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Abstract

Width-based planning methods have been shown to yield
state-of-the-art performance in the Atari 2600 video game
playing domain using pixel input. One approach consists in
an episodic rollout version of the Iterated Width (IW) al-
gorithm called RolloutIW, and uses the B-PROST boolean
feature set to represent states. Another approach, π-IW, aug-
ments RolloutIW with a learned policy to improve how ac-
tions are picked in the rollouts. This policy is implemented as
a neural network, and the feature set is derived from an inter-
mediate representation learned by the policy network. Results
suggest that learned features can be competitive with hand-
crafted ones in the context of width-based search. This pa-
per introduces a new approach, where we leverage variational
autoencoders (VAEs) to learn features for the domains in a
principled manner, directly from pixels, and without supervi-
sion. We use the inference network (or encoder) of the trained
VAEs to extract boolean features from screen states, and use
them for planning with RolloutIW. The trained model in com-
bination with RolloutIW outperforms the original RolloutIW
and human professional play on the Atari 2600 domain and
reduces the size of the feature set from 20.5 million to 4,500.

Introduction
Width-based search algorithms have in the last few years
become among the state-of-the-art approaches to auto-
mated planning, e.g. the original Iterated Width (IW) algo-
rithm (Lipovetzky and Geffner 2012). As in propositional
STRIPS planning, states are represented by a set of proposi-
tional literals, also called boolean features. The state space is
searched with breadth-first search (BFS), but the state space
explosion problem is handled by pruning states based on
their novelty. First a parameter k is chosen, called the width
parameter of the search. Searching with width parameter k
essentially means that we only consider k literals/features at
a time. A state s generated during the search is called novel
if there exists a set of k literals/features not made true in
any earlier generated state. Unless a state is novel, it is im-
mediately pruned from the search. Clearly, we then reduce
the size of the searched state space to be exponential in k.
It has been shown that many classical planning problems,
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e.g. problems from the International Planning Competition
(IPC) domains, can be solved efficiently using width-based
search with very low values of k.

The essential benefit of using width-based algorithms is
the ability to perform semi-structured (based on feature
structures) exploration of the state space, and reach deep
states that may be important for achieving the planning
goals. In classical planning, width-based search has been in-
tegrated with heuristic search methods, leading to Best-First
Width Search (Lipovetzky and Geffner 2017) that performed
well at the 2017 International Planning Competition. Width-
based search has also been adapted to reward-driven prob-
lems where the algorithm uses a simulator for interacting
with the environment (Francès et al. 2017). This has enabled
the use of width-based search in reinforcement learning en-
vironments such as the the Atari 2600 video game suite,
through the Arcade Learning Environment (ALE) (Belle-
mare et al. 2013). There have been several implementa-
tions of width-based search directly using the RAM states
of the Atari computer as features (Lipovetzky, Ramirez,
and Geffner 2015; Shleyfman, Tuisov, and Domshlak 2016;
Jinnai and Fukunaga 2017).

Motivated by the fact that humans do not have access to
the internal RAM states of a computer when playing video
games, methods for using the algorithms based on the raw
screen pixels have been developed. Bandres, Bonet, and
Geffner (2018) propose a modified version of IW, called
RolloutIW, that uses pixel-based features and achieves re-
sults comparable to learning methods in almost real-time on
the ALE. The combination of Reinforcement Learning (RL)
and RolloutIW in the pixel domain is explored by Junyent,
Jonsson, and Gómez (2019), who propose to train a policy
to guide the action selection in rollouts.

Regardless of different efforts, width-based algorithms
are highly exploratory and, not surprisingly, significantly de-
pendent on the quality of the features defined. The original
RolloutIW paper (Bandres, Bonet, and Geffner 2018) uses a
set of features called B-PROST (Liang et al. 2015). These
are features extracted from the screen pixels by splitting
the screen into tiles and keeping track of which colors are
present in which tiles. These features have been designed by
humans to achieve good performance in ALE. Integrating
learning of features efficient for width-based search into the
algorithms themselves rather than using hand-crafted fea-



tures is an interesting challenge—and a challenge that will
bring the algorithms more on a par with humans trying to
learn to play those video games. In Junyent, Jonsson, and
Gómez (2019), the features used were the output features of
the last layer of the policy network, improving the perfor-
mance of IW. With the attempt to learn efficient features for
width-based search, and inspired by the results of Junyent,
Jonsson, and Gómez (2019), this paper investigates the pos-
sibility of a more structured approach to generate features
for width-based search using deep generative models.

More specifically, in this paper we use variational autoen-
coders (VAE)—latent variable models that have been widely
used for representation learning (Kingma and Welling 2019)
as they allow for approximate inference of the latent vari-
ables underlying the data—to learn propositional symbols
directly from pixels and without any supervision. We then
investigate whether the learned symbolic representation can
be successfully used for planning in the Atari 2600 domain.

We compare the planning performance of RolloutIW us-
ing our learned representations with RolloutIW using the
handcrafted B-PROST features, and report human scores
as baseline. Our results show that our learned representa-
tions lead to better performance than B-PROST on Roll-
outIW (and often outperform human players). This is despite
the fact that the B-PROST features also contain temporal
information (how the screen image dynamically changes),
whereas we only extract static features from individual
frames. Apart from improving scores in the Atari 2600 do-
main, we also significantly reduce the number of features
(by a factor of more than 103). We also investigate in more
detail (with ablation studies) which factors seems to lead to
good performance on games in the Atari domain.

The main contributions of our paper are hence:
• We train generative models to learn propositional symbols

for planning, from pixels and without any supervision.
• We run a large-scale evaluation on Atari 2600 where we

compare the performance of RolloutIW with our learned
representations to RolloutIW with B-PROST features.

• We investigate with ablation studies the effect of various
hyperparameters in both learning and planning.

• We show that our learned representations lead to higher
scores than using B-PROST, even though our features
don’t have any temporal information, and our models are
trained from data collected by RolloutIW with B-PROST,
limiting the richness of the dataset.

Below, we provide the required background, present the
original approach of this paper, discuss our experimental re-
sults, and conclude.

Background
In this section, we revise the relevant background on Iter-
ated Width (IW), RolloutIW, planning with pixels, and vari-
ational autoencoders (VAEs).

Iterated Width
Iterated Width (IW) (Lipovetzky and Geffner 2012) is a
blind-search planning algorithm in which the states are rep-

resented by sets of boolean features (sets of propositional
atoms). The set of all features/atoms is the feature set, de-
noted F . IW is an algorithm parametrized by a width pa-
rameter k. We use IW(k) to denote IW with width pa-
rameter k. Given an initial state s0, IW(k) is similar to
a standard breadth-first search (BFS) from s0 except that,
when a new state s is generated, it is immediately pruned
if it is not novel. A state s generated during search is de-
fined to be novel if there is a k-tuple of features (atoms)
t = (f1, . . . , fk) ∈ F k such that s is the first generated
state making all of the fi true (s making fi true of course
simply means fi ∈ s, and the intuition is that s then “has”
the feature fi). In particular, in IW(1), the only states that
are not pruned are those that contain a feature f ∈ F for the
first time during the search. The maximum number of gen-
erated states is exponential in the width parameter (IW(k)
generates O(|F |k) states), whereas in BFS it is exponential
in the number of features/atoms.

