Knowing When To Look Back: Bidirectional Rollouts in Dyna-style Planning

Yat Long Lo, '3 Jia Pan, ! Albert Y.S. Lam >3

'Department of Computer Science, University of Hong Kong

?Department of Electrical and Electronic Engineering, University of Hong Kong

3 Fano Labs, Hong Kong

Abstract

In model-based reinforcement learning (MBRL), a model of
the world is used to generate transitional data for an agent
to learn from, in order to reduce sample complexity. Dyna
is one of the most widely adopted MBRL frameworks that
perform planning, acting, and learning in an online manner.
Most of the previous works on Dyna perform one-step roll-
outs from sampled states to generate data based on the agent’s
history. Recently, it has been shown that planning shape and
directionality (forward or backward planning) of the rollouts
can impose a significant impact on the performance given a
fixed planning budget. In this work, we conduct a system-
atic study on how these two factors affect the performance
of model-based agents. We hypothesize that forward plan-
ning and backward planning serve complementary purposes,
i.e. exploration and value propagation, in which careful state-
dependent allocation of planning budget can improve learn-
ing efficiency. We further provide an online method to auto-
mate the decision between forward planning and backward
planning using error-based epistemic uncertainty. We exam-
ine our proposed method in the tabular and linear function ap-
proximation settings for both perfect and learned models on
GridWorld and Cartpole environments and propose the use
of an ensemble of world models to counter compounding er-
rors of long rollouts in the learned models. Our results show
that both planning shape and directionality have a profound
impact on Dyna methods’ efficacy and bidirectional rollouts
can improve learning efficiency using the same number of
planning steps.

1 Introduction

With numerous successes of model-free reinforcement
learning (RL) in various tasks from video game playing
(Volodymyr et al. 2015) to robotics control (Gu et al. 2017),
model-based RL has gained wide interest in the research
community as a means to reduce the number of interactions
with the environment, i.e., sample complexity, which can
be expensive when being applied to real-world problems.
Model-based RL commonly contains a model of the world
that can be either hand-crafted or learned. Akin to how hu-
mans imagine scenarios in our heads, an agent learns from

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the data generated by the world model without actually tak-
ing actions within the real environment. The learning pro-
cess from these generated data is known as planning.

Dyna (Sutton 1991) is a general framework of reinforce-
ment learning that combines both model-free and model-
based RL into a single coherent architecture. This frame-
work has the appealing property of asynchronous process-
ing of planning and learning in which an agent’s decision-
making and learning processes can operate at the same time
as the world model is learning and planning. The world
model is learned from an agent’s real experience while
both real and simulated experiences generated by the world
model are used to update the value function or policy. We re-
fer to the use of simulated experience to learn here as Dyna-
style planning. Given the general and learning-algorithm-
independent nature of Dyna, we study different planning
properties following this framework.

Dyna offers flexible control over the planning process by
how much computational budget is devoted to planning and
how is the budget distributed (Holland, Talvitie, and Bowl-
ing 2018). Most of the previous works on Dyna, includ-
ing the original Dyna-Q algorithm (Sutton 1991), performed
one-step rollouts from sampled states to perform planning.
The potential benefits of using such flexible control are
less investigated. Two major factors over such planning
control are planning shape (Holland, Talvitie, and Bowl-
ing 2018) and directionality. Holland, Talvitie, and Bowl-
ing (2018) studied the impact of planning shape on perfor-
mance, demonstrating that longer or mid-length rollouts are
often more beneficial than one-step rollouts for the same
amount of planning steps. In terms of directionality, forward
planning is the most common that the world model gen-
erates the reward and the next state given a sampled state
and action. Moore and Atkeson (1993) used a form of back-
ward planning by prioritizing states of high error and up-
dating the values of their predecessors, which was shown
to improve learning efficiency by propagating values along
a trajectory faster. Edwards, Downs, and Davidson (2018)
proposed forward-backward RL that uses a backward world
model to generate data starting from goal states to handle
sparse reward environments, but it assumed the knowledge
of goal states and only performed rollouts from those goal

states. Overall, to our best of our knowledge, there is no sys-
tematic study on both planning shape and directionality and
methods that take advantage of both forward and backward
planning.

With a focus on planning shape (i.e., rollout lengths), we
encounter the issue of compounding of errors (Asadi, Misra,
and Littman 2018) in longer rollouts. The issue originates
from the inaccuracy of generated data by learned models that
can detrimentally affect performance. This is exacerbated
when the rollouts are long, outweighing any benefits the
rollout lengths can bring. To mitigate this problem, Talvitie
(2014) and Venkatraman, Hebert, and Bagnell (2015) pro-
posed hallucination to prepare the model to handle the fake
and inaccurate inputs generated by itself. Asadi et al. (2019)
proposed using a multi-step model directly to avoid feeding
generated outputs back to the world model.

