020; Li et al. 2019).

Future work
As nice as this work is, there is room for improvement as
we have only tested a few possible hyper-parameters for
our convolutional networks and could play with more lay-
ers, other design choice like combination of max pooling
layers (like in image recognition) and ways to create more
predictive contextual information.

Conclusion
In this paper, we address the challenging task of financial
planning in a noisy and self adapting environment with
sequential, non-stationary and non-homogeneous observa-
tions. Our approach is based on deep reinforcement learn-
ing using contextual information thanks to a second sub-
network. We also show that the additional constraint of a
delayed action following observations has a substantial im-
pact that should not be overlooked. We introduce the novel
concept of walk forward analysis to test the robustness of the
deep RL model. This is very important for regime changing
environments that cannot be evaluated with a simple train
validation test procedure, neither a k-fold cross validation as
it ignores the strong chronological feature of observations.

For our trading agent, we take not only past perfor-
mances of portfolio strategies over different rolling period,
but also standard deviations to provide predictive variables
for regime changes. Augmented states with contextual in-
formation make a big difference in the model and help the
agent learning more efficiently in a noisy environment. On
experiment, contextual based approach over-performs base-
line methods like Markowitz or naive follow the winner and
follow the loser. Last but not least, it is quite important to
fine tune the numerous hyper-parameters of the contextual
based DRL model, namely the various lags (lags period for
the sub network fed by portfolio strategies past returns, lags
period for common contextual features referred to as the
common features in the paper), standard deviation period,
learning rate, etc...

Despite the efficiency of contextual based DRL models,
there is room for improvement. Other information like news
could be incorporated to continue increasing model perfor-
mance. For large stocks, like tech stocks, sentiment informa-
tion based on social media activity could also be relevant.
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Goal Recognition via Model-based and Model-free Techniques

Daniel Borrajo∗, Sriram Gopalakrishnan† and Vamsi K. Potluru‡

Abstract

Goal recognition aims at predicting human intentions
from a trace of observations. This ability allows peo-
ple or organizations to anticipate future actions and
intervene in a positive (collaborative) or negative (ad-
versarial) way. Goal recognition has been successfully
used in many domains, but it has been seldom been
used by financial institutions. We claim the tech-
niques are ripe for its wide use in finance-related tasks.
The main two approaches to perform goal recogni-
tion are model-based (planning-based) and model-free
(learning-based). In this paper, we adapt state-of-the-
art learning techniques to goal recognition, and com-
pare model-based and model-free approaches in differ-
ent domains. We analyze the experimental data to un-
derstand the trade-offs of using both types of methods.
The experiments show that planning-based approaches
are ready for some goal-recognition finance tasks.

Introduction
Humans interact with the world based on their inner
motivations (goals) by performing actions. Those ac-
tions might be observable by financial institutions. In
turn, financial institutions might log all these observed
actions for better understanding human behavior. Ex-
amples of such interactions are investment operations
(buying or selling options), account-related activities
(creating accounts, making transactions, withdrawing
money), digital interactions (utilizing the bank’s web
or mobile app for configuring alerts, or applying for
a new credit card), or even illicit operations (such as
fraud or money laundering). Once human behavior can
be better understood, financial institutions can improve
their processes allowing them to deepen the relation-
ship with clients, offering targeted services (marketing),
handling complaints-related interactions (operations),
or performing fraud or money laundering investigations
(compliance) (Borrajo, Veloso, and Shah 2020).
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leave from Universidad Carlos III de Madrid. The position
at the lab is as a consultant. daniel.borrajo@jpmchase.com
†Arizona State University. sgopal28@asu.edu
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The field of goal recognition lies at the crux of under-
standing human behavior (Carberry 2001; Kautz and
Allen 1986; Sukthankar et al. 2004). Given a trace of
observations of some agent taking actions in the envi-
ronment, goal recognition techniques try to infer the
agents’ goals. Similarly, plan recognition will try to
infer the next actions (plan) that the agent will ex-
ecute (Kautz and Allen 1986), and activity recogni-
tion will infer the current activity of the agent (Ortiz-

Laguna, Ángel Garćıa-Olaya, and Borrajo 2013). These
three tasks are highly related, though the objective of
the recognition problem is different; agents come up
with goals they would like to achieve for which they
generate plans composed of sequences of actions (Ghal-
lab, Nau, and Traverso 2004). However, these tasks are
not exactly equivalent. For instance, there might be
more than one plan to achieve a goal and more than
one goal achievable by a plan, so even if one recognizes
what plan an agent is pursuing, that might not uniquely
identify the goals the agent is trying to achieve, and vice
versa. In this paper we focus on goal recognition.

Goal recognition by an agent aims at inferring the
goals of another agent from observation. A convenient
way to model this process has been in terms of us-
ing Bayesian models that compute a posterior proba-
bility of some goals/plans based on prior probabilities
and new observations (Bui, Venkatesh, and West 2002;
Pynadath and Wellman 1995; Ramı́rez and Geffner
2010). Other alternatives are based on creating plan
libraries and matching new observations with those li-
braries (Kautz and Allen 1986; Avrahami-Zilberbrand
and Kaminka 2005). The latter kind of techniques re-
quire careful curation of those libraries, which can result
in a time-consuming effort and is limited by the set of
libraries used. Some works have automated the con-
struction of those libraries (Mooney 1990). However,
often the search in the space of plans can result in a
huge computational effort due to the exponential num-
ber of potential plans when the size of the action space
increases (Kautz 1987).

More recently, automated planning techniques have
been used to infer an agent’s goals (Höller et al.
2018; Ramı́rez and Geffner 2010; Pereira, Oren, and
Meneguzzi 2020; E-Mart́ın, R-Moreno, and Smith 2015;

10



Sohrabi, Riabov, and Udrea 2016; Vered and Kaminka
2017). They replace the plan libraries by using
a domain model. The techniques based on auto-
mated planning provide good performance, are domain-
independent and are provably sound. However, they
require again to manually define the underlying plan-
ning model (domain and problem descriptions) and rely
on the correctness of the model. The modeling ef-
fort of these approaches varies from STRIPS planning
models (Ramı́rez and Geffner 2010; Pereira, Oren, and
Meneguzzi 2020; E-Mart́ın, R-Moreno, and Smith 2015)
to more knowledge-intensive as Hierarchical Task Net-
works (HTNs) (Höller et al. 2018).

Another approach to perform goal recognition con-
sists of using state of the art machine learning ap-
proaches to learn patterns of actions that predict goals.
So, instead of requiring an action model, they require
training instances.

These two approaches to goal recognition are based
on the two major approaches to AI (Geffner 2018):
model-based (e.g. planning, search) and model-free
(learning). A key distinction between the two ap-
proaches in relation to goal recognition relates to the as-
sumption that planning approaches make about agents’
rationality: they will try to achieve their goals in the
best possible way (optimal). On the contrary. model-
free approaches do not have to assume that the agents’
behavior is rational. Some authors have previously
shown lack of rationality and noisy decisions in specific
domains, as games (Min et al. 2016).

In this paper, we provide a comparison of state
of the art domain-independent model-based ap-
proaches (Pereira, Oren, and Meneguzzi 2020) and
the adaptation to goal recognition of two state of the
art model-free approaches: long short-term Memory
(LSTM) (Hochreiter and Schmidhuber 1997) and XG-
Boost (Chen and Guestrin 2016). Previous work on
model-based goal recognition showed impressive results
in terms of accuracy of recognized goals, close to 100%,
with very few observations. We claim this is due to the
use of simple benchmark cases. Therefore, we have cre-
ated a few harder goal recognition tasks. In particular,
we have created a benchmark focusing on a finance-
related application to show its potential impact on this
area. In this new domain, bank clients can open ac-
counts, receive their payrolls and make payments to
buy items or pay for their kids college. Financial in-
stitutions can partially observe all these actions (traces
of human behavior), as described in (Borrajo, Veloso,
and Shah 2020). In this domain, the task of a goal
recognition system is to determine for which products
or services humans will be making payments by analyz-
ing previous observations.

In the next sections, we will present related work,
introduce the learning-based approaches, show and dis-
cuss the experiments and draw some conclusions.

Related Work
We have covered in the introduction the closest model-
based works related to goal recognition (Höller et al.
2018; Ramı́rez and Geffner 2010; Pereira, Oren, and
Meneguzzi 2020; E-Mart́ın, R-Moreno, and Smith 2015;
Sohrabi, Riabov, and Udrea 2016; Vered and Kaminka
2017). In the case of model-free (learning) approaches,
some authors have started recently using machine learn-
ing techniques based on Convolutional Neural Networks
(CNNs) combined with plan libraries (Granada et al.
2020) or LSTM (Amado et al. 2019) to infer goals from
a sequence of observations. In these works, observa-
tions are images that represent states when some task
is being solved. Our observations are not required to
take the format of an image and they are actions per-
formed by the agent instead of states; states contain
more information than just the actions. We argue that
action traces (sequences) match more closely financial
transaction traces, and they are thus a better fit for goal
recognition in finance (Borrajo, Veloso, and Shah 2020;
Borrajo and Veloso 2020).

There has also been increasing interest in several do-
mains to devise goal recognition systems, such as the
work on story understanding (Charniak and Goldman
1993), network security (Geib and Goldman 2009), or
computer games (Hooshyar, Yousefi, and Lim 2018).
The latter domain can be considered similar to some
financial tasks, the adversarial ones, such as fraud,
money laundering or market based. In games, some ex-
amples used a combination of model-based (using man-
ually generated Markov Logic Networks) with model-
free approaches that learned the associated probabili-
ties (Ha et al. 2011). Other authors used LSTMs to pre-
dict user’s goals in game playing (Min et al. 2016). The
input to the LSTM includes the previously achieved
subgoals, as well as the executed action. They also
assumed agents do not interleave working on several
goals, since the goals they handle do not share any-
thing in common. However, in many situations (e.g.
all domains considered in planning-based approaches),
goals are sets of propositions and goals can have some
shared propositions. Additionally plans/action traces
can approach multiple goals before settling on one or
the other. So the assumption of non-interleaving plans
is very constraining.

As an example, suppose that there are three
propositions in a financial application : P1=(paid
Client Car), P2=(paid Client House) and
P3=(has-credit-card Client). Then, one goal
could be G1={P1, P3} and another one could be
G2={P1, P2}. While both goals are different, they do
share some common parts. Therefore, the assumption
that agents cannot interleave work on them is too
restrictive, since the client could be trying to reach
both by pursuing P1. Instead, we allow goals to share
common components, so agents can potentially be
working on two goals at the same time, until they
commit finally to one of them.

Also, as work in other goal recognition domains, their
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work is domain dependent. Adapting it to a new do-
main would require some feature modeling effort as they
mention in the paper. Our use of machine learning
techniques is domain-independent and thus is a better
comparison to model-based methods. Our LSTM ap-
proach returns the predicted goal after taking as input
a sequence of one-hot encoding of actions (which are
the observations). This approach makes it independent
of the domain.

Background and Problem Definition
We define the goal recognition framework as a tuple
GR = 〈F,A,G〉, where F = {f1, . . . , fn} is a set of
propositions, A = {a1, . . . , am} is a set of instanti-
ated actions, and G = {G1, . . . , Gp} is a set of goals.
In automated planning, a proposition is an instanti-
ated literal. For instance, account-owner-C1-A1 would
represent the fact that a client C1 is the owner an
account A1 in a bank in a financial domain. Simi-
larly, an instantiated action is traditionally composed
of an action name and constants as parameters. For
instance, open-account-C1-A1 would be an instan-
tiated action where the client C1 opens the account
A1 in the same domain. Each goal Gi ∈ G is a
set of propositions in F ; that is, ∀gj ∈ Gi, gj ∈ F .
In the example domain, a potential goal Gi could
be: Gi = {paid-C1-House1,paid-C1-College1} rep-
resenting the goals of buying a house and paying for the
children college.

The learning algorithms to be defined in the next
section receive as input a set of training instances
and return a goal-recognition classifier. Each train-
ing instance is a tuple i = 〈O,G〉. O = {o1, . . . , oo}
is a sequence of observations of instantiated actions
(∀oi, oi ∈ A), and G ∈ G. A goal-recognition classi-
fier is an algorithm that takes as input an observation
sequence O′ and returns a label that is a goal G in G.
Note that the learning technique does not take as input
a domain model (actions and predicates), nor any prior
information, as other planning-based goal-recognition
approaches (Ramı́rez and Geffner 2010). So, each ac-
tion is just a label without any semantics. In fact, in
order to properly work with the proposed learning tech-
niques, we used numerical values for those labels, as well
as for the goals.

As an example of an observation sequence in the hy-
pothetical financial domain, we could have observed:

〈create-account-C1-A1,work-C1,...,work-C1,
pay-C1-House1〉

The action work increases the balance of the account.
And the pay action achieves the goal (paying House1).
The training instance could be something like:

〈〈11, 23, 23, . . . , 23, 〉, {35}〉
where 11 represents account-owner-C1-A1 and sim-

ilarly for the other literals, while 35 represents
pay-C1-House1. These integer values are replaced by a
one-hot encoding.

Learning Models for Goal Recognition
We apply two state of the art model-free methods
for learning goals, namely recurrent neural networks
(RNNs) and gradient boosted trees (GBTs). RNNs
have been applied to a wide-range of problems includ-
ing neural machine translation (Cho et al. 2014) and
sequence to sequence learning (Sutskever, Vinyals, and
Le 2014). They apply the same set of weights for each
action of the sequence which makes them memory ef-
ficient. It also provides them translational symmetry.
LSTMs are a type of RNN with memory and gating that
can handle longer sequences of data (Hochreiter and
Schmidhuber 1997). A recent version has been widely
adopted to handle even longer input sequences (Cho et
al. 2014).

Gradient boosting is used to learn an ensemble model
combining weak learners to create a good classifier. The
weak learners are typically decision trees and hence the
term GBT. At a high-level, gradient boosting fits a new
tree at each step to the residual of the current pseudo-
residuals. A popular implementation of GBT with ad-
ditional tuning, such as proportional shrinking of leaves
and Newton boosting, is provided by XGBoost (Chen
and Guestrin 2016).

Experiments
In this section, we present the experimental setting, the
results obtained and an in-depth analysis.

Settings
Our experiments were conducted on domains used in
previous works on goal recognition, such as three Inter-
national Planning Competition (IPC1) domains: Block-
words, Logistics, and a Simple Grid domain. We also
ran experiments on a new domain inspired on a finance
task, which we simply call Buy-domain. We will now
describe each of the domains in more detail.

Block-words is equivalent to the known
Blocksworld domain, but involves blocks whose
names correspond to letters. Blocks start in a specific
configuration on a table. A robotic arm can un-
stack/stack blocks from/to others or pick-up/put-down
blocks from/on the table, in order to reach a specified
goal configuration that represents a specific English
word. As an example, given the blocks named R, A,
E, D, we could create problems whose goals are to
create towers of blocks with the words READ, DEAR,
or RED. Figure 1 shows an example of an initial
state (left) and two possible goals (right): READ
and DEAR. It also shows a partial observation (two
actions). The goal would be to predict which of the
two words the agent is trying to create given those
observations.

