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Abstract

If reinforcement learning (RL) is the use of incrementally
gathered data to drive decision-making, then any heuristic
search strategy is fundamentally an RL process. This is per-
haps clearest in real-time planning, where an agent must se-
lect the next action to take within a fixed time bound. Even
in deterministic domains, real-time action selection inher-
ently suffers from uncertainty about those portions of the
state space that have not yet been computed by the looka-
head search. In this paper, we present new results in a line of
research that explores how an agent can benefit from metar-
easoning about this uncertainty. Taking inspiration from prior
work in distributional methods from RL, the Nancy search
framework represents its uncertainty explicitly as beliefs over
cost-to-go. Nancy then expands nodes so as to minimize
the expected regret in case a non-optimal action is chosen.
We present detailed results showing how beliefs can be in-
formed by prior experience and we experimentally compare
Nancy against both conventional real-time search algorithms
like LSS-LRTA* and approaches from RL that exploit un-
certainty, such as Monte Carlo tree search and Kaelbling’s
interval estimation. We find that Nancy generally outper-
forms previous methods, particularly on more difficult prob-
lems. This work illustrates how the distributional perspective
from Bayesian RL can be adapted to deterministic planning
settings, and how deterministic planning can provide useful
testbeds for methods that metareason about uncertainty dur-
ing planning.

Introduction
Some AI applications are subject to real-time constraints,
where the agent must select its next action within a fixed
time bound. Typical examples include user interfaces or the
control of cyber-physical systems, where unbounded pauses
between system actions are undesirable or potentially dan-
gerous. Real-time planning methods tackle this problem set-
ting. Given a forward model of the domain dynamics, the
planning agent incrementally plans toward a goal, trying
to minimize the total cost of the resulting trajectory. (Un-
like some reinforcement learning settings, we assume here
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that the state transition function can be applied on arbitrary
states.) Many real-time heuristic search methods follow the
basic three-phase paradigm set down in the seminal work of
Korf (1990):

1) starting at the agent’s current state, expand a fixed num-
ber of nodes according to the given time bound to form a
lookahead search space (LSS);

2) use the heuristic values of the frontier nodes in combina-
tion with the path costs incurred to reach them to estimate
the cost-to-goal for each currently-applicable action, and
commit to the action with the lowest estimate;

3) to prevent the agent from cycling if it returns to the same
state in the future, update the heuristic values of one or
more states in the LSS.

For example, in the popular and typical algorithm LSS-
LRTA* (Koenig and Sun 2008), the lookahead in step 1 is
performed using A* (Hart, Nilsson, and Raphael 1968), the
value estimates in step 2 are implicitly calculated for each
node as the minimum f value among its successors (the
‘minimin’ backup), and the learning in step 3 is performed
by updating h values for all nodes in the LSS using a vari-
ant of Dijkstra’s algorithm. Similar methods are used in re-
inforcement learning (RL), such as RTDP (Barto, Bradtke,
and Singh 1995). While elegant and often successful, this
paradigm does not explicitly address the uncertainty inher-
ent in real-time planning. As the search computes only a
miniscule fraction of the state space (up to the LSS fron-
tier), it must commit to action decisions subject to uncer-
tainty about the part of the state space beyond that frontier.
In this paper, we advance a line of research inspired by work
in RL, viewing real-time planning as a form of decision-
making under uncertainty.

For example, as pointed out by Mutchler (1986), A*’s pol-
icy of expanding the frontier node with the lowest f value is
not, in general, the optimal way to make use of a limited
number of node expansions. If we view the agent as facing
a decision under uncertainty, it is sometimes beneficial to
gain knowledge about inferior-looking options. For exam-
ple, consider the situation depicted in Figure 1. The figure
shows the agent’s current beliefs about the expected total
plan cost that would be incurred by committing to the ap-
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Figure 1: Should an agent expand nodes under α or β?