In this paper, we first conduct a systematic study on how
both planning shape and directionality affect performance.
Then, we hypothesize that forward planning and back-
ward planning serve complementary roles of exploration
and value propagation. We propose an automatic method for
bidirectional rollouts that takes advantage of their hypothe-
sized roles using error-based epistemic uncertainty. For the
same amount of planning budget, we show that our proposed
method for bidirectional rollouts produces the best overall
performance among different planning shapes when com-
pared with only-forward rollouts and only-backward roll-
outs, offering supporting evidence to our hypothesis for roles
of forward planning and backward planning. We test our
method in the tabular and linear function approximation set-
tings for both perfect and learned models on GridWorld and
Cartpole environments. Additionally, we propose the use of
an ensemble of world models to counter compounding er-
rors of long rollouts in learned models that drop inaccurate
data based on the degree of disagreement among them. The
simple and straightforward approach is found to be effective
in avoiding catastrophic failures in long rollouts.

2 Background
2.1 Reinforcement Learning

In reinforcement learning, an agent interacts with its en-
vironment by taking actions at discrete time steps ¢ =
0,1,2,---. The environment is commonly formulated as
a Markov Decision Process (MDP) with states S, ac-
tions A, transition probabilities P SxAxS —
[0,1], rewards R : S x A x § — R and discount function
v:S8x AxS — [0,1] (White 2017). At each time step ¢,
the agent is in a state Sy, and takes an action A;. In response,
the environment emits a reward R, and takes the agent to
a state Syy1. The goal of the agent is to maximize the return,
defined as the discounted sum of the cumulative rewards:

oo
Gi = 7" Ritrir. (1)
k=0

In this paper, as we focus on the rollout mechanisms in
Dyna-style planning, the methods used should be indepen-
dent of the choice of learning algorithms. Thus, we use Q-
learning (Watkins and Dayan 1992) as our default learning

algorithm to isolate the effect of the planning parameters
that we are interested in. In Q-learning, the agent learns to
approximate the state-action value function and acts near-
greedily according to those state-action values. The state-
action values for a policy 7 : S x. A — [0, 1] are the expected
return for that policy beginning from state s and action a:

qr(s,a) = ETK‘[Gt|St =54 = a‘]a @)

where E[-] denotes taking expectation under policy .

For linear function approximation, We parameterize the
state-action value functions, denoted as G(S¢, Ay, 6;), where
0, refers to the weight vectors. State-action value functions
are commonly learned by bootstrapping the state-action
value of the next state, minimizing the temporal difference
error. The update rule for Q-learning to learn state-action
value functions is as follows:

0i11=0; +a(Rir + ’ijlaxﬁ(stﬂ’ Ait1)
t+1

—q(S¢, At))Veq(St, Ar),

where « is the learning rate. Each linear function approxi-
mator takes in a state feature vector as an input and produces
state-action value for each possible action.

3)

2.2 Model-Based Reinforcement Learning

Dyna Learning the value function often requires a huge
number of samples. Model-based approaches aim to lower
such sample complexity using world models to generate
imagined experiences. Dyna-Q (Sutton 1991) learns a value
function from both real and imagined experiences using
the same update rule as Q-learning. Specifically, a world
model is used to generate a complete transition to be used
by a learning algorithm. The world models are either hand-
crafted or learned. Here, we parameterize learned world
models with neural networks.

O JORIOR 26
O JORIOR 26
O JORIO8 26
(-0~ (-0~
(-0~ (-0~

O JORON 260
\@ﬁg*e...@*eaa

rollout step = 20 rollout step = 10

rollout step = 5

Figure 1: Different planning shapes

Planning Shape Planning shape is a term coined by Hol-
land, Talvitie, and Bowling (2018) to formalize how a plan-
ning budget is distributed. The budget refers to the number
of planning steps per real step taken in the environment. The

distribution can take many shapes. For instance, as illus-
trated in Figure 1, if the planning budget is 20 steps, an agent
can sample one state for 20 rollout steps, sample two states
for 10 rollout steps, sample four states for 5 rollout steps,
and so on. It is found that the distribution can have a pro-
found impact on the performance of a Dyna agent. Specif-
ically, 1-step rollouts do not seem to benefit performance
when compared with longer rollouts.

Backward Model

Figure 2: Forward and backward models

Directionality As shown in Figure 2, forward and back-
ward model have different input-output relationships. Same
as the way defined in Sutton and Barto (2018), a forward
model takes in a state and an action to produce the corre-
sponding next state and reward. Rollouts can be performed
iteratively by feeding the next state and a sampled action into
the forward model. On the other hand, a backward model
takes in a state and a reward to produce a corresponding pre-
vious state and the action that led to the current state. Using
either the forward or backward model gives the agent a com-
plete transition to learn but the value of the state that is being
updated is different. Note that another possible variant of the
backward model is to also predict the reward that an agent
gets to reach a particular state. This removes the assump-
tion of the knowledge of a reward function but increases the
learning burden of the agent. In this work, we assume that
we have a reward oracle that tells the agent the correct re-
ward as it rolls out backward.