We generated two sets of instances in this domain. In
the first one, there are two goals composed of 24 propo-
sitions each (blocks forming a big tower). The only dif-
ference between the two goals is the block on top. The

1ipc.icaps-conference.org
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Figure 1: Example of an initial state in the Blocks-
words domain (left) and two potential goals (middle).
It also shows some observations (actions) on the right.

initial state was randomly generated. This is an exam-
ple of a type of task that is hard for goal recognition,
since it is not until the end that the observer can really
decide which goal the other agent is pursuing (which
block will be on top). Also, in order to test the ability of
learning some prior probability distributions, the prob-
ability of selecting one of the words was 80% and the
probability of selecting the other one 20%. We would
expect that techniques that can handle this prior prob-
abilities or learn them from data would have a higher
accuracy from the start of the observation sequence.
The second set of instances was composed of five goals
(words) and for each generated problem we picked ran-
domly which one should be the problem’s goal. The
initial state was also randomly generated. This task
was designed to test the generalization capability of the
goal recognition systems (especially the learning-based
ones). In order to train the learning-based systems, we
randomly generated 10,000 problems that were solved
by a sub-optimal planner (the first iteration of the lama
planner (Richter and Westphal 2010a)). The generated
plans were used as training traces together with their
corresponding goals.

Logistics involves transporting a set of packages
from their initial locations to specified goal locations
for each package. Packages can be transported within
a city via a truck, and across cities via airplanes; this is
illustrated in Figure 2. In our experiments there were
10 cities, with 4 locations within each city. Each city
had 1 truck, and there was 1 airplane to move pack-
ages within cities. There were 10 packages in total,
which had to be moved from their initial location to
their respective goal locations. We used two settings
in this domain. One setting involved two goals and a
fixed initial state; the likelihood of one goal was 80%
and the other was 20%. Since the plans started with
the packages in the same initial location, the prefixes
of the plans reaching the goal state had many shared

actions. The other setting of the logistics domain in-
volved 10 goals, and random initial states. For the first
setting, we randomly generated 2,000 problems and for
the second setting we randomly generated 10,000 prob-
lems. Again, these problems were solved by the same
planner as before to generate the training traces.

Figure 2: Example of an initial state in the logistics
domain that has 3 cities, with 4 locations each.

Grid involves a robot that can move in a grid. Some
tiles are locked and the robot has to use keys that are
randomly distributed in the grid to open those tiles.
The goal is to move the robot from its initial position
to a final tile. Figure 3 shows an example of an initial
state of the robot (bottom left marked with R), the
grid, a set of keys (K) and locked positions (L). It also
shows two possible goals (upper right) marked with G.
At the right of the figure, there is a sequence of four
observations (actions).

Figure 3: Example of an initial state in the Grid do-
main. R represents the initial state (position of the
robot), K are keys, L are locked positions, and G are
potential goals. It also shows some observations (ac-
tions) on the right.
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In this domain we generated two sets of examples. In
the first one, we selected the initial state and goals as in
Figure 3 and some locked positions and keys randomly
distributed. This task was designed again with the ob-
jective of making the goal recognition task difficult since
the prefix of plans (first actions of the plan) will be sim-
ilar to plans achieving the two goals. Again, we biased
the goals with a 80/20% probability distribution to test
the ability to learn the priors. In the second test, we
generated random initial states and goals (from a set
of 20 pre-defined goals). We also used 10,000 traces for
each setting to train the learning approaches.

Buy domain is a simplified financial domain. Clients
of a bank can open different kinds of accounts, work,
receive their payrolls, move funds from one account to
another and buy products (e.g. house) or pay for their
kids education. In the initial state, the clients open an
account with zero balance and when they have worked
for some time and they have enough money in the bal-
ance, they can either buy products or pay for the col-
lege. This domain cannot be handled by model-based
approaches easily since it includes numeric variables
that are not handled by most goal recognition systems
currently. Figure 4 shows an observation trace of this
domain.

create-account Client1 Account1
payroll Client1
payroll Client1
. . .
payroll Client1
buy Client1 Product1
payroll Client1
. . .
payroll Client1
payroll Client1
pay-college Client1

Figure 4: Example of an observation trace in the Buy
domain.

In this domain we also generated two sets of tasks.
In the first task, we generated two potential goals (ei-
ther buy a house or pay for the kids college) with a
prior probability of 80/20%. In those problems where
the goal was to buy a house, we added an artificial
first action to the observations of opening a savings ac-
count. This action does not achieve any of the goals,
so the planning-based approaches cannot guess the con-
nection to the goals. This kind of task shows that when
there is a relation between arbitrary irrelevant actions,
planning-based approaches will not be able to correctly
detect the right goal from the start. These actions are
common to all real world domains where agents are hu-
mans, given that often they do not behave rationally.
Instead, learning approaches will be able to detect those
correlations and boost the accuracy in those tasks. The
second task has 10 goals (buying different products or
attending different colleges) and random initial states.

Training and Test Instances

The training data was generated using the first iteration
of the LAMA sub-optimal planner (Richter and West-
phal 2010b). For the techniques that involve learning,
we used a 80/20 split of the data (traces) into training
and validation. In order to compare with the landmark
goal recognition technique, we kept a dedicated set of
100 test traces for each setting separately (not in the
80/20 data set). Table 1 shows a summary of some key
metrics with respect to the training instances.

In our experiments, we tried to intentionally generate
problems that are hard for goal recognition. We did this
by having some goals close to each other, so plans would
share a large prefix, and shared actions would make goal
recognition difficult. Additionally, having some settings
with random and diverse initial conditions would make
it hard to learn patterns of actions (subsets or sub-
sequences of actions) that correlate to goals.

Domain Set Max Num. Num.
length actions goals

Blocks-words Set1 434 424 2
Blocks-words Set2 16 24 5

Logistics Set1 67 79 2
Logistics Set2 111 846 10

Grid Set1 424 424 2
Grid Set2 33 1212 10
Buy Set1 43 6 2
Buy Set2 541 25 10

Table 1: Summary of key characteristics of the training
instances.

Model-Based and Learning Methods

To evaluate the performance of goal recognition with
LSTMs and XGBoost, we compared the accuracy with
two other baseline techniques based on Landmark-
based goal recognition using planning (Pereira, Oren,
and Meneguzzi 2020) (which we will call LGR). In
the first version, we used their code. In that version,
they do not contemplate prior probabilities of some
goals, as early work on goal recognition by planning
did (Ramı́rez and Geffner 2010). So, in the second ver-
sion we modified their work to factor in the prior proba-
bility distribution of goals when making the prediction.
We selected to compare against LGR given that their
results are better or similar to the rest of current state
of the art algorithms based on planning. We used the
code made publicly available by the authors.2 To com-
pare with the baseline LGR method, we used the same
method reported by Pereira et al.: reporting the accu-
racy results after some percentage of observations were
made. We used the same proportions as in their work,
viz {0.1, 0.3, 0.5, 0.7}. We set the threshold parameter
to 0.1 for their LGR method.

2https://github.com/ramonpereira/
Landmark-Based-GoalRecognition
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For LSTMs, we set the embedding dimension of ac-
tions to 512 to cover the cases where we had a large
number of actions. The learning rate was 0.01 and both
batch sizes for training and hidden dimension were set
to 32. The number of epochs for training was 10. These
parameters were not tuned to the datasets. We would
expect better performance if tuned to the problem. For
GBT, we learned 100 trees with a maximum depth of
3.

Discussion
Table 2 shows the results in terms of accuracy and time
to make predictions for the 100 test plan traces. In all
domains except Logistics, learning-based methods out-
perform the model-based LGR method. Factoring the
prior into the prediction of LGR only made sense when
there were two goals, because those were the settings
when the goal distribution was skewed (80/20). Other-
wise, they were uniform and the priors should not make
a difference. Factoring the prior into LGR only seemed
to hurt the prediction since the LGR prediction mecha-
nism had nothing to do with distribution and learning;
rather LGR used the landmarks observed to predict.
The only case when the prior distribution helped the
accuracy was in the Grid domain, where LGR was per-
forming abysmally (there are no landmarks or they are
very uninformative in that domain). We now analyze
the results domain-by-domain.

In both settings of the Grid domain, the LGR method
did not perform well since there are no landmarks in this
domain. Other methods for goal recognition such as
computing optimal plans that satisfy the observations
could be used instead. However, computing optimal
plans on partial observations to all possible goals can
be prohibitively expensive. Additionally, human behav-
ior may not be optimal, and so assuming rationality in
human goal recognition maybe misleading. As for the
LSTM’s performance in this domain, it is worse than
XGBoost. We hypothesize that since XGBoost sees the
data in sets, rather than sequences (as LSTMs), it works
in it’s favor; the variety of paths in the Grid domain
makes learning sequential patterns more difficult. The
lack of clear landmarks hurts the LSTM method too.
This issue should be explored in the future.

In the Block-words domain, specifically for the set-
ting in which there were 2 goals, the LSTM settled on
predictions using the data distribution, i.e. predicting
the most likely goal. XGBoost did better than LSTM.
We think this maybe for a similar reason as in the Grid
domain; the LSTM could not easily learn any clear ac-
tion sub-sequences to use as predictive features, espe-
cially since the 2 goals were very close. XGBoost, on the
other hand, is looking at traces as sets of actions rather
than as sequences, so it does not suffer from long com-
mon prefix sequences. XGBoost also did better than
LGR, possibly because the goals are very close to each
other. In Block-words, LGR could not easily find land-
marks for very similar goals with fewer actions in the
traces. As the number of observations increases, LGR

does better than LSTM, but still worse than XGBoost.
However, in the setting where there were 5 goals, and
the initialization was to random states, the LSTM did
worse with fewer observations, but increased its perfor-
mance with more observations. We hypothesize that
the large number of prefix plans arising from random
initial conditions made pattern detection difficult with
fewer observations. Both XGBoost and LGR still fared
better than LSTM with few observations. A key re-
quirement for using XGBoost is that the maximum
number of actions must be known and fixed, whereas
the LSTMs allow for a variable number of actions.

The Buy domain was designed to be difficult, espe-
cially in the case of 10 goals as the results show. LGR
could not solve any problem given that it cannot han-
dle numeric variables. Again, XGBoost performs better
than LSTMs, probably again for the same reasons as
before. The prefix of the observation traces were very
similar with many payroll actions before committing to
a specific goal. This kind of domain is not appropriate
for planning-based approaches given that the rational
of which goal is closer to the plan does not depend on
the observed actions.

With respect to the results for the Logistics domain,
we noticed a stark difference in performance between
the case with two goals and the case with 10 goals.
When there were only two goals and the same fixed ini-
tial location of the packages, the LSTM and XGBoost
methods were able to perform similarly to the LGR
method. XGBoost was able to detect and adjust its
predictions based on the discerning actions in the tail
end of the traces. Since the plans to the two goals had
a lot of shared actions in the prefix, XGBoost proba-
bly learned to ignore them, and paid attention to the
tail end of the traces. This is seen empirically: XG-
Boost’s accuracy increases when the number of actions
increases from 50% to 70%. LSTM on the other hand
seemed to converge to predicting based on the distri-
bution of the goals, and stayed there. However, the
performance for the Logistics domain setting with 10
goals was quite different. In this setting, the initial
state was random, so there was a great diversity in the
plan traces, and this made learning patterns very diffi-
cult. The actions in Logistics have a partial order that
allows for a greater variety of plan traces. This makes
finding and utilizing sequence-based patterns harder.
So the LGR method performed much better than the
LSTM-based approach for Logistics with 10 goals. So,
contrary to our expectations, the LSTM learning-based
approach did not always guarantee better results than
a model-based approach. For some other domains, the
order of actions is more strict and so learning-based
methods would have an easier time finding patterns to
use for goal prediction.

We did try to coax the LSTM method into better per-
formance with fine tuning the hyper-parameters and in-
creasing model capacity. Even with 50 epochs of train-
ing, the accuracy was only as high as about 47% and
that too only after seeing over half of the entire plan
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LGR LGR w Prior XGBoost LSTM
Domain Observability Accuracy Time Accuracy Time Accuracy Time Accuracy Time

Blockswords 10 69.0 160.81 77.0 126.87 79 0.03 79 0.02
2 goals 30 76.0 147.75 77.0 137.23 92 0.03 79 0.02

50 86.0 155.22 77.0 151.40 97 0.03 79 0.02
70 86.0 147.35 77.0 140.75 96 0.03 79 0.02

Blockswords 10 23.0 28.96 23.0 28.96 41 0.001 12 0.03
5 goals 30 23.0 29.32 23.0 29.32 41 0.001 24 0.03

50 44.0 29.17 44.0 29.17 64 0.001 31 0.03
70 64.0 29.93 64.0 29.93 64 0.001 78 0.03

Logistics 10 68.0 417.89 81.0 426.75 75.0 0.001 79.2 0.06
2 goals 30 81.0 461.64 81.0 415.65 75.0 0.001 79.2 0.06

50 81.0 398.90 81.0 462.80 75.0 0.001 79.2 0.06
70 81.0 405.61 81.0 429.85 87.0 0.001 79.2 0.06

Logistics 10 10.0 1657.51 10.0 1657.51 14.0 0.001 11.79 0.02
10 goals 30 24.0 1668.00 24.0 1668.00 44.0 0.001 21.30 0.02

50 50.0 1283.90 50.0 1283.90 45.0 0.001 47.78 0.02
70 69.0 1300.52 69.0 1300.52 47.0 0.001 49.12 0.02

Grid 10 1.0 115.07 77.0 78.99 77 0.001 78 0.03
2 goals 30 1.0 96.01 77.0 80.35 94 0.001 94 0.03

50 1.0 104.15 77.0 94.98 94 0.001 96 0.03
70 1.0 100.12 77.0 84.98 96 0.001 98 0.03

Grid 10 0.0 319.00 0.0 319.00 15 0.01 5 0.19
10 goals 30 0.0 427.90 0.0 427.90 29 0.01 11 0.19

50 0.0 361.14 0.0 361.14 55 0.01 19 0.19
70 0.0 312.50 0.0 312.50 59 0.01 21 0.19

Buy 10 - - - - 100 0.0003 80 0.19
2 goals 30 - - - - 100 0.0003 80 0.19

50 - - - - 100 0.0003 80 0.19
70 - - - - 100 0.0003 80 0.19

Buy 10 - - - - 12 0.002 10 0.26
10 goals 30 - - - - 34 0.002 9 0.26

50 - - - - 55 0.002 9 0.26
70 - - - - 74 0.002 9 0.26

Table 2: Comparison of LSTM, XGBoost, LGR and LGR+prior information with respect to accuracy and time to
perform goal recognition in several domains under some observability ratios.

Figure 5: Convergence results for the LSTM model in three cases corresponding to the Block-words domain fixed
initial state (left) as well as the Grid domain fixed initial state problems (middle) and the Grid domain problem
with random initial states with 10 goals (right). Typically, the performance increases as the model observes more
actions except for one of the cases where we see that towards the end it drops back to 80 percent. x-axis represent
the number of traces used for training, and the y-axis represents the corresponding accuracy.
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trace. Doubling the size of the hidden dimensional
space of the LSTM from 32 to 64 increased the accu-
racy by less than 1%. So, when the data complexity
is high, or rather the partial ordering of actions allows
for a greater variety of plan traces, using a principled
model-based approach seems to do better. The trade-
off is that model-based approaches require more com-
putation time during inference as seen in Table 2, while
learning-based approaches need more computation time
during training.

Another issue has to do with model complexity.
Model-based methods are either prohibitively expensive
for numeric domains or simply do not support them.
In such cases, learning-based methods might be the
only alternative, or at least provide better performance.
This gap in model-based goal recognition is an oppor-
tunity for research, and will be needed for financial do-
mains.

Conclusions and Future Work

Goal recognition on plan traces of actions can be used
in finance to better understand customer goals from
their actions, and then provide better services to them.
Goal recognition can be done through model-based or
model-free (learning) methods. In this paper, we have
adapted state-of-the-art model-free techniques to work
for goal-recognition and compared their performance
with that of state-of-the-art model-based approaches.
We have performed this comparison using different do-
mains: three standard IPC domains; and one novel do-
main geared towards mimicking the use of goal recog-
nition for financial tasks. We have analyzed the results
and discussed the trade-offs between the two types of
approaches.

