
Safe Learning of Lifted Action Models

Brendan Juba1, Hai S. Le1, Roni Stern2,3

1Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA, {bjuba,hsle}@wustl.edu
2Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA, USA, rstern@parc.com

3Ben Gurion University of the Negev, Be’er Sheva, Israel, sternron@post.bgu.ac.il

Abstract
Creating a domain model, even for classical, domain-
independent planning, is a notoriously hard knowledge-
engineering task. A natural approach to solve this problem
is to use learning, but learning approaches frequently do not
provide guarantees of safety: variously, actions may fail or
may not lead to the desired outcome. In some domains such
failures are not acceptable, due to the cost of failure or inabil-
ity to replan online after failure. In such settings, all learning
must be done offline, based on some observations collected,
e.g., by some other agents or a human. Through this learn-
ing, the task is to generate a plan that is guaranteed to be
successful. This is called the model-free planning problem.
Prior work proposed an algorithm for solving the model-free
planning problem in classical planning. However, they were
limited to learning grounded domains, and thus they could not
scale. We generalize this prior work and propose the first safe
model-free planning algorithm for lifted domains. We prove
the correctness of our approach, and provide a statistical anal-
ysis showing that the number of trajectories needed to solve
future problems with high probability is linear in the poten-
tial size of the domain model. We also present experiments
demonstrating that our approach scales favorably in practice.

Introduction
In classical domain-independent planning, a domain model
is a model of the environment and how the acting agent
can interact with it. The domain model is given in a formal
planning description language such as STRIPS (Fikes and
Nilsson 1971) or the Planning Domain Definition Language
(PDDL) (McDermott et al. 1998). Domain-independent
planning algorithms (planners) use the domain model to
generate a plan for achieving a given goal condition from
a given initial state. Creating a domain model, however, is a
notoriously hard knowledge-engineering task.

To overcome this modeling problem, a variety of learning
methods have been proposed. The best-known formulation
is Reinforcement Learning (RL). In RL, an agent collects
observations about the world by performing actions and ob-
serving their outcomes. The RL agent then uses these ob-
servations to decide how to act in the future. RL techniques
have proven to be effective in a variety of domains, espe-
cially for low-level control tasks. However, RL generally

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

does not consider the possibility of “failing,” except inso-
far as the reward is sub-optimal. Similarly, most offline ap-
proaches that aim to learn a world model from past obser-
vations allow generating failing actions (Amir and Chang
2008).1 In some domains, this is not a problem and the agent
simply incorporates such experiences and updates its inter-
nal model to improve future executions. In other domains,
however, execution failure must be avoided and only safe
actions are allowed. This occurs when execution failure is
too costly, or the agent cannot replan due to limited compu-
tational capabilities. The problem of finding a safe plan, i.e.,
a plan that will not fail, without having a domain model, is
called safe model-free planning (Stern and Juba 2017). In-
stead of a domain model, in safe model-free planning the
planning agent is given a set of trajectories from plans that
were executed in the past in the same domain (e.g., by a dif-
ferent agent or a human).

Stern and Juba (2017) proposed a sound algorithm for safe
model-free planning, i.e., an algorithm that generates plans
that do not fail, provided that the environment is actually
captured by a (grounded) STRIPS model. However, their al-
gorithm is not complete, i.e., it may not return a plan for a
solvable planning problem. Nevertheless, they bounded the
probability of encountering such problems given a number
of trajectories quasi-linear in the number of actions.

Their positive result is limited to grounded domain mod-
els, that is, domains that are not defined by lifted, i.e., pa-
rameterized, actions and fluents. It is possible to generate a
grounded domain model from a given lifted domain model
and problem. But, the size of the resulting grounded domain
model can be arbitrarily larger than the lifted domain model.
In particular, a single lifted action can yield a number of
grounded actions that grow polynomially with the number
of objects in the domain, with the number of parameters of
the lifted action as its exponent. This significantly limits the
applicability of Stern and Juba’s algorithm.

In this work, we generalize their approach and propose
an algorithm that efficiently solves safe model-free planning
problems for lifted domains. The key component of this ap-
proach is an algorithm that learns a safe action model, which
is a model of the agent’s possible actions that is consistent
with the underlying, unknown, domain model. We call this

1They also did not consider lifted action models as we do.

algorithm Safe Action Model (SAM) Learning.
Two versions of SAM learning are presented. The first

may be used when the mapping from lifted fluents to
grounded fluents can be inverted. We prove that this version
is sound, and when the actions and fluents have bounded ar-
ity, we can guarantee that the action model is sufficient with
high probability after observing a number of trajectories that
is linear in the possible size of the lifted model. Importantly,
the number of trajectories needed depends only on the size
of this lifted model, and is independent of the number of ob-
jects in the domain, in contrast to Stern and Juba’s algorithm.
We also observed efficient learning experimentally on small
planning benchmarks. Finally, we discuss a more general
version of SAM learning, for the case where the mapping
from lifted fluents to grounded fluents cannot be inverted.

Background and Problem Definition
We define a classical planning domain by a tuple
〈T,O,F ,A,M〉 where T is a set of types, O is a set of ob-
jects, F is a set of lifted fluents, A is a set of lifted actions,
and M is an action model for A.

Every object o ∈ O is associated with a type t ∈ T de-
noted type(o). For example, in the logistics domain from
the International Planning Competition (IPC) (McDermott
2000) there are types truck and location and there may be
objects t1 and t2 that represent two different trucks and two
objects l1 and l2 that represent two different locations.