plicable actions α and β respectively. Each such belief is
a probability distribution over possible costs, with the ex-
pected value denoted by f̂(·). In the displayed situation, the
agent is quite certain about the value of α but quite uncer-
tain about the value of β. It is likely that α is better, but
there is a significant possibility that β may be better instead.
Given this, expanding frontier nodes under α can be less
useful than expanding under β, even though β is believed
to have a higher expected cost. It can be more important
to explore the possibility that a poorly-understood option
might in fact be great than to nail down the exact value of
a good-looking option that is already well understood. Note
that this is distinct from the well-known exploration-versus-
exploration dilemma, as we are given the exact amount of
time that we should spend exploring. We also note that this
problem does not arise in off-line optimal search, where ev-
ery node whose f value is less than the optimal solution cost
must be expanded.

Although insights such as this derived from a reasoning
under uncertainty perspective seem powerful, they are not
widely applied in deterministic planning. Recently, a real-
time heuristic search framework called Nancy has been pro-
posed, that uses explicit reasoning about uncertainty to guide
its search (Mitchell et al. 2019; Fickert et al. 2020). Nancy
treats the traditional heuristic estimate of cost-to-go from a
given state as uncertain evidence, inducing beliefs – proba-
bility distributions – over the actual remaining cost. Nancy
uses a node-expansion strategy that minimizes the expected
regret in case a non-optimal action is chosen.

Two alternative methods have been proposed to define the
beliefs at frontier nodes. The first one is assumption-based
(Mitchell et al. 2019), assuming Gaussian distributions as in
prior work (O’Ceallaigh and Ruml 2015) and tuning them
on-line. As these assumptions are not necessarily justified,
the second method relies on data from previous search expe-
rience (Fickert et al. 2020), approximating the beliefs from
data gathered in the same problem family.

In this paper, we provide further experimental results for
Nancy. First, we examine the belief distributions that are
learned from training data, showing in detail for the first
time how heuristic error varies across planning problems.
Second, we provide a comparison to methods previously
proposed in RL for exploiting uncertainty in search. Monte-
Carlo tree search (MCTS) methods (Kocsis and Szepesvári
2006; Keller and Helmert 2013; Feldman and Domshlak
2014; Silver et al. 2018), which originated in probabilistic
planning, maintain node-value averages along with node-
visited counts and use these to give a boost to actions with
uncertain values. The previous work perhaps closest to ours,

Interval Estimation (Kaelbling 1993), explicitly represents
uncertainty and uses it to guide search effort. We adapt these
methods to our setting. Overall, we find that Nancy typi-
cally outperforms previous methods despite its metareason-
ing overhead, suggesting that it makes better use of limited
node expansions. Nancy’s success illustrates the strength of
adopting the reasoning under uncertainty perspective from
RL for resource-bounded decision-making, even in com-
pletely deterministic problem domains. It also provides a
clearly defined setting might interest RL researchers that iso-
lates the uncertainty due to computational resource bounds
from that present in MDPs due to stochastic actions effects.

Previous Work
There have been many proposals for real-time heuristic
search methods. Some, like LSS-LRTA*, are very general
and apply to any state space search problem. Others assume
undirected state spaces in which it is always possible to im-
mediately return to a node’s parent state. Several are spe-
cialized to grid-based pathfinding. In this paper, we choose
LSS-LRTA* as our point of comparison due to its simplicity
and generality.

Mutchler (1986) raises the question of how best to allo-
cate a limited number of expansions. His analysis considers
complete binary trees of uniform depth where each edge is
randomly assigned cost 1 with probability p and cost 0 oth-
erwise. He proves that a minimum f expansion policy is not
optimal for such trees in general, but that it is optimal for
certain values of p and certain numbers of expansions. It is
not clear how to apply these results to more realistic state
spaces.

