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Abstract
Scheduling in the presence of uncertainty is an area of interest
in artificial intelligence due to the large number of applica-
tions. We study the problem of dynamic controllability (DC)
of disjunctive temporal networks with uncertainty (DTNU),
which seeks a strategy to satisfy all constraints in response
to uncontrollable action durations. We introduce a more re-
stricted, stronger form of controllability than DC for DTNUs,
time-based dynamic controllability (TDC), and present a tree
search approach to determine whether or not a DTNU is TDC.
Moreover, we leverage the learning capability of a message
passing neural network (MPNN) as a heuristic for tree search
guidance. Finally, we conduct experiments for which the tree
search shows superior results to state-of-the-art timed-game
automata (TGA) based approaches, effectively solving fifty
percent more DTNU problems on a known benchmark. We
also observe that MPNN tree search guidance leads to sub-
stantial performance gains on benchmarks of more complex
DTNUs, with up to eleven times more problems solved than
the baseline with the same time budget.

1 Introduction
Temporal Networks (TN) are a common formalism to rep-
resent temporal constraints over a set of time points (e.g.
start/end of activities in a scheduling problem). The Simple
Temporal Networks with Uncertainty (STNUs) (Tsamardi-
nos 2002) (Vidal and Fargier 1999) explicitly incorporate
qualitative uncertainty into temporal networks. Considerable
work has resulted in algorithms to determine whether or not
all timepoints can be scheduled, either up-front or reactively,
in order to account for uncertainty (e.g. (Morris and Muscet-
tola 2005), (Morris 2014)). In particular, an STNU is dy-
namically controllable (DC) if there is a reactive strategy
in which controllable timepoints can be executed either at
a specific time, or after observing the occurrence of an un-
controllable timepoint. Cimatti et al. (Cimatti, Micheli, and
Roveri 2016) investigate the problem of DC for Disjunctive
Temporal Networks with Uncertainty (DTNUs), which gen-
eralize STNUs. Figure 1a shows two DTNUs γ and γ′ on
the left side; ai are controllable timepoints, uj are uncontrol-
lable timepoints. Timepoints are variables which can take on
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Figure 1: Two example DTNUs γ and γ′. In both examples, time-
points a1 and a2 are controllable; u1 is uncontrollable. Black ar-
rows and their intervals represent time constraints between time-
points; the light red arrow and its interval contingency links. The
dashed dark red arrow in γ′ implies u1 has already been activated
and will occur in the specified interval. A TDC strategy is displayed
for γ. Nodes below γ are sub-DTNUs except the∨ node which lists
transitional possibilities. DTNU γ′, on the other hand, is an exam-
ple of a DTNU which is DC but not TDC.

any value in IR. Constraints between timepoints characterize
a minimum and maximum time distance separating them,
likewise valued in IR. The key difference between STNUs
and DTNUs lies in the disjunctions that yield more choice
points for consistent scheduling, especially reactively.

The complexity of DC checking for DTNUs is
PSPACE-complete (Bhargava and Williams 2019), mak-
ing this a highly challenging problem. The difficulty in prov-
ing or disproving DC arises from the need to check all pos-
sible combinations of disjuncts in order to handle all pos-
sible occurrence outcomes of the uncontrollable timepoints.
The best previous approaches for this problem use timed-
game automata (TGAs) and Satisfiability Modulo Theories
(SMTs), described in (Cimatti, Micheli, and Roveri 2016).

A new emerging trend of neural networks, graph-based
neural networks (GNNs), have been proposed as an exten-



sion of convolutional neural networks (CNNs) (Krizhevsky,
Sutskever, and Hinton 2012) to graph-structured data. Re-
cent variants based on spectral graph theory include (Def-
ferrard, Bresson, and Vandergheynst 2016), (Li et al. 2016),
(Kipf and Welling 2017). They take advantage of relational
properties between nodes for classification, but do not take
into account potential edge weights. In newer approaches,
Message Passing Neural Networks (MPNNs) with architec-
tures such as in (Battaglia et al. 2016), (Gilmer et al. 2017)
and (Kipf et al. 2018) use embeddings comprising edge
weights within each computational layer. We focus our inter-
est on these architecture types as DTNUs can be formalized
as graphs with edge distances representing time constraints.

In this work, we study DC checking of DTNUs as a
search problem, express states as graphs, and use MPNNs
to learn heuristics based on previously solved DTNUs to
guide search. The key contributions of our approach are the
following. (1) We introduce a time-based form of dynamic
controllability (TDC) and a tree search approach to iden-
tify TDC strategies. We informally show that TDC implies
DC, but the opposite is not generally true. (2) We describe
an MPNN architecture for handling DTNU scheduling prob-
lems and use it as heuristic for guidance in the tree search.
Moreover, we define a self-supervised learning scheme to
train the MPNN to solve randomly generated DTNUs with
short timeouts to limit search duration. (3) We introduce
constraint propagation rules which enable us to enforce time
domain restrictions for variables in order to ensure sound-
ness of strategies found. We carry out experiments show-
ing that the tree search algorithm improves performance and
scalability over the best previous DC-solving approach in
(Cimatti, Micheli, and Roveri 2016), PYDC-SMT, with 50%
more DTNU instances solved. Moreover, we expose that
the learned MPNN heuristic considerably improves the tree
search on harder DTNUs: performance gains go up to 11
times more instances solved within the same time frame. Re-
sults also highlight that the MPNN, which is trained on a set
of solved DTNUs, is able to generalize to larger DTNUs.