Lifted and Grounded Literals
A lifted fluent F is a relation over a list of types. These types
are called the parameters of F and denoted by params(F).
For example, in the logistics domain at(?truck, ?location)
is a lifted fluent that represents some truck (?truck) is at
some location (?location). A binding of a lifted fluent F is
a function b : params(F)→ O mapping every parameter of
F to an object in O of the same type. A grounded fluent f
is a pair 〈F, b〉 where F is a lifted fluent and b is a binding
for F. To ground a lifted fluent F with a binding b means to
create a relation over the objects in the image of b that match
the relation over the corresponding parameters. We call this
relation a grounded fluent or simply a fluent, and denote it by
f . In our logistics example, for F = at(?truck, ?location)
and b = {?truck : truck1, ?location : loc1} the corre-
sponding grounded fluent f is at(truck1, loc1). A state of
the world is a set of grounded fluents. The term literal refers
to either a fluent or its negation. The definitions of binding,
lifted, and grounded fluent transfer naturally to literals.

Lifted and Grounded Actions
A lifted action A ∈ A is a pair 〈name, params〉 where name
is a string and params is a list of types, denoted name(A)
and params(A), respectively. The action model M for a set
of actions A is a pair of functions preM and effM that map
every action in A to its preconditions and effects. To define
the preconditions and effects of a lifted action, we first de-
fine the notion of a parameter-bound literal. A parameter
binding of a lifted literal L and an action A is a function
bL,A : params(L)→ params(A) that maps every parameter

of l to a parameter in A. A parameter-bound literal l for the
lifted action A is a pair of the form 〈L, bL,A〉 where b is a
parameter binding of L and A. preM (A) and effM (A) are
sets of parameter-bound literals for A.

A binding of a lifted action A is defined like a binding
of a lifted fluent, i.e., a function b : params(A) → O.
A grounded action a is a tuple 〈A, b〉 where A is a lifted
action and bA is a binding of A. The preconditions of a
grounded action a according to the action model M , de-
noted preM (a), is the set of grounded literals created by tak-
ing every parameter-bound literal 〈L, bL,A〉 ∈ preM (A) and
grounding L with the binding bA ◦ bL,A. The effects of a
grounded action a, denoted effM (a), are defined in a simi-
lar manner. The grounded action a can be applied in a state
s iff preM (a) ⊆ s. The outcome of applying a to a state s
according to action model M , denoted aM (s), is a new state
that contains all literals in effM (a) and all the literals in s
such that their negation is not in effM (a). Formally:

aM (s) = {l|l ∈ s ∧ ¬l /∈ effM (a) ∨ l ∈ effM (a)} (1)

We omit M from aM (s) when it is clear from the con-
text. The outcome of applying a sequence of grounded
actions π = (a1, . . . an) to a state s is the state s′ =
an(· · · a1(s) · · ·). A sequence of actions a1, . . . , an can be
applied to a state s if for every i ∈ 1, . . . , n the action ai is
applicable in the state ai−1(· · · a1(s) · · ·).

Definition 1 (Trajectory). A trajectory T =
〈s0, a1, s1, . . . an, sn〉 is an alternating sequence of
states (s0, . . . , sn) and actions (a1, . . . , an) that starts and
ends with a state.

The trajectory created by applying π to a state s is the
sequence

〈
s0, a1, . . . , a|π|, s|π|

〉
such that s0 = s and for

all 0 < i ≤ |π|, si = ai(si−1). In the literature on
learning action models (Wang 1994, 1995; Stern and Juba
2017; Walsh and Littman 2008), it is common to repre-
sent a trajectory

〈
s0, a1, . . . , a|π|, s|π|

〉
as a set of triples{

〈si−1, ai, si〉
}|π|
i=1

. Each triple 〈si−1, ai, si〉 is called an
action triplet, and the states si−1 and si are referred to as
the pre- and post- state of action ai. We denote by T (a) the
set of all action triplets in the trajectories in T that include
the action a. T (A) is similarly defined for all action triplets
that contain actions that are groundings of A.

A classical planning problem is a tuple 〈D, sI , sg〉 where
D is a classical planning domain, sI is the start state, i.e.,
the state of the world before planning, and sg is a set of
grounded literals that define when the goal has been found.
A solution to a planning problem is a sequence of grounded
actions that can be applied to sI and if applied to sI results in
a state s′ that contains all the grounded literals in sg . Such a
sequence of grounded actions is called a plan. The trajectory
of a plan starts with sI and ends with a goal state sG (where
sg ⊆ sG). The safe model-free planning problem (Stern and
Juba 2017) is defined as follows.

Definition 2 (Safe model-free planning). Let Π =
〈〈T,O,F ,A,M∗〉 , sI , sg〉 be a classical planning problem
and let T = {T 1, . . . , T m} be a set of trajectories for other
planning problems in the same domain. The input to a safe

model-free planning algorithm is the tuple 〈T,O, sI , sg, T 〉
and the desired output is a plan π that is a solution to Π. We
denote this safe model-free planning problem as ΠT .

The main challenge in this problem is that the problem-
solver – the agent – needs to find a sound plan for a plan-
ning problem but it is not given the set of fluents, actions,
and action model of the domain (F , A, and M∗, respec-
tively). We assume that when the agent observes a grounded
action a = 〈A, ba〉, it is able to discern that a is the result
of grounding A with ba. Similarly, if it observes a state with
a grounded fluent f = 〈F, bf 〉, it is able to discern that f is
the result of grounding F with bf .

Conservative Planning in Grounded Domains
Our approach for solving the model-free planning problem
in lifted domains builds on the conservative planning ap-
proach proposed by Stern and Juba (2017) for grounded do-
mains. Thus, we first recall their approach.