Rollout IW

RolloutIW(k) (Bandres, Bonet, and Geffner 2018) is a
variant of IW(k) that searches via rollouts instead of do-
ing a breadth-first search, hence making it more akin to
a depth-first search. A rollout is a state-action trajectory
(s0, a0, s1, a1, . . .) from the initial state s0 (a path in the
state space), where actions ai are picked at random. It con-
tinues until reaching a state that is not novel. A state s is
novel if it satisfies one of the following: 1) it is distinct from
all previously generated states and there exists a k-tuple of
features (f1, . . . , fk) that are true in s, but not in any other
state of the same depth of the search tree or lower; 2) it is an
already earlier generated state and there exists a k-tuple of
features (f1, . . . , fk) that are true in s, but not in any other
state of lower depth in the search tree. The intuition behind
case 1 is that in this case the new state s comes with a com-
bination of k features occurring at a lower depth than earlier
encountered, which makes it relevant to explore further. In
case 2, s is an existing state already containing the lowest
occurrence of one of the combinations of k features, again
making it relevant to explore further. When a rollout reaches
a state that is not novel, the rollout is terminated, and a new
rollout is started from the initial state. The process continues
until all possible states are explored, or a given time limit
is reached. After the time limit has been reached, an action
with maximal expected reward is chosen (the method was
developed in the context of the Atari 2600 domain, making
use of a simulator to compute action outcomes and rewards).
The chosen action is executed, and the algorithm is repeated
with the new state as initial state.

RolloutIW is an anytime algorithm that will return an ac-
tion independently of the time budget. In principle, IW could
also be used as an anytime algorithm in the context of the
Atari 2600 domain, but it will be severely limited by the
breadth-first search strategy that will in practice prevent it
from reaching nodes of sufficient depth in the state space,
and hence prevent it from discovering rewards that only oc-
cur later in the game (Bandres, Bonet, and Geffner 2018).



Planning With Pixels
The Arcade Learning Environment (ALE) (Bellemare et al.
2013) provides an interface to Atari 2600 video games, and
has been widely used in recent years as benchmark for re-
inforcement learning and planning algorithms. In the visual
setting, the sensory input consists of a pixel array of size
210×160, where each pixel can have 128 distinct colors.
Although in principle the set of 210×160×128 booleans
could be used as features, we will follow Bandres, Bonet,
and Geffner (2018) and focus on features that capture mean-
ingful structures from the image.

An example of a visual feature set that has proven suc-
cessful is B-PROST (Liang et al. 2015), which consists of
Basic, B-PROS, and B-PROT features. The screen is split
into 14× 16 disjoint tiles of size 15× 10. For each tile (i, j)
and color c, the basic feature fi,j,c is 1 iff c is present in
(i, j). A B-PROS feature fi,j,c,c′ is 1 iff color c is present
in tile t, color c′ in tile t′, and the relative offsets between
the tiles are i and j. Similarly, a B-PROT feature fi,j,c,c′ is
1 iff color c is present in tile t in the previous decision point,
color c′ is present in tile t′ in the current one, and the relative
offsets between the tiles are i and j. The number of features
in B-PROST is the sum of the number of features in these 3
sets, in total 20,598,848.

Variational Autoencoders
Latent variable models. Latent variable models (LVMs)
are a type of probabilistic models in which some variables
are unobserved. For one datapoint, the marginal distribution
over the observed variables x is:

pθ(x) =

∫
z

pθ(x, z)dz (1)

where z are the unobserved latent variables and θ denotes
the model parameters. This quantity is typically referred
to as marginal likelihood or model evidence. A simple and
rather common structure for LVMs is:

pθ(x, z) = pθ(x | z)pθ(z) (2)

where both pθ(x | z) and pθ(z) are specified.
If the model’s distributions are parameterized by neural

networks, the marginal likelihood is typically intractable for
lack of an analytical solution or a practical estimator. Since
pθ(z |x) = pθ(x, z)/pθ(x) and pθ(x, z) is tractable to com-
pute, it follows that the intractability of pθ(x) derives in fact
from that of the posterior pθ(z |x).

Amortized variational inference. Variational inference
(VI) is a common approach to approximating this intractable
posterior, where we define a distribution qφ(z |x) with vari-
ational parameters φ, and optimize it to be “close” to the
exact posterior. In the LVM above, for any choice of qφ:

log pθ(x) = logEqφ(z |x)
[
pθ(x | z)pθ(z)
qφ(z |x)

]
(3)

≥ Eqφ(z |x)
[
log

pθ(x | z)pθ(z)
qφ(z |x)

]
(4)

= Lθ,φ(x) (5)

where Lθ,φ(x) is a lower bound on the marginal log likeli-
hood also known as Evidence Lower BOund (ELBO).

In contrast to traditional VI methods, where per-datapoint
variational parameters are optimized separately, amortized
variational inference utilizes function approximators like
neural networks to share variational parameters across dat-
apoints and improve learning efficiency. In this setting,
qφ(z |x) is typically called inference model or encoder.

Variational Autoencoders (VAEs) (Kingma and Welling
2013; Rezende, Mohamed, and Wierstra 2014) are a frame-
work for amortized VI, in which the ELBO is maximized by
jointly optimizing the inference model and the LVM (i.e., φ
and θ, respectively) with stochastic gradient ascent.

VAE optimization. The ELBO, the objective function to
be maximized, can be decomposed as follows:

Lθ,φ(x) = Eqφ [log pθ(x | z)]− Eqφ
[
log

qφ(z |x)
pθ(z)

]
(6)

= Eqφ [log pθ(x | z)]−DKL(qφ(z |x) || pθ(z))
where the first term can be interpreted as negative expected
reconstruction error, and the second term is the KL diver-
gence from the prior pθ(z) to the approximate posterior.
Minimizing the reconstruction error (i.e., maximizing the
first term) pushes 1) the decoder to accurately reconstruct
the input (in expectation over the encodings of x), and 2)
the inference model to encode x in such a way that the de-
coder can do so more effectively.

One of the major challenges in the optimization of VAEs
is that the gradients of some terms of the objective func-
tion cannot be backpropagated through the sampling step.
However, for a rather wide class of probability distributions,
a random variable following such distribution can be ex-
pressed as a differentiable, deterministic transformation of
an auxiliary variable with independent marginal distribution.
For example, if z is a sample from a Gaussian random vari-
able with mean µφ(x) and standard deviation σφ(x), then
z = σφ(x) ε + µφ(x), where ε ∼ N (0, 1). Thanks to this
reparameterization, z can be differentiated with respect to
φ by standard backpropagation. This approach, called path-
wise gradient estimator, typically exhibits lower variance
than the alternatives, and is widely used in practice.