Pemberton and Korf (1994) point out that it can be use-
ful to use different criteria for action selection versus node
expansion. They use binary trees with random edge costs
uniformly distributed between 0 and 1 and use a computer
algebra package to generate code to compute exact f̂ values
under the assumption that only one or two tree levels remain
until a goal (the ‘last incremental decision problem’). As we
will discuss in more detail below, this requires representing
and reasoning about the distribution of possible values under
child nodes in order to compute the distribution at each par-
ent node. They conclude that a strategy based on expected
values is barely better than the classic minimin strategy and
impractical to compute for state spaces beyond tiny trees.
They also investigate a method in which the nodes with min-
imum f are expanded and the action with minimum f̂ is se-
lected and find that it performs better than using f for both.

Given the pessimism surrounding exact estimates, Pem-
berton (1995) proposes an approximate method called k-
best. Only the k best frontier nodes below a top-level action
are used to compute its value, allowing a fixed inventory of
equations derived in advance to be used to compute expected
values during search. Although this approach did surpass
minimin in experiments on random binary trees, Pemberton
concludes that its complexity makes it impractical. It is also
not clear how to apply these results beyond random binary
trees.

Our problem setting bears a superficial similarity to the



exploration/exploitation trade-off examined in reinforce-
ment learning. However, note that our central challenge is
how to make use of a given number of expansions — we
do not have to decide between exploring for more informa-
tion (by expanding additional nodes) or exploiting our cur-
rent estimates (by committing to the currently-best-looking
action). DTA* (Russell and Wefald 1991) and Mo’RTS
(O’Ceallaigh and Ruml 2015) are examples of real-time
search algorithms that directly address that trade-off. Both
are based on estimating the value of the information poten-
tially gained by additional lookahead search and comparing
this to a time penalty for the delay incurred. DTA* expands
the frontier node with minimum f and Mo’RTS expands the
frontier node with minimum f̂ .

MCTS algorithms such as UCT (Kocsis and Szepesvári
2006) share our motivation of recognizing the uncertainty in
the agent’s beliefs and trying to generate relevant parts of
the state space. Tolpin and Shimony (2012) emphasize the
purpose of lookahead as aiding in the choice of the agent’s
next action and, as we will below, they take an approach
motivated by the value of information. Lieck and Tous-
saint (2017) investigate selective sampling for MCTS. How-
ever, unlike most work in MCTS, we focus on determinis-
tic problems and we have no need to sample action transi-
tions or perform roll-outs. Furthermore, real-time planning
can arise in applications where perhaps only a dozen nodes
can be generated per decision, a regime where MCTS algo-
rithms can perform poorly, as a single roll-out may generate
hundreds of nodes.

Work on active learning also emphasizes careful selection
of computations to refine beliefs. For example, Frazier, Pow-
ell, and Dayanik (2008) present an approach they term ‘the
knowledge gradient’ for allocating measurements subject to
noise in order to maximize decision quality. More broadly,
the notion of representing beliefs over values during learn-
ing and decision-making has been pursued in Bayesian rein-
forcement learning (Dearden, Friedman, and Russell 1998;
McMahan, Likhachev, and Gordon 2005; Sanner et al. 2009;
Bellemare, Dabney, and Munos 2017).

The Nancy Framework
A real-time heuristic search algorithm is made up of several
parts that work together to choose the action that is most
reasonable to execute next. The lookahead component deter-
mines in which direction to search, i.e. which node to expand
next, in order to make the best use of the limited time. Suc-
cessive lookahead steps create the local search space. The
backup component runs after each lookahead step and up-
dates the goal distance estimates of each search node based
on its successors, by propagating the information from the
leafs of the search tree up towards the root. In this section we
give a complete description of the Nancy real-time search
algorithm. Its lookahead is based on a the expected regret
of making a non-optimal action choice, that is, α, the ac-
tion with the smallest expected cost, turned out to have a
higher actual cost than one of the alternatives β. This fol-
lows the classical characterization of risk as the sum of ex-
pected losses in a bad event (α had a higher cost than β)