Inference Rules for Grounded Domains
In a grounded domain, a state is a set of literals, and so are
the preconditions and effects of all actions. That is, there is
no notion of lifted literals of actions.

First, we define the notion of a consistent action model
following the semantics of classical planning.
Definition 3 (Consistent Action Model). An action model
M is consistent with a set of trajectories T if for every action
triplet 〈s, a, s′〉 ∈ T (a) it holds that:
1. All preconditions are satisfied: ∀l ∈ pre(a)∀s : l ∈ s
2. All effects are satisfied: ∀l ∈ eff(a)∀s′ : l ∈ s′
3. Frame axioms hold: ∀(l /∈ eff(a) ∧ l /∈ s)→ l /∈ s′

The contrapositives of the conditions in the above definition
can be interpreted as inference rules as follows.
Observation 1 (Inference rules for grounded domains). For
any action triplet 〈s, a, s′〉 it holds that:
• Rule 1 [not a precondition]. ∀l /∈ s : l /∈ pre(a)
• Rule 2 [not an effect]. ∀l /∈ s′ : l /∈ eff(a)
• Rule 3 [must be an effect]. ∀l ∈ s′ \ s : l ∈ eff(a)

So, Rule 1 states that a literal that is not in a pre-state cannot
be a precondition. Rule 2 states that a literal that is not in a
post-state cannot be an effect. Rule 3 states that a literal that
is in the post-state but not in the pre-state, must be an effect.
Since this is just a restatement of the definition of a con-
sistent action model, these rules precisely characterize the
action models that are consistent with a given set of traces.
Definition 4 (Safe Action Model). An action model M ′ is
safe with respect to an action model M iff for every state s
and grounded action a it holds that

preM′(a) ⊆ s→
(

preM (a) ⊆ s ∧ aM′(s) = aM (s)
)

(2)

Definition 4 says that if a is applicable in s according to a
safe action model (M ′), then (1) a is also applicable in s ac-
cording to the action modelM , and (2) the state resulting by
applying a to s is the same according to both action models.

We say that an action model is safe if it is a safe action
model w.r.t. the real action modelM∗. Observe that any plan

generated by a planner given a safe action model must also
be a sound plan according toM∗. The conservative planning
algorithm (Stern and Juba 2017) for model-free planning is
based on this observation. In conservative planning, we first
learn from the given set of trajectories an action model M
that is safe w.r.t. M∗, and then apply an off-the-shelf plan-
ner to generate plans usingM . To implement this algorithm,
Stern and Juba (2017) proposed an algorithm for learning a
safe action model, that we refer to as the Safe Action-Model
(SAM) Learning algorithm.

SAM Learning for Grounded Domains
SAM Learning works as follows. First, it assumes every ac-
tion a has all literals as its preconditions and no literals as
its effects. Then, it iterates over every action triplet in T (a)
and applies the rules in Observation 1 to remove incorrect
preconditions and to add effects.
Theorem 1 (SAM Learning is sound (Stern and Juba 2017)).
SAM learning produces a safe action model.

The main limitation of using a safe action model to gen-
erate plans is that it may be more restrictive than the real
action model (M∗). That is, there may be states in which an
action a is applicable according to M , but not according to
the safe action model. Consequently, there may be planning
problems that are solvable with M , but not with the safe ac-
tion model. Thus, if an action modelM ′ is safe w.r.t. another
action model M then in some sense it is weaker. Next, we
complement Theorem 1 by showing that every safe action
model that is consistent with the given trajectories must be
weaker than the action model returned by SAM learning.

Clearly, in the fully observable deterministic world of
classical planning, every action model that is not consistent
with the given set of trajectories is false. Moreover, there
exists a trajectory in the domain in which using such a false
action model will yield a failure. Thus, the set of consistent
action models must contain the real action model.
Theorem 2 (SAM Learning is complete). Let MSAM be
the action model created by SAM learning given the set of
trajectories T . Every action modelM ′ that is consistent with
T and safe w.r.t. the real action model M∗ is also safe with
respect to MSAM .

Proof. Consider an action model M ′ that is consistent with
T and safe w.r.t.M∗. Let a be an action and s be a state such
that a is applicable in s according to M ′, i.e., preM ′(a) ∈ s.
Since M ′ is safe w.r.t. M∗,

(
preM∗(a) ⊆ s ∧ aM ′(s) =

aM∗(s)
)

By construction of MSAM, if a literal l is a precon-
dition of a according to MSAM, then it has appeared in the
pre-state of all action triplets in T (a). Thus, there exists a
consistent action model in which l is a precondition of a and
this action model may be the real model. Therefore, since
M ′ is safe it follows that preM ′(a) ⊆ preMSAM

(a), and thus
a is applicable in s according to MSAM, i.e., preMSAM

(a) ∈ s.
Since MSAM is safe, aMSAM(s) = aM∗(s) = a′M (s).

Theorem 2 says that every action-model learning algo-
rithm is bound to either return an unsafe action model or

return a action model model that is weaker than the ac-
tion model returned by SAM learning. However, the action
model returned by SAM may still be weaker than the real
action model, and consequently, conservative planning for
model-free planning is bound to be sound but incomplete –
it generates plans that are sound but it may fail to generate
plans for some solvable planning problems.

A statistical analysis showed that under some assump-
tions, the number of trajectories SAM learning needs to
learn a safe action model that can solve most problems is
quasilinear in the number of actions in the domain (Stern
and Juba 2017). However, the number of grounded actions
in a lifted domain can be quite large: the number of grounded
actions that are groundings of a single lifted action grows
polynomially with the number of objects in the domain (ex-
ponentially in the number of parameters). However, in a
lifted domain, the real action model is assumed to be de-
fined only over lifted actions. This enables us to generalize
SAM learning across multiple groundings of the same lifted
action, eliminating the dependence on the number of objects
in the number of trajectories needed to learn a useful safe
action model. We describe this in the next section.