From an information theory perspective, optimizing the
variational lower bound (6) involves a tradeoff between rate
and distortion (Alemi et al. 2017) or, equivalently, between
how much the data is compressed (more compression cor-
responds to a lower KL divergence) and how much infor-
mation we retain (more information corresponds to a lower
reconstruction loss). A straightforward way to control the
rate–distortion tradeoff is to use the β-VAE framework (Hig-
gins et al. 2017), in which the training objective (6) is mod-
ified by scaling the KL term:

Lθ,φ,β(x) = Eqφ [log pθ(x | z)] (7)

− βDKL(qφ(z |x) || pθ(z))

VAEs with discrete variables. Since the categorical dis-
tribution is not reparameterizable, training VAEs with cate-
gorical latent variables is generally impractical. A solution



to this problem is to replace samples from a categorical dis-
tribution with samples from a Gumbel-Softmax distribution
(Jang, Gu, and Poole 2016; Maddison, Mnih, and Teh 2016),
which can be smoothly annealed into a categorical distri-
bution by making the temperature parameter τ tend to 0.
Because Gumbel-Softmax is reparameterizable, the path-
wise gradient estimator can be used to get a low-variance—
although in this case biased—estimate of the gradient. In this
work, we use Bernoulli latent variables (categorical with 2
classes) and their Gumbel-Softmax relaxations.

VAE-IW
Although width-based planning has been shown to be gener-
ally very effective for classical planning domains (Lipovet-
zky and Geffner 2012; 2017; Francès et al. 2017), its perfor-
mance in practice significantly depends on the quality of the
features used. Features that better capture meaningful struc-
ture in the environment typically translate to better planning
results (Junyent, Jonsson, and Gómez 2019). Here we pro-
pose VAE-IW, in which representations extracted by a VAE
are used as features for RolloutIW. The main advantages are
the following:
• The number of features can be orders of magnitude

smaller than B-PROST, leading to faster planning and a
smaller memory footprint.

• Autoencoders, in particular VAEs, are a natural approach
for learning meaningful, compact representations from
data (Bengio, Courville, and Vincent 2013; Tschannen,
Bachem, and Lucic 2018; Kingma and Welling 2019).

• No additional preprocessing is needed, such as back-
ground masking (Junyent, Jonsson, and Gómez 2019).

On the planning side, we follow Junyent, Jonsson, and
Gómez (2019) and use RolloutIW(k) with width k = 1 to
keep planning efficient even with a small time budget. For
example, with a budget of 0.5s per planning phase Roll-
outIW(2) generates only a few nodes per step, whereas Roll-
outIW(1) generates hundreds. Width 1 is sufficient to get
good results, and this choice makes it easier to compare our
experimental results with the aforementioned paper. In the
remainder of this section, we detail the two main compo-
nents of the proposed method: feature learning and planning.

Unsupervised Feature Learning
For feature learning we use a variational autoencoder with a
discrete latent space:

pθ(x) =
∑
z

pθ(x, z) =
∑
z

pθ(x | z)p(z) (8)

where the prior is a product of independent Bernoulli distri-
butions with a fixed parameter:

p(z) =

K∏
i=1

p(zi) =

K∏
i=1

Bernoulli(µ) . (9)

Given an image x, we would like to retrieve the binary la-
tent factors z that generated it, and use them as propositional
representation for planning. Since the likelihood function

pθ(x | z) is parameterized by a neural network, and there-
fore highly nonlinear with respect to the latent variables, in-
ference of the latent variables is intractable (it would require
the computation of the sum in (8), which has a number of
terms exponential in the number of latent variables).

We define an inference model:

qφ(z |x) =
K∏
i=1

qφ(zi |x) =
K∏
i=1

Bernoulli((µφ(x))i)

to approximate the true posterior pθ(z |x). The encoder µφ
is a deep neural network with parameters φ that outputs
the approximate posterior probabilities of all latent vari-
ables given an image x. Using stochastic amortized varia-
tional inference, we train the inference and generative mod-
els end-to-end by maximizing the ELBO with respect to
the parameters of both models. We approximate the discrete
Bernoulli distribution of z with the Gumbel-Softmax relax-
ation (Jang, Gu, and Poole 2016; Maddison, Mnih, and Teh
2016), which is reparameterizable. This allows us to esti-
mate the gradients of the inference network with the path-
wise gradient estimator. Alternatively, the approximate pos-
terior could be optimized directly using a score-function es-
timator (Williams 1992) with appropriate variance reduction
techniques or alternative variational objectives (Bornschein
and Bengio 2014; Mnih and Rezende 2016; Le et al. 2018;
Masrani, Le, and Wood 2019; Liévin et al. 2020).

Note that we are not necessarily interested in the best gen-
erative model—e.g. in terms of marginal log likelihood of
the data or visual quality of the generated samples—as much
as in representations that are useful for planning. In order
to control the tradeoff between the competing terms in (6),
we use the β-VAE framework, and following Burgess et al.
(2018) we decrease β until good quality reconstructions are
obtained.

Planning With Learned Features
After training, the inference model qφ(z |x) yields approx-
imate posterior distributions of the latent variables. The bi-
nary features for downstream planning can be obtained by
sampling from the approximate posteriors or by directly
thresholding their probabilities:

fi =

{
1 if µφ(x)i ≥ λ
0 otherwise

(10)

where λ ∈ (0, 1) is the threshold. In this work we choose
to deterministically threshold the probabilities, as it empiri-
cally yields more stable features for planning. Overall, this
approach provides a way of efficiently computing a com-
pact, binary representation of an image, which can in turn
be interpreted as a set of propositional features to be used in
symbolic reasoning systems like IW or RolloutIW.

The planning phase in VAE-IW is based on RolloutIW,
but uses the features extracted by the inference network
instead of the B-PROST features. Note that while the B-
PROST features include temporal information (specifically
in the B-PROT subset), the VAE features are computed inde-
pendently for each frame. This should, everything else being
equal, give an advantage to planners that rely on B-PROST
features.



Experiments
We evaluate the proposed approach on a suite of 47 Atari
2600 games. We separately trained a VAE for each domain
by maximizing (7) using stochastic gradient ascent. As re-
construction loss we used the binary cross-entropy. We used
the Adam optimizer (Kingma and Ba 2014) with default
parameters and learning rate 10−4. To train the VAEs, we
collected 15,000 frames by running RolloutIW(1) with B-
PROST features, and split them into a training and valida-
tion set of 14,250 and 750 images, respectively. The RGB
images of size 210 × 160 are grayscaled and downsampled
to 128 × 128. VAE-IW experiments were performed with
4GB of RAM on one core of a Xeon Gold 6126 CPU, and a
Tesla V100 GPU. The GPU was used both to train the mod-
els and to evaluate the encoder in the planning phase.