2 Time-based Dynamic Controllability
A DC strategy for a DTNU either executes controllable
timepoints at a specific time, or reacts to the occurrence of
an uncontrollable timepoint. We present our TDC formal-
ism here. A TDC strategy executes controllable timepoints
at specific times under the assumption that some uncontrol-
lable timepoints may occur or not in a given time interval.
Each interval in a TDC strategy can have an arbitrary dura-
tion. Controllable timepoints are usually executed at the start
or the end of an interval, while uncontrollable timepoints
may occur inside the interval. TDC also makes it possible
to execute a controllable timepoint at the exact same time
as the occurrence time of an uncontrollable timepoint inside
the interval, with a reactive execution.

TDC is less flexible than a DC strategy which can wait
for an uncontrollable timepoint to occur before making a
new decision. Conversely TDC does not allow, for instance,
a delayed reactive execution of a controllable timepoint in
response to an uncontrollable one. TDC is a subset of DC,
and a stronger form of controllability: TDC implies DC.

DTNU γ′ in Figure 1a shows an example of an STNU
which is not TDC but DC. In this example, uncontrollable
timepoint u1 is activated, i.e. the controllable timepoint as-
sociated to u1 in the contingency links has been executed.
Moreover, it is known that u1 occurs between t and t + 1,
where t is the current time. The interval [t, t+ 1] is referred
to as the activation time interval for u1. Controllable time-
point a1 must be executed at least 1 time unit after u1, and
controllable timepoint a2 at least 5 time units after a1. How-
ever, controllable timepoint a2 cannot be executed later than
6 time units after u1. A valid DC strategy waits for u1 to
occur, then schedules a1 exactly 1 time unit later, and a2 5
time units after a1. However, for any TDC strategy, there is
no wait duration small enough while waiting for u1 to hap-
pen that does not violate these constraints. There will always
be some strictly positive lapse of time between the moment
u1 occurs and the end of the wait. The exact execution time
of u1 during the wait is unknown: a TDC strategy therefore
assumes u1 happened at the end of the wait when trying to
schedule a1 at the earliest. Therefore, the earliest time a1

can be scheduled in a TDC strategy is 1 time unit after the
end of the wait, which is too late.

3 Tree Search Preliminaries
We introduce here the tree search algorithm. The approach
discretizes uncontrollable durations, i.e. durations when one
or several uncontrollable timepoints can occur, into reduced
intervals. These are in turn used to account for possible out-
comes of uncontrollable timepoints and adapt the scheduling
strategy accordingly. The root of the search tree built by the
algorithm is a DTNU, and other tree nodes are either sub-
DTNUs or logical nodes (OR, AND) which respectively rep-
resent decisions that can be made and how uncontrollable
timepoints can unfold. At a given DTNU tree node, deci-
sions such as executing a controllable timepoint or waiting
for a period of time develop children DTNU nodes for which
these decisions are propagated to constraints. The TDC con-
trollability of a leaf DTNU, i.e. a sub-DTNU for which all
controllable timepoints have been executed and uncontrol-
lable timepoints are assumed to have occurred in specific
intervals, indicates whether or not this sub-DTNU has been
solved at the end of the scheduling process. We also refer to
the TDC controllability of a DTNU node in the search tree
as its truth attribute. Lastly, the search logically combines
TDC controllability of children DTNUs to determine TDC
controllability for parent nodes. We give a simple example
of a TDC strategy for a DTNU γ in Figure 1.

Let Γ = fA,U,C, Lg be a DTNU. A is the list of con-
trollable timepoints, U the list of uncontrollable timepoints,
C the list of constraints and L the list of contingency links.
The root node of the search tree is Γ. There are four dif-
ferent types of nodes in the tree and each node has a truth
attribute (see x4.4) which is initialized to unknown and can
be set to either true or false. The different types of tree nodes
are listed below and shown in Figure 2.

DTNU nodes. Any DTNU node other than the original
problem Γ corresponds to a sub-problem of Γ at a given



point in time t, for which some controllable timepoints may
have already been scheduled in upper branches of the tree,
some amount of time may have passed, and some uncon-
trollable timepoints are assumed to have occurred. A DTNU
node is made of the same timepoints A and U , constraints
C and contingency links L as DTNU Γ. It also carries a
schedule memory S of what exact time, or during what time
interval, scheduled timepoints were executed during previ-
ous decisions in the tree. Lastly, the node also keeps track of
the activation time intervals of activated uncontrollable time-
points B. The schedule memory S is used to create an up-
dated list of constraints C ′ resulting from the propagation of
the execution time or execution time interval of timepoints
in constraints C as described in x4.5. A non-terminal DTNU
node, i.e. a DTNU node for which all timepoints have not
been scheduled, has exactly one child node: a d-OR node.

OR nodes. When a choice can be made at time t, this tran-
sition control is represented by an OR node. We distinguish
two types of such nodes, d-OR and w-OR . For d-OR nodes,
the first type of choice available is which controllable time-
point ai to execute. This leads to a DTNU node. The other
type of choice is to wait a period of time (x4.1) which leads
to a WAIT node. w-OR nodes can be used for reactive wait
strategies, i.e. to stipulate that some controllable timepoints
will be scheduled reactively during waits (x4.3). The parent
of a w-OR node is therefore a WAIT node and its children
are AND nodes, described below.