Conservative Planning for Lifted Domains
In this section, we describe a conservative planning ap-
proach for safe model-free planning in lifted domains, which
is based on a novel generalization of SAM learning to lifted
domains. To describe our SAM learning algorithm for lifted
domains, we denote by bindings(bA, bL) the set of all pa-
rameter bindings bL,A that satisfy the following

bA ◦ bL,A = bL. (3)

Inference Rules for Lifted Domains
The core of our algorithm is the following generalization of
Observation 1, defining what observing an action triplet with
a grounded action 〈A, bA〉 entails for the lifted action A.
Observation 2. For any action triplet 〈s, 〈A, bA〉 , s′〉
• Rule 1 [not a precondition]. ∀ 〈L, bL〉 /∈ s :

∀b ∈ bindings(bA, bL) : 〈L, b〉 /∈ pre(A) (4)

• Rule 2 [not an effect]. ∀ 〈L, bL〉 /∈ s′:
∀b ∈ bindings(bA, bL) : 〈L, b〉 /∈ eff(A) (5)

• Rule 3 [an effect]. ∀ 〈L, bL〉 ∈ s′ \ s :

∃b ∈ bindings(bA, bL) : 〈L, b〉 ∈ eff(A) (6)

For much of this paper, we make the following assumption:
Definition 5 (Injective Action Binding). In every grounded
action 〈A, bA〉, the binding bA is an injective function, i.e.,
every parameter of A is mapped to a different object.

Under this assumption, for every pair of bindings bL and
bA there exists a unique bL,A that satisfies Eq. 3. This bind-
ing is obtained by inverting bA, i.e.,

bindings(bA, bL) = {(bA)−1 ◦ bL}. (7)

This simplifies the inference rules given in Observation 2. In
particular, the “an effect” rule (Rule 1) becomes

∀ 〈L, bL〉 ∈ s′ \ s :
〈
L, (bA)−1 ◦ bL

〉
∈ eff(A). (8)

Algorithm 1: Safe Action-Model (SAM) Learning
Input : ΠT = 〈T,O, sI , sg, T 〉
Output: An action model that is safe w.r.t. the action

model that generated T
1 A′ ← all lifted actions observed in T
2 foreach lifted action A ∈ A′ do
3 eff(A)← ∅
4 pre(A)← all parameter-bound literals
5 foreach (s, 〈A, bA〉 , s′) ∈ T (A) do
6 foreach 〈L, bL,A〉 ∈ pre(A) do
7 if 〈L, bA ◦ bL,A〉 /∈ s then
8 Remove 〈L, bL,A〉 from pre(A)

9 foreach 〈L, bL〉 ∈ s′ \ s do
10 bL,A ←

〈
L, (bA)−1 ◦ bL

〉)
11 Add 〈L, bL,A〉 to eff(A)

12 return (pre, eff)

SAM Learning for Lifted Domains
We now present our SAM Learning algorithm for lifted do-
mains in Algorithm 1. For every lifted action A observed in
some trajectory, we initially assume that A has no effects
and all possible parameter-bound literals are its precondi-
tions (line 4 in Algorithm 1).2 Then, for every action triplet
(s, 〈A, bA〉 , s′) with this lifted action, we remove from the
preconditions of A every parameter-bound literal 〈L, bL,A〉
that is not satisfied in the current pre-state (Rule 2 in Ob-
servation 2). Then, for every grounded literal 〈L, bL〉 that
holds in the post-state s′ and not in s, we add a correspond-
ing effect to A (Rule 1 in Observation 2). Note that Rule 3
in Observation 2 is not needed since we initialize the set of
effects of every action to be an empty set.

Safety Property
We extend the notion of a safe action model to lifted domains
as follows. An action model M in a lifted domain is safe iff
every grounded action defined by M satisfies Eq. 2. This
definition preserves the property that a safe action model is
an action model that enables generating plans that are guar-
anteed to be sound w.r.t.M∗. We show next that SAM Learn-
ing for lifted domains indeed returns a safe action model.

Theorem 3. Given the injective action binding assumption,
SAM Learning (Algorithm 1) creates a safe action model.

Proof. We first show by induction on the iterations of the
loop in lines 5–11 that on every iteration

preM∗(A) ⊆ pre(A) and eff(A) ⊆ effM∗(A) (9)

where M∗ is the correct action model. Prior to the first iter-
ation, the preconditions of all lifted actions A are all pos-
sible parameter-bound literals, so pre(A) must be a sub-
set of preM∗(A). (Note that this includes every parameter-
bounded fluent and its negation.) Similarly, the effects are

2It is possible to initialize the preconditions of every lifted ac-
tion to the pre-state of one of the action triplets in which it is used.

Action Params Precond. Effects
Move ?tr - truck at(tr, from) at(tr, to),

?from - location not(at(tr, from))
?to - location

Load ?pkg - package at(tr, loc) on(pkg, tr),
?tr - truck at(pkg, loc) not(at(pkg, loc))
?loc - location

Unload ?pkg - package at(tr, loc), not(on(pkg,tr),
?tr - truck on(pkg, tr) at(pkg, loc)
?loc - location

Table 1: The parameters, preconditions, and effects of the
actions in our simple logistics example.

set to ∅, which is surely a subset of effM∗(A). The changes
made to pre(A) and eff(A) in subsequent iterations are en-
capsulated in lines 8 and 11 in Algorithm 1. Line 8 is a direct
application of Rule 1 (“not a precondition”) from Observa-
tion 2, and thus pre(A) is still a subset of preM∗ . Similarly,
line 11 is an application of Rule 3 (“an effect”) in the same
observation, given that bindings(bA, bL) consists of a single
parameter binding due to the injective binding assumption.
This completes the induction.