Algorithm 1: Nancy
1 s := sstart
2 πcurr := 〈〉
3 while sJπcurrK is not a goal state do
4 t := risk lookahead(s)
5 πcurr := update path(s, t, πcurr, π)
6 apply next(s, πcurr)
7 backup(lss)
8 while s is not a goal state do
9 apply next(s, πcurr)

10 fn apply next(s, πcurr)
11 let a0, . . . , an be the action sequence of πcurr
12 s := sJa0K
13 πcurr := 〈a1, . . . , an〉

14 fn update path(s, t, πcurr, π)
15 if (πcurr = 〈〉 or
16 t is a goal state or
17 f̂(t) < f̂(sJπcurrK) or
18 f̂(t) = f̂(sJπcurrK) and ĥ(t) < ĥ(sJπcurrK))

then
19 return π
20 return πcurr

weighted by the probability of that event. Nancy’s epony-
mous backup component propagates the belief distributions
of the best-looking child to its parents.

The Components of Nancy
Algorithm 1 shows the pseudo-code for Nancy. The looka-
head uses risk to guide the direction of the lookahead, build-
ing up the local search space (lss) and returning the overall
best frontier node according to f̂ (line 4), breaking ties by ĥ.
The backup function is used to update the beliefs by back-
ing up the beliefs from the frontier of the local search space
towards the root. Fickert et al. (2020) prove that Nancy is
complete and will always reach a goal under certain mild
conditions.

Risk-based Lookahead We now explain Nancy’s looka-
head strategy in more detail. Lookahead is performed to
minimize risk. The idea is to find the optimal action to ex-
ecute next while also becoming more certain about possi-
ble alternative actions. Algorithm 2 shows the pseudo-code
for the risk-based lookahead. In the lookahead phase, Nancy
uses her first expansion to generate the top level actions (line
1). From that point forward, Nancy expands nodes such that
an approximation of risk is minimized, until the expansion
or time limit of the lookahead runs out. Each top-level action
(TLA) has an associated open list (denoted by TLA.open
in the pseudo-code) that is ordered by f̂ . Before each ex-
pansion, Nancy has to pick the open list where the expan-
sion will take place. For this purpose, Nancy estimates Bpost
which denotes the updated belief Nancy expects after per-
forming one expansion. The open list where Nancy expects



Algorithm 2: Risk-Based Lookahead
Input: s : state
Output: t : target state with minimal f̂

1 Generate TLAs
2 while lookahead limit is not reached do
3 for tla in TLAs do
4 Swap in Bpost(sJtlaK) for B(sJtlaK)
5 risk[sJtlaK] := risk(TLAs)
6 Restore original B(sJtlaK)
7 chosen := argmin

tla∈TLAs
(risk[tla])

8 t := chosen.open.pop min()
9 if t is goal then

10 return t
11 for a ∈ A(t) do
12 Estimate and cache B(tJaK) and Bpost(tJaK)
13 push(chosen.open, tJaK, f̂(tJaK))
14 u := chosen.open.min()
15 B(sJchosenK) := B(u) + g(u)
16 Bpost(sJchosenK) := Bpost(u) + g(u)

17 best := argmin
tla∈TLAs

(f̂(sJtlaK))

18 return best.open.min()

to arrive at a belief with minimal risk is then selected and
the actual expansion follows, (Alg. 2, line 11). After each
expansion, new information is obtained about the frontier of
the local search space. To make use of this information, the
belief at the top level needs to be updated, such that it agrees
with the new best frontier node.

This lookahead process is repeated until the expansion or
time limit is reached, or a goal state is selected for expan-
sion. Once the lookahead phase ends, the search performs
Nancy backups and executes the TLA with the lowest ex-
pected cost (Algorithm 1, line 12). In the learning phase,
the beliefs B and post-expansion beliefs Bpost of all nodes
within the local search space are updated (Algorithm 1, line
7). This learning process performs a dynamic programming-
like learning step to update the ĥ-values of the expanded
states (like LSS-LRTA*).