WAIT nodes. These nodes are used after a decision to wait
a certain period of time ∆t. The parent of a WAIT node is
a d-OR node. A WAIT node has exactly one child: a w-OR
node, which has the purpose of exploring different reactive
wait strategies. The uncertainty management related to un-
controllable timepoints is handled by AND nodes.

AND nodes. Such nodes are used after a wait decision is
taken and a reactive wait strategy is decided, represented re-
spectively by a WAIT and w-OR node. Each child node of
the AND node is a DTNU node at time t + ∆t, t being the
time before the wait and ∆t the wait duration. Each child
node represents an outcome of how uncontrollable time-
points may unfold and is built from the set of activated un-
controllable timepoints (uncontrollable timepoints that have
been triggered by the execution of their controllable time-
point) whose occurrence time interval overlaps the wait. If
there are l activated uncontrollable timepoints, then there are
at most 2l AND node children, representing each element of
the power set of activated uncontrollable timepoints (x4.1).

Figure 2 illustrates how a sub-problem of Γ, referred to
as DTNUO,P,t, is developed. Here, O � A is the set
of controllable timepoints that have already been executed,
P � U the set of uncontrollable timepoints which have
occurred, and t the time. This root node transitions into a
d-OR node. The d-OR node in turn is developed into sev-
eral children nodes DTNUO∪{ai},P,t and a WAIT node.
Each node DTNUO∪{ai},P,t corresponds to a sub-problem
which is obtained from the execution of controllable time-
point ai at time t. The WAIT node refers to the process of
waiting a given period of time, ∆t in the figure, before mak-
ing the next decision. The WAIT node leads directly to a

Figure 2: Basic structure of the search tree describing how a
DTNU node DT NUO,P,t is developed.DTNUO;P;t (placed at
the root of the tree) refers to a DTNU where O is the set of con-
trollable timepoints that have already been executed, P the set of
uncontrollable timepoints that have occurred, and t the time. Each
branch ai refers to a controllable timepoint ai, Ri to a reactive
strategy during the wait, and �i to a combination of uncontrollable
timepoints which can occur during the wait.

w-OR node which lists different wait strategies Ri. If there
are l activated uncontrollable timepoints, there are 2l sub-
sets of uncontrollable timepoints Λi that could occur. Each
ANDRj node has one sub-problem DTNU for each Λi. Each
sub-problem DTNUOi,P∪�i,t+�t of the node ANDRj is a
DTNU at time t+∆t for which all uncontrollable timepoints
in Λi are assumed to have happened during the wait period,
i.e. in the time interval [t, t + ∆t]. Additionally, some con-
trollable timepoints may have been reactively executed dur-
ing the wait and may now be included in the set of scheduled
controllable timepoints Oi. Otherwise, Oi = O.

Two types of leaf nodes exist in the tree. The first type
is a node DTNUA,U,t for which all controllable time-
points ai 2 A have been scheduled and all uncontrol-
lable timepoints ui 2 U have occurred. The second type
is a node DTNUA\A′,U,t for which all uncontrollable time-
points ui 2 U have occurred, but some controllable time-
points ai 2 A′ have not been executed. The constraint sat-
isfiability test of the former type of leaf node is straight-
forward: all execution times of all timepoints are propa-
gated to constraints in the same fashion as in x4.5. The
leaf node’s truth attribute is set to true if all constraints are
satisfied, false otherwise. For the latter type, we propagate
the execution times of all uncontrollable timepoints as well
as all scheduled controllable timepoints in the same way,
and obtain an updated set of constraint C ′. This leaf node,
DTNUA\A′,U,t, is therefore characterized as fA′, ;, C ′, ;g
and is a DTN. We add the constraints a′i � t, 8a′i 2 A′

and use a mixed integer linear programming solver (Cplex
2009) to solve the DTN. If a solution is found, the execution
time values for each a′i 2 A′ are stored and the leaf node’s
truth value is set to true. Otherwise, it is set to false. After a
truth value is assigned to the leaf node, the truth propagation
function defined in x4.4 is called to logically infer truth value
properties for parent nodes. Lastly, the search algorithm ex-



plores the tree in a depth-first manner. At each d-OR , w-OR
and AND node, children nodes are visited in the order they
are created. Once a child node is selected, its entire subtree
will be processed by the algorithm before the other children
are explored. Some simplifications made in the exploration
are detailed in x11.6 in the appendix.

4 Tree Search Characteristics
4.1 Wait action
When a wait decision of duration ∆t is taken at time t for
a DTNU node, two categories of uncontrollable timepoints
are considered to account for all transitional possibilities:

� Z = fζ1, ζ2, ..., ζlg is a set of timepoints that could either
happen during the wait, or afterwards, i.e. the end of the
activation time interval for each ζi is greater than t+ ∆t.

� H = fη1, η2, ..., ηmg is a set of timepoints that are certain
to happen during the wait, i.e. the end of the activation
time interval for each ηi is less than or equal to t+ ∆t.