Let (pre, eff) be the action model returned by Algorithm 1
(line 12). From the induction above (Eq. 9) it immediately
follows that for every grounded action 〈A, bA〉 and state s,
if pre(〈A, bA〉) ⊆ s then preM∗(〈A, bA〉) ⊆ s. From the in-
duction above, all the parameter-bound literals in eff(A) are
indeed effects of A. Finally, consider any parameter-bound
literal 〈L, bL,A〉 that is an effect of A but is absent from
eff(A), i.e., every 〈L, bL,A〉 ∈ effM∗(A) \ eff(A). By con-
struction of eff, this can only occur if this parameter-bound
literal was true in all pre-states of groundings of A in all
the available trajectories. Consequently, 〈L, bL,A〉 must be
in pre(A). Therefore, every grounded literal in the post-state
of applying 〈A, bA〉 in s (i.e., 〈A, bA〉M∗ (s)) is either in
eff(〈A, bA〉) or pre(〈A, bA〉).

Consider the following simple logistics problem. There
are five objects: one truck object (tr), one package object
(pkg), and three locations objects (A, B, and C). at(?truck,
?location) and on(?truck, ?package) are lifted fluents repre-
senting that the truck is in the location and the package is
on the track, respectively. There are three possible actions:
Move, Load, and Unload. Table 1 lists the parameters, pre-
conditions, and effects of these actions. Now, assume we are
given three trajectories T1, T2, and T3. T1 starts with the
truck and the package at location A, and performs two move
actions: Move(tr, A, B) and Move(tr, B, C). T2 starts in the
same state, but performs Load(pkg, tr, A) and Move(tr, A,
B). T3 starts with the truck at location A and the package at
location B, and performs Move(tr, A, B), Load(pkg, tr, B),
Move(tr, B, C), and Unload(pkg, tr, C). Given only the first
trajectory T1, the action model returned by SAM Learning
already contains the correct action model for the lifted Move
action, since the only grounded fluents that can be bound to
the parameters of the grounded action Move(tr, A, B) are
at(tr, A) and not(at(tr, B)) in the pre-state, and at(tr, B) and
not(at(tr, A)) in the post-state. In contrast, SAM Learning for

grounded domains will not know anything about the precon-
ditions and effects of the grounded action Move(tr, B, C) un-
less it is also given the trajectory T3. Similarly, given the sec-
ond trajectory T2, the action model returned by SAM Learn-
ing contains the correct action model for the lifted Load ac-
tion, since the only grounded fluents that can be bound to
the parameters of the grounded action Load(pkg, tr, A) are
at(tr, A), at(pkg, A), and not(on(pkg, tr)) in the pre-state and
at(tr, A), not(at(pkg, A)), and on(pkg, tr)) in the post-state.
In fact, given T1, T2, and T3, SAM Learning is able to learn
the correct action model for this domain. Note that since
there are 10 grounded actions in this domain (four Move
actions and three Load and Unload actions), SAM Learning
for grounded domains will require at least 10 trajectories to
learn an action model with all of the actions.

Sample Complexity Analysis
Planning with a safe action model is a sound approach for
safe model-free planning, since every plan it outputs is a
sound plan according to the real action model. However, it is
not complete: a planning problem may be solvable with the
real action model, but not the learned one. As in prior work
on safe model-free planning (Stern and Juba 2017), we can
bound the likelihood of facing such a problem as follows.

Let PD be a probability distribution over solvable plan-
ning problems in a domain D. Let TD be a probability dis-
tribution over pairs 〈P, T 〉 given by drawing a problem P
from P(D), using a sound and complete planner to generate
a plan for P , and setting T to be the trajectory from follow-
ing this plan.3 Let arity(F, t) and arity(A, t) be the number
of type-t parameters of the lifted fluent F and action A.
Theorem 4. Under the injective binding assumption, given
m ≥ 1

ε (2 ln 3
∑
F∈F
A∈A

∏
t∈T arity(A, t)arity(F,t)+ln 1

δ) tra-

jectories sampled from TD, with probability at least 1 − δ
SAM learning for lifted domains (Algorithm 1) returns a safe
action model MSAM such that a problem is drawn from PD
that is not solvable with MSAM with probability at most ε.

Theorem 4 guarantees that with high probability (≥ 1−δ)
SAM Learning returns an action model that will only fail
to solve a given problem with low probability (≤ ε), given
a number of example trajectories linear in the size of the
models. Indeed, there are arity(A, t)arity(F,t) ways to bind
the parameters of F of type t to the parameters of A, and
hence

∏
t∈T arity(A, t)arity(F,t) ways of binding all of the

parameters of F to parameters of A. The preconditions and
effects are sets of these parameter-bound fluents. For exam-
ple, in our simple logistics example with two binary fluents
and three ternary actions, the load and unload actions have
a single argument of each type; only the move action has
two arguments of the same type (location). The only flu-
ents that have location arguments are the at fluents, which
have arity one with respect to locations. Thus, guaranteeing
ε = δ = 5% requires only 324 trajectories. The rest of this
section is devoted to establishing Theorem 4.
Definition 6 (Adequate). An action model M is ε-adequate
if, with probability at most ε, a trajectory T sampled from TD

3The planner need not be deterministic.

contains an action triplet 〈s, a, s′〉 where s does not satisfy
preM (a).4

Lemma 1. The action model returned by SAM Learning (Al-
gorithm 1) given m trajectories (as specified in Theorem 4)
is ε-adequate with probability at least 1− δ.