Assumption-Based Nancy
Nancy’s risk-based lookahead strategy relies on belief dis-
tributions over the remaining cost to a goal. To model such
distributions, following O’Ceallaigh and Ruml (2015), we
first build Gaussian distributions centered on f̂ with a vari-
ance proportional to the difference between a node’s f̂ and
f values:

B(n) ∼ N
(
f̂(n),

( f̂(n)− f(n)
2

)2)
The mean value f̂(n) is estimated using one-step heuristic
error estimate (Thayer, Dionne, and Ruml 2011). The vari-
ance model reflects the common assumption that heuristics
are more accurate as one approaches a goal, because the

Algorithm 3: Data Collection
1 Pick a set of training problem instances T
2 Pick a search algorithm S
3 for t in T do
4 Solve t with S, while recording all expanded

states
5 for state s expanded by S do
6 Solve s optimally
7 Store pair (h(s), h∗(s))

difference between f(n) and f̂(n) is proportional to d(n),
the estimated remaining search distance (number of steps-
to-go). In this way, search experience is used to continually
adjust the algorithm’s skepticism of its heuristic and inform
its beliefs as the search evolves. Secondly, the Gaussian be-
liefs were truncated from below at the admissible f value
and above at three standard deviations.

Data-Driven Nancy
The assumption-based instantiation of Nancy makes use of
several assumptions about heuristic behavior. We next de-
scribe an alternative approach to obtain these beliefs, which
is based on data. The idea of this method is to use statistics
about heuristic behavior gathered in an offline phase prior to
the search to construct the beliefs. Hence, some or all of the
assumptions to construct beliefs at runtime are replaced with
data. Here we cover the details of the data-driven variant of
Nancy, which we call DDNancy.

Data Generation The purpose of Nancy’s assumptions is
to obtain a better estimate of the possible true goal distances
h∗(s) when only h(s) is available. The approach to replace
these assumptions is to run an offline training phase that
learns the distribution of h∗-values.

Algorithm 3 shows a high-level overview of the data col-
lection process. The h∗ distributions are generated offline
by collecting (h, h∗) pairs from a number of training in-
stances. Each training instance is first solved by an initial
search. Each state that was expanded by that search is then
solved optimally, and its h and h∗ values are stored. By col-
lecting all these pairs, we obtain a set of h∗ values for each
h value, making up the distribution.

In its search, DDNancy uses the heuristic values to look
up the corresponding distribution of h∗ values. It may hap-
pen that DDNancy encounters a state with a heuristic value
h that was not observed in the data gathering process. In that
case, we perform an online extrapolation step on the data.
We pick the largest h′ ≤ h for which we have a distribu-
tion in the data set. The distribution for h is extrapolated by
shifting the distribution of h′ by the difference between h
and h′, i.e., adding (h − h′) to each data point in the dis-
tribution of h′. The newly created distribution is cached to
have it available for the remaining search.

In the learning step, the data-driven instantiation of Nancy
does not change the heuristic values. Instead, the change in
heuristic value is transferred to the distributions, and the data



Figure 2: Beliefs in Blocksworld generated with weighted
A* and LSS-LRTA*.

points are shifted accordingly (similar to the extrapolation
procedure). In the implementation, we simply store the cur-
rent shift value and a pointer to the corresponding distribu-
tion for each expanded state.

In the training process, the initial search is used to sam-
ple the states for the data collection (as the expanded states
are then solved optimally). There are two key motivations to
use this strategy instead of training on the entire state space.
The first reason is practical feasibility. For instances above
a certain size (e.g. Blocksworld with more than 10 blocks),
solving the entire state space would require an unreasonable
amount of time and memory. The second reason is that con-
sidering the entire state space may not make the data more
accurate, as most of these states are not seen in the actual
search. Instead, we want the process to focus on states that
are representative for states encountered by Nancy, and in-
form the algorithm how the heuristic typically behaves on
such a state. The initial search algorithm should therefore
have similar behavior to Nancy to generate a good set of
sample states, and improve the accuracy of the resulting dis-
tributions. We generate the data for each domain separately.
While this requires additional work for each new domain
DDNancy is intended to run on, the heuristic behavior can
vary a lot between different domains, and domain-specific
data can capture the behavior more accurately.