There are q = 2l number of different possible combina-
tions (empty set included) Υ1,Υ2, ...,Υq of elements taken
from Z. For each combination Υi, the set Λi = H [ Υi is

created. The union
qS
i=1

Λi refers to all possible combinations

of uncontrollable timepoints which can occur by t + ∆t. In
Figure 2, for each AND node, the combination Λi leads to
a DTNU sub-problem DTNUOi,P∪�i,t+�t

for which the
uncontrollable timepoints in Λi are considered to have oc-
curred between t and t + ∆t in the schedule memory S. In
addition, any potential controllable timepoint φ planned to
be instantly scheduled in a reactive wait strategy Ri in re-
sponse to an uncontrollable timepoint u in Λi will also be
considered to have been scheduled between t and t + ∆t in
S. The only exception is when checking constraint satisfi-
ability for the conjunct u � φ 2 [0, y] which required the
reactive scheduling, for which we assume φ executed at the
same time as u, thus the conjunct is considered satisfied.

4.2 Wait Eligibility and Period
The way time is discretized holds direct implications on the
search space explored and the capability of the algorithm
to find TDC strategies. Longer waits make the search space
smaller, but carry the risk of missing key moments where
a decision is needed. On the other hand, smaller waits can
make the search space too large to explore. We explain when
the wait action is eligible, and how its duration is computed.

Eligibility At least one of these two criteria has to be met
for a WAIT node to be added as child of a d-OR node. (1)
There is at least one activated uncontrollable timepoint for
the parent DTNU node. (2) There is at least one conjunct
of the form v 2 [x, y], where v is a timepoint, in the con-
straints of the parent DTNU node. These criteria ensure that
the search tree will not develop branches below WAIT nodes
when waiting is not relevant, i.e. when a controllable time-
point necessarily needs to be scheduled. It also prevents the
tree search from getting stuck in infinite WAIT loop cycles.

Wait Period We define the wait duration ∆t at a given
d-OR node eligible for a wait dynamically by examining
the updated constraint list C ′ of the parent DTNU and the
activation time intervals B of its activated uncontrollable
timepoints. Let t be the current time for this DTNU node.
The wait duration is defined by comparing t to elements in
C ′ and B to look for a minimum positive value defined by
the following three rules. (1) For each activated time inter-
val u 2 [x, y] in B, we select x � t or y � t, whichever
is smaller and positive, and we keep the smallest value δ1
found over all activated time intervals. (2) For each conjunct
v 2 [x, y] in C ′, where v is a timepoint, we select x � t
or y � t, whichever is smaller and positive, and we keep
the smallest value δ2 found over all conjuncts. (3) We deter-
mine timepoints which need to be scheduled ahead of time
by chaining constraints together. Intuitively, when a con-
junct v 2 [x, y] is in C ′, it means v has to be executed
when t 2 [x, y] to satisfy this conjunct. However, v could
be linked to other timepoints by constraints which require
them to happen before v. These timepoints could in turn
be linked to yet other timepoints in the same way, and so
on. The third rule consists in chaining backwards to iden-
tify potential timepoints which start this chain and potential
time intervals in which they need to be executed. The fol-
lowing mechanism is used: for each conjunct v 2 [x, y]
in C ′ found in (2), we apply a recursive backward chain
function to both (v, x) and (v, y). We detail here how it
is applied to (v, x), the process being the same for (v, y).
Conjuncts of the form v � v′ 2 [x′, y′], x′ � 0 in C ′ are
searched for. For each conjunct found, we add to a list two
elements, (v′, x� x′) and (v′, x� y′). We select x� x′ � t
or x� y′ � t, whichever is smaller and positive, as potential
minimum candidate. The backward chain function is called
recursively on each element of the list, proceeding the same
way. We keep the smallest candidate δ3. Figure 8 in the ap-
pendix illustrates an application of this process. Finally, we
set ∆t = min(δ1, δ2, δ3) as the wait duration. This duration
is stored inside the WAIT node.

4.3 Reactive scheduling during waits
Execution of a controllable timepoint may be necessary in
some situations at the exact same time as when an uncon-
trollable timepoint occurs to satisfy a constraint. Therefore,
different reactive wait strategies are considered and listed as
children of a w-OR node after a wait decision, before the ac-
tual start of the wait itself. We designate as a conjunct a con-
straint relationship of the form vi�vj 2 [x, y] or vi 2 [x, y],
where vi, vj are timepoints and x, y,2 IR. We refer to a con-
straint where several conjuncts are linked by _ operators as
a disjunct. If at any given DTNU node in the tree there is
an activated uncontrollable timepoint u with the potential
to occur during the next wait and there is at least one un-
scheduled controllable timepoint a such that a conjunct of
the form u � a 2 [0, y], y � 0 is present in the constraints,
a reactive wait strategy is available that will schedule a as
soon as u occurs.

If there are s controllable timepoints that may be reac-
tively scheduled, there are 2s different reactive wait strate-
gies Ri, each of which is embedded in an AND child of the



w-OR node. Let Φ = fφ1, φ2, ..., φsg � A be the com-
plete set of unscheduled controllable timepoints for which
there are conjunct clauses u � φi 2 [0, y]. We denote as
R1, R2, ..., Rm all possible combinations of elements taken
from Φ, including the empty set. The child node ANDRi of
the w-OR node resulting from the combination Ri has a re-
active wait strategy for which all controllable timepoints in
Ri will be immediately executed at the moment u occurs
during the wait, if it does. If u doesn’t occur, no controllable
timepoint is reactively scheduled during the wait.