Proof. Consider any action model MB that may be returned
by SAM Learning but is not ε adequate. By definition, the
probability of drawing a trajectory from TD that is inconsis-
tent with MB is at least ε. Thus, the probability of drawing
m samples that are consistent with MB is at most

(1− ε)m ≤ e−m·ε. (10)

MB can only be returned if this occurs. For our choice ofm,

e−m·ε ≤ e−(ln 3L+ln 1
δ) =

δ

3L
(11)

where
L = 2

∑
F∈F
A∈A

∏
t∈T

arity(A, t)arity(F,t)

LetB be the set of action models that are not ε-adequate. By
a union bound over B, the probability that SAM Learning
will return an action model that is not ε-adequate is at most
|B|δ
3L

. For each parameter-bound fluent, each precondition or
effect will either contain that fluent, or its negation, or nei-
ther of them. Hence, the number of possible action models
is 3L. Since B is a set of action models, we have that the
size of B is at most 3L. Therefore, the probability that SAM
Learning will return an action model that is not ε-adequate
is at most δ.

Proof of Theorem 4. Let M be an action model returned by
SAM Learning given m samples. Thus, M is a safe action
model (Theorem 3) and it is ε adequate (Lemma 1). Consider
a problem P drawn from P(D), and its corresponding pair
〈P, T 〉 from T (D). Since M is ε-adequate, with probability
at least 1 − ε, for every action triplet 〈s, a, s′〉 ∈ T a is
applicable in s, that is, preM (a) ⊆ s. Since M is a safe
action model, we have that aM (s) = aM∗(s) = s′. Thus,
with probability at least 1 − ε the trajectory T is consistent
with the learned action model M , and therefore P can be
solved with M

Multiple Action Bindings
When the injective action-binding assumption does not hold,
multiple action parameters are bound to the same object and
thus (bA)−1 is not defined. As a result, when SAM Learning
infers an effect (Rule 1 in Observation 2) it cannot generalize
it to be a unique effect of the corresponding lifted action, as
done in line 10 in Algorithm 1. This poses a challenge to
learning a safe action model, as the information that can be
inferred from observing action triplets can be complex.

For example, consider a lifted action A(x, y). Suppose x
and y are associated with the same type and o is an object

4An action model may not contain any information about some
action a. For the purpose of safe planning this is equivalent to an
action model in which the precondition to a can never be satisfied.

of that type. Given the action triplet 〈{ }, A(o, o), {L(o)}〉,
the agent can infer that L(o) is an effect of the grounded ac-
tion A(o, o). However, the agent cannot accurately infer the
effect of the lifted action A(x, y): it can be either {L(x)},
{L(y)}, or both. Concretely, if o1 and o2 are two different
objects from the same type as o, the agent cannot determine
if applying A(o1, o2) will result in a state with {L(o1)},
{L(o2)}, or {L(o1), L(o2)}. Consequently, any safe action
model must not enable groundings of A that bind x and y to
different objects, unless L(x) and L(y) both already hold.

Now, assume the agent is also given the action triplet
〈{L(o1)}, A(o1, o2), {L(o1)}〉. The pre- and post-state are
the same, so in Algorithm 1 we cannot learn any new effects
of A from this triplet. However, we can infer that L(o2) is
not an effect of the grounded action in this triplet. Conse-
quently, the parameter-bound literalL(y) cannot be an effect
of the lifted action A. Thus, this second action triplet does
provide useful information: it allow us to infer that the lifted
action A(x, y) has a parameter-bound effect L(x). Next, we
describe Extended SAM Learning, which is able to capture
the above form of inference and is applicable to cases where
the injective action-binding assumption does not hold.

Extended SAM Learning
Extended SAM (E-SAM) learning works in two stages.
First, it creates for every lifted action A two Conjunc-
tive Normal Form (CNF) formulas, denoted CNFpre(A) and
CNFeff(A), that describe a set of constraints for a safe action
model. Then E-SAM learning generates a safe action model
based on these CNFs.

Safe Action Model Constraints CNFpre(A) uses atoms of
the form IsPre(〈L, bL,A〉), which specify that 〈L, bL,A〉 is a
precondition L in a safe action model. Similarly, CNFeff(A)
uses atoms of the form IsEff(〈L, bL,A〉), which specify that
〈L, bL,A〉 is an effect of L in a safe action model.

Initially, CNFpre(A) and CNFeff(A) represent that all pos-
sible parameter-bound literals are preconditions and there
are no effects. Then, E-SAM learning iterates over every ac-
tion triplet (s, a, s′) in the given set of trajectories in which
a is a grounding of A. For every such triplet, it applies the
inference rules in Observation 2 as follows.

Every parameter-bound literal 〈L, bL,A〉 such that
〈L, bA ◦ bL,A〉 is not in the pre-state cannot be a pre-
condition (Rule 1). So, we remove IsPre(〈L, bL,A〉) from
CNFpre for such parameter-bound literals. Similarly, every
parameter-bound literal 〈L, bL,A〉 such that 〈L, bA ◦ bL,A〉
is not in the post-state cannot be an effect (Rule 2). So, we
add ¬IsEff(〈L, bL,A〉) to CNFeff for such parameter-bound
literals. Finally, every grounded literal 〈L, bL〉 in s′ \ s
must be an effect. So, we add to CNFeff the disjunction
over all parameter-bound literals 〈L, bA ◦ bL,A〉 that satisfy
〈L, bA ◦ bL,A〉 = 〈L, bL〉 (Rule 3). Once the given trajecto-
ries have been processed by the algorithm, we simplify both
CNFs by applying unit propagation and removing subsumed
clauses.