The encoder consists of 3 convolutional layers interleaved
with residual blocks. The single convolutional layers down-
sample the feature map by a factor of 2, and each residual
block includes 2 convolutional layers, resulting in 7 con-
volutional layers in total. The decoder mirrors such archi-
tecture, and performs upsampling with transposed convolu-
tional layers. Further architectural details are provided in the
Appendix. The inference network outputs a feature map of
shape H ×W × C which represents the approximate pos-
terior probabilities of the latent variables. Thus, unlike in
traditional VAEs where latent variables do not carry any spa-
tial meaning, in our case they are spatially arranged (Vahdat
and Kautz 2020). As outlined in the previous section, the
Bernoulli probabilities computed by the encoder are thresh-
olded, and the resulting binary features are used as propo-
sitional representations for planning in RolloutIW(1), in-
stead of the B-PROST features. For the planning phase of
VAE-IW, we use RolloutIW(1) with partial caching and risk
aversion (RA) as described by Bandres, Bonet, and Geffner
(2018). With partial caching, after each iteration of Roll-
outIW the branch of the chosen action is kept in memory.
Risk aversion is attained by multiplying all negative rewards
by a factor α� 1 when they are propagated up the tree.

Because of their diversity, Atari games vary widely in
complexity. We empirically chose a set of hyperparame-
ters that performed reasonably well on a small subset of the
games, assuming this would generalize well enough to other
games. Following previous work (Lipovetzky and Geffner
2012; Bandres, Bonet, and Geffner 2018), we used a frame
skip of 15 and a planning budget of 0.5s per time step. We
set an additional limit of 15,000 executed actions for each
run, to prevent runs from lasting too long. Note that this
constraint is only applied to our method. Table 1 summa-
rizes the main hyperparameters used in our experiments. We
expect that better results can be obtained by performing an
extensive hyperparameter search on the whole suite of Atari
2600 games.

Main Results
In Table 2, we compare the planning performance of our RA
VAE-IW(1) to IW(1) with B-PROST features (Lipovetzky
and Geffner 2012) and RA RolloutIW(1) (Bandres, Bonet,
and Geffner 2018) with B-PROST features. In Figure 1, we

Parameter Value

Batch size 64
Learning rate 10−4

Latent space size 15× 15× 20 = 4500
τ 0.5
β 10−4

µ 0.5
α 50000
γ 0.99
λ 0.9
Frame skip 15
Planning budget 0.5s

Table 1: Hyperparameters in VAE-IW experiments unless
specified otherwise.

normalize the scores of width-based planning methods using
scores from random and human play, as in Bandres, Bonet,
and Geffner (2018). Note, however, that human play is only
meant as a baseline: since humans do not have access to a
simulator, a direct comparison cannot be made. Following
the literature, we report the average score over 5 runs, with
each run ending when the game is over. These results show
that learning binary features purely from images, without
any supervision, can be beneficial for width-based planning.
In particular, using the learned representations in RolloutIW
leads to generally higher scores in the Atari 2600 domain.

Note that the performance of VAE-IW depends on the
quality and expressiveness of the features extracted by the
VAE, which in turn depend on the images the VAE is trained
on. Crucially, since we collect data by running RolloutIW(1)
with B-PROST features, the performance of VAE-IW is
constrained by the effectiveness of the data collection al-
gorithm. The VAE features will not necessarily be mean-
ingful on parts of the game that are significantly different
from those in the training set. Surprisingly, however, our
method significantly outperforms the baseline that was used
for data collection, providing even stronger evidence that
the compact set of features learned by a VAE can be suc-
cessfully utilized for width-based planning algorithms. This
form of bootstrapping can be iterated: images collected by
VAE-IW could be used for re-training or fine-tuning VAEs,
potentially leading to further performance improvements.
Although in principle the first iteration of VAEs could be
trained from images collected via random play, this is not a
viable solution in hard-exploration problems such as many
Atari games (Ecoffet et al. 2019).

In addition, there appears to be a significant negative cor-
relation between the average number of true features and
the average number of expanded nodes per planning phase
(Spearman rank correlation of −0.51, p-value < 0.001). In
other words, in domains where the VAE extracts on average
more true features, the planning algorithm tends to expand
fewer nodes. Thus, it could be potentially fruitful to further
investigate the interplay between the average number of true
features, the meaningfulness and usefulness of the features,
and the efficiency of width-based planning algorithm.



Algorithm Human IW RA Rollout IW RA VAE-IW
Features B-PROST B-PROST VAE 15× 15× 20
Planning budget 0.5s 0.5s 0.5s

Alien 6,875.0 1,316.0 7,170.0 8,144.0
Amidar 1,676.0 48.0 1,049.2 1,551.0
Assault 1,496.0 268.8 336.0 1,250.0
Asterix 8,503.0 1,350.0 46,100.0 999,500.0*
Asteroids 13,157.0 840.0 4,698.0 14,816.0
Atlantis 29,028.0 33,160.0 122,220.0 1,955,280.0*
Battle zone 37,800.0 6,800.0 74,600.0 191,000.0
Beam rider 5,775.0 715.2 2,552.8 3,432.0
Berzerk 280.0 1,208.0 828.0
Bowling 154.0 30.6 44.2 63.0
Breakout 31.8 1.6 86.2 50.8
Centipede 11,963.0 88,890.0 56,328.0 113,369.2*
Crazy climber 35,411.0 16,780.0 40,440.0 941,660.0*
Demon attack 3,401.0 106.0 6,958.0 276,586.0*
Double dunk -15.5 -22.0 3.2 10.4
Elevator action 1,080.0 0.0 38,940.0*
Fishing derby 5.5 -83.8 -77.0 -19.6
Freeway 29.6 0.6 2.0 4.8
Frostbite 4,335.0 106.0 146.0 254.0
Gopher 2,321.0 1,036.0 8,388.0 7,968.0
Gravitar 2,672.0 380.0 1,660.0 2,360.0
Ice hockey 0.9 -13.6 -12.4 37.6
James bond 007 406.7 40.0 10,760.0 5,280.0
Krull 2,395.0 3,206.8 2,091.8 3,455.2
Kung-fu master 22,736.0 440.0 2,620.0 5,300.0
Ms. Pac-man 15,693.0 2,578.0 15,115.0 16,200.6
Name this game 4,076.0 7,070.0 6,558.0 18,526.0
Phoenix 1,266.0 6,790.0 6,160.0
Pitfall! -8.6 -302.8 -5.8
Pong 9.3 -20.8 -4.2 10.4
Private eye 69,571.0 2,690.8 -480.0 60.0
Q*bert 13,455.0 515.0 15,970.0 2,070.0
River raid 13,513.0 664.0 6,288.0 6,818.0
Road Runner 7,845.0 200.0 31,140.0 2,740.0
Robotank 11.9 3.2 31.2 30.8
Seaquest 20,182.0 168.0 2,312.0 560.0
Skiing -16,511.0 -16,006.8 -10,443.8
Space invaders 1,652.0 280.0 1,149.0 2,943.0
Stargunner 10,250.0 840.0 14,900.0 1,040.0
Tennis -8.9 -23.4 -5.4 -0.6
Time pilot 5,925.0 2,360.0 3,540.0 32,440.0
Tutankham 167.7 71.2 135.6 180.6
Up’n down 9,082.0 928.0 34,668.0 764,264.0*
Video pinball 17,298.0 28,706.4 216,468.6 149,284.6
Wizard of wor 4,757.0 5,660.0 43,860.0 199,900.0
Yars’ revenge 6,352.6 7,848.8 105,637.0
Zaxxon 9,173.0 0.0 15,500.0 12,120.0