4.4 Truth Value Propagation
In this section, we describe how truth attributes of nodes are
related to each other. The truth attribute of a tree node rep-
resents its TDC controllability, and the relationships shared
between nodes make it possible to define sound strategies.
When a leaf node is assigned a truth attribute β, the tree
search is momentarily stopped and β is propagated onto up-
per parent nodes. To this end, a parent node ω is selected
recursively and we distinguish the following cases:

� The parent ω is a DTNU or WAIT node: ω is assigned β.

� The parent ω is a d-OR or w-OR node: If β = true, then
ω is assigned true . If β = false and all children nodes
of ω have false attributes, ω is assigned false . Otherwise,
the propagation stops.

� The parent ω is an AND node: If β = false, then ω is
assigned false . If β = true and all children nodes of ω
have true attributes, ω is assigned true . Otherwise, the
propagation stops.

After the propagation finishes, the tree search algorithm
resumes where it was stopped. A true attribute reaching the
root node of the tree means a TDC strategy has been found.
A false attribute means none could be found. The pseu-
docode for the propagation algorithm is given in Algorithm
1 in the appendix.

4.5 Constraint Propagation
Decisions taken in the tree define when controllable time-
points are executed and also bear consequences on the ex-
ecution time of uncontrollable timepoints. We explain here
how these decisions are propagated into constraints, as well
as the concept of ‘tight bound’. Let C ′ be the list of updated
constraints for a DTNU node ψ for which the parent node is
ω. We distinguish two cases. Either ω is a d-OR node and ψ
results from the execution of a controllable timepoint ai, or
ω is an AND node andψ results from a wait of ∆t time units.
In the first case, let t be the execution time of ai. The updated
list C ′ is built from the constraints of the parent DTNU of
ψ in the tree. If a conjunct contains ai and is of the form
ai 2 [x, y], this conjunct is replaced with true if t 2 [x, y],
false otherwise. If the conjunct is of the form vj�ai 2 [x, y],
we replace the conjunct with vj 2 [t + x, t + y]. The other
possibility is that ψ results from a wait of ∆t time at time t,
with a reactive wait strategy Rj . In this case, the new time
is t+ ∆t for ψ. As a result of the wait, some uncontrollable
timepoints ui 2 Λi are assumed to have occured, and some
controllable timepoints ai 2 Rj may be executed reactively

during the wait. Let vi 2 Λi [ Rj be these timepoints oc-
curring during the wait. The execution time of these time-
points is assumed to be in [t, t + ∆t]. For uncontrollable
timepoints u′i 2 Λ′i � Λi for which the activation time ends
at t + ∆′ti < t + ∆t, and potential controllable timepoints
a′i instantly reacting to these uncontrollable timepoints, the
execution time is further reduced and considered to be in
[t, t + ∆′ti ]. We define a concept of tight bound to update
constraints which restricts time intervals in order to account
for all possible values vi can take between t and t + ∆t.
For all conjuncts vj � vi 2 [x, y], we replace the conjunct
with vj 2 [t + ∆t + x, t + y]. Intuitively, this means that
since vi can happen at the latest at t + ∆t, vj can not be
allowed to happen before t+ ∆t +x. Likewise, since vi can
happen at the earliest at t, vj can not be allowed to happen
after t + y. Finally, if t + ∆t + x > t + y, the conjunct is
replaced with false . Also, the process can be applied recur-
sively in the event that vj is also a timepoint that occurred
during the wait, in which case the conjunct would be re-
placed by true or false. In any case, any conjunct obtained
of the form aj 2 [x′, y′] is replaced with false if t+∆t > y′.
Finally, if all conjuncts inside a disjunct are set to false by
this process, the constraint is violated and the DTNU is no
longer satisfiable.

5 Learning-based Heuristic
We present here our learning model and explain how it pro-
vides tree search heuristic guidance. Our learning architec-
ture originates from (Gilmer et al. 2017). It uses message
passing rules allowing neural networks to process graph-
structured inputs where both vertices and edges possess fea-
tures. This architecture was originally designed for node
classification in quantum chemistry and achieved state-of-
the-art results on a molecular property prediction bench-
mark. Here, we first define a way of converting DTNUs into
graph data. Then, we process the graph data with our MPNN
and use the output to guide the tree search.

Let Γ = fA,U,C, Lg be a DTNU. We explain how we
turn Γ into a graph G = (K, E). First, we convert all time
values from absolute to relative with the assumption the cur-
rent time for Γ is t = 0. We search all converted time inter-
vals [xi, yi] in C and L for the highest interval bound value
dmax, i.e. the farthest point in time. We proceed to normalize
every time value in C and L by dividing them by dmax. As
a result, every time value becomes a real number between 0
and 1. Next, we convert each controllable timepoint a 2 A
and uncontrollable timepoint u 2 U into graph nodes with
corresponding controllable or uncontrollable node features.
The time constraints in C and contingency links in L are ex-
pressed as edges between nodes with 10 different edge dis-
tance classes (0 : [0, 0.1), 1 : [0.1, 0.2), ..., 9 : [0.9, 1]). We
also use additional edge features to account for edge types
(constraint, disjunction, contingency link, direction sign for
lower and upper bounds). Moreover, intermediary nodes are
used with a distinct node feature in order to map possible
disjunctions in constraints and contingency links. We add
a WAIT node with a distinct node feature which implicitly
designates the act of waiting a period of time. The graph
conversion of DTNU γ is characterized by three elements:



the matrix of all node features Xκ, the adjacency matrix of
the graph Xε and the matrix of all edge features Xρ.