The obtained results reinforce the knowledge on the
differences between the two main AI paradigms. The
two main known differences are: model-based need a
model, which requires some knowledge engineering ef-
fort, while model-free require a potentially huge amount
of examples and training effort. Also, model-based
approaches typically assume agents’ rationality, while
model-free methods automatically adapt to the partic-
ularities of observed agents.

One of the new conclusions is that model-based ap-
proaches are better when there is a partial order of ac-
tions in plans. This feature allows for a great diversity
of plan traces, which makes learning action-patterns for
goal predictions very hard for learning-based methods,
more specifically to sequence-based ones, as LSTMs. As
expected, this comes at the cost of computation time
during inference. On the other hand, if there is a re-
lation between some actions (not directly associated to
goal achievement) and the goals, learning techniques
will be able to capture that relation, while model-free
will fail to recognize it and present worse performance.

In future work, we would like to study hybrid ap-
proaches that combine model-based and model-free ap-
proaches to goal recognition, and how to combine them

for different settings. We would also like to investi-
gate the performance of different goal-recognition tech-
niques under noisy observability, goal-recognition under
plan obfuscation from an opponent planning-based sys-
tem (Kulkarni, Srivastava, and Kambhampati 2020),
and plan completion for subsequent goal recognition.
We would also like to use attention-based models such
as transformers (Vaswani et al. 2017) for goal recogni-
tion, which has hitherto not been done.
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Abstract

Financial institutions mostly deal with people. Therefore,
characterizing different kinds of human behavior can greatly
help institutions for improving their relation with customers
and with regulatory offices. In many of such interactions, hu-
mans have some internal goals, and execute some actions
within the financial system that lead them to achieve their
goals. In this paper, we tackle these tasks as a behavior-traces
classification task. An observer agent tries to learn charac-
terizing other agents by observing their behavior when tak-
ing actions in a given environment. The other agents can be
of several types and the goal of the observer is to identify
the type of the other agent given a trace of observations.
We present CABBOT, a learning technique that allows the
agent to perform on-line classification of the type of planning
agent whose behavior is observing. In this work, the observer
agent has partial and noisy observability of the environment
(state and actions of the other agents). In order to evaluate
the performance of the learning technique, we have gener-
ated a domain-independent goal-based simulator of agents.
We present experiments in several (both financial and non-
financial) domains with promising results.

Introduction
Given some training traces obtained by observing at least
two kinds of agents, the goal of this research consists of
learning a classifier that can differentiate among those types
of agents by observing traces of their behavior. We assume
there is a, usually hidden, rationale for the behavior of agents
when taking actions in the environment that depends on
some (again hidden) goals and the states they encounter
while taking actions to achieve those goals. And we also
assume goals, states and actions can be represented using
standard planning representation languages.

We leverage on previous work on sequence classification
in contexts where there was no domain model and the rep-
resentation of traces was a vector of features (Xing, Pei,
and Keogh 2010). Some of those approaches did a man-
ual definition of the relevant features to be used in the clas-
sification, which usually resulted in domain-dependent ap-
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proaches. And none of these approaches used a relational
representation of data in the form of goals, states and ac-
tions. Instead, we assume the other agents use a hidden plan-
ning model and the relevant aspects to make the classifica-
tion depend on the actions executed and the related states.

Given the setup of an observer agent and a planning-
execution agent, several decision-making tasks can be de-
fined. Within this setting, most works in automated plan-
ning have focused on goal/plan recognition, where the ob-
server has to infer the goals the planning agent is pursu-
ing (Ramı́rez and Geffner 2010) or the plan it is using to
achieve some goals (Avrahami-Zilberbrand and Kaminka
2005). Once the goals/plans are recognized, other planning-
related tasks can be solved such as generating plans to stop
an opponent to reach its goals (Pozanco et al. 2018) or
change the environment to improve the goal recognition
task (Keren, Karpas, and Gal 2014). Other uses of traces
include learning action models (Aineto, Celorrio, and On-
aindia 2019) or predicting the next action or sequence of
actions another agent is going to perform (Bernard and An-
dritsos 2019; Tax et al. 2017). However, as far as we know,
the sequence classification task has not been addressed yet
within the planning community.

Even if it has been less studied than related tasks in
the context of automated planning, many real-world tasks
benefit directly from this research. Some of these domains
have been studied in the context of domain-dependent ap-
proaches (Xing, Pei, and Keogh 2010). Examples are: pre-
dicting whether someone will buy a product from the web
clicks sequence; detecting intrusions in network or stand-
alone computer systems; classification of anomalous behav-
ior in public spaces (e.g. terrorism); machines monitoring
the behavior of other machines; or labeling an opponent’s
behavior in a game. In the case of financial applications
there are numerous examples of the use of this task such as:
fraud or anti-money laundering detection; classifying mali-
cious traders; attrition prediction; offering new services to
customers; or detection of users that will complain.

We present as contributions: a learning technique that can
classify in agents’ types based on their behavior expressed
in observation traces; and a domain-independent simulator
of agents’ behavior based on dynamic goal generation, plan-
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ning and execution. We name the first contribution Classi-
fication of Agents’ Behavior Based on Observation Traces
(CABBOT). Some of the simulator features are: explicit rea-
soning on goals generation, modification and removal; abil-
ity to inject new instances when needed; several methods
for generating goals (goals schedule, behavior-based ran-
dom generation); exogenous events; non deterministic ex-
ecution of actions; and partial and noisy observability.

A version of this work was published in (Borrajo, Veloso,
and Shah 2020). We focused before on its application to
money laundering, while this paper focuses on its general
applicability to planning tasks. Therefore, the description of
the techniques and the simulator are centered on the under-
lying planning tasks, and the experiments report on several
domains. Thus, we also present as contribution several do-
mains designed for this task, whose detailed description is
included in the experimental section. The domains range
from a simplified terrorist domain to a service cars domain
and two financial services related ones. The results show that
CABBOT can accurately classify agents in those domains.

Background
Given that we assume agents’ rational behavior to be based
on the concepts of goals, states and actions, we will use the
automated planning formalism to describe the tasks (Ghal-
lab, Nau, and Traverso 2004).

Automated Planning
We use the standard classical STRIPS definition of a planning
task, augmented with numeric variables (functions). A plan-
ning task is defined as Π = 〈F,A, I,G〉, where F is a set of
boolean and numeric variables, A is a set of actions, I ⊆ F
is the initial state and G ⊆ F is a set of goals. Each action
a ∈ A is defined in terms of its preconditions (pre(a)) and
effects (eff(a)). Effects can set to true the value of a boolean
variable (add effects, add(a)), set to false the value of a
boolean variable (del effects, del(a)), and change the value
of a numeric variable (numeric effects, num(a)). We will de-
note with S the set of all states. A (full) state is a valuation
of all the variables in F ; a boolean value for all the boolean
variables and a numeric value for the numeric ones. Action
execution is defined as a function γ : S,A → S; that is, it
defines the state that results of applying an action in a given
state. It is usually defined as γ(s, a) = (s\del(a))∪add(a)
if pre(a)⊆ s when only boolean variables are considered.
When using numeric variables, γ should also change the val-
ues of the numeric variables (if any) in num(a), according to
what the action specifies; increasing or decreasing the value
of a numeric variable or assigning a new value to a numeric
variable. If the preconditions do not hold in s, the state does
not change.

The solution of a planning task is called a plan, and it
is a sequence of instantiated actions that allows the sys-
tem to transit from the initial state to a state where goals
are true. Therefore, a plan π = 〈a1, a2, . . . an〉 solves a
planning task Π (valid plan) iff ∀ai ∈ π, ai ∈ A, and
G ⊆ γ(. . . γ(γ(I, a1), a2) . . .), an). In case the cost is rele-
vant, each action can have an associated cost, c(ai),∀ai ∈ A

and the cost of the plan is defined as the sum of the costs of
its actions: c(π) =

∑
i c(ai),∀ai ∈ π.

The planning community has developed a standard lan-
guage, PDDL (Planning Domain Description Language),
that allows for a compact representation of planning
tasks (Ghallab et al. 1998). Instead of explicitly generating
all states of Π, a lifted representation in a variation of pred-
icate logic is used to define the domain (predicates and ac-
tions) and the problem to be solved (initial state and goals).

Multi-Agent Framework
In this work we consider at least two agents: acting agent, C
(e.g. bank customer) and observer agent,B (e.g. financial in-
stitution or bank). In order to create a realistic environment,
we will consider that they have different observability of the
environment. Thus, each one of them will have its own def-
inition of a planning task, as it has already been defined in
cooperative (Torreño et al. 2017) and adversarial (Pozanco
et al. 2018) multi-agent settings. In the case of C, its plan-
ning task can be defined as ΠC = 〈FC , AC , IC , GC〉. In the
case of B, we do not consider here its ability to plan.
B has a partial (public) view of C’s task. This view

can be defined as ΠB,C = 〈FB,C , AB,C , IB,C , ∅〉, where
FB,C ⊆ FC , AB,C ⊆ AC , IB,C ⊆ IC and the goals
are unkown, represented as ∅. This view corresponds to the
public part of those variables in other Multi-Agent Planning
works (Torreño et al. 2017). It also has a partial view of the
initial state and the actions; since there will be some actions
executed by C, or some preconditions or effects of those
actions that B will not observe. B has no observability of
C’s goals. This assumption contrasts with goal and plan-
ning recognition work that assumes a set of potential goals
are known (Ramı́rez and Geffner 2010). In our case, this set
would amount to all possible goals that can be defined given
a domain (infinite in most cases). Finally, we relax previous
works’ requirement on C rationality; C can generate opti-
mal or sub-optimal plans.

As an example, a customer might have goals that are not
observed by the financial institution, such as having com-
mitted a crime, or laundered money. Other goals will be ob-
servable only after the customer has executed actions within
the financial system that might reveal them, such as having
opened an account, worked for a company, made a money
transfer, or withdrawn money from a bank. In relation to
states, there will be information known by the customer that
is not observable by the financial institution, such as how
many hours the customer works, or products bought using
cash. Similarly, some information will be known, such as
products or services bought using financial instruments of
the corresponding financial institution, or bills payed to util-
ity companies. Finally, there will be actions performed by
the customer that will not be observed by the financial in-
stitution, such as committing a crime, while others will be
observable, such as making a money transfer.

Once C starts generating plans and executing the actions
on those plans, B will be able to see: if the actions in AB,C
are executed; and the components of the state related to vari-
ables in FB,C . A planning trace tC is a sequence of states
and actions executed by C in those states:
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tC = (IC , a1, s1, a2, s2, . . . , sn−1, an, sn)

where si ∈ SC , ai ∈ AC . An observation trace is also a
sequence of states and actions of C from the point of view
of B tB,C = (IB,C , a

′
1, s
′
1, a
′
2, s
′
2, . . . , s

′
n−1, a

′
n, s
′
n), where

s′i ∈ SB,C , a
′
i ∈ AB,C . Each state s′i corresponds to the

partial observability of C’s state si by B. Also, each action
a′i corresponds to either an action that can be observed from
C, ai, or a ficticious no-op action if ai cannot be observed
by B. There is no actual need of requiring the states to be
part of the observation; given that B has a model of C’s do-
main,B can always reproduce the corresponding observable
states, by simulating the execution of the observable actions.
We will call TB,C = {tB,C} the set of traces of agent C ob-
served by agent B.

In the classification task we are addressing in this paper,
there are two C agents we would like the learning system
to differentiate by observing their behavior traces. As an ex-
ample, consider a criminal and a regular customer. We want
to address non-trivial learning tasks. Therefore, we assume
there is nothing in the observable state that directly identifies
one or the other type of C agent. Nor there is any difference
on the observable actions between the ones that can be ex-
ecuted by one or the other type of C. Formally, given two
different types of C, C1 and C2,B’s observable information
on both should be the same:

ΠB,C1 = ΠB,C2 = 〈FB,C1 , AB,C1 , IB,C1 , ∅〉

Learning to Classify Behavior
B’s main task consists of learning to classify among the dif-
ferent types of C (behaviors). The learning task can be de-
fined as follows:

• Given: (1) a set of classes of behavior (labels) C =
{C1, C2, . . . , Cn}; (2) a set of labeled observed traces
TB,Ci ,∀Ci ∈ C; and (3) a partially observable domain
model of each Ci given by ΠB,Ci

• Obtain: a classifier that takes as input a new (partial) trace
t (with unknown class) and outputs the predicted class

A main requirement of CABBOT is to be domain-
independent. Therefore, we will not use any hand-crafting
of features for the learning task. Another characteristic of
this learning task is that it works on unbounded size of
the learning examples. Traces can be arbitrarily large, as
well as states within the trace and action descriptions (both
in the number of different action schemas, and grounded
actions). There is no a priori limit on these sizes. Using
fixed-sized input learning techniques can be difficult in these
cases and some assumptions are employed to handle that
characteristic. Hence, we will consider here only relational
learning techniques (Dzeroski and Lavrac 2010), and, in
particular, relational instance-based approaches (Emde and
Wettschereck 1996). Relational learning techniques have
been extensively used in the past to learn control knowl-
edge (Veloso et al. 1995), or planning policies (Yoon, Fern,
and Givan 2008; Garcı́a-Durán, Fernández, and Borrajo
2012), among other planning tasks (Jiménez et al. 2012).

But, as far as we are aware of, they have not been used for
this learning task.

The key parameter of these techniques is the relational
distance between two traces, d : T × T → R. In order to
define the distance between two traces, t1 and t2, we have
several alternatives.

• Compute a distance between the sets of actions on each
trace. A simple, yet effective, distance function consists of
using the inverse of the Jaccard similarity function (Jac-
card 1901) as:

da(t1, t2) = 1− |an(t1)∩an(t2)|
|an(t1)∪an(t2)|

where an(ti) is the set of actions’ names in ti. This dis-
tance is based on the ratio of common action names in
both traces to the total number of different action names
in both traces.

• Compute distances between sequences of states differ-
ences. Given two consecutive states s1 and s2 in a trace,
we define their associated difference or delta, that repre-
sent the new literals in the state after applying the action.
They are defined as: δsi,si+1

= si+1 \ si. We can com-
pute a distance between the sets of deltas on each trace by
using the Jaccard similarity function as before.

d∆(t1, t2) = 1− |∆(t1)∩∆(t2)|
|∆(t1)∪∆(t2)|

where ∆(ti) = {δsj ,sj+1
| ∀sj , sj+1 ∈ ti, 0 ≤ j ≤ n−1}

is the set of deltas of a trace ti. Again, we only use the
predicate and function names.

• The two previous distances only consider actions and
deltas as sets. If we want to improve the distance met-
ric, we can use a frequency-based approach (equivalent
to an n-grams analysis with n = 1). Each trace is repre-
sented by a vector. Each position of the vector contains
the number of times an observable action appears in the
trace. The distance between two traces, dg , is defined as
the squared Euclidean distance of the vectors represent-
ing the traces. As before, a new trace is classified as the
class of the training trace with the minimum distance to
the new trace.