# > Human n/a 4 18 24
# > 75% Human n/a 4 21 27

# best n/a 1 12 34

Table 2: Score comparison of width-based methods in 47 Atari games in the pixel setting. Scores in bold indicate the best overall
width-based method, and scores with a star indicate that the algorithm reached the limit on executed actions at least once. In the
bottom rows we also report the number of domains in which an algorithm’s score was greater than the human score, or greater
than 75% of the human score. Results for IW and Rollout IW B-PROST are from Bandres, Bonet, and Geffner (2018); human
scores are from Liang et al. (2015).



Figure 1: Comparison of the risk-averse variants of VAE-IW (ours, using VAE features) and RolloutIW B-PROST (using B-
PROST features). Following Mnih et al. (2015), the performance of both methods is normalized with respect to a professional
human game tester (100% level) and random play (0%) as: 100 × (VAE − random play)/(human score − random play). RA
VAE-IW obtains the highest score among width-based approaches in most games, and it performs at a level that is superior to
or comparable with professional human play. The reported percentages are for VAE features.

Ablation Studies
The performance of VAE-IW depends on several hyperpa-
rameters related to the planning algorithm and to the prob-
abilistic model. Here we attempt to investigate the effect of
some of these parameters.

Modeling choices. One of the major modeling choices is
the dimensionality of the latent space, and the spatial struc-
tureH×W ×C of the latent variables. Both of these factors
are tightly coupled with the neural architecture underlying
the inference and generative networks. As there is no clear
heuristic, we explored different neural architectures and la-

tent space sizes. Based on the performance on a few selected
domains, we chose two different settings, with latent space
size 15 × 15 × 20 and 4 × 4 × 200 (see the Appendix for
further details). In Table 12 we compare the performance of
RA VAE-IW on these two configurations, keeping the rest of
the hyperparameters fixed as the ones used in Table 2. While
overall the 15×15×20 configuration leads to a higher score
in most domains, the effect of this modeling choice seems to
significantly depend on the domain.

As previously mentioned, we consider the framework of
β-VAEs in which β controls the trade-off between recon-
struction accuracy and amount of information encoded in



the latent space. For our purposes, β has to be small enough
that the model can capture all relevant details in an im-
age. In practice, we decreased β until the model generated
sufficiently accurate reconstructions on a selection of Atari
games (Burgess et al. 2018). Table 13 reports the perfor-
mance of VAE-IW when varying β ∈ {10−4, 10−3}, and
shows that the effect of varying β depends on the domain.
Intuitively, while a stronger regularization (i.e. higher β)
can be detrimental for the reconstructions and thus also for
the informativeness of the learned features, it may lead to
better representations in less visually challenging domains.
In practice, one could for example train VAEs with dif-
ferent regularization strengths, and do unsupervised model
selection separately for each domain by using the “elbow
method” (Ketchen and Shook 1996) on the reconstruction
loss or other relevant metrics.

Planning parameters. Regardless of the features used for
planning, the performance of VAE-IW depends on the vari-
ant of RolloutIW being used, and on its parameters. In Ta-
ble 8 we compare the average score of VAE-IW with and
without risk aversion, and observe that the risk-averse vari-
ant achieves an equal or higher average score in 33 of the 47
domains.

Table 9 shows the results of VAE-IW and RolloutIW with
B-PROST features, similarly to Table 2, except that both
methods are run without risk aversion. With this modifica-
tion, our method still obtains a higher average score in the
majority of domains (32/47).

Another crucial planning parameter is the time budget
for planning at each time step. While the main results are
based on a 0.5s budget, we also consider a 32s budget, fol-
lowing Bandres, Bonet, and Geffner (2018). In Table 10 we
observe that, not surprisingly, the high time budget outper-
forms the low budget in most domains (34/47). However, in
some of them the shorter planning budget yields a signifi-
cantly higher score (e.g. in Asterix, CrazyClimber, and El-
evatorAction). Interestingly, increasing the planning budget
seems to leave the average rollout depth unaffected, while
the average number of expanded nodes in each planning
phase grows significantly. This behaviour is consistently ob-
served in all tested domains (see Figures 2 and 3) and points
to the fact that increasing the planning budget improves re-
sults mostly by allowing more rollouts.

In Table 11 we compare the average scores obtained by
VAE-IW and RolloutIW with B-PROST features, using a
32s planning budget for both methods. Once again, using
the compact features learned by a VAE seems to be benefi-
cial, as VAE-IW obtains the highest average score in 29 of
the 47 domains.

Related Work
Variational Autoencoders (VAEs) have been extensively
used for representation learning (Kingma and Welling 2019)
as their amortized inference network lends itself naturally
to this task. In the context of automated planning, Asai and
Fukunaga (2017) proposed the State Autoencoder (SAE) for
propositional symbolic grounding. An SAE is in fact a VAE

with Bernoulli latent variables. It is trained by maximizing a
modified ELBO that includes an additional entropy regular-
izer, defined as twice the negative KL divergence. Thus, the
objective function being maximized is the ELBO (6) with
the sign of the KL flipped. Although unintentional (Asai and
Kajino 2019), this proved to be fundamental for the mitiga-
tion of the issue of representation instability. A variation of
SAE, the zero-suppressed state autoencoder (Asai and Ka-
jino 2019), adds a further regularization term to the proposi-
tional representation (features), leading to more stable rep-
resentations (Asai and Kajino 2019).

Zhang et al. (2018) take a supervised approach to repre-
sentation learning for planning, and learn a transition graph
for planning in the representation space with Dijkstra’s algo-
rithm. Konidaris, Kaelbling, and Lozano-Perez (2018) spec-
ify a set of skills for a task, and then automatically extract
state representations from raw observations. Kurutach et al.
(2018) use generative adversarial networks to learn struc-
tured representations of images and a deterministic dynam-
ics model, and plan with graph-search methods.

Junyent, Jonsson, and Gómez (2019) proposed π-IW, a
variant of RolloutIW(1) where a neural network guides the
action selection process in the rollouts, which would other-
wise be random. This is reminiscent of AlphaZero (Silver
et al. 2018), where a policy network guides the rollouts of
Monte Carlo Tree Search (MCTS). Moreover, π-IW plans
using features obtained from the last hidden layer of the pol-
icy network, instead of B-PROST.