These features are processed by several consecutive mes-
sage passing layers from (Gilmer et al. 2017). Each layer
takes an input graph, consists of a phase during which mes-
sages are passed between nodes, and returns the same graph
with new node features. The overall process for a layer is
the following. For each node κi in the input graph, a feature
aggregation phase is applied and creates new features for
κi from current features of neighboring nodes and edges. In
detail, for each neighbor node κj , a small neural network
(termed multi-layer perceptron, or MLP) takes as input the
features of the edge connecting κi and κj and returns a ma-
trix which is then multiplied by the features of κj to obtain a
feature vector. The sum of these vectors for the entire neigh-
borhood defines the new features for κi. The output of the
message passing layer consists of the graph updated with
the new node features. The feature aggregation process be-
ing the same for any node, it can be applied to input graphs
of any size, i.e. it enables our MPNN architecture to take as
input DTNUs of any size. Moreover, each message passing
layer contains a different MLP and can thus be trained to
learn a different feature aggregation scheme.

Let f be the mathematical function for our MPNN and θ
its set of parameters. Our function f stacks 5 message pass-
ing layers coupled with the ReLU(�) = max(0, �) piece-
wise activation function (Glorot, Bordes, and Bengio 2011).
The sigmoid function σ(�) = 1

1+exp(−·) is then used
to obtain a list of probabilities π over all nodes in G :
fθ(Xκ, Xε, Xρ) = π. The probability of each node κ in π
corresponds to the likelihood of transitioning into a TDC
DTNU from the original DTNU Γ by taking the action cor-
responding to κ. If κ represents a controllable timepoint a
in Γ, its corresponding probability in π is the likelihood of
the sub-DTNU resulting from the execution of a being TDC.
If κ represents a WAIT decision, its probability refers to the
likelihood of the WAIT node having a true attribute, i.e. the
likelihood of all children DTNUs resulting from the wait be-
ing TDC (with the wait duration rules set in x4.2). We call
these two types of nodes active nodes. Otherwise, if κ is
another type of node, its probability is not relevant to the
problem and ignored. Our MPNN is trained on DTNUs gen-
erated and solved in x6 only on active nodes by minimizing
the cross-entropy loss:

1

m

mX
i=1

qX
j=1

�Yij log(fθ(Xi)j)� (1�Yij) log(1� fθ(Xi)j)

Here Xi = (Xi� , Xi� , Xi�) is DTNU number i among a
training set of m examples, Yij is the TDC controllability (1
or 0) of active node number j for DTNU number i.

Lastly, the MPNN heuristic is used in the following way
in the tree search. Once a d-OR node is reached, the parent
DTNU node is converted into a graph and the MPNN f is
called upon the corresponding graph elements Xκ, Xε, Xρ.
Active nodes in output probabilities π are then ordered by
highest values first, and the tree search visits the correspond-
ing children tree nodes in the suggested order, preferring
children with higher likelihood of being TDC first.

6 Randomized Simulations for Heuristic
Training

We leverage a learning-based heuristic to guide the tree
search. A key component in learning-based methods is the
annotated training data. We generate such data in automatic
manner by using a DTNU generator to create random DTNU
problems and solving them with a modified version of the
tree search. We store results and use them for training the
MPNN. We detail now our data generation strategy.

We create DTNUs with a number of controllable time-
points ranging from 10 to 20 and uncontrollable timepoints
ranging from 1 to 3. The generation process is the following.
For interval bounds of constraint conjuncts or contingency
links, we randomly generate real numbers within [0, 100].
We restrict the number of conjuncts inside a disjunct to 5 at
most. A random number n1 2 [10, 20] of controllable time-
points and n2 2 [1, 3] of uncontrollable timepoints are se-
lected. Each uncontrollable timepoint is randomly linked to
a different controllable timepoint with a contingency link.
Next, we iterate over the list of timepoints, and for each
timepoint vi not appearing in constraints or contingency
links, we add in the constraints a disjunct for which at least
one conjunct constrains vi. The type of conjunct is selected
randomly from either a distance conjunct vi� vj 2 [x, y] or
a bounded conjunct vi 2 [x, y]. On the other hand, if vi was
already present in the constraints or contingency links, we
add a disjunct constraining vi with only a 20% probability.

In order to solve these DTNUs, we modify the tree search
as follows. For a DTNU Γ, the first d-OR child node is de-
veloped as well as its children ψ1, ψ2, ..., ψn 2 Ψ. The mod-
ified tree search explores each ψi multiple times (ν times at
most), each time with a timeout of τ seconds. We set ν = 25
and τ = 3. For each exploration of ψi, children nodes of any
d-OR node encountered in the corresponding subtree are ex-
plored randomly each time. If ψi is proved to be either TDC
or non-TDC during an exploration, the next explorations of
the same child ψi are called off and the truth attribute βi of
ψi is updated accordingly. The active node number k, cor-
responding to the decision leading to ψi from DTNU Γ’s
d-OR node, is updated with the same value, i.e. Yk = βi (1
for true, 0 for false). If every exploration times out, ψi is
assumed non-TDC and Yk is set to false. Once each ψi has
been explored, the pair hG(Γ), (Y1, Y2, ..., Yn)i is stored in
the training set, whereG(Γ) is the graph conversion of Γ de-
scribed in x5. Data related to solved sub-DTNUs of Γ are not
stored in the training set as it was found to cause bias issues
and overall decrease generalization in MPNN predictions.