• Instead of using only counts, the distance function can
also consider actions and state changes as relational for-
mulae and use more powerful relational distance metrics.
We have defined a version of the RIBL relational distance
function (Emde and Wettschereck 1996) adapted for our
representation of traces, dr. We needed to adapt it given
the different semantics of the elements of the traces with
respect to generic RIBL representation of examples. Given
two traces, we first normalize the traces by substitution of
the names of the constants by an index of the first time
they appeared within a trace. For instance, given the fol-
lowing action and state pair:

〈 create-account(customer-234,acc-345),
{acc-owner(customer-234,acc-345),
balance(acc-345)=2000} 〉

the normalization process would convert the trace to:
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〈 create-account(i1,i2),
{acc-owner(i1,i2), balance(i2)=2000} 〉

This process allows the distance metric to partially re-
move the bias related to using different constant names
in the traces. The distance dr is then computed as:

dr(t1, t2) =
1

2
(dra(t1, t2) + dr∆(t1, t2))

i.e. as the average of the sum of dra (distance between the
actions of the two traces) and dr∆ (distance between the
deltas of both traces). dra is computed as:
dra(t1, t2) = 1

Z

∑
ai∈a(t1) minaj∈a(t2) df (ai, aj)

where a(ti) is the set of ground actions in ti, df is the dis-
tance between two relational formulas and Z is a normal-
ization factor (Z = max{|a(t1)|, |a(t2)|}). We normalize
by using the length of the longest set of actions to obtain
a value that does not depend on the number of actions on
each set, so distances are always between 0 and 1. df is 1
if the names of ai and aj differ. Otherwise, it is computed
as:

df (ai, aj) = 0.5− 0.5 1
|arg(ai)|darg(ai, aj)

where darg(ai, aj) is the sum of the distances between
the arguments in the same positions in both actions.
Each distance will be 0 if they are the same con-
stant and 1 otherwise. Again, we normalize the values
for distances. Also, when two ground actions have the
same action name, we set a distance of at most 0.5.
For instance, if l1 =create-account(i1,i2) and
l2 =create-account(i3,i2),

df (l1, l2) = 0.5− 0.5 1
2 (1 + 0) = 0.25.

As a reminder, each trace contains a sequence of sets of
literals that correspond to the delta of two states. There-
fore, dr∆ is computed as the distance of two sets of deltas
of literals (∆(t1) and ∆(t2)). We use a similar formula to
the previous ones:
dr∆(t1, t2) = 1

Z∆

∑
δ1∈∆(t1) minδ2∈∆(t2) drδ(δ1, δ2)

where Z∆ = max{|∆(t1)|, |∆(t2)|}, and drδ:
drδ(δ1, δ2) = 1

max{|δ1|,|δ2)|}
∑
li∈δ1 minlj∈δ2 df ′(li, lj)

df ′(li, lj) = df (li, lj) when the literals correspond to
predicates. We use df since actions and literals in the
state (lj , lj) share the same format (a name and some ar-
guments). However, when they correspond to functions,
since functions have numerical values, we have to use a
different function dn. In this case, each li will have the
form fi(argi) = vi. f(argi) has the same format as a
predicate (or action) with a name fi and a set of argu-
ments argi, so we can use df on that part. The second part
is the functions’ value. In that case, we compute the abso-
lute value of the difference between the numerical values
of both functions and divide by the maximum possible
difference (M ) to normalize:1

dn(li, lj) = df (fi(argi), fj(argj))× abs(vi−vj)
M

We multiply both, since we see the distance on
1We use a large constant in practice.

the arguments as a weight that modifies the dif-
ference in numerical values. For example, if
δ1={acc-owner(i1,i2),balance(i2)=20},
δ2={acc-owner(i1,i3),balance(i3)=10},
dr∆(δ1, δ2) = 1

2 (min{0.25, 1}+ min{1, 0.5× |20−10|
M })

Once we have a distance metric between traces, we use
an instance-based technique, as kNN, to classify a new trace
according to the k traces with minimum distance, and com-
puting the mode of those traces’ classes. Since the classifier
takes a trace as input, CABBOT also allows for on-line classi-
fication with the current trace up to a given simulation step.
A nice property of kNN is that we can explain how a behav-
ior was classified by pointing out the closest previous cases.

Generation of Synthetic Behavior
In real world applications, traces will come from observa-
tions of other agents’ actions. In this paper, we have also
developed a simulator that can produce those traces for the
C agent. Figure 1 shows a high level outline of the simula-
tor. C takes actions in the environment by using a rich rea-
soning model that includes planning, execution, monitoring
and goal generation. It is inspired in some planning and ex-
ecution architectures (Guzmán et al. 2012), where the main
difference lies on the dynamic generation of goals. In par-
ticular, the goal generation component allows the agent to
change or generate new goals on-line as in past work on goal
reasoning (Roberts et al. 2018).

Execution

Planning

Goal generation

Environmentdomain

problem problem

planproblem

action

state

Simulator

Figure 1: High level view of the simulator.

The components of the simulator for the planning agents
are: the Execution, that takes a domain and problem descrip-
tion and follows a reasoning cycle that involves generating
a new plan by calling Planning, executing the next action(s)
from the current plan in the environment and observe the
next state, and obtaining new goals or state components from
Goal generation. The simulator is domain independent, ex-
cept for the Goal reasoning that needs to generate behavior
corresponding to at least two types of agents in the same
domain. Now, we present a description of each module.

Execution
Execution performs several tasks for some iterations:

• if there is no plan, or there is a reason for replanning, it
calls Planning to generate a new plan. Reasons for replan-
ning include: the state received from the environment is
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not the expected one (it does not fully match the state pre-
dicted by the effects of the most recently action); and Goal
generation has returned new goals and/or changes in the
state. We are using a standard planner for replanning, but
it can be substituted by replanning algorithms (Fox et al.
2006; Borrajo and Veloso 2012).

• if there is a plan in execution, it selects the next action
to execute and sends it to the environment. The environ-
ment simulates the execution of the action and returns a
new state. As mentioned above, the new state can be the
one defined by the effects (deterministic execution). Our
simulator also includes the possibility of defining non-
deterministic execution of actions, as well as the appear-
ance of exogenous events.

• at each step, it also calls Goal generation for changes in
the goals or partial descriptions of states, as explained be-
low.

• the interaction with the environment also generates a trace
of observations that will be used for both training and test-
ing of the learning component of B. As explained before,
the trace contains a sequence of actions and states from
the point of view of B. Therefore, Execution applies a fil-
ter on both so that it only includes in the trace its observ-
able elements. Observability is defined for each domain.
We opted for a simplified way to define it as the sets of
lifted actions and predicates that can be observed by B.
Any ground action or state literal of a lifted action or pred-
icate on those sets will be observable. Besides, B might
not see the actual executed action but another one (noisy
observations). Also, it might not be able to see some of
the actions even if they are in the observable set (a further
aspect of partial observability).

• each simulation finishes after a predefined number of sim-
ulation steps (horizon) that is a parameter, or after a plan
has not been found in a given time bound. We set the time
bound with a low value (10 seconds), since this is enough
in the experimental domains we have used in most cases.

Goal generation
This component allows agents to generate believable behav-
ior whose goals evolve over time depending on the current
state of the environment. It takes as input the current prob-
lem description (state, goals and instances) and returns a new
problem description. The first obvious effect of this module
is to change goals. In order to do so, we have defined two
kinds of behavior for each domain by changing the goals of
each type of behavior. For instance, in the case of a terrorist
domain, we define two types of agents: regular person and
terrorist. The regular person would generate goals of going
from one place to another. When the simulator has achieved
the previous goal (moving to a place), this module will gen-
erate a new goal of being somewhere else randomly chosen.
However, randomly, the knapsack that it carries might fall
down and be forgotten by the person. So, when the person
notices that it does not carry the knapsack, it will generate
a new goal to hold it again. In the case of the terrorist, this
module will randomly generate the goal of not carrying the

knapsack. And even if it knows that it is not carrying the
knapsack, it will not generate as goal to carry it again, as in
the case of the regular person. As a reminder, the observer
does not know the goals of the other agent.

This module can also change the problem state and in-
stances. This is useful for generating new components of the
state on-line, as with partial observability of a rich environ-
ment. Suppose, we want to simulate an open environment
where agents wander around and go to places that were not
defined originally in the initial problem description. One al-
ternative consists of defining a huge state (and associated
instances) in the initial problem description to account for
the whole map. This forces the planner to generate many
more instantiations than the ones actually needed to plan in
the first simulation steps. The ability of Goal generation to
change the state and instances descriptions, allows the sim-
ulator to generate new parts of the world (or even remove
visited ones if not further needed) on the fly, making the
process more efficient and dynamic.

Planning
We are working in a domain-independent setting. Therefore,
domain and problem models are specified in PDDL. Thus,
any PDDL complaint planner could be used for this purpose.
In particular, we are using some domains with extensive use
of numeric variables (using PDDL functions). So, we are
constrained to planners that can reason with numeric pre-
conditions and effects. Examples of planners we are using
are: LPG (Gerevini, Saetti, and Serina 2003); CBP (Fuente-
taja, Borrajo, and Linares-López 2010), or SAYPHI (de la
Rosa, Garcı́a-Olaya, and Borrajo 2013). As expected, plan-
ners take as input a domain and problem description in
PDDL, and return a plan that solves the corresponding plan-
ning task. All these planners generate sub-optimal solutions.

Experiments
Experimental setting
Due to the lack of existing domains in the planning com-
munity that address the task of behavior classification from
planning-execution traces, we have defined several new do-
mains:
• terrorist: a domain where people move around a grid

that represents an open place (station, airport, square, . . . )
holding a knapsack. Regular people might accidentally
drop the knapsack (with probability 0.2), but they try to
recover it when they find out. Terrorists drop the knap-
sack (with probability 0.4) and leave it there. The model
is composed of three actions (move, drop and take) and
four predicates. The goal is to classify in terrorist or reg-
ular behavior from the observed traces. There is full ob-
servability in this domain, given that all actions and states
are observable, and cannot differentiate between the two
types of agents.

• service cars: some vehicles move around the streets of
a city network. The model comprises seven actions and
seven predicates. Actions include: moving from one street
section to another connected one, boarding and unboard-
ing a vehicle, stopping a vehicle and moving it again. The
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goal is to classify the vehicles that are particular cars from
the service cars (taxis or equivalent). All actions and pred-
icates are observed, except for two predicates (whether a
driver of a car owns the car, and whether there is a pas-
senger inside a service car or not). There are two board
actions depending on the type of vehicle, but the observer
cannot differentiate between the two. The same applies to
debark actions. The probability a new goal related to mov-
ing someone appears is 0.6 in the case of service cars,
while the probability a new goal related to moving the
owner appears is 0.2 in case of private cars.

• customer journeys (journey): customers access the mo-
bile application of a bank and perform several operations.
The model comprises 22 actions, 24 predicates and 2
functions. Actions include: logging in, checking or chang-
ing diverse information on their accounts, or performing
financial operations. The goal is to classify between cus-
tomers that are active with the application from the ones
that do not use it. The observable actions and predicates
are equal for both types of customers. The main differ-
ence is the probability of a goal appearing at some point
(need of a customer of performing some operation). Ac-
tive customers will have a higher probability than non-
active ones.

• customer journeys (digital-journey): another version of
the previous domain, where the task consists of classifica-
tion between digital users and traditional users. In terms
of behavior, digital users have a higher probability of
performing digital-based operations (such as quick pay-
ments) and traditional users tend to have a lower proba-
bility on those operations, but a higher one on traditional
operations (such as paying bills).

• anti-money laundering (AML): customers of a finan-
cial institution perform operations such as money trans-
fers, payments, or deposits. In the meantime, not observ-
able by B, these customers are either involved in crimi-
nal activities, or are regular customers. The challenge in
this domain consists of characterizing the type of behav-
ior from observations related to standard activities with
the bank. The model comprises 33 actions, 37 predicates
and 12 functions. Actions include: criminal activities, get-
ting a job, getting a payroll, or making financial oper-
ations. The goal consists of classifying between money
laundering individuals and regular individuals. Observ-
ability is restricted to the information that a bank can have
on a given customer. Therefore, predicates as someone be-
ing a criminal or getting dirty money are not observable,
while predicates related to making transactions and open-
ing accounts are. We have tried to make this domain rich
in terms of the different traces generated by the simula-
tor. Therefore, we have defined several probability distri-
butions that affect issues such as probabilities of select-
ing different money laundering strategies by criminals, or
buying different kinds of items by criminals and regular
customers.
For each domain, we have randomly generated 10 traces

of each type of behavior for training and 20 for test (where
classes are uniformly randomly selected). We measure the

accuracy of the prediction. We have used k = 1 for the ex-
periments, given that we already obtained good results with
that value. We have varied the following parameters to see
the impact they have on the results:

• length of the traces (simulation horizon). We used the val-
ues: 5, 10, 20, 50 and 100. Default is 50.

• similarity function. We have used the defined ones: da,
d∆, dg and dr. Default is dr.

• probability-goal-appears. We have defined a probability
that a set of goals appear at a given time step. Once a
set of goals appears, it might take several time steps to
execute the plan to achieve all goals. In the meantime, we
do not generate new goals, though the simulator is ready
to work with that case too. We used the values 1.0, 0.8,
0.5, 0.1, 0.05 and 0.01. Default is 1.0.

We will present results by varying these parameters one at
a time to observe the impact they have on the performance
of CABBOT.

Results
Table 1 shows the results for the journey domain. In
this domain, the behavior depends on the probability of a
goal arriving for both types of customers: active and non-
active. We varied those probabilities to analyze how their
values affect the accuracy of CABBOT. We can observe
that when the difference between the two probabilities gets
smaller, the behavior becomes more similar (in terms of ac-
tivity level of customers) and accuracy of classification de-
grades. In the extreme, when the two probabilities are equal
– (0.5, 0.5) case –, the classification accuracy is equivalent
to a random classification (0.55). We will use the combi-
nations 〈0.8, 0.01〉 (named journey-B for bigger difference)
and 〈0.5, 0.1〉 (named journey-S for smaller difference) for
the remaining comparisons.

Prob. non-active
Prob. active 0.01 0.05 0.1 0.5

0.5 1.00 1.00 0.85 0.55
0.8 1.00 0.95 0.85 0.70
1.0 1.00 1.00 0.95 0.80

Table 1: Classification accuracy in the customer journey do-
main varying the probability of appearing goals for the two
kinds of customers, active and non-active.

The next results of the experiments are presented in Ta-
ble 2. Rows represent the domains, and the columns are
different lengths of the traces (horizons). The values corre-
spond to the accuracy of CABBOT fixing all other parame-
ters to their default values. The results show that CABBOT is
able to correctly classify behavior traces in a high percent-
age of cases. We observe that we do not need a high number
of traces nor lengthy traces to obtain good results. As ex-
pected, CABBOT had less accuracy in shorter traces, since it
has observed less number of actions/states, so it is harder to
correctly classify the behavior. In the case of the journey
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domain, the longer traces allow for more goals to appear in
the case of non-active customers, making the classification
harder. Also, as it was observed before, the results with a
smaller difference of probability values are worse than with
a bigger difference, specially in the case of shorter traces’
lengths.

Length of traces
Domain 5 10 20 50 100
terrorist 0.60 0.90 0.95 1.00 1.00

service car 0.60 0.95 1.00 1.00 1.00
journey-B 1.00 0.95 0.85 0.80 0.95
journey-S 0.45 0.80 0.60 0.95 0.85

digital-journey 0.75 0.85 0.90 1.00 1.00
AML 1.00 1.00 1.00 0.90 0.95

Table 2: Classification accuracy in different domains varying
the length of the trace.

Table 3 shows the results when we vary the similarity
function. As we can see, the accuracy is perfect in most
cases for all domains except for the customer journeys one.
Even if the intention when generating the two kinds of be-
havior was to include slight differences, the learning system
is able to detect those by using the different similarity func-
tions. In the case of the journey domain, we can see that
the actions-based distance obtains better results than the one
based on comparing goals. Since this domain has many dif-
ferent goals, when goals appear the traces differ more on the
goals than on the actions achieving the goals. Also, the sim-
ilarity function used does not affect much in this domain to
differentiate between bigger (B) or smaller (S) probability
differences.