Since DDNancy is a suboptimal search algorithm, we also
use a suboptimal search algorithm to sample the states for
the data generation. Figure 2 shows the belief distributions
that result from using weighted A* with a weight of 2 and
LSS-LRTA* for the sampling. The generated beliefs are very
similar, with only minor differences for large heuristic val-
ues where fewer samples have been observed. This is some-
what expected; while the two algorithm expand different sets
of states due to their different expansion strategies, the un-
derlying instances are the same, and the algorithms will find
similar solutions. We conjecture that it is unlikely for them
to observe a very different heuristic behavior over their re-
spective sets of states. For the experiments in the later sec-
tion, we use weighted A* with a weight of 2 to sample the
training states.

A further key concern for any data-driven algorithm is
how to determine the number of examples necessary to en-
sure that the data observed in those examples are representa-
tive for the general case. This is of special importance with

Figure 3: Beliefs in Blocksworld generated on 35 examples
instances and on 17.

Figure 4: Beliefs generated for Blocksworld and Transport
(unit-cost).

our setup, since we only consider a subset of all states for
any given training instance. Figure 3 shows a comparison of
the resulting beliefs on Blocksworld when only using half
of the available training instances as an empirical indication
whether our data is sufficient. As expected, the spread of h∗
values is smaller when reducing the number of sample states.
Overall however, the distributions have similar shapes.

Figure 4 shows an example of the generated data for
Blocksworld and the unit-cost version of Transport to
demonstrate the differences in heuristic behavior on these
domains. The expected value increases roughly monotoni-
cally in both domains, but slightly faster in Transport, where
the expected value makes a jump when going from h = 2
to h = 3. Furthermore, the variance of observed h∗ values
is greater in Transport. In Blocksworld, the training process
encountered states with slightly larger heuristic values than
those in Transport.

A similar comparison of the generated data for the classic
search domains is shown in Figure 5. While the distribu-
tions are very smooth for the pancake puzzle and the race-
track domain, the expected value of the distributions on the
15-puzzle makes a large jump at h = 4. This shows the po-
tential inaccuracy of the Manhattan distance heuristic in the
15-puzzle: there are states where the heuristic value is small,
but an optimal solution still requires a significant number of
moves.

Empirical Comparison
While Nancy is, to our knowledge, the first method for real-
time heuristic graph search that bases its search strategy on



Figure 5: Beliefs gathered for the uniform-cost 15-puzzle
(top), 16-pancake (middle), and Barto Racetrack (bottom).

belief distributions, there has been much previous work in
the RL community on search methods that attempt to esti-
mate and exploit value uncertainty. However, most RL do-
mains feature stochastic actions, while in our setting the un-
certainty stems entirely from the bounded computation of
the agent. We consider two prominent approaches: interval
estimation and Monte-Carlo tree search. In each case, we
adapt the previous work to our setting and empirically com-
pare it to Nancy.

Domains
We show experiments on the three classic search domains.
First is the classic 100 15-puzzle instances published by
Korf (1985). We test two variants: uniform-cost, in which
every actions costs one, and heavy, in which the action cost
is equal to the label of the moved tile. We use the Manhattan
distance heuristic for all the real-time search algorithms.

Second is the pancake problem (Kleitman et al. 1975;
Gates and Papadimitriou 1979; Heydari and Sudborough
1997) where the objective is to sort a sequence of pancakes
through a minimal number of prefix reversals. We use the
GAP heuristic (Helmert 2010) for for all the real-time search
algorithms. We test three size of pancakes: 16, 32, and 40.
One hundred instances of each size were tested per experi-
ment.

Figure 6: Barto (left) and uniform (right) Racetrack variants.