Proxy Actions The main challenge in creating a safe ac-
tion model from the generated CNFs is the disjunction in
CNFeff, which represents uncertainty w.r.t to the effects of

action. To address this, we create a safe action model with a
set of proxy actions that ensure every action is only applica-
ble when we know its effects. This is done as follows.

If an action has only unit clauses, we have a single action
with the effects indicated by the positive literals. Otherwise,
we create a proxy action for all subsets of the non-subsumed
non-unit clauses. (The number of proxy actions is thus ex-
ponential in the number of non-unit clauses.) In this proxy
action, we identify all of the parameters that appear together
in a clause in the subset; if multiple clauses share any vari-
ables, we identify all of the parameters across the clauses.
Each proxy action has the following set of preconditions and
effects: every unit clause in the CNF and every clause in the
corresponding subset specifies an effect of the proxy action.
For the subset of clauses not chosen for this proxy action,
the proxy action has the corresponding literals as additional
preconditions, in addition to the preconditions of the orig-
inal SAM Learning action model. Every plan generated by
the action model created by the resulting action model is
translated to a plan without proxy actions by replacing them
with the actions for which they were created. Algorithm 2
lists the complete pseudocode of E-SAM learning.

Theoretical Properties The E-SAM Learning action
model satisfies the same properties as the original model (as-
suming injective bindings), captured in Theorems 3 and 2:

Theorem 5. The E-SAM Learning action model is safe.

Proof. For each of the proxy actions, for every effect, at
least one of the parameter-bound literals for the identified
parameters is an effect of the true action. Furthermore, the
preconditions ensure that the rest of the uncertain effects are
already present in the pre-state. The post-state of the proxy
action is thus identical to that of the true action when its
precondition is satisfied. Likewise, the proxy actions have
preconditions that are only stronger than the actual precon-
dition. Eq. 2 therefore holds. The rest of the claim now fol-
lows from the argument in Theorem 3.

Recall that a prime implicate is a clause that is entailed
by a formula for which no subclause is also entailed. CNFeff
consists of precisely these prime implicates.

Lemma 2. All prime implicates of CNFeff are derived by
unit propagation.

Proof. Note that the clauses created by Rule 3 contain only
positive literals, and negative literals are only created by
Rule 1 and 2, which create unit clauses. Hence, unit propaga-
tion is sufficient to capture all possible cut inferences (a.k.a.,
resolution inferences) from these clauses. By the complete-
ness of resolution for prime implicates (see, e.g., (Brach-
man and Levesque 2004, Chapter 13, Exercise 1)), all of the
prime implicates of CNFeff can be derived by applications of
cut. In turn, therefore, unit propagation can also derive all of
the prime implicates of CNFeff.

Theorem 6. Every action model M ′ that is consistent with
T and safe w.r.t. the real action model M∗ is also safe with
respect to the extended SAM Learning action model.

Algorithm 2: Extended SAM Learning
Input : ΠT = 〈T,O, sI , sg, T 〉
Output: (pre, eff) for a safe action model

1 A′ ← all lifted actions observed in T
2 foreach lifted action A ∈ A′ do
3 (CNFpre,CNFeff)← ExtractClauses(A, T (A))
4 CNF1

eff ← all unit clauses in CNFeff

5 SurelyEff← {l | IsEff(l) ∈ CNF1
eff}

6 SurelyPre← {l | IsPre(l) ∈ CNFpre}
/* Create proxy actions for non-unit effects clauses */

7 CNFeff ← CNFeff \ CNF1
eff

8 foreach S ∈ Powerset(CNFeff) do
9 pre(AS)← SurelyPre; eff(AS)← SurelyEff

10 foreach Ceff ∈ CNFeff \ S do
11 foreach IsEff(l) ∈ Ceff do
12 Add l to pre(AS)

13 MergeObjects
(
S, pre(AS), eff(AS)

)
14 return (pre, eff)

Proof. Let M ′ be an action model that is consistent with T
and safe w.r.t.M∗, and consider any transition 〈s, 〈A, b〉 , s′〉
permitted by M ′. Consider the set S of literals in s′ \ s that
do not correspond to unit clauses in the CNF created by E-
SAM Learning, and the set S̄ of literals that are the ground-
ings under b of the effects in the non-unit clauses created by
E-SAM learning that are not in s′ \ s. Recall, Observation 2
characterizes the set action models consistent with T and
by Lemma 2, no sub-clause of the CNF created by E-SAM
learning is entailed by the rules of Observation 2. Therefore,
for every literal of every non-unit clause of this CNF, there
exists an action model consistent with T in which that literal
is the only satisfied literal of the clause. (Otherwise, a strictly
smaller clause would be entailed.) Therefore, for each literal
l ∈ S, since M ′ is safe w.r.t. M∗, all of the parameters of
A in some clause for this effect must be bound to the ob-
jects necessary to obtain l as the corresponding effect. Thus,
b must be consistent with at least one of the proxy actions
Aproxy . Furthermore, since the literals in S̄ may be effects
of 〈A, b〉, if they are not in s′\s, they must be in s, so the pre-
conditions of Aproxy are satisfied as well. Since the E-SAM
Learning action model is safe by Theorem 5, the post-state
of Aproxy is therefore equal to that obtained by the true ac-
tion model, which is in turn also equal to s′ since M ′ is also
safe.A is therefore an application ofAproxy, and we see that
the use of A in M ′ is safe with respect to the set of proxy
actions in the E-SAM Learning action model.