Similarity function
Domain da d∆ dg dr

terrorist 1.00 1.00 0.95 0.90
service car 0.50 1.00 1.00 1.00
journey-B 1.00 0.50 1.00 0.80
journey-S 0.75 0.50 1.00 0.95

digital-journey 1.00 0.95 1.00 1.00
AML 1.00 1.00 1.00 1.00

Table 3: Classification accuracy in different domains varying
the similarity function.

CABBOT can make on-line classification of traces as soon
as observations are made. Table 4 shows the average number
of observations before making the final classification deci-
sion when varying the similarity function. While in the AML
and service car domains, it takes a small number of
steps to make the final decision, the number of steps required
in the other two domains is higher. This is specially true in
the case of the journey domain for the same reasons dis-
cussed above; i.e. goals could take some time to appear.

Table 5 shows the results when we vary the probability

Similarity function
Domain da d∆ dg dr

terrorist 4.20 6.40 26.40 15.90
service car 0.00 2.90 26.20 0.70
journey-B 15.90 7.30 17.90 2.30
journey-S 25.00 25.00 16.40 11.10

digital-journey 2.80 10.60 10.55 5.90
AML 2.30 1.40 5.25 1.60

Table 4: Average number of observations before making
the final classification decision when varying the similarity
function in several domains.

of partial observability. We can see that when the proba-
bility of making an observation at a given time step de-
creases, so does the accuracy of the learning system and
correspondingly the number of steps it takes the learning
system to converge to the final classification increases. In
the extreme, when the probability is 0.01 for a length of
history of 50, the traces will at most consist of one or two
elements, so classifying the traces becomes a hard task as
shown by the low probabilities. The rate at which the accu-
racy decreases varies across domains. In the case of AML,
digital-journey and journey-B domains, there is a
slow decrease in accuracy. In the other three domains, the
drop in accuracy is more acute starting at even a probability
of observation of 0.5 in the terrorist domain.

Probability of partial observations
Domain 1.0 0.5 0.1 0.01
terrorist 0.95 0.45 0.50 0.50

service car 1.00 1.00 0.85 0.45
journey-B 0.90 0.90 1.00 0.60
journey-S 0.85 0.85 0.80 0.45

digital-journey 0.90 0.75 0.55 0.45
AML 1.00 0.90 0.80 0.35

Table 5: Classification accuracy in different domains varying
the probability of partial observability.

Table 6 shows the results when we vary the probability
of an execution failure of individual action (degree of non-
determinism). When an action fails, it stays in the same state.
Since the length of the history is 50 steps, even if some ac-
tions fail, CABBOT is still getting enough observations to
make accurate classifications.

Related work
Given some sequence of events, there have been several
learning tasks defined: sequence prediction (what the next
step is going to be) (Bernard and Andritsos 2019); sequence
generation (learning to generate new sequences, e.g. sim-
ulation); sequence recognition (determine whether the se-
quence is legitime or belongs to a given type); sequential de-
cision making (how to make decisions over time, e.g. plan-
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Probability of execution failure
Domain 0.0 0.2 0.4
terrorist 0.95 0.90 0.80

service car 1.00 1.00 1.00
journey-B 0.90 0.95 0.95
journey-S 0.90 0.95 0.80

digital-journey 0.70 0.85 0.75
AML 1.00 1.00 1.00

Table 6: Classification accuracy in different domains vary-
ing the probability of individual action execution failure. In
parenthesis, the number of steps until it converges to the fi-
nal decision.

ning). This paper deals with sequence recognition or classi-
fication.

This task has been addressed by using different types of
techniques (Xing, Pei, and Keogh 2010) based on: features,
distances or models. Features can be the presence or fre-
quency of k-grams for all grams of size k. Model-based
assumes an underlying probabilistic model and learns the
parameters (Naive Bayes, HMM, ...). In our case, the num-
ber of symbols in the alphabet is huge (if groundings), so
computing conditional probabilities is intractable, or is very
small (action schemas) and probably not useful. Otherwise,
we would have to rely on domain knowledge to know, for in-
stance, that the transaction amounts (not part of the actions)
are relevant, or the sum of amounts of several consecutive
transactions. So, we have opted to use a distances-based ap-
proach. Our learning task is also related to detecting anoma-
lous behavior or outliers detection (Chandola, Banerjee, and
Kumar 2010; Gupta et al. 2013) where the techniques are
the same ones. The main difference with respect to previ-
ous work is that their definition of traces is very simplis-
tic in most cases: small number of action labels; no repre-
sentation of state nor goals; and they do not handle rela-
tional data. From the point of view of classical automated
planning, there has been related work on goal/plan recogni-
tion (Ramı́rez and Geffner 2010). However, as we discussed
in the introduction, the task we deal with here is not about
predicting the goal/plan, but about classifying a given be-
havior in a set of behavior classes.

We have used several similarity functions such as the ones
based on Jaccard distance or RIBL. Other similarity func-
tions have been defined in related tasks, such as process
mining (Becker and Laue 2012), plan diversity (Roberts,
Howe, and Ray 2014) or plan stability (Fox et al. 2006)
(see (Ontañón 2020) for an extensive review). These previ-
ous similarity functions used mainly the actions in the plan,
but did not include the corresponding states.

Some of our domains have been analyzed previously by
similar approaches: understanding customer journeys in the
field of marketing (Lemon and Verhoef 2016); predicting an
on-line buy action from the sequence of clicks (Bertsimas,
Mersereau, and Patel 2003); process mining (van der Aalst
2016); intrusion detection in a computer network or sys-
tem (Scholau et al. 2001); or anti-money laundering (Lopez-

Rojas and Axelson 2012). None of them used a represen-
tation based on planning tasks, nor any relational learning
approach. So, their approaches relied on carefully selecting
the features to be used for defining the learning examples.

Conclusions
We have presented four main contributions. The first con-
tribution consists of posing the sequence classification task
in terms of a richer representation framework than previous
work. We use goals, states and actions to include the traces
rationale in the traces description. The second contribution
consists of a learning technique that takes a set of training
traces of other agents’s behavior and can classify later traces
in different classes. The third contribution is a simulator that
generates synthetic behaviors where agents can dynamically
change their goals, and therefore their plans. Execution of
those plans is stochastic, so those agents are able to monitor
the execution and replan when needed. Finally, the fourth
contribution is a set of automated planning domains that can
be used for comparison in future work. Experimental results
show that this approach performs well in some domains, in-
cluding variations of real finance-related domains.
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Abstract
Probabilistic Policy Reuse (PPR) is a transfer learning ap-
proach to improve a reinforcement learner with guidance
from previously learned similar policies. It uses the past poli-
cies as a probabilistic bias where the learner chooses among
the exploitation of the ongoing learned policy, the exploration
of random unexplored actions, and the exploitation of past
policies. An interesting side-effect of PPR is its capability of
revealing the similarity between the past and new task, which
has interesting applications from a financial point of view.
In fact, in this paper we propose to use PPR to identify the
similarity among different market scenarios in the context of
pricing. Identifying these similarities allows us to measure
how a market scenario is similar to another, and thus how the
pricing policy learned in a market scenario is useful to learn a
pricing policy in a related, but different, market scenario. We
show how the degree of similarity affects the transfer efficacy.
To carry out this study, in this paper we focus on the pricing
problem in the insurance industry using a synthetic dataset
provided by BBVA, one of the largest Spanish companies in
the banking sector.

Introduction
Pricing is the determination of the price at which a product
or service will sell or the yield at which bonds will sell as
new issues (Phillips 2005; Hinterhuber 2017). If the price is
set too high or the yield is set too low, the issue will not sell
out. If the price is set too low or the yield is set too high, the
issuer will pay more than necessary in dilution or interest to
sell it. Therefore, pricing is a challenging problem because
of the huge number of factors influencing the pricing poli-
cies: customer characteristics, product features, risk, price
sensitivity, etc. Recently, Machine Learning and, in partic-
ular, Reinforcement Learning has proposed to learn pricing
policies (Krasheninnikova et al. 2019). However, such poli-
cies are adapted to a particular market scenario, and it is not
possible to easily adapt them to the changing circumstances
of the environment. For instance, let us assume we have a
pricing policy adapted to a particular scenario in which the
general trend by customers is to accept high prices. This pol-
icy will have a nefarious performance if an economic crisis

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

occurs and customers no longer accept such high prices. In
this new scenario, it is required to relearn a new pricing pol-
icy that better suits to the new circumstances. Typically, this
new policy can be learned from scratch, but what we pro-
pose in this paper is to use the pricing policies of past mar-
ket scenarios to learn a new policy that adapts to the new
circumstances of the environment.

This problem has a direct mapping to transfer learn-
ing (Taylor and Stone 2009; Da Silva and Costa 2019). The
key idea of transfer is that experience gained in learning to
perform one source task can help to improve learning per-
formance in a related, but different, target task (Taylor and
Stone 2009). In this paper we pursue to apply this idea for
transferring the knowledge among different market scenar-
ios. In this manuscript, we report on Probabilistic Policy
Reuse (PPR) (Fernández and Veloso 2006) as transfer ap-
proach. When solving a new problem, PPR utilizes the past
policies as a probabilistic bias where the learner faces three
choices: the exploitation of the ongoing learned policy, the
exploration of random unexplored actions, and the exploita-
tion of past policies. As a past policy becomes relevant to
solving a new task, such effective reuse reveals the similar-
ity between the past and new task. From a financial point of
view, such similarities allows us to identify how a market is
similar to another, and thus how a pricing policy learned in
a market scenario is useful to learn in a related, but differ-
ent, market scenario. The accuracy of the transfer depends
on how similar the source markets and the target market
are. Therefore, the main contributions of this manuscript are:
(i) show empirical results about how the similarity metric
among market scenarios work, and (ii) to demonstrate how
PPR uses these similarities as a probabilistic bias in the ex-
ploration/exploitation process. In this paper, we focus on the
pricing problem of an insurance company in order to demon-
strate the benefits of reusing pricing policies among differ-
ent market scenarios. For this we have the data provided by
the insurance division of BBVA, one of the largest Spanish
companies in the banking sector.

The organization of the paper is as follows. Section Back-
ground offers the theoretical background on pricing and the
basis of RL required to understand the proposed research.
Section Mapping Pricing onto Reinforcement Learning for-
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mulates the problem of pricing as an MDP. Such model-
ing requires defining of all the elements of an MDP: the
state and action spaces, and the reward and the transition
functions. Section Policy Reuse presents the π-reuse explo-
ration strategy used to learn in the proposed MDP, and the
PRQ-learning algorithm. Finally, Section Experimental Re-
sults shows some results and Section Conclusions concludes
and introduces future research.

Background
This section provides a detailed description of the problem
to be solved by RL, and the basis of RL.

Pricing
Generalized Linear Models (GLM) is the standard in the
pricing industry (Murphy, Brockman, and Lee 2000) as it
is easy to fit and interpret. GLMs are a rich class of statis-
tical methods that include linear regression, logistic regres-
sion, log-linear models, poisson regression and multinomial
response model (Agresti 2015). From a mathematical point
of view, pricing can be solved using GLM as a general ap-
proach. For instance, we might use standard linear regres-
sion to learn a model to predict the price for a given customer
and product. We can define a GLM (Nelder and Wedderburn
1972; Lee and Nelder 2003) as a relation between dependent
and independent variables which takes the following form:

ϕ = g(µ) = E(Y ) = Xβ (1)
where g is the link function, X is the model matrix and β

is the vector of unknown parameters, with Y being indepen-
dent and distributed as some exponential family distribution.
Note that the standard linear regression model is a special
case of GLM where the link function, g, is the identity func-
tion.

While setting a price for a given customer and product can
be solved with standard linear regression models, the pricing
strategy optimization deals with two main components: on
the one hand, the pricing model represented by Equation (1)
and, on the other, the customer’s degree of acceptance of a
given price (sensitivity to the price).

Customer sensitivity represents a valuable piece of in-
formation to correctly adjust the price and simulate several
probabilistic scenarios. As the grade of acceptance of a given
price can be represented as a probability function, it can use
a logistic regression model, i.e., a GLM with a logistic link
function (Germán 2007) to represent the probability of re-
newal for a given price. The distribution of the target vari-
able (i.e., if the customer will renew the policy) is set to be
the binomial distribution. The mean of the binomial distri-
bution, that is, the prediction generated by the model, is the
probability that the event will occur. Equation (2) represents
the logit function (Kleinbaum and Klein 2010):

η = ln

(
ρ

1− ρ

)
= Xβ (2)

where η is the logit or log-odd function and ρ is the probabil-
ity of renewal, X is the model matrix and β is the vector of
unknown parameters. Knowing the GLM model parameters,

β, we can obtain the probability of renewal directly from the
above equation:

ρ =
eXβ

1 + eXβ =
1

1 + e−Xβ
(3)

The logistic regression model in Equation (3) predicts the
probability acceptance for a given renewal ratio and cus-
tomer. The renewal ratio, v, is the ratio at which customers
renew the price of their insurance. This renewal ratio decre-
ments the price when v ∈ [0.0, 1.0) or increments the price
when v ∈ (1.0, 2.0]. Therefore, when v is equal to 1.0 it rep-
resents neither incremental nor decremental, i.e., the same
price of renewal.

As we saw, the optimization of a pricing strategy requires
handling two main goal functions:

1. Revenue

f1(v) =
∑

i∈v
B(ρi(vi)) ∗ pricei ∗ vi (4)

whereB represents the Bernoulli distribution for probabil-
ity ρi of acceptance of a given renewal ratio vi for the i-th
customer in the portfolio, and pricei is the current price
paid by the i-th customer in the portfolio to the insurance
company with f1 ∈ R.

2. Retention

f2(v) =
1

N

∑

i∈v
ρi(vi) (5)

where ρi is the probability of acceptance of a given re-
newal ratio vi for the i-th customer in the portfolio, and
N is the total number of customers in the portfolio with
f2 ∈ [0, 1].

Therefore, although GMLs are the standard in the indus-
try to model the pricing problem as described in Equation 1,
such modelization adopts a static view of the problem and
treats it as a linear prediction problem. Furthermore, the ad-
dition of the probability of customer acceptance transforms
the problem into a stochastic problem which makes it diffi-
cult to solve it as a linear problem. For these reasons, what
we suggest in this paper is precisely that it is more appropri-
ate to model the pricing problem as a sequential stochastic
decision problem as described in Section Mapping Pricing
onto Reinforcement Learning.

Additionally, we assume the underlying model dynamics
are completely unknown for the learning agent. This makes
necessary the use of other types of techniques such as those
based on model-free RL. In this paper, the proposed ap-
proach is able to go model-free and learn to price from data
generated from a dynamic environment. In fact, the pro-
posed approach fits in better with what happen in the real
life, in which the insurer offers renewal prices to a sequence
of customers whom he attends one by one.
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Finally, one of the important points is the consideration of
the business constraints that prices may have. In our case, we
consider such constraints Ci are defined for each customer
i in the portfolio. It represents the ranges in which each re-
newal ratio can be chosen, i.e., vi ∈ [Ci0,Ci1]. These ranges
can be adjusted by taking into account the company’s objec-
tives, marketing campaigns, changes in legislation or even
the competence of other insurance companies. As an exam-
ple, the lower limit of these ranges can be reduced to offer
lower renewal prices in response to a market of aggressive
competition or marketing campaigns that aim to retain the
highest number of customers.