Third is the Racetrack domain which is very similar to the
grid pathfinding problem, but features additional actions and
inertia. It is reminiscent of autonomous driving and is a vari-
ant of the popular Racetrack problem (Barto, Bradtke, and
Singh 1995). Figure 6 shows the two maps used in our exper-
iments. The track shown on the left was created by Hansen
and Zilberstein (2001), and the cluttered track on the right by
Cserna et al. (2018). The agent moves in a grid attempting
to reach one of a set of goal locations while avoiding static
obstacles. Each action modifies the acceleration of the agent
by −1, 0, or 1 in both the horizontal and vertical directions,
making for a total of 9 distinct actions. There is no limit
on the agent’s speed. The system state includes the agent’s
location and velocity. The objective is to minimize the num-
ber of time steps until a goal cell is reached. The heuristic
function is the maximum, either horizontally or vertically, of
the distance to the goal divided by an estimate of the maxi-
mum achievable velocity in that dimension. This is admissi-
ble. For each of the two maps, we created 25 instances with
starting positions chosen randomly among those cells that
were at least 90% of the maximum distance from a goal.

Interval Estimation
Interval Estimation (IE) (Kaelbling 1993; Strehl and Littman
2004) applies the philosophy of ‘optimism in the face of un-
certainty’ to the problem of action selection in a two-armed
bandit problem. While the method has previously been in-
vestigated primarily for use in MDPs and RL, we adapt it
here for use in real-time deterministic planning. When de-
ciding under which TLA the next node should be expanded,
given the belief distributions of all the TLAs, IE chooses the
TLA with the lowest lower bound on the 95% confidence in-
terval of the backed up cost-to-goal estimate instead of per-
forming a computationally complex risk analysis. To adapt
IE to the real-time search setting, we need to augment it with
a mechanism for heuristic value updates. For each node in
the LSS, we back up the belief from the child with the lowest
lower confidence bound. Thus, the best frontier distributions
under each TLA are eventually backed up to the TLA. The
interval estimation approach naturally practices the spirit of
uncertainty-based exploration in a very computationally ef-
ficient way.

Figure 7 shows an experimental comparison of Nancy and
LSS-LRTA* to IE (and also to a Monte-Carlo tree search



approach, which we discuss in the next subsection). IE per-
forms well in our experiments, and closely matches the per-
formance of Nancy. While Nancy has a slight advantage
on the sliding tile and pancake puzzles, IE works perhaps
marginally better on Racetrack. Overall, IE is very competi-
tive, and yet simple to implement and computationally effi-
cient.

Monte Carlo Tree Search
Monte-Carlo tree search (Browne et al. 2012) approaches
such as UCT (Kocsis and Szepesvári 2006) are popular for
solving stochastic problems such as with MDPs (Keller and
Eyerich 2012) and POMDPs (Silver and Veness 2010). Re-
cently, Schulte and Keller (2014) adopted this to determin-
istic planning problems as trial-based heuristic tree search
(THTS). Like Nancy, THTS also takes the uncertainty about
the heuristic into consideration (though more implicitly).
However, THTS was only described as an offline search
framework. We adapted it to the real-time setting based on
LSS-LRTA*. We replace the A* lookahead in the expansion
phase with the THTS algorithm. More precisely, we use the
THTS-WA* instantiation of the THTS framework since this
variation had the best results for the base setting in the origi-
nal paper (without the preferred operators enhancement that
is specific to domain-independent planning). In the learning
phase, we also use a reversed Dijkstra’s algorithm to update
the heuristic values, working from the uninitialized frontier
tree nodes inwards. In the decision making phase, we use
the identical strategy as LSS-LRTA* and move towards the
node with minimal f -value.

Consider again Figure 7. The real-time variant of THTS
performs poorly on the 15-puzzle (in particular the heavy-
tile version). On the pancake puzzle, it again beaten by most
of the other considered approaches, but it does beat LSS-
LRTA* on the larger instances with small lookahead. On the
Racetrack domain on the other hand, it outperforms all other
algorithms, for all considered lookahead values. Overall, the
uncertainty-aware algorithms (Nancy, IE, and THTS) sur-
pass the conventional LSS-LRTA* baseline, with Nancy and
IE being the most robust.

