Reinforcement Learning of Risk-Constrained Policies
in Markov Decision Processes
(Extended Abstract)

Tomas Brazdil', Krishnendu Chatterjee?, Petr Novotny', Jifi Vahala'
Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbrazdil, petr.novotny, xvahalal } @fi.muni.cz
2Institute of Science and Technology Austria, Klosterneuburg, Austria
Krishnendu.Chatterjee @ist.ac.at

Abstract

Markov decision processes (MDPs) are the standard model
of sequential decision making under stochastic uncertainty. A
classical optimization criterion for MDPs is to maximize the
expected discounted-sum payoff, which ignores low proba-
bility catastrophic events with highly negative impact on the
system. On the other hand, risk-averse policies require the
probability of undesirable events to be below a given thresh-
old, but they do not account for optimization of the expected
payoff. We consider MDPs with discounted-sum payoff and
with failure states which represent catastrophic outcomes.
The objective of risk-constrained planning is to maximize the
expected discounted-sum payoff among risk-averse policies
that ensure the probability to encounter a failure state is be-
low a desired threshold. Our main contribution is an efficient
risk-constrained planning algorithm that combines UCT-like
search with a predictor learned through interaction with the
MDP (in the style of AlphaZero) and with a risk-constrained
action selection via linear programming. We demonstrate the
effectiveness of our approach with experiments on classical
MDPs from the literature, including benchmarks with an or-
der of 10° states.

This extended abstract summarizes results presented in the

paper Reinforcement Learning of Risk-Constrained Policies
in Markov Decision Processes published at AAAT’20.

1 Introduction & Problem Statement

MDPs. We consider Markov decision processes (MDPs)
with discounted-sum payoff, a standard model of probabilis-
tic decision-making (Puterman 1994). Formally and MDP
consists of: a finite set S of states; a finite alphabet A of ac-
tions; a probabilistic transition function § that given a state
s € S and an action a € A returns the probability distri-
bution (s, a) over the successor states; a reward function
rew : S x A — R; and a discount factor ~.

Fixing some initial state s, the interaction with an MDP
starts in sy and proceeds sequentially through a policy =,
a function which acts as a blueprint for selecting actions,
producing longer and longer history of actions and obser-
vations. We denote by P™(E) the probability of an event F
under policy 7, and by E™[X] the expected value of a ran-
dom variable X under 7.

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Expectation optimization and risk. In the classical studies of
MDPs with discounted-sum payoff, the objective is to obtain
policies that maximize the expected payoff. Formally, the
expected payoff of a policy 7 is the number Payoff (7) =
E™[> 2,7 - rew(s;, a;)], where s;, a; are the current state
and the action selected in step <. However, the expected pay-
off criterion ignores the possible presence of low probability
failure events that can have a highly negative impact.

Motivating scenarios. In scenarios such as a robot exploring
an unknown environment, a significant damage of the robot
ends the mission. Of course, the policy which never moves
the robot would be likely safe in such a scenario, but goes
against the robot’s primary objective of an effective explo-
ration. Instead, the operator can set a risk threshold, i.e. the
probability of the robot’s destruction that is acceptable under
given operational parameters. The goal is to ensure effective
exploration while keeping the risk of destruction below the
threshold, which naturally gives rise to the risk-constrained
planning problem we consider.

In the pure expectation-optimizing framework, we might
attempt to encode the risk-taking aspect directly into the re-
ward function, e.g. by stipulating that entering a failure state
incurs a large negative penalty. However, the risk-taking as-
pect of the resulting policy is then very sensitive to the
penalty variations, demanding an elaborate tuning of the
penalties to achieve a desired behaviour (see also (Undurti
and How 2010) for a critical discussion of reward-function
engineering in risk-constrained scenarios). In contrast, we
aim to achieve an explicit control over the risk taken by a
policy, decoupling the risk-taking aspect from the expected
payoff optimization.

Problem statement. Given an MDP, we fix a set ' C S of
failure states. A risk of a policy 7 is then the probability that
a failure state is encountered:

oo

Risk(m) =]P’"(U{SZ € F})

i=0

We assume that each s € F is a sink, i.e. 6(s,a)(s) = 1
and rew(s,a) = O for all « € A. Hence, F' models fail-
ures after which the agent has to cease interacting with the
environment (e.g. due to being destroyed).

The risk-constrained planning problem is defined as fol-
lows: given an MDP M and a risk threshold A € [0, 1], find

a policy 7 which maximizes Payoff (7) subject to the con-
straint that Risk(7) < A.If there is no feasible policy, i.e. a
policy s.t. Risk(m) < A, then we want to find a policy that
minimizes the risk and among all such policies optimizes the
expected payoff.

The risk-constrained planning problem can be formu-
lated as a special case of constrained MDPs (Altman 1999)
(see (Brazdil et al. 2020) for an overview of related work).
Our main contribution is a new reinforcement-learning algo-
rithm for risk-constrained planning.

2 Our Contribution

We present RAlph (a portmanteau of “Risk™ and “Alpha”),
an online algorithm for risk-constrained planning. Inspired
by the successful approach of AlphaZero (Silver et al. 2017,
2018), RAlph combines a UCT-like exploration of the his-
tory tree T of the MDP with evaluation of the leaf nodes via
a suitable predictor learned through a repeated interaction
with the system. On top of this, we augment the algorithm’s
action-selection phase with a risk-constrained mechanism
based on evaluation of a linear program over the constructed
tree. The algorithm starts with a risk threshold Ay = A,
which is updated in each decision step to take into account
the risk already taken by the agent. We denote by A; the
threshold in step 7.