Reinforcement Learning
A RL environment is typically formalized by means of a
Markov Decision Process (MDP) (Sutton and Barto 2018).
A MDP consists of a set of states S, a set of actions A avail-
able from each state, the reward function R : S × A → <
which assigns numerical rewards to transitions, and transi-
tion probabilities T : S × A × S → [0, 1] that capture the
dynamics of a system. The goal is to learn a policy π, which
maps each state to an action, such that the return J(π) is
maximized:

J(π) =
K∑

k=0

γkrk (6)

where rk is the immediate reward received in step k, and
γ is the discount factor and affects how much the future
is taken into account (with 0 ≤ γ ≤ 1). We assume that
the interaction between the learning agent and the environ-
ment is broken into episodes, where K is a time instant at
which a terminal state is reached, or a fixed length for a fi-
nite horizon problem. Traditional methods in RL, such as
TD-learning (Sutton and Barto 1998), typically try to esti-
mate the return (sum of rewards) for each state s when a
particular policy π is being performed. This is also called
the value-function V π(s) = E[J(π)|s0 = s].

The value of performing an action a in a state s under pol-
icy π is represented as Qπ(s, a) = E[J(π)|s0 = s, a0 = a]-
this value represents the estimated return, i.e. sum of re-
wards, the system will receive when it performs action a
in the state s, and follows the policy π thereafter. The Q-
function is also called the action-value function. The Q-
learning algorithm (Watkins 1989) is one of the most widely
used for computing the action-value function. Given any ex-
perience tuple of the type < s, a, s′, r > - where s is a state,
a is an action, s′ is the state achieved when executing a from
s, and r is the immediate reward - it updates the Q-function
following Equation 7

Qπ(s, a)← Qπ(s, a)+α(r+γmax
a′

Qπ(s′, a′)−Qπ(s, a))

(7)
where γ is the discount factor, and α is a learning rate.
To correctly approximate the Q-function, the Q-learning al-
gorithm uses an exploration strategy (e.g., ε-greedy, soft-
max) as a balance between the exploration of random un-
explored actions and the exploitation of the ongoing learned

policy (Tijsma, Drugan, and Wiering 2016). In domains with
a discrete state-action space it is usual to use a tabular rep-
resentation of the Q-function. Such Q-tables have as many
rows as states existing in the domain, and as many columns
as actions that can be executed in each of these states. Each
of the positions in the Q-table is the value of the Q-function
for the corresponding state and action.

Mapping Pricing onto Reinforcement
Learning

Once the background has been introduced, this section for-
mally presents from a RL perspective the problem this paper
deals to. The problem considered in this paper is as follows:
The insurer company has a portfolio of customers. Then,
when it is time to renew the customer prices, the insurer
takes the first client from the portfolio and makes a decision:
which renewal price to offer him/her taking into account the
current situation of the company (i.e., current revenue, reten-
tion). Whether the customer accepts the renewal price or not,
the insurer’s decision leads to the company to a new situa-
tion (e.g., if the customer does not accept the renewal price,
the insurer company will have one customer less and, hence,
lower revenue). Additionally, we can know if the insurer’s
decision has been good or bad (e.g., if the insurer’s decision
increases the revenue we can consider that the decision has
been good, and bad otherwise). Thus, one can take into ac-
count the utility of each particular decision. Then, given the
new situation of the company, the insurer takes the next cus-
tomer from the portfolio, makes a decision, and so on until
the insurer makes a decision for each of the customers in the
portfolio. In this way, the problem can be seen as a succes-
sion of situations (states), decisions (actions), and utilities
(rewards).

Therefore, this task can be modeled as an MDP. In fact,
this task is an episodic task, where each episode has as many
steps as customers N are in the portfolio. Therefore, each
one of these episodes can be considered as a real-life re-
newal period, in which the company renews one by one all
the customers in its portfolio. For each step n, the learn-
ing agent receives a state sn. In this paper, a state sn is a
tuple in the form sn = 〈fn1 , fn2 , tiern, pricen〉, where fn1
and fn2 are respectively the revenue and the retention at step
n, and tiern and pricen are respectively the customer seg-
ment and the insurance price for customer n in the portfolio.
Therefore, each state sn is composed of global features re-
lating to the status of the insurance company (i.e., f1 and
f2) and customer features (i.e., tier and price). From a RL
point of view, it is also important to note that the customer
segmentation can be considered as a way of compacting sev-
eral customer features into only one feature already provided
by the insurance company, tier, which allows reducing the
state space. Therefore, the features tier and price perfectly
describes the particular situation of a given customer. In re-
spect to the global features, we have included in the state de-
scription those directly related to the considered objectives.

For the first state of each episode, s1, the initial revenue
and retention are computed as in Equations (8) and (9), i.e.,
we start from a situation where we have the profit gener-

30



ated by all the customers belonging to our portfolio (Equa-
tion (8)), but we also assume that we are going to lose some
of these customers even offering them the same price, which
is simulated by a renewal ratio of 1 (Equation (9)). This start-
ing point is, in fact, the one that best fits the starting point in
the real world.

f1
1 =

N∑

i=1

pricei (8)

f1
2 =

1

N

N∑

i=1

ρi(1) (9)

At state sn the agent performs an action an. In this paper,
we consider action an is the renewal ratio vi for the current
customer n. The renewal ratios for each client are limited
with the constraints applied to each customer, [Cn0, Cn1], as
explained in Section Pricing. This is to say that each cus-
tomer has their own constraints for renewal ratios. There-
fore, an is sampled from [Cn0, Cn1].

After performing an action an in state sn, the
agent transits to a new state sn+1 = 〈fn+1

1 ,
fn+1

2 , tiern+1, pricen+1〉. Therefore, a transition func-
tion is required in order to compute the values for fn+1

1

and fn+1
2 . These values are respectively computed using

Equations (10) and (11) where n = 1, . . . , N .

fn+1
1 =

n∑

i=1

B(ρi(ai)) ∗ pricei ∗ ai +

N∑

i=n+1

pricei (10)

fn+1
2 =

1

N

(
n∑

i=1

ρi(ai) +

N∑

i=n+1

ρi(1)

)
(11)

Both Equations (10) and (11) are divided into two main
parts: the first takes into account the customers for whom a
renewal ratio an has already been selected in the episode,
and the second the customers in the portfolio for whom this
renewal ratio has not yet been selected. For the latter, we as-
sume a renewal ratio of 1. In this way, Equation (10) and (11)
remain consistent with Equations (8) and (9). It is important
to be aware of the fact that the transition function only af-
fects the f1 and f2 part of the state space, i.e., to the global
situation of the company, since no matter what action the
learning agent takes in step n, tiern+1 and pricen+1 will
be the customer segment and the insurance price of the next
customer in the portfolio.

Finally, when the learning agent performs an action an
in a state sn and moves to a state sn+1, it also receives a
reward signal rn. Therefore, the definition of a reward func-
tion is also required. In this paper, we formulate a reward
function for each of the two proposed strategies to optimize
the renewal price: the maximization of the revenue, and the
maximization of the revenue subject to the retention does not
fall below a given threshold. The former strategy is related
to an MDP with a single criterion to be optimized. In this
case, the reward function is formulated as in Equation (12),

i.e. at step n the reward is the difference between the value
of revenue function in state sn+1 and state sn.

rn = (fn+1
1 − fn1 ) (12)

It is important to be aware of the fact that an interesting
property of this model is that the competence is indirectly
modeled by means of the probability of customer acceptance
ρ used in Equations 9 and 11. The probability ρ is related to
the prices offered by other companies.

Policy Reuse
In this section, we describe the basic algorithms of Policy
Reuse. We first describe how to reuse just one past policy
by the π-reuse exploration strategy. Then, we show how to
reuse a set of past policies by PRQ-Learning. It is important
to bear in mind that these algorithms have been previously
proposed by Fernández and Veloso (Fernández and Veloso
2006). This section reprises the descriptions given in that
work for ease of reference.

π-reuse
As mentioned previously, this paper transfers the pricing
policies among different market scenarios by using π-reuse.
The π-reuse strategy is an exploration strategy able to bias
a new learning process with a past policy. Let Πpast be the
past policy to reuse and Πnew the new policy to be learned.
We assume that we are using a direct RL method to learn
the action policy, so we are learning the related Q function.
Any RL algorithm can be used to learn the Q function, with
the only requirement that it can learn off-policy, i.e., it can
learn a policy while executing a different one, as Q-Learning
does.

The goal of π-reuse is to balance random exploration, ex-
ploitation of the past policy, and exploitation of the new pol-
icy, as represented in Equation 13.

a =

{
Πpast(s) w.p. ψ
ε− greedy(Πnew(s)) w.p. (1− ψ)

(13)

The π-reuse strategy follows the past policy with proba-
bility ψ, and it exploits the new policy with probability of
1−ψ. As random exploration is always required, it exploits
the new policy with a ε-greedy strategy. Algorithm 1 shows
a procedure describing the π-reuse strategy integrated with
the Q-Learning algorithm.

The procedure gets as an input the past policy Πpast, the
number of episodes K, the maximum number of steps per
episode H ,and the ψ parameter. An additional υ parameter
is added to decay the value of ψ in each learning step. The
procedure outputs theQ function, the policy, and the average
Reuse Gain obtained in the execution,W , which will play an
important role in similarity assessment.

PRQ-learning
PRQ-learning is depicted in Algorithm 2. The algorithm
gets as input: a new task to solve Ω; the policy library
L = {Π1, . . . ,Πn} composed of n past policies that solve
n different tasks, respectively; the temperature parameter of

31



ALGORITHM 1: π-reuse
Input: Πpast, P , H , ψ, υ
Output: QΠnew(s, a), Πnew

1 Initialize QΠnew(s, a)← 0, ∀s ∈ S, a ∈ A, ψ0 ← ψ;
2 repeat
3 Set the initial state, s, randomly;
4 h← 1;
5 repeat
6 With a probability of ψp, a← Πpast(s);
7 With a probability of 1− ψp,

a← ε-greedy(Πnew(s)) ;
8 Receive the next state s′, and reward, rk,h;
9 Update QΠnew(s, a), and therefore, Πnew;

10
QΠnew(s, a)← (1− α)Q(s, a)Πnew+

α[r + γmaxa′ Q
Πnew(s′, a′)]

;

11 s← s′;
12 h← h+ 1;
13 ψh+1 ← υ × ψh;
14 until h < H;
15 k ← k + 1;
16 until k < K;
17 W = 1

K

∑K
k=0

∑H
h=0 γ

hrk,h

the softmax policy selection equation τ , and a decay param-
eter 4τ ; and a set of previously defined parameters: K, H ,
ψ, υ, γ and α.

The algorithm initializes the new Q function to 0, as well
as the estimated reuse gains Wi and WΩ of the policies.
Then the algorithm executes the K episodes iteratively. In
each episode, the algorithm decides which policy to follow
with a softmax strategy which uses the values WΩ and Wi

with the temperature parameter τ (Equation 14). In the first
iteration, all the policies have the same probability to be cho-
sen, given that all Wi values are initialized to 0. Once a pol-
icy is chosen, the algorithm uses it to solve the task, updating
the Reuse Gain for such a policy with the reward obtained
in the episode, and therefore, updating the probability to fol-
low each policy. If the policy chosen is ΠΩ, the algorithm
follows a completely greedy strategy. However, if the policy
chosen is Πi (for i = 1, . . . , n), the π-reuse action selection
strategy, defined in previous section, is followed instead. In
this way, the Reuse Gain Wi of each of the past policies can
be estimated on-line with the learning of the new policy. Af-
ter executing several episodes, it is expected that the new
policy obtains higher gains than reusing the past policies, so
it will be chosen most of the time.

It is important to note that the Reuse Gain Wi measures
the usefulness of reusing the policy Πi to learn the new pol-
icy ΠΩ, where the most useful policy to reuse, Πk, from
the Library, L = {Π1, . . . ,Πn}, is the one that maximizes
the Reuse Gain when learning such a task. In fact, we can
compute the distance between a past policy Πi and the new
policy ΠΩ as defined in Equation 15.

d(Πi,ΠΩ) = WΩ −Wi (15)
We define this distance not by direct comparisons between

ALGORITHM 2: PRQ-learning
Input: Ω, L, τ ,4τ , K, H , ψ, υ, γ, α
Output: QΠΩ(s, a), ΠΩ

1 Initialize QΠΩ(s, a)← 0, ∀s ∈ S, a ∈ A;
2 Initialize Wi and WΩ to 0;
3 Initialize Ui and UΩ to 0;
4 repeat
5 Choose Πk following the probabilities;
6

P (Πj) =
eτWj

∑n
p=0 e

τWp
(14)

if Πk == ΠΩ then
7 Q-Learning with fully greedy strategy;
8 else
9 π-reuse(Πk,1, H , ψ, υ);

10 end
11 Compute reward R in episode k;
12 Wk = WkUk+R

Uk+1 ;
13 Uk = Uk + 1;
14 τ = τ +4τ ;
15 k ← k + 1;
16 until k < K;

the policies, but comparing the result of applying them.

Experimental Results
This section presents the experimental results collected from
the use of the PRQ-learning algorithm in the renewal price
adjustment problem. First, we describe the dataset provided
by BBVA with the synthetic information about the cus-
tomers and their probabilities of acceptation. Then, we de-
scribe the market scenarios used for transferring pricing
policies among them. Later, we describe the parameter set-
ting, and finally the results.

Synthetic Dataset
The real data that we have from BBVA are a dataset of 83200
decisions with 11 features from a home insurance portfolio.
We will use it to validate the proposed framework of us-
age of RL. However, during the research stage we will use a
synthetic dataset in which only the main features of the real
dataset are taken into account. The selection of these fea-
tures has been proposed by insurer experts from BBVA who
have discarded those features that were not relevant for the
considered task. Additionally, the values for the customer’
features in the synthetic dataset are generated by drawing
from a model fitted to the real data, ensuring that the syn-
thetic and the original dataset have the same statistical prop-
erties, but without compromising the privacy of the original
dataset. The final synthetic dataset has 7 features as shown in
Table 1. Table 1 shows the feature names, the feature types
(numeric or nominal), the mean value and standard devia-
tions of the numeric features (with the notation A ± B, be-
ing A the mean and B the standard deviation), and a brief
description of the corresponding feature.
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Table 1: Synthetic dataset

Feature Type Mean Description
price Numeric207.1± 89.1 Insurance price
tier Nominal− Financial segment of

customer
v Numeric1.1± 0.1 Renewal ratio
ρ(v) Numeric0.7± 0.2 Probability of customer

acceptance
C Numeric [0.9 ±

0.1; 1.1± 0.1]
Range renewal ratio

gain Numeric224.7± 97.9 price ∗ v
class Nominal− Price acceptance

∼ B(ρ(v))

Therefore, in this synthetic dataset we consider five main
features for each customer: price, tier, v, ρ, and C. Fea-
ture price is the price given from Equation 1, i.e., the in-
surance price. tier is a well known feature in the insurance
sector that indicates a financial segment of a customer. Cus-
tomer segmentation is usually performed through a cluster-
ing process considering several customer features (e.g., age,
number of claims during the last year) (Abolmakarem, Abdi,
and Damghani 2016). In this way, in order to make a deci-
sion for a given customer, the company does not analyze
each one of its particular characteristics, but simply the seg-
ment to which it belongs to. It is expected that all customers
of the same group react in the same way to company de-
cisions. Therefore, companies can even customize the de-
cisions for each segment (e.g., marketing strategies, com-
mercial plans, renewal prices). In this paper, the segment
to which a customer belongs to is provided by the insur-
ance company and it indicates a different customer risk. In
particular, we consider four segments and, accordingly, we
consider four values for this feature: tier1, tier2, tier3 and
tier4, where the greater the value of tier, the greater the
risk of the customer. Feature v is the renewal ratio offered
to the customer and ρ(v) is an artificially created probability
of customer acceptance for that renewal ratio used for ex-
perimentation purposes. Finally, feature C are the business
constraints, i.e., the range in which the renewal ratio v can
be chosen for that particular customer. The features gain
and class are derived from the previous features. In particu-
lar, gain is the new insurance price offered to the customer
(i.e., gain = price ∗ v) and class is the renewal acceptance
class sampled from ∼ B(ρ(v)). Figure 1 graphically rep-
resents the synthetic dataset including these features. Note
that, in Figure 1, higher prices are applied to customers with
higher risk. Both variables price and ρ exhibit a non-lineal
increment.