Conclusion
We have introduced a novel combination of width-based
planning with learning techniques. The learning employs
a VAE to learn relevant features in video games from the
Atari 2600 suite, given raw images of screen states as train-
ing data. The planning is done with RolloutIW(1) using the
features learned by the VAE. Our approach reduces the size
of the feature set from the 20.5 million B-PROST features
used in previous work in connection with RolloutIW, to only
4,500. Our algorithm, VAE-IW, outperforms the previous
methods, proving that VAEs can learn meaningful represen-
tations that can be effectively used for width-based planning.

In VAE-IW, the symbolic representations are learned from
data collected by RolloutIW using B-PROST features. In-
creasing the diversity and quality of the training data could
potentially lead to better representations, and thus better
planning results. One possible way to achieve this could be
to iteratively retrain or fine-tune the VAEs on data collected
by the current iteration of VAE-IW: The planner would pro-
duce new images to retrain the VAE, which could again be
used in combination with RolloutIW, resulting in a new gen-
eration of VAE-IW. The quality of the representations could
also be improved by using more expressive discrete mod-
els, for example with a hierarchy of discrete latent vari-
ables (Van Den Oord, Vinyals, and Kavukcuoglu 2017;
Razavi, van den Oord, and Vinyals 2019). Finally, we can
expect further improvements orthogonal to this work, by
learning a rollout policy for more effective action selection,
as investigated by Junyent, Jonsson, and Gómez (2019).
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Liévin, V.; Dittadi, A.; Christensen, A.; and Winther, O.
2020. Optimal variance control of the score function gra-
dient estimator for importance weighted bounds. arXiv
preprint arXiv:2008.01998.
Lipovetzky, N., and Geffner, H. 2012. Width and serializa-
tion of classical planning problems. In Proceedings of the
20th European Conference on Artificial Intelligence (ECAI
2012).
Lipovetzky, N., and Geffner, H. 2017. Best-first width
search: Exploration and exploitation in classical planning.
In AAAI, 3590–3596.
Lipovetzky, N.; Ramirez, M.; and Geffner, H. 2015. Clas-
sical planning with simulators: Results on the atari video
games. In Twenty-Fourth International Joint Conference on
Artificial Intelligence.
Maddison, C. J.; Mnih, A.; and Teh, Y. W. 2016. The con-
crete distribution: A continuous relaxation of discrete ran-
dom variables. arXiv preprint arXiv:1611.00712.
Masrani, V.; Le, T. A.; and Wood, F. 2019. The thermody-
namic variational objective. In Advances in Neural Informa-
tion Processing Systems, 11521–11530.
Mnih, A., and Rezende, D. J. 2016. Variational inference for
monte carlo objectives. arXiv preprint arXiv:1602.06725.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.
Razavi, A.; van den Oord, A.; and Vinyals, O. 2019. Gen-
erating diverse high-fidelity images with VQ-VAE-2. In Ad-
vances in Neural Information Processing Systems, 14866–
14876.
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014.
Stochastic backpropagation and approximate inference in
deep generative models. arXiv preprint arXiv:1401.4082.
Shleyfman, A.; Tuisov, A.; and Domshlak, C. 2016. Blind



search for atari-like online planning revisited. In IJCAI,
3251–3257.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018. A
general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419):1140–
1144.
Tschannen, M.; Bachem, O.; and Lucic, M. 2018. Re-
cent advances in autoencoder-based representation learning.
arXiv preprint arXiv:1812.05069.
Vahdat, A., and Kautz, J. 2020. Nvae: A deep hierarchical
variational autoencoder. arXiv preprint arXiv:2007.03898.
Van Den Oord, A.; Vinyals, O.; and Kavukcuoglu, K. 2017.
Neural discrete representation learning. In Advances in Neu-
ral Information Processing Systems, 6306–6315.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning 8(3-4):229–256.
Zhang, A.; Sukhbaatar, S.; Lerer, A.; Szlam, A.; and Fergus,
R. 2018. Composable planning with attributes. In Interna-
tional Conference on Machine Learning, 5842–5851.



Appendix

BatchNorm
LeakyReLU(0.01)
Conv 3× 3, padding=1
Dropout(0.2)
BatchNorm
LeakyReLU(0.01)
Conv 3× 3, padding=1
Dropout(0.2)
Residual connection
LeakyReLU(0.01)

Table 3: Residual block. The number of channels is always
64. The residual connection consists of summing the activa-
tion to the block’s input.

Conv 3× 3, stride=2
Residual block
Conv 3× 3, stride=2
Residual block
Conv 3× 3, stride=2
Residual block
Conv 3× 3, stride=2
Residual block
Conv 3× 3, stride=2, padding=1

Table 4: Encoder with output of spatial size 4× 4. The num-
ber of channels is always 64 except for the last convolution,
in which the number of output channels controls the latent
space size.

ConvT 3× 3, stride=2
Residual block
ConvT 4× 4, stride=2
Residual block
ConvT 4× 4, stride=2
Crop 128× 128
Sigmoid activation

Table 5: Decoder with input of spatial size 15×15. The num-
ber of channels is always 64 except for the last convolution,
in which the number of output channels is 1. ConvT denotes
transposed convolutional layers.
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Conv 4× 4, stride=2
Residual block
Conv 4× 4, stride=2
Residual block
Conv 3× 3, stride=2, padding=1

Table 6: Encoder with output of spatial size 15 × 15. The
number of channels is always 64 except for the last convo-
lution, in which the number of output channels controls the
latent space size.

ConvT 3× 3, stride=2
Residual block
ConvT 3× 3, stride=2
Residual block
ConvT 3× 3, stride=2
Residual block
ConvT 3× 3, stride=2
Residual block
ConvT 3× 3, stride=2
Crop 128× 128
Sigmoid activation

Table 7: Decoder with input of spatial size 4×4. The number
of channels is always 64 except for the last convolution, in
which the number of output channels is 1. ConvT denotes
transposed convolutional layers.
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Algorithm VAE-IW RA VAE-IW
β 10−4 10−4