The main novel features of RAlph (in comparison with
the AlphaZero framework) are the following:

Risk predictor. In our algorithm, the predictor is extended
with risk prediction.

Risk-constrained action selection. When selecting an ac-
tion a; to be played at step ¢, we solve a linear program (LP)
over T, yielding a local policy that maximizes the estimated
payoff while keeping the estimated risk below the current
threshold A,. The distribution &; used by the local policy in
the first step is then used to sample a;. The LP is such that
if the predictor was replaced with a perfect oracle, the LP
solution would give the optimal risk-constrained policy.

Risk-constrained exploration. Some variants of Alp-
haZero enable additional exploration by selecting each ac-
tion with a probability proportional to its exponentiated visit
count (Silver et al. 2017). Our algorithm uses a technique
which perturbs the distribution computed by the LP while
keeping the risk estimate of the perturbed distribution below
the required threshold

Estimation of alternative risk. The risk threshold must be
updated after playing an action, since each possible outcome
of the action has a potential contribution towards the global
risk. We use linear programming and the risk predictor to
obtain an estimate of these contributions.

3 Implementation & Evaluation

Predictor. In principle any predictor (e.g. a neural net) can
be used with RAIph. In our implementation, as a proof of
concept, we use just a simple table predictor, directly storing
the estimated payoff and risk for each state s.

Benchmarks. We implemented RAlph and evaluated it on

two types of benchmarks. The first is a perfectly observable
version of Hallway (Pineau et al. 2003; Smith and Simmons

I
L w B~
QW
[=3 Y
= Q =
e

b}

Figure 1: Example of a Hallway MDP. Symbols ’1’, ’x’, ’g
represent wall/trap/goal cell respectively. The agent starts in
B facing east, and obtains a reward for reaching the goal cell.

2004) where we control arobot in a grid maze. In each move,
there is a chance of the robot being shifted sideways of the
intended move direction, possibly into a trap where there is a
chance of destruction. As a second type, we consider a con-
trollable 1-dimensional random walk, modeling an investor
in a financial market.

Evaluation. We evaluate RAIph on four instances of the
Hallway benchmark. The corresponding MDPs have state-
spaces of sizes equal to 20, 44, 1136, and 6553600, respec-
tively. For the random walk, we consider benchmarks with
50 and 200 states. We compared RAIph with the RAMCP
algorithm from (Chatterjee et al. 2018). RAMCP can also
perform risk-averse planning via the use of heuristic search
and linear programming, but does not use any predictor. The
outcome of our experiments is reported in (Brézdil et al.
2020). RAlph was shown to be much faster than RAMCP,
making up to two orders of magnitude less node expansions
when building 7. RAlph also consistently finds solutions
that satisfy the risk threshold, which is not always the case
for RAMCP, whose expected payoff and risk tended to de-
teriorate quite fast with increasing number of states. In con-
trast, RAlph was able to learn a well-behaving risk-averse
policy in less than 15 minutes even in the largest benchmark.

Discussion. RAlph exhibited interesting behavior on several
benchmarks. An an example, consider the Hallway instance
shown in Figure 1. For A = 0, the only way to reach the gold
is by exploiting the move perturbations: since the robot can-
not to move east from C without risking a shift to the trap,
it must keep circling through A, B, C, D until it is randomly
shifted to E. RAlph is able, with some parameter tuning, to
find this policy.

4 Conclusions & Future Work

Our experiments show that even with a simple predictor,
RAIph performs and scales significantly better than a state-
of-the-art algorithm. As an interesting future work we see
extension of the method to POMDPs and incorporation of
more sophisticated predictors.

Acknowledgements

Krishnendu Chatterjee is supported by the Austrian Science
Fund (FWF) NFN Grant No. S11407-N23 (RiSE/SHiINE),
and COST Action GAMENET. Tomas Brazdil is supported
by the Grant Agency of Masaryk University grant no.
MUNI/G/0739/2017 and by the Czech Science Foundation
grant No. 18-11193S. Petr Novotny and Jif{ Vahala are sup-
ported by the Czech Science Foundation grant No. GJ19-
15134Y.

References

Altman, E. 1999. Constrained Markov decision processes,
volume 7. CRC Press.

Brazdil, T.; Chatterjee, K.; Novotny, P.; and Vahala, J.
2020. Reinforcement learning of risk-constrained policies
in Markov decision processes. CoRR abs/2002.12086.

Chatterjee, K.; Elgyiitt, A.; Novotny, P.; and Rouillé, O.
2018. Expectation optimization with probabilistic guaran-
tees in pomdps with discounted-sum objectives. In IJCAI
2018, 4692-4699.

Pineau, J.; Gordon, G.; Thrun, S.; et al. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In 1J-
CAI volume 3, 1025-1032.

Puterman, M. L. 1994. Markov Decision Processes. J. Wiley
and Sons.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018. A
general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science 362(6419):1140-
1144.

Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for POMDPs. In UAI, 520-527. AUAI Press.

Undurti, A., and How, J. P. 2010. An online algorithm for
constrained POMDPs. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, 3966-3973. IEEE.