This synthetic dataset is used for two purposes. The first
is to train the logistic regression function ρ described previ-
ously. For training, the selected input attribute is the feature
v in Table 1, and the outcome attribute is the feature class.
If class = 1 it means that the customer accepts the new
price, if class = 0 s/he doesn’t. After training, the func-
tion ρ is able to predict for a given increment the grade
of acceptance. The function ρ will be used to model the

Figure 1: Synthetic dataset with price, tier, υ, ρ and class.

Pricing Strategy Optimization problem as an MDP as de-
scribed previously. Secondly, we assume that the customers
in this synthetic dataset are the customers in our portfolio,
and their features (price and tier) are part of the descrip-
tion of the state space. Then, each of these customers is con-
sidered in a different state as described in Section Mapping
Pricing onto Reinforcement Learning. Therefore, such cus-
tomers are used to create the synthetic MDP described in
Section Mapping Pricing onto Reinforcement Learning, in
which the agent travels for learning. It is important to note
that with these two ingredients we have what it takes to build
the price renewal simulator used in the proposed experimen-
tation.

Market Scenarios
We have configured different market scenarios in which the
difference among all of them is the probability of acceptance
ρ of the renewal ratios υ by the customers. Figure 2 shows
the probability ρ of acceptance of renewal ratios for each of
the proposed market scenarios.

Figure 2: Probability ρ of acceptance of a given renewal ratio
υ in different market scenarios.

In particular, Figure 2 shows the probability of acceptance
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ρ for four market scenarios, and a target market scenario.
Market #1 is the easiest market where customers tend to
accept the renewal price offered to them, regardless of the
quantity. Instead, Market #4 is the hardest market where
the opposite situation exists: customers tend to reject the re-
newal price offered to them. The rest of the market scenarios
consider intermediate acceptance situations. Additionally, it
is important to note that for each market scenario the prob-
ability of acceptance depends both the renewal ratio (ρ will
be lower, the higher the renewal price υ), and to the segment
of risk the customers belongs to, i.e., to the tier (ρ will be
lower, the higher the tier). Figure 2 the probability of accep-
tance of the target market scenario, i.e., the market used as
the target in the experimentation.

Parameter setting
In the experiments, we have used different parameters. For
instance, in all cases, we set the initial values of the Q func-
tion to zero. This is a optimistic initialization of Q, since
expected average rewards tend to be under zero in the long-
term. In the case of PRQ-learning, the parameter ψ also
start with a value of 1.0 and exponentially decay every step
with ψ = ψ × υ, where the value of υ is 0.997. As a re-
sult, the probabilities of selecting a random action, the trans-
ferred policy or the policy being learning in current episode
is shown in Figure 3. At the beginning of each episode, there
is a higher probability of performing actions of the past pol-
icy, along with random actions, but as the learning process
proceeds, there is a higher probability of selecting the ac-
tions proposed by the new policy.

Figure 3: π-reuse probabilities

Finally, we have run the algorithms 5 times due to the
stochastic nature of the learning processes. Therefore, we
describe the average results.

Results
This section shows the results collected from the use of
π-reuse for learning a pricing policy in the target market
scenario using the pricing policies learned in each of the

source market scenarios described in Section Market Sce-
narios. The first step, is however, learning from scratch the
previous policies in the source market scenarios.

Learning from Scratch in the Source Markets Scenar-
ios Figure 4 shows the four learning curves of applying Q-
Learning from scratch in the four source markets scenarios
defined above.

Figure 4: Four Q-Learning processes corresponding to learn-
ing from scratch in Market #1, Market #2, Market #3 and
Market #4, respectively.

Figure 4 shows that for Market #1 where acceptance
probabilities are higher, the performance achieved is quite
high, while for markets with low acceptance rate, final per-
formance is smaller. In this case, exploration strategy used
was very soft, and a linear reduction of the ε parameter
was set to ensure get closer to optimality. All the previ-
ous learned policies can be transferred to new learning pro-
cesses, as will be described below.

Computing the Reuse Gain with PRQ-learning The
goal of PRQ-learning is to learn an action policy ΠΩ in the
target market scenario Ω. The policies learned in the source
market scenarios are the past policies used as a probabilis-
tic bias in the new exploratory process in the target market
scenario, i.e., L = {Π1,Π2,Π3,Π4,Π5,Π6}, where Πi is
the policy learned in the task Ωi corresponding to the Mar-
ket #i, with 1 ≤ i ≤ 4. In the library L, there are two
additional policies, Π5 and Π6, corresponding to always of-
fering the minimal renewal rate and the maximum renewal
rate, respectively.

The process of learning the most similar policy is illus-
trated in Figure 5. Figure 5 (a) shows the evolution of the
Reuse Gain computed for each policy involved, W1, . . . ,
W6, and the gain WΩ. Such as Reuse Gains are computed
according to Equation in line 12 of Algorithm 2. On the
x axis, the number of episodes is shown, while the y axis
shows the gains. Initially, the Reuse Gain of all the policies
is set to 0. After a few episodes, W1, W2 and W3 stabi-
lize at around −0.023. However, W4 and W5 increases up
to around−0.018. Instead, W6 stabilizes at around−0.028.
These values demonstrate that the most similar policies are
Π4 and Π5 corresponding to the policies of the hardest mar-
ket scenario Market#1 (Π4) and to always offering the
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Figure 5: (a) Evolution of the reuse gains, W1, . . . ,WΩ, and (b) evolution of the selection probabilities, P (Π1), . . . , P (ΠΩ),
for each one of the policies involved.

minimal renewal rate (Π5). It is important to bear in mind
that the hardest market is the market where the acceptance
rate of the client is lower and, where the most frequent ac-
tions are those that use lower renewal rates. Somehow, these
results say that reusing where the renewal rate is very low
(safe policies from the retention point of view), is better for
the reuse, and it is worse when the renewal rates are higher.
This is an interesting collateral result: a source policy is the
best for reuse, not only because it is learned in the most sim-
ilar task, but also because it is safer. In fact, the experiments
demonstrate that the safest policies are the best for reuse.

The gain of the new policy, WΩ, starts to increase around
episode 20, achieving a value higher than−0.013 by episode
200, demonstrating that the new policy is very accurate. The
values of the Reuse Gain computed for each policy are used
to compute the probability of selecting them in each itera-
tion of the learning process, using the formula introduced in
Equation 14 (initial τ = 2, and4τ = 2). Figure 5 (b) shows
the evolution of these probabilities. In the initial steps, all
the past policies have the same probability of being chosen
given that the gain of all them is initialized to 0. While the
gain values are updated, the probability of Π4 and Π5 grow.
For the other past policies, the probability decreases down
to 0. The probability of the new policy also increases, and
after 20 episodes, it is bigger than the rest. After a few iter-
ations more, it achieves the value of 1, given that its gain is
the highest, as shown in Figure 5 (a).

Figure 5 (b) demonstrates how the balance between ex-
ploiting the past policies or the new one is achieved. It shows
how in the initial episodes, the algorithm chooses to reuse
the past policies to find the most similar. Then, it reuses the
most similar policy until the new policy is leaned and im-
proves the result of reusing any past policy. In summary, we
can say that the PRQ-learning algorithm has demonstrated

to successfully reuse a predefined set of policies, and how it
can compute the reuse gain for each of the past policies.

Conclusions
In this paper we have provided a novel study about reusing
pricing policies, linked to particular market scenarios, in a
related, but different, market scenario. PRQ-learning is a
powerful algorithm to improve learning performance in new
tasks by reusing policies learned in previous tasks, as it has
been shown in this manuscript. In the context of pricing,
π-reuse has also been postulated as a successful technique
that allows transferring knowledge from one market scenario
to another. The paper also demonstrates how PRQ-learning
can be used to compute similarity metrics between the past
policies and the new one. The experiments demonstrate that
policies tending to offer low renewal prices are better for the
reuse. We consider that from a financial point of view creat-
ing policy libraries, reusing them as source for new learning
processes, and computing similarity metrics is a promising
research line.

In future work, we plan to use PPR in different financial
problems. Also, in this scope, the concept of safety arises,
since in these areas, it is interesting the use of learning pro-
cesses that does not produce catastrophic situations (like a
large number of clients that decline its renewal, reducing
client retention), overall when we transfer policies from sim-
ulation to real environments.
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Abstract

Reasoning about stock market and projecting its movement
is of great interest to the investors and traders. Recent ad-
vances in the stock market field focused on designing auto-
mated agents for performing trading tasks. However, there is
no diminishing interest in approaches for predicting fluctua-
tions in the market and, more importantly, to reason on differ-
ent scenarios and possibilities because these not only impact
the automation but also important from risk management per-
spective even without automation.
In this work, we are exploring the use of plan recognition as
planning approach via AI Planning technique to reason about
the observations made from the market, and predict the direc-
tion of the market movement. The benchmark broad based
stock market index being the representative of the overall
market, we are using benchmark index, Nifty to project move-
ment of Indian stock market. Our proposed approach consid-
ers the available domain knowledge and a sequence of obser-
vations derived from the overall market to produce a num-
ber of plans that could provide explanations for the observed
behaviour as well as the prediction by computing posterior
probability.

Introduction
Stock market movement is of particular interest to traders
and investors. While value investors might be interested in
broader movement of the market, traders, especially day-
traders are interested in market movement on a daily basis
and also intra-day basis. Being aware of the movement in
advance can be useful for all from a risk management per-
spective, as well as for maximising profit and return of in-
vestments. At the same time, reasoning about the movement
can be useful for both building trading strategy and risk man-
agement.

While stock market constitutes of many individual stocks,
a broad-based index1 involving a basket of prime stocks
can represent the entire market and the change in the in-
dex value represents the market movement. Usually, mar-
ket movements are predicted and reasoned by human ana-

Copyright c© 2020, Association for the Advancement of Artificial
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1https://www.investopedia.com/terms/b/broad-basedindex.asp

lysts with the use of all or a combination of domain exper-
tise/experience, technical analysis, macro-economic factor,
daily news analysis, quantitative models etc. The movement
prediction can consider different time horizons. It can focus
on the next few minutes or hours (near-term), or it can focus
on next day(s) or next a few weeks ahead (short-term). Long-
term predictions are generally made in terms of months, a
quarter or even year(s) ahead.

There are many studies and approaches to predict the mar-
ket using market macros, fundamental and technical anal-
ysis and statistical or machine learning approaches (Nti,
Adekoya, and Weyori 2019; Bustos and Pomares-Quimbaya
2020). While approaches with market macros and funda-
mental analysis to prediction involves cause and effect anal-
ysis and some form of reasoning, other approaches including
the ones making use of news, mostly infer or find patterns
from historical data and make prediction based on that. Pre-
diction related to market macros and market events (news
flow) can make use of AI planning techniques to do predic-
tion based on a domain theory and we will explore that in
this work.

There are cases where historical data is inadequate or ev-
ery now and then we get into a new scenario which brings
difficulty to relate to the near past. A nice example is the
ongoing COVID19 pandemic, the mayhem it brought across
the global financial markets and dramatic recovery in most
of the broader markets recently. Usually when US federal
reserve cut interest rates, the market goes up. But in a pre-
vailing negative economic sentiments, when fed suddenly
announced a rate cut, market went down2 as it kinds of con-
firmed that the economy is indeed going downhill. While it
might be difficult in inferring from historical data in such
scenarios; with a proper domain theory by expert(s) these
can be modeled to do prediction as well as to build trading
strategies.

In this context, we explore the use of AI Planning tech-
niques for predicting stock market movement in the near-
term.

As a first exploratory step, we are aiming to predict and
reason about the market movement (near-term) during the

2https://finance.yahoo.com/news/stock-market-news-live-
updates-march-16-2020-220735000.html
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Figure 1: Overview of the roadmap towards a fully auto-
mated trading agent.

market session of a day. The ultimate goal is to develop a
fully automated trading agent based on AI planning, that is
making best use of domain knowledge, necessary data trans-
formation, and available information. Notably, the proposed
automated trading agent will not only be able to predict
near-term market movement, but will also provide an ideal
framework for analysing and comparing different scenarios
and hypotheses. Market movement prediction or exploration
with different hypothesis can be extended further to develop
an automated trading agent incorporating risk management.
An overview of the 2-step roadmap is provided in Figure 1.

In this exploratory study we are limiting the scope of con-
sidered movement by increase or decrease of current value
of the index for the day, as compared to the close value of the
trading session. If current value is more than close value then
we will define it as DOWN otherwise UP. In our experiment
we are using benchmark index, Nifty3 to project movement
of Indian stock market, however the same approach can be
applied for any stock market represented by an index.

Our proposed approach not only makes prediction with a
probability associated with it, but it will also be in the posi-
tion to explain the observed events by forming a trajectory
where a trajectory can be seen as series of event leading to
the upcoming state of the market. Hence, in a sense, it pro-
vides a plausible reasoning for the prediction.

We take inspiration from the work (Sohrabi, Riabov,
and Udrea 2016) and are using plan-recognition-as-planning
technique to explain the observations, derived from stock
market and predict the movement as UP or DOWN. Our pro-
totype takes the domain knowledge, a sequence of observa-
tions derived from the overall market (and from the relevant
news of the corresponding date), k as number of trajectories
or explanations to produce. It then computes the posterior
probability of the goal given the optimum trajectory using
the costs of k trajectories that a top-K planner generates as a
solution to the transformed planning problem.

In the rest of the paper, we first discuss plan recogni-
tion as planning problem, and we then introduce the Pre-
diction problem ans solution through a top-K planner as a
goal recognition problem. Finally, conclusions are given fol-

3https://www.nseindia.com/products-services/indices-nifty50-
index

lowed by a brief details on experiments and analysis.

Background on Plan Recognition as Planning
In their seminal work, Ramı́rez and Geffner (2009) used
classical planning algorithm for plan recognition: Given a
domain theory, through necessary problem transformation,
the set G∗ of goals G can be recognized which can explain
a sequence of observations, provided there exists an optimal
plan consisting of an action sequence π for both the goal G
and the goal G extended with extra goals representing the
observations.

This approach has been extended in (Ramı́rez and Geffner
2010) to a general problem of probabilistic plan recognition.
Assuming that actions have deterministic effects and there is
complete information about the initial state, the plan recog-
nition can be solved efficiently using classical planners with
input of a probability distribution over the set of goals. The
posterior goal probabilities representing the costs of achiev-
ing the goal are estimated by calling a classical planner twice
without further modification.

Sohrabi, Riabov, and Udrea (2016) enhanced the above
and provided a foundation for our prediction problem. They
introduced a plan recognition approach to address observa-
tions (including missing or noisy ones) over fluents. While
in the above (Ramı́rez and Geffner 2010), it was required to
have a probability distribution over the set of goals as input,
in this case the authors approximated posterior probabilities
by taking the total costs and normalizing over a combined
costs of a set of plans generated by high-quality plans or di-
verse plans.

Before defining our problem we present the background
definitions. We mostly rely on terminology and definitions
introduced in (Sohrabi, Riabov, and Udrea 2016).

Definition 1 (Planning Problem) A planning problem is
a tuple P = (F,A, I,G), where F is a finite set of fluent
symbols, A is a set of actions with preconditions, PRE(a),
add effects, ADD(a), delete effects, DEL(a), and action
costs, COST(a), I ⊆ F defines the initial state, and G ⊆ F
defines the goal state.