The assumption of non-TDC controllability for children
nodes for which all explorations time out is acceptable in the
sense that the heuristic used is not admissible and does not
need to be. The output of the MPNN is a probability for each
child node of the d-OR node, creating a preferential order of
visit by highest probabilities first. Even in the event the sug-
gested order first recommends visiting children nodes which
will be found to be non-TDC, the algorithm will continue to
explore the remaining children nodes until one is found to
be TDC. Nevertheless, such a scenario will rarely occur as
the trained MPNN will give higher probabilities for children



nodes for which explorations would tend to find a TDC strat-
egy before timeout, and lower probabilities for ones where
explorations would tend to result in a timeout.

7 Strategy Execution
A strategy found by the tree search for a DTNU Γ is sound
and guarantees constraint satisfiability if executed in the fol-
lowing manner. LetQ be the system interacting with the en-
vironment, executing controllable timepoints and observing
how uncontrollable timepoints unfold. At each DTNU node
in the tree, Q moves on to the child d-OR node. The child
node ψi of the d-OR node which was found by the strategy
to have a true attribute is selected. If ψi is a DTNU node,
Q executes the corresponding controllable timepoint ai and
moves on to ψi. If ψi is a WAIT node, Q moves on to ψi,
reads the wait duration ∆t stored in ψi and moves on to the
child w-OR node. The child node ANDRj of the w-OR node
which has a true attribute is selected, and Q will wait ∆t

time units with the reactive wait strategy Rj . After the wait
is over, Q observes the list of all uncontrollable timepoints
Λi which occurred, deduces which DTNU child node of the
ANDRj node it transitioned into, and moves on to that node.

By following these guidelines, the final tree node Q tran-
sitions into is necessarily a leaf node with a true attribute, i.e.
a node for which all constraints are satisfied. This is due to
the fact that for d-OR and w-OR nodes Q visits, Q chooses
to transition into a child node with a true attribute. For AND
nodes Q visits, all children DTNU nodes have a true at-
tribute, soQ transitions into a child node with a true attribute
regardless of how uncontrollable timepoints unfold.

8 Experiments
We evaluate experimentally the efficiency of the tree search
approach and the effect of the MPNN’s guidance. We also
compare them with a DC solver from (Cimatti, Micheli, and
Roveri 2016). TDC is a subset of DC and a more restric-
tive form of controllability: non-TDC controllability does
not imply non-DC controllability. A TDC solver can thus
be expected to offer better performance than a DC one while
potentially being unable to find a strategy when a DC algo-
rithm would. In this section, we refer to the tree search algo-
rithm as TS, the tree search algorithm guided by the trained
MPNN up to the 15th (respectively Xth) d-OR node depth-
wise in the tree as MPNN-TS (respectively MPNN-TS-X)
and the most efficient DC solver from (Cimatti, Micheli, and
Roveri 2016) as PYDC-SMT ordered.

First, we use the benchmark in the experiments of
(Cimatti, Micheli, and Roveri 2016) from which we remove
DTNs and STNs. We compare TS, MPNN-TS and PYDC-
SMT on the resulting benchmark which is comprised of 290
DTNUs and 1042 STNUs. Here, Limiting the maximum
depth use of the MPNN to 15 offers a good trade off between
guidance gain and cost of calling the heuristic. Results are
given in Figure 3. We observe that TS solves roughly 50%
more problem instances than PYDC-SMT within the allo-
cated time (20 seconds). In addition, TS solves 56% of all
instances while the remaining ones time out. Among solved
instances, a strategy is found for 89% and the remaining

Figure 3: Experiments on (Cimatti, Micheli, and Roveri 2016)’s
benchmark from which DTNs and STNs have been removed.
The X-axis represents the allocated time in seconds and the Y-axis
the number of instances in the benchmark each solver can solve
within the corresponding allocated time. Timeout is set to 20 sec-
onds per instance.

11% are proved non-TDC. On the other hand, PYDC-SMT
solves 37% of all instances. A strategy is found for 85%
of PYDC-SMT’s solved instances while the remaining 15%
are proved non-DC. Finally, out of all instances PYDC-SMT
solves, TS solves 97% accurately with the same conclusion,
i.e. TDC when DC and non-TDC when non-DC. The use
of the heuristic leads to an additional +6% problems solved
within the allocated time. We argue this small increase is es-
sentially due to the fact that most problems solved in the
benchmark are small-sized problems with few timepoints
which are solved quickly. Despite this fact, the heuristic still
provides performance boost on a benchmark generated with
another DTNU generator, suggesting the bias introduced by
our DTNU generator remains limited and the MPNN is able
to generalize to DTNUs created with a different approach.