Discussion
Viewed broadly, reinforcement learning considers how ac-
tion selection should be informed by data that is gath-
ered during execution. This is exactly what heuristic search
strategies do. The states and costs computed during looka-
head are data that inform action selection. As Nancy shows,
a heuristic search can use this data in two ways. Clearly, the
computed lookahead states in a real-time search setting in-
form the selection of the action for the agent to execute. But
more broadly, the problem of designing any heuristic search
strategy, even an off-line one, is an RL problem at the com-
putational level, in that the search space computed so far can
inform the choice of which nodes should be expanded next.
For an optimal off-line search like A*, all nodes whose f
values are less than the optimal solution cost C∗ must be
expanded, so there is little flexibility and less need for a so-
phisticated expansion strategy. But, in contrast, the tight re-
source limitations of real-time search strongly highlight the

need for care in selecting even computational expansion ac-
tions.

This metareasoning problem of heuristic search can be
conceptualized as a POMDP in which each state represents
an entire state space graph, complete with costs on every arc
and h values at every vertex. (To avoid confusion in this dis-
cussion, we will use the term ‘vertex’ for a node in the state
space graph and the term ‘state’ for a state in the POMDP.)
The search does not know which exact state space graph it
is dealing with, thus its situation is captured by a belief dis-
tribution over states. Every node expansion gathers data that
rule out those state space graphs that are inconsistent with
the computed successor nodes, action costs, and h values. A
goal state is a belief that has positive support only on state
spaces that all share the same path from the initial vertex
to a goal vertex, providing a solution to the original prob-
lem but potentially harboring remaining uncertainty about
the unseen portions of the graph. Solving this POMDP for a
policy that, for example, minimizes expected solution length
would give a heuristic search strategy that finds a solution as
quickly as possible by minimizing the expected number of
expansions.

Approaching such a problem in practice depends crucially
on exploiting structure in the h values, the arc costs, and
the distance to the nearest goal. The data-driven version of
Nancy highlights this. However, while Nancy does try to
predict how its beliefs will change with additional search un-
der frontier nodes, note that it is myopic and does not really
plan at the metalevel. For example, if nodes with h = 3 were
to be predicted to have higher expected distance to goal than
nodes with h = 4, due perhaps to a misleading heuristic,
data-driven Nancy will not realize that it must nonetheless
ignore the tempting h = 4 nodes from time to time and try
expanding some h = 3 nodes in order to eventually reach
some h = 2 nodes and eventually the goal.

In related work, Lin et al. (2015) formalize the prob-
lem of metareasoning for an MDP and find that its com-
putational complexity is polynomial in the time required to
solve the MDP itself. This indicates the impracticality of
optimal metareasoning, motivating approximations such as
those used by Nancy.

Conclusion
Inspired by distributional methods from RL, the Nancy
framework reconsiders real-time search as a decision mak-
ing process where limited information creates uncertainty.
Nancy models this uncertainty using belief distributions and
reasons about it to guide the search. In this paper, we pre-
sented further experimental results regarding this approach.
First, we presented detailed results regarding heuristic er-
ror data, which Nancy can use as the basis for its beliefs.
Second, we reported an experimental comparison with ap-
proaches from RL that exploit value uncertainty, such as
Monte Carlo tree search and Kaelbling’s interval estimation.
We find that our approach, Nancy, generally outperforms
previous methods, particularly on more difficult problems.
This work illustrates how distributional methods from RL
can be adapted to deterministic planning settings, and how
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Figure 7: Comparison to IE and THTS. Top: 15-puzzle (left: unit, right: heavy); Middle: pancake (16, 32, and 40); Bottom:
Racetrack (left: Barto, right: uniform).



deterministic planning can provide useful testbeds for ex-
ploring methods that metareason about uncertainty during
planning.
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