Planning horizon 0.5s 0.5s
Features VAE 15× 15× 20 VAE 15× 15× 20

Alien 5,576.0 8,144.0
Amidar 1,093.2 1,551.0
Assault 826.4 1,250.0
Asterix 999,500.0* 999,500.0*
Asteroids 772.0 14,816.0
Atlantis 40,620.0 1,955,280.0*
Battle zone 91,200.0 191,000.0
Beam rider 3,179.6 3,432.0
Berzerk 566.0 828.0
Bowling 64.6 63.0
Breakout 13.0 50.8
Centipede 22,020.2 113,369.2
Crazy climber 661,460.0 941,660.0*
Demon attack 9,656.0 276,586.0*
Double dunk 7.2 10.4
Elevator action 76,160.0* 38,940.0*
Fishing derby -20.2 -19.6
Freeway 6.2 4.8
Frostbite 248.0 254.0
Gopher 6,084.0 7,968.0
Gravitar 2,770.0 2,360.0
Ice hockey 36.0 37.6
James bond 007 640.0 5,280.0
Krull 3,543.2 3,455.2
Kung-fu master 5,160.0 5,300.0
Ms. Pac-man 20,161.0 16,200.6
Name this game 13,332.0 18,526.0
Phoenix 5,328.0 6,160.0
Pitfall! 0.0 -5.8
Pong 9.2 10.4
Private eye 139.0 60.0
Q*bert 1,890.0 2,070.0
River raid 4,884.0 6,818.0
Road Runner 4,720.0 2,740.0
Robotank 21.4 30.8
Seaquest 596.0 560.0
Skiing -9,664.8 -10,443.8
Space invaders 1,962.0 2,943.0
Stargunner 1,120.0 1,040.0
Tennis 5.2 -0.6
Time pilot 24,840.0 32,440.0
Tutankham 167.4 180.6
Up’n down 35,964.0 764,264.0*
Video pinball 462,619.4 149,284.6
Wizard of wor 89,380.0 199,900.0*
Yars’ revenge 85,800.6 105,637.0
Zaxxon 7,320.0 12,120.0

# best 15 33

Table 8: Score comparison of VAE-IW with and without risk
aversion. Scores in bold indicate the best method, and scores
with a star indicate that the algorithm reached the limit on
executed actions at least once. Ties are counted as won for
both methods.

Algorithm Rollout IW VAE-IW
β 10−4

Planning horizon 0.5s 0.5s
Features B-PROST VAE 15× 15× 20

Alien 4,238.0 5,576.0
Amidar 659.8 1,093.2
Assault 285.0 826.4
Asterix 45,780.0 999,500.0
Asteroids 4,344.0 772.0
Atlantis 64,200.0 40,620.0
Battle zone 39,600.0 91,200.0
Beam rider 2,188.0 3,179.6
Berzerk 644.0 566.0
Bowling 47.6 64.6
Breakout 82.4 13.0
Centipede 36,980.2 22,020.2
Crazy climber 39,220.0 661,460.0*
Demon attack 2,780.0 9,656.0
Double dunk 3.6 7.2
Elevator action 0.0 76,160.0*
Fishing derby -68.0 -20.2
Freeway 2.8 6.2
Frostbite 220.0 248.0
Gopher 7,216.0 6,084.0
Gravitar 1,630.0 2,770.0
Ice hockey -6.0 36.0
James bond 007 450.0 640.0
Krull 1,892.8 3,543.2
Kung-fu master 2,080.0 5,160.0
Ms. Pac-man 9,178.4 20,161.0
Name this game 6,226.0 13,332.0
Phoenix 5,750.0 5,328.0
Pitfall! -81.4 0.0
Pong -7.4 9.2
Private eye -322.0 139.0
Q*bert 3,375.0 1,890.0
River raid 6,088.0 4,884.0
Road Runner 2,360.0 4,720.0
Robotank 31.0 21.4
Seaquest 980.0 596.0
Skiing -15,738.8 -9,664.8
Space invaders 2,628.0 1,962.0
Stargunner 13,360.0 1,120.0
Tennis -18.6 5.2
Time pilot 7,640.0 24,840.0
Tutankham 128.4 167.4
Up’n down 36,236.0 35,964.0
Video pinball 203,765.4 462,619.4
Wizard of wor 37,220.0 89,380.0
Yars’ revenge 5,225.4 85,800.6
Zaxxon 9,280.0 7,320.0

# best 15 32

Table 9: Score comparison between RolloutIW B-PROST
and VAE-IW. Scores in bold indicate the best method, and
scores with a star indicate that the algorithm reached the
limit on executed actions at least once. Ties are counted as
won for both methods.



Algorithm VAE-IW VAE-IW
β 10−4 10−4

Planning horizon 0.5s 32s
Features VAE 15× 15× 20 VAE 15× 15× 20

Alien 5,576.0 8,536.0
Amidar 1,093.2 1,955.8
Assault 826.4 1,338.4
Asterix 999,500.0 417,100.0
Asteroids 772.0 1,158.0
Atlantis 40,620.0 49,500.0
BattleZone 91,200.0 234,200.0
BeamRider 3,179.6 5,580.0
Berzerk 566.0 554.0
Bowling 64.6 46.8
Breakout 13.0 72.4
Centipede 22,020.2 166,244.8
CrazyClimber 661,460.0 129,840.0
DemonAttack 9,656.0 5,397.0
DoubleDunk 7.2 5.2
ElevatorAction 76,160.0 0.0
FishingDerby -20.2 20.6
Freeway 6.2 29.4
Frostbite 248.0 280.0
Gopher 6,084.0 17,604.0
Gravitar 2,770.0 2,640.0
IceHockey 36.0 44.2
Jamesbond 640.0 650.0
Krull 3,543.2 6,664.0
KungFuMaster 5,160.0 20,960.0
MsPacman 20,161.0 25,759.0
NameThisGame 13,332.0 15,276.0
Phoenix 5,328.0 5,960.0
Pitfall 0.0 -0.4
Pong 9.2 12.0
PrivateEye 139.0 157.8
Qbert 1,890.0 4,760.0
Riverraid 4,884.0 5,372.0
RoadRunner 4,720.0 8,540.0
Robotank 21.4 24.2
Seaquest 596.0 324.0
Skiing -9,664.8 -9,705.0
SpaceInvaders 1,962.0 2,972.0
StarGunner 1,120.0 1,180.0
Tennis 5.2 12.6
TimePilot 24,840.0 24,220.0
Tutankham 167.4 197.2
UpNDown 35,964.0 91,592.0
VideoPinball 462,619.4 833,518.4
WizardOfWor 89,380.0 76,460.0
YarsRevenge 85,800.6 188,551.2
Zaxxon 7,320.0 30,200.0

# best 13 34

Table 10: Score comparison of VAE-IW with planning bud-
get of 0.5 or 32 seconds. Scores in bold indicate the best
method, and scores with a star indicate that the algorithm
reached the limit on executed actions at least once. Ties are
counted as won for both methods.