For further evaluation of the heuristic, we create new
benchmarks using the DTNU generator from x6 with vary-
ing number of timepoints. These benchmarks have fewer
quick to solve DTNUs and harder ones instead. Each bench-
mark contains 500 randomly generated DTNUs which have
1 to 3 uncontrollable timepoints. Moreover, each DTNU has
10 to 20 controllable timepoints in the first benchmark B1,
20 to 25 in the second benchmark B2 and 25 to 30 in the
last benchmark B3. Each disjunct in the constraints of any
DTNU contains up to 5 conjuncts. Experiments on B1, B2

and B3 are respectively shown in Figure 4, 6c (in the ap-
pendix) and 5. We note that for all three benchmarks no
solver ever proves non-TDC or non-DC controllability be-
fore timing out due to the larger size of these problems.

PYDC-SMT performs poorly on B1 and cannot solve any
instance on B2 and B3. TS does not perform well on B2

and only solves 2 instances on B3. However, we see a sig-
nificantly higher gain from the use of the MPNN, varying
with the maximum depth use. At best depth use, the gain is



Figure 4: Experiments on benchmark B1. Axes are the same as
in Figure 3. Timeout is set to 30 seconds per instance.

+91% instances solved forB1, +980% forB2 and +1150%
forB3. The more timepoints instances have, the more worth-
while heuristic guidance appears to be. Indeed, the optimal
maximum depth use of the MPNN in the tree increases with
the problem size: 15 for B1, 60 for B2 and 120 for B3. We
argue this is due to the fact that more timepoints results in a
wider search tree overall, including in deeper sections where
heuristic use was not necessarily worth its cost for smaller
problems. Furthermore, the MPNN is trained on randomly
generated DTNUs which have 10 to 20 controllable time-
points. The promising gains shown by experiments on B2

and B3 suggest generalization of the MPNN to bigger prob-
lems than it is trained on.

The proposed tree search approach presents a good trade
off between search completeness and effectiveness: almost
all examples solved by PYDC-SMT from (Cimatti, Micheli,
and Roveri 2016)’s benchmark are solved with the same
conclusion, and many more which could not be solved are.
Moreover, the TDC approach scales up better to problems
with more timepoints, and the tree structure allows the use
of learning-based heuristics. Although these heuristics are
not key to solving problems of big scales, our experiments
suggest they can still provide a high increase in efficiency.

9 Related Work
Learning-based heuristics have become increasingly popu-
lar for planning, combinatorial and network modeling prob-
lems. Recent works applied to network modeling and rout-
ing problems include (Rusek et al. 2019), (Chen et al. 2018),
(Xu et al. 2018), (Kool and Welling 2018). Recently, GNNs
have become a popular extension of CNNs. Essentially, their
ability to represent problems with a graph structure and the
resulting node permutation invariance makes them conve-
nient for some applications. We refer the reader to (Wu et
al. 2019) for a complete survey on GNNs. In combinatorial
optimization, GNNs can benefit both approximate and exact
solvers. In (Li, Chen, and Koltun 2018), authors combine
tree search, GNNs and a local search algorithm to achieve

Figure 5: Experiments on benchmark B3. Axes are the same as
in Figure 3. Timeout is set to 180 seconds.

state-of-the-art results for approximate solving of NP-hard
problems such as the maximum independent set problem.
On the other hand, (Gasse et al. 2019) use a GNN for branch
and bound variable selection for exact solving of NP-hard
problems and achieve superior results to previous learning
approaches. In path-planning problems with NP-hard con-
straints, (Osanlou et al. 2019) use a GNN to predict an upper
bound for a branch and bound solver and outperform an A*-
based planner coupled with a problem-suited handcrafted
heuristic. (Ma et al. 2018) leverage a GNN for the selection
of a planner inside a portfolio for STRIPS planning prob-
lems and outperform the previous leading learning-based ap-
proach based on a CNN (Sievers et al. 2019). In most works,
GNNs seem to offer generalization to bigger problems than
they are trained on. Results from our experiments are in line
with this observation.

10 Conclusion

We introduced a new type of controllability, time-based dy-
namic controllability (TDC), and a tree search approach
for solving disjunctive temporal networks with uncertainty
(DTNU) in TDC. Strategies are built by discretizing time
and exploring different decisions which can be taken at dif-
ferent key points, as well as anticipating how uncontrol-
lable timepoints can unfold. We defined constraint propa-
gation rules which ensure soundness of strategies found. We
showed that the tree search approach is able to solve DTNUs
in TDC more efficiently than the state-of-the-art dynamic
controllability (DC) solver, PYDC-SMT, with almost al-
ways the same conclusion. Lastly, we created MPNN-TS, a
solver which combines the tree search with a heuristic func-
tion based on message passing neural networks (MPNN) for
guidance. The MPNN is trained with a self-supervised strat-
egy and enables steady improvements of the tree search on
harder DTNU problems, notably on DTNUs of bigger size
than those used for training the MPNN.
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11 Appendix
11.1 Plots

(a) Experiments on (Cimatti, Micheli, and Roveri 2016)’s bench-
mark from which the DTNs and STNs have been removed. The
X-axis represents the allocated time in seconds and the Y-axis the
total number of instances that each solver can solve within the cor-
responding allocated time. Timeout is set to 20 seconds per in-
stance.

(b) Experiments on benchmark B1. Axes are the same as in figure
6a. Timeout is set to 30 seconds per instance.
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(c) Experiments on benchmark B2. Axes are the same as in figure
6a. Timeout is set to 60 seconds per instance.

(d) Experiments on benchmark B3. Axes are the same as in figure
6a. Timeout is set to 180 seconds per instance.

Figure 6: Summary of experiments on benchmarks