A fluent can be true or false. A set of fluents with true
values can be defined as a state, s. A sequence of actions,
π = [a0, ..., an] is a solution or plan to the problem, P if it
maps initial state, I to the goal state,G. Each action, a needs
to have a non-negative cost, COST (a) and cost of the plan
or solution will be COST (π) =

∑
COST (a). A plan π is

optimal if it has minimum cost.
Definition 2 (Plan Recognition Problem) A plan recog-

nition problem is a tuple R = (F,A, I,O,G,PROB), where
(F,A, I) is the planning domain as defined above, O =
[o1, ..., om], where oi ∈ F, i ∈ [1,m] is the sequence of
observations, G is the set of possible goals G,G ⊆ F , and
PROB is the goal priors or a probability distribution over G.

The observations are sequenced, or ordered and each ob-
servation is an observable fluent. In real world, actions may
not be directly observable; for example the exact action(s)
causing the price of a stock to rise may not be observable.
However, the observations over fluents as some of the effects
of observation(s) can be observed; for example stock price
movement as an observation.
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An observation can fall into three categories. A sequence
of observations is satisfied as explained or discarded by an
action sequence and its execution trace if there exists a map-
ping through a non-decreasing function from observation in-
dices to the state indices . An observation can also be noisy
or missing (Sohrabi, Riabov, and Udrea 2016). For a given
goal and plan, an observation can be noisy or unexplained
if it has not been added to the state. When an observation
is added but is not observed then it would be categorised as
missing observation. For a given plan and goal, an observa-
tion can be categorised as one and for other plans or goals,
the same may fall into other categories.

The solution to the plan recognition is the posterior proba-
bility P (π|O) and the posterior probability of goal, P (G|O)
given a set of observations, O.

Using the weighted factor, VO,G(π) and other calculations
in (Sohrabi, Riabov, and Udrea 2016), the posterior proba-
bility of goal, P (G|O) given a set of observations can be as
follows:

VO,G(π) = COST (π) + b1.MO,G(π) + b2.NO,G(π)

where π is a plan that meets the goal G and satisfies
O, MO,G(π) is the number of missing observations in O,
NO,G(π) is the number of noisy observations in O, and b1
and b2 are the corresponding coefficients assigning weights
to the different objectives.

P (G|O) = β

[
1− β

′
VO,G(π)∑

π′∈Π VO,G(π′)

]

where β and β
′

are normalizing constants.

Prediction Problem
Next, we explain the prediction problem. We extended the
plan recognition theory(Sohrabi, Riabov, and Udrea 2016)
to model the prediction problem. The transformed planning
problem allows for explanation of the observations as well
as the prediction which would be the recognised goal or the
most probable goal.

The Prediction Problem can be presented as PP =
(F,A, I,O,G,K), where (F,A, I) is the planning do-
main as in the previous section, O = [o1, ..., om], where
oi ∈ F, i ∈ [1,m] is the sequence of observations, G
is the set of possible but finite goals G,G ⊆ F , K
is the number of paths to produce. In this case, G =
[market−up,market−down].

Here, the set of goals, G are part of the problem defini-
tion, but probability distribution over G is not included in
the definition. However, the solution need to find posterior
probabilities P (G|O) given a sample of K path or trajecto-
ries. It can be treated as a goal recognition problem and its
solution will be a sample of K path or trajectories (Sohrabi,
Riabov, and Udrea 2016) from which the posterior probabil-
ities P (G|O) can be calculated as in the previous section.

Finding k Plans
Similar to (Sohrabi, Riabov, and Udrea 2016), we com-
pute the k plans using a top-k planner, capable of finding a

Figure 2: Sample PDDL Problem (Partial Encoding)

Figure 3: Trajectories

given set of plans with high quality. Alternatively, top qual-
ity planning (Katz, Sohrabi, and Udrea 2020), diverse plan-
ning (Katz, Sohrabi, and Udrea 2020) or recent top-k planner
with symbolic search (Speck, Mattmüller, and Nebel 2020)
can also be used.

A top-k planner (Riabov, Sohrabi, and Udrea 2014) solves
the problem of finding k plans of highest quality. Depending
on k, the output of top-k plans can be a set of optimal plans,
or a mix of optimal plans and sub-optimal plans. The top-
k planning planner, TK∗ uses a k shortest paths algorithm
called K∗ (Aljazzar and Leue 2011).

Experiment and Analysis
We have modelled the market domain in a generic way us-
ing the PDDL (McDermott et al. 1998) classical planning
language. In this way, a problem can be formulated with
different kinds of observations derived from overall market,
news and others including findings from financial analysts.
The domain modelling can be done similar to (Sohrabi et al.
2018). We have extended the published benchmark PDDL
domain4 for our requirement. The domain PDDL describes
in a generic way to traverse a graph from identified start lo-
cations (SOURCE) to goal locations (TARGET).

Partial encoding of the sample problem is shown in Fig.2.
The mentioned costs here are arbitrary and for illustration
and can be adjusted or learned from data. We have used the
Top-k planner (Katz et al. 2018) for the solution. Starting
with negative economic sentiment, it generates two trajecto-
ries; one to each goal as shown in figure 3. As the trajectory
leading to market down having the shortest cost, the proba-
bility of market being down given the trajectory will be high
and hence the prediction.

4https://github.com/IBM/risk-pddl/blob/master/domain.pddl
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This is an ongoing work and we are continuing with ex-
perimenting and empirical analysis.

It is noteworthy here is that our prediction approach is
different from the typical statistical inference or machine
learning modeling which purely makes prediction from the
historical data. In our case, we model the domain knowl-
edge and reason about the world through the recent series of
observations and make predictions using classical planning
techniques. However, there are instances where we have cap-
tured statistical parameters and relationships based on his-
torical data as part of capturing our domain knowledge.

Conclusion
We proposed a prototype which can predict the immedi-
ate future or goal state given a series of past observations.
For this we have achieved capturing the domain by PDDL
through knowledge engineering. We have formulated the
prediction problem for Stock Market Movement and pro-
duced the solution with necessary modification from exist-
ing solutions. This is a fist step with a prototype for our on-
going research and development towards an automated trad-
ing agent. Similar technique can be employed to predict and
reason about market movement for short term and even long
term. This can form the base to proceed developing an agent
capable to automated trading with inbuilt risk management.

In this work, we have proposed an idea of developing an
automated trading agent and tried to produced a roadmap.
We have built a prototype as a first step to lay the founda-
tion for an automated agent. As part of the prototype devel-
oped, we applied existing works in plan recognition as plan-
ning (Sohrabi, Riabov, and Udrea 2016), state projection
(Sohrabi, Riabov, and Udrea 2017) and scenario planning
(Sohrabi et al. 2018) to Stock market domain and achieved
predicting market movement by solving the prediction prob-
lem. As part of knowledge engineering, we modeled the
stock market domain using PDDL and transformed raw data
into observations.
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Abstract

Corporate finance refers to how a company manages its own
money, i.e., its source of funds, expenses and long-term in-
vestments. In contrast to other areas of finance like invest-
ment banking and customer relationship, corporate finance
has drawn little attention from AI researchers. In this posi-
tion paper, we highlight how Natural Language Processing
techniques and planning can help a company identify risks
and take action to preserve its financial assets.

Introduction
Artificial Intelligence (AI) is impacting all aspects of global
economy including financial services. For example, in
(McWaters and Galaski 2018), the study surveys the impact
of AI on capital markets, market infrastructure, deposits and
lending, insurance, payments and investment management.
It finds that AI is leading to change in operations at finan-
cial companies providing new opportunities to innovate on
services, collaborate on data, but they need to engage work-
force and look at new ways to stay competitive.

However, there is little guidance offered by previous AI
studies on corporate finance. Managing finances is an im-
portant corporate function at any company. As a simplified
view, it deals with how a company raises its funds, utilizes
its funds to invest in its business, earns revenue and pays its
vendors and employees, and manages cash flow to keep the
business running.

In this position paper, we explore how the AI techniques
of natural language processing (NLP) and planning can be
useful to improve corporate finance. We review methods ap-
plicable for multi-national companies, introduce a novel use-
case of how a company can move its money efficiently antic-
ipating risks and discuss practical considerations in getting
them adopted by financial specialists.

The paper is organized as follows: we start by describing
a hypothetical multi-national corporation that wants to man-
age its finances. Inspired by actual deployments at a large
company, we discuss how available AI technologies may
be relevant for the hypothetical company. Then, we intro-
duce a new scenario of detecting sovereign risk (e.g., politi-
cal risk in a country) and in response, moving money across

Copyright c© 2020, Association for the Advancement of Artificial
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the hypothetical company’s different entities efficiently us-
ing planning. We conclude by discussing features that finan-
cial specialists value from AI technologies in this domain.

Analyzing Risks Scenarios in a Hypothetical
Multi-National Company

Consider a hypothetical company, Hypo Inc., which is based
in one country but does business around the world using sub-
sidiaries in each major market or country. Hypo Inc. will be
booking sales, paying vendors, maintaining bank accounts
and paying taxes in all regions it does business. As a cor-
porate function, it would have teams of risk and financial
specialists looking at events around the world for signs of
risks and how to respond to them.

Identifying Risks from News
In such a setting, news sources act as a powerful data source
to detect risks by using techniques like Natural Language
Understanding (NLU) from NLP. Typical data sources used
for building the capability, namely, curated news or web
crawls and firmographic knowledge bases, are publicly or
commercially available. By detecting entities and analyzing
for topics, in theory, one can observe for signs of risks.

But there are two primary challenges in developing a so-
lution. Firstly, evolving news topics can vary widely by con-
text over time. Thus, topic classification based on supervised
learning, which is the predominant approach in literature,
is not scalable or extensible when dealing with a volume
of over 25 million news feeds per month. Secondly, there
are over 160 million active business entities (companies)
across the world. Accurate identification of these entity men-
tions amidst the contextually diverse and fast moving news
streams requires complex yet efficient methodology.

We describe an actual system that has addressed these
challenges at a large corporation1. The system is imple-
mented and demonstrable as a web application as seen in
Figures 1 and 2. The user selects an entity (Chase Bank)
one may be interested in and a time range of choice. As
seen in Figure 1, the system responds by showing news with
mentions of the entity, details of any news the user has se-
lected with all entities detected, and their sentiments along

1For business reasons, the identity of the system is anonymized.
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Figure 1: Looking for an entity (Chase Bank) in a time
range.

Figure 2: Evolution of entity (Chase Bank) in a time range.

user-defined categories. Figure 2 shows the evolution of the
entity’s mentions over time.

The system allows results to be filtered based on a
domain-specific taxonomy that specialists prefer - a usabil-
ity consideration we will return to in discussion section. The
risk specialist interprets entity information to identify busi-
ness risks (Jolly 2003) like sovereign risk (risk about coun-
try), reputation risk, competition risk, compliance risk (risk
from new rules) and financial risk.

Identifying Scenarios from Detected Observations
and Risks
Once risks have been identified, they can be used to investi-
gate emerging scenarios. In most companies, this is a manual
task.

However, an exciting application of planning has emerged
recently to identify enterprise risk. Specifically, in (Sohrabi
et al. 2018), the authors describe a system which, given ob-
served events, can project them into future to generate what-
if scenarios. Internally, the system first builds action models

from textual description of the domain. Then, given obser-
vations of risks, the system formulates the scenario gener-
ation task as a plan recognition problem to be solved with
planning techniques which optimally explain the observa-
tions (Sohrabi et al. 2019).

Planning Asset Movements to Mitigate Risks
We now introduce a usecase about how a multi-national
company can react to risks to its financial assets held in a for-
eign country. Consider the case where one of the countries
where Hypo Inc. operates in, Country-1, is promoting new
investments into it and giving tax break while another coun-
try, Country-2, is planning to introduce new taxes for money
held by corporations in banks. Hypo would like to move its
assets away from Country-2 in the short-term and consider
Country-1 as a future investment opportunity. Another case
may be when Hypo wants to sell some of its business in a
foreign country and wants to brings the proceed back to its
home country with minimum overheads.

In situations like these, the current approach is for multi-
disciplinary teams of financial analysts, tax experts and
lawyers to collaborate on the laws of different countries
related to companies, taxes and markets, and recommend
course of actions. Hypo’s business leaders will consider the
recommendations while making actual decisions. It is not
uncommon for a large company to have entities in 150+
countries, in 30+ currencies and move asset in tens of bil-
lions of dollars. So, movement of assets involves tens of peo-
ple and involves months of manual planning.

We consider the problem of determining efficient move-
ment of assets as a planning problem. The domain consists
of predicates specifying companies and their entities, the
type of assets they hold and in which currencies, and how
the assets can be moved. Examples of actions are:

• Convert currency between two currencies in a country

• Transfer money across countries within a company in a
given currency

• Move money from a subsidiary to home company at a
given location

The problem file uses the domain predicates and one can
instantiate in which country a company’s entities are, in
which currencies its entities hold assets and where the com-
pany wants its assets to go. In Figure 3, we show a very small
situation of a company having assets in US and non-US (for-
eign) location and with assets in two currencies. There are
two plans found by an off-the-shelf planner - the left plan
calls for money to be first moved from subsidiary entity’s
foreign country to home country (US), then converted to US
dollar in US, and finally transferred from subsidiary to home
company in US. The right plan calls for the money to be con-
verted to US dollars in the foreign location, then the money
be moved from subsidiary to home company but at foreign
location, and finally the money be moved within home com-
pany from foreign location to US.

In this domain, AI planning can help with:

• generating one or more plans as desired
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Figure 3: Two plans to move assets.

• showing the most optimal plan (least cost, risk, duration,
. . . ) based on user’s choice

• help expert create a plan interactively

• learn patterns and preferences that an organization prefers

• given a transfer patterns that a company wants to avoid
(for whatever reason), produce plans consistent with those
constraints

Discussion
In previous sections, we have outlined how AI methods can
help in corporate finance activities. However, users in the
corporate finance domain have raised hurdles addressing
which can make them use the techniques more conveniently.
We discuss some of them here.
1. Evolution of entities over time and their inter-
relationships: Users want to understand how entities of in-
terest change over time and want to verify the system’s re-
sults with their own world knowledge of events. Further-
more, they are more convinced of system’s capabilities if
they see that the system has extracted inter-related concepts
(like a company and its subsidiaries) since user’s specifica-
tion is often partial. These inputs guided the design of sys-
tem shown in Figures 1,2.
2. Explanation of risks identified and underlying events
and entities: Extracted entities, time and location (space)
from news can be processed by rules to identify simple risks,
while the information can be made available to specialists to
identify risks comprehensively. The specialists rely on ex-
planation of risks among themselves and also any by the
system.
3. Visualization of plans and interaction interfaces: Re-
gardless of how the plans are produced (e.g., manually, with
a planner or mixed), users want to explore how a plan will
unravel over time. This is because users want to understand
the implications when a plan will be executed in practice and
impact real-world entities. Plans generated by planners may
help specialists but because of the financial implications of
actions, they do not want to accept results despite theoretical
results of a planner’s search being sound and complete.

4. Manual oversight over end-to-end integration: In
theory, it may be possible to integrate and automate the pro-
cess of identifying entities from news, identify risks from
extracted entities and events, consider scenarios with highest
certainty and priority(Sohrabi et al. 2018), and then taking
subsequent actions to promote longer term goals. In practice,
these activities are performed by different teams who spe-
cialize in the respective domain. Manual oversight is highly
valued throughout the process in companies like Hypo.

Conclusion
In this paper, we explored the role on AI techniques of NLP
and planning to address select problems in corporate finance
- how a company manages its own funds. This problem
can be particularly complex for multi-national companies
with hundreds of their own subsidiaries, vendors and cus-
tomers, and doing business and investment in many curren-
cies around the world. Although AI can lead to significant
impact, there are also practical issues for human-AI collab-
oration that need to be overcome.
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