Experiments
To evaluate the performance of SAM Learning for lifted
domains (Algorithm 1), we performed experiments on two
simple IPC domains: N-Puzzle (3×3, 3 predicates, 1 action)
and Blocksworld (8 blocks, 5 predicates, 4 actions). For each
domain, we generated 10 trajectories with 10 actions each
by taking random actions (all distinct lifted actions of a do-
main appear at least once in each trajectory). Then, we ran

SAM Learning on these trajectories and obtained a safe ac-
tion model. As a baseline, we used FAMA (Aineto, Celorrio,
and Onaindia 2019), which is a modern algorithm for learn-
ing an action model from trajectories. Note that FAMA has
no safety guarantee. For N-Puzzle, both methods correctly
learned the action model after observing a single 〈s, a, s′〉
triple in all 10 trials. For Blocksworld, Table 2 lists the num-
ber of state-action-state triples needed to learn a correct ac-
tion model over 10 runs, where each run processed the tra-
jectories in a random order.

〈s, a, s′〉 6 7 8 9 · · · 13 14 15 16 17
SAM 1 1 6 2 0 0 0 0 0 0
FAMA 0 0 0 0 0 3 1 3 1 2

Table 2: # trials in which SAM Learning and FAMA learned
the true Blocksworld action model with a given # of triples.

In all cases, SAM learning was able to recover a correct
action model using fewer (s, a, s′) triplets than FAMA. Note
that once SAM Learning finds a correct model, it will not
add more literals to the preconditions or effects, since SAM
only removes literals that are not satisfied in the pre-state
and adds literals that switch values between pre and post-
states. Meanwhile, FAMA might add irrelevant literals to the
preconditons or effects as it processes more transitions.

The code for SAM learning implementation and experi-
ments is available at https://github.com/hsle/sam-learning.

Related Work
A variety of notions of safety have been considered in RL,
for example capturing the ability to reliably return to a home
state (Moldovan and Abbeel 2012) or avoiding undesirable
states (which are often identified with negative “reward”)
(Turchetta, Berkenkamp, and Krause 2016; Wachi et al.
2018) while learning about the environment.

But, these approaches to safe exploration require some
kind of strong prior knowledge, either in the form of beliefs
about the transition model or knowledge that the safety lev-
els follow a Gaussian process model. Such assumptions are
reasonable in the low-level motion planning tasks where RL
excels, but they do not suit the kind of discrete, high-level
problems typically considered in domain-independent plan-
ning. In addition, in these works safety is soft constraint that
an algorithm aims to maximize, while in our case safety is a
hard constraint.

Conclusion and Future Work
In this work, we presented the Safe Action Model Learn-
ing algorithm for lifted domains. SAM Learning for lifted
domains is guaranteed to return an action model that pro-
duces sound plans, even without knowledge of the domain.
A theoretical analysis shows that the number of trajectories
needed to learn an action model that will solve a given prob-
lem with high probability is linear in the potential size of the
action model. This approach is suitable for most domains
in current planning benchmarks, where the effects of actions
are trivial unless the action parameters are bound to different

objects. We also discussed how to adapt our algorithm to the
case where this assumption does not hold. In the future, we
aim to extend safe action-model learning to domains with
partial observability and stochasticity. We will also examine
its performance on more complicated IPC domains.

Acknowledgments
This research is partially funded by NSF award IIS-1908287
and BSF grant #2018684 to Roni Stern.

References
Aineto, D.; Celorrio, S.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence 275. doi:10.1016/j.artint.2019.05.003.
Amir, E.; and Chang, A. 2008. Learning Partially Ob-
servable Deterministic Action Models. J. Artif. Intell. Res.
(JAIR) 33: 349–402.
Brachman, R. J.; and Levesque, H. J. 2004. Knowledge Rep-
resentation and Reasoning. Elsevier.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence 2(3-4): 189–208.
McDermott, D. 2000. The 1998 AI Planning Systems Com-
petition. AI Magazine 21(2): 13.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-
the planning domain definition language. Technical report,
AIPS ’98 - The Planning Competition Committee.
Moldovan, T. M.; and Abbeel, P. 2012. Safe exploration in
Markov decision processes. In Proceedings of the 29th In-
ternational Conference on Machine Learning, 1451–1458.
Stern, R.; and Juba, B. 2017. Efficient, Safe, and Probably
Approximately Complete Learning of Action Models. In
the International Joint Conference on Artificial Intelligence
(IJCAI), 4405–4411.
Turchetta, M.; Berkenkamp, F.; and Krause, A. 2016. Safe
exploration in finite markov decision processes with gaus-
sian processes. In Advances in Neural Information Process-
ing Systems, 4312–4320.
Wachi, A.; Sui, Y.; Yue, Y.; and Ono, M. 2018. Safe explo-
ration and optimization of constrained mdps using gaussian
processes. In Thirty-Second AAAI Conference on Artificial
Intelligence.
Walsh, T. J.; and Littman, M. L. 2008. Efficient learning
of action schemas and web-service descriptions. In AAAI,
volume 8, 714–719.
Wang, X. 1994. Learning planning operators by observa-
tion and practice. In Proceedings of the Second Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems, 335–340.
Wang, X. 1995. Learning by observation and practice: an
incremental approach for planning operator acquisition. In
Proceedings of the Twelfth International Conference on In-
ternational Conference on Machine Learning, 549–557.