Algorithm RolloutIW VAE-IW
β 10−4

Planning horizon 32s 32s
Features B-PROST VAE 15× 15× 20

Alien 6,896.0 8,536.0
Amidar 1,698.6 1,955.8
Assault 319.2 1,338.4
Asterix 66,100.0 417,100.0
Asteroids 7,258.0 1,158.0
Atlantis 151,120.0 49,500.0
BattleZone 414,000.0 234,200.0
BeamRider 2,464.8 5,580.0
Berzerk 862.0 554.0
Bowling 45.8 46.8
Breakout 36.0 72.4
Centipede 65,162.6 166,244.8
CrazyClimber 43,960.0 129,840.0
DemonAttack 9,996.0 5,397.0
DoubleDunk 20.0 5.2
ElevatorAction 0.0 0.0
FishingDerby -16.2 20.6
Freeway 12.6 29.4
Frostbite 5,484.0 280.0
Gopher 13,176.0 17,604.0
Gravitar 3,700.0 2,640.0
IceHockey 6.6 44.2
Jamesbond 22,250.0 650.0
Krull 1,151.2 6,664.0
KungFuMaster 14,920.0 20,960.0
MsPacman 19,667.0 25,759.0
NameThisGame 5,980.0 15,276.0
Phoenix 7,636.0 5,960.0
Pitfall -130.8 -0.4
Pong 17.6 12.0
PrivateEye 3,157.2 157.8
Qbert 8,390.0 4,760.0
Riverraid 8,156.0 5,372.0
RoadRunner 37,080.0 8,540.0
Robotank 52.6 24.2
Seaquest 10,932.0 324.0
Skiing -16,477.0 -9,705.0
SpaceInvaders 1,980.0 2,972.0
StarGunner 15,640.0 1,180.0
Tennis -2.2 12.6
TimePilot 8,140.0 24,220.0
Tutankham 184.0 197.2
UpNDown 44,306.0 91,592.0
VideoPinball 382,294.8 833,518.4
WizardOfWor 73,820.0 76,460.0
YarsRevenge 9,866.4 188,551.2
Zaxxon 22,880.0 30,200.0

# best 19 29

Table 11: Score comparison between RolloutIW B-PROST
and VAE-IW with planning budget of 32 seconds. Scores in
bold indicate the best method, and scores with a star indicate
that the algorithm reached the limit on executed actions at
least once. Ties are counted as won for both methods.



Algorithm RA VAE-IW RA VAE-IW
β 10−4 10−4

Planning horizon 0.5s 0.5s
Features VAE 15× 15× 20 VAE 4× 4× 200

Alien 8,144.0 7,592.0
Amidar 1,551.0 1,526.6
Assault 1,250.0 1,308.6
Asterix 999,500.0* 999,500.0*
Asteroids 14,816.0 8,852.0
Atlantis 1,955,280.0* 1,912,700.0*
Battle zone 191,000.0 228,000.0
Beam rider 3,432.0 3,450.0
Berzerk 828.0 752.0
Bowling 63.0 47.6
Breakout 50.8 28.4
Centipede 113,369.2 253,823.6
Crazy climber 941,660.0* 930,420.0*
Demon attack 276,586.0* 292,099.0*
Double dunk 10.4 6.0
Elevator action 38,940.0* 109,680.0*
Fishing derby -19.6 -31.2
Freeway 4.8 2.0
Frostbite 254.0 244.0
Gopher 7,968.0 8,504.0
Gravitar 2,360.0 1,560.0
Ice hockey 37.6 37.2
James bond 007 5,280.0 11,000.0
Krull 3,455.2 3,219.0
Kung-fu master 5,300.0 3,600.0
Ms. Pac-man 16,200.6 15,066.8
Name this game 18,526.0 13,670.0
Phoenix 6,160.0 9,210.0
Pitfall! -5.8 -9.6
Pong 10.4 3.6
Private eye 60.0 115.4
Q*bert 2,070.0 4,935.0
River raid 6,818.0 6,790.0
Road Runner 2,740.0 2,320.0
Robotank 30.8 45.2
Seaquest 560.0 1,084.0
Skiing -10,443.8 -11,906.4
Space invaders 2,943.0 2,753.0
Stargunner 1,040.0 1,200.0
Tennis -0.6 -6.6
Time pilot 32,440.0 23,460.0
Tutankham 180.6 158.4
Up’n down 764,264.0* 627,706.0*
Video pinball 149,284.6 248,101.2
Wizard of wor 199,900.0* 111,580.0
Yars’ revenge 105,637.0 97,004.6
Zaxxon 12,120.0 17,360.0

# best 31 17

Table 12: Score comparison of VAE-IW with latent space
size 15× 15× 20 and 4× 4× 200. Scores in bold indicate
the best method, and scores with a star indicate that the al-
gorithm reached the limit on executed actions at least once.
Ties are counted as won for both methods.

Algorithm RA VAE-IW RA VAE-IW
β 10−3 10−4

Planning horizon 0.5s 0.5s
Features VAE 15× 15× 20 VAE 15× 15× 20

Alien 4,902.0 8,144.0
Amidar 1,186.2 1,551.0
Assault 1,468.2 1,250.0
Asterix 999,500.0* 999,500.0*
Asteroids 7,204.0 14,816.0
Atlantis 1,978,540.0* 1,955,280.0*
Battle zone 406,600.0 191,000.0
Beam rider 4,377.6 3,432.0
Berzerk 774.0 828.0
Bowling 35.0 63.0
Breakout 53.4 50.8
Centipede 296,791.4 113,369.2
Crazy climber 976,580.0* 941,660.0*
Demon attack 301,886.0 276,586.0
Double dunk 7.4 10.4
Elevator action 68,920.0 38,940.0
Fishing derby -15.6 -19.6
Freeway 4.0 4.8
Frostbite 262.0 254.0
Gopher 5,420.0 7,968.0
Gravitar 2,300.0 2,360.0
Ice hockey 34.0 37.6
James bond 007 630.0 5,280.0
Krull 3,486.4 3,455.2
Kung-fu master 4,960.0 5,300.0
Ms. Pac-man 17,483.0 16,200.6
Name this game 15,120.0 18,526.0
Phoenix 5,524.0 6,160.0
Pitfall! -6.8 -5.8
Pong -2.2 10.4
Private eye 40.0 60.0
Q*bert 8,040.0 2,070.0
River raid 6,078.0 6,818.0
Road Runner 2,080.0 2,740.0
Robotank 44.6 30.8
Seaquest 316.0 560.0
Skiing -11,027.6 -10,443.8
Space invaders 2,721.0 2,943.0
Stargunner 1,100.0 1,040.0
Tennis -16.6 -0.6
Time pilot 30,920.0 32,440.0
Tutankham 165.8 180.6
Up’n down 682,080.0* 764,264.0*
Video pinball 445,085.8 149,284.6
Wizard of wor 184,260.0 199,900.0*
Yars’ revenge 77,950.8 105,637.0
Zaxxon 10,520.0 12,120.0

# best 18 30

Table 13: Score comparison of RA VAE-IW with different
values of β. Scores in bold indicate the best method, and
scores with a star indicate that the algorithm reached the
limit on executed actions at least once. Ties are counted as
won for both methods.



Figure 2: We calculate the mean number of expanded nodes of after each planning phase for each domain. The data is collected
with one run for each domain. The comparison is between the 0.5 second RA VAE-IW and 32 second RA VAE-IW.



Figure 3: We calculate the mean of the max depth nodes in the planning tree after each planning phase for each domain. The
data is collected with one run for each domain. The comparison is between the 0.5 second RA VAE-IW and 32 second RA
VAE-IW.