3 Bidirectional Rollouts Using Epistemic
Uncertainty

Given a fixed planning budget, when should an agent per-
form forward and backward planning? If we crudely equate
learning from data generated by world models with animals’
imagination, the question would become when one should
look ahead and back from a scenario (a state). We hypoth-
esize that forward and backward plannings serve comple-
mentary purposes of exploration and value propagation, re-
spectively. Specifically, forward planning helps improve the
value estimation of a state by generating unfamiliar experi-
ences of possible futures. On the other hand, backward plan-
ning facilitates propagating the value learned for a particular

state back to its predecessors. Hence, as the value estimation
of a state-action pair improves through actual environment
learning and forward planning, backward planning should
be performed to a greater extent to inform value estima-
tions of the state’s predecessors. We hypothesize realizing
this intuition can improve learning efficiency, especially in
sparse reward settings. This is because what is learned would
be propagated faster through backward planning at the right
time when the value estimation of a state becomes accurate
enough.

To know when the estimation is accurate enough, we pro-
pose using the simple quantity of the learning error which
requires no extra computation to obtain. The learning er-
ror has a positive relationship with epistemic uncertainty,
which is induced during the learning process. As the error
goes down, an agent should be more certain about the value
estimation of that state. In other words, simply based on the
learning error, we can control how much backward planning
to perform. We show how to apply such intuition in both the
tabular and function approximation settings.

3.1 Tabular Setting

In the tabular setting, using Q-learning as an example, a sim-
ple extension can be done by having a maximum error (M E))
table of the same size as the Q-value table to store the max-
imum error of each state-action pair. With the maximum er-
ror known, we have a reference point to the assess learn-
ing progress for each pair. To translate such information into
resource allocation decisions in terms of how much to roll
out forward and backward, we use the maximum error as a
normalizing factor to obtain a value between O and 1. The
allocation equations are as follows:

n_forward = (e;/M E(S, A¢)) X maz_plan_steps, (4)

n_backward = max_plan_steps — n_forward, (5)

where max_plan_steps is the number of planning steps an
agent can take, n_forward and n_backward are the num-
ber of forward rollout steps and the number of backward
rollout steps, e; is the last temporal difference error of the
state-action pair, and M FE(S;, A;) refers to the maximum
error of the pair obtained from the maximum error table. We
can see that as the error goes down, fewer resources will be
allocated to perform forward rollouts with more resources
left for backward rollouts to propagate the learned values
backward. We hypothesize such a way of allocation would
improve learning efficiency.

3.2 Function Approximation Setting

Our simple extension in the tabular setting is not scalable
in the function approximation setting, especially in environ-
ments with large and continuous state spaces. Specifically,
three problems arise, namely the memory issue of the M F
table in continuous state spaces, the unreliability of the er-
ror measure under the function approximation setting, and
the poor quality of learned world models. We propose three
techniques to handle these issues

State Discretization: Having a M F table is intractable and
inefficient in continuous state spaces. To handle this issue,
we propose the use of state discretization to aggregate sim-
ilar states together. This is done by binning each dimen-
sion of the state features separately, denoted as a func-
tion discretize. The unique combination of bins across all
state dimensions would be one entry in the M E table. This
method is highly scalable as the number of state dimensions
grows linearly with the number of bins (Ghiassian et al.
2020). Hence, when we encounter a large and continuous
state space, we no longer need a huge or possibly infinite-
sized table but a reasonably sized one after state discretiza-
tion. With state discretization, the planning budget allocation
equation is as follows:

n_forward = (e,/ME(discretize(Sy, Ar)))
xmax_plan_steps.

(6)

Here, we have an additional discretize function that dis-
cretizes the state and returns the corresponding index to ac-
cess the maximum error value for a subset of states in the
ME table.

Exponential Moving Error: Another issue comes from the
unreliability of using the learning error as a pseudo-measure
of epistemic uncertainty. In the function approximation set-
ting, learning no longer strictly linearly reduces error. An
improvement in the value estimation of a state-action pair
may worsen the estimation of another pair. Additionally,
in some unseen or rarely seen states, or some catastrophic
states to the value function, the error values can become ex-
ceptionally large. As a result, the relationship between the
error and epistemic uncertainty is no longer as linear as we
may expect in the function approximation setting. To over-
come this, we propose the use of exponential moving error
in the replacement of maximum error. By doing so, the error
measure used for normalization is less likely to be skewed by
large values and is more adaptive to recent learning progress.
The update of M E table entries is as follows:

ME(discretize(S, At)) =
B x ME(discretize(Sy, Ay)) + (1 — 8) X e,

where is the decaying constant, a hyperparameter to be
tuned.

An Ensemeble of World Models: The last issue is the poor
quality of world models. As we move towards harder prob-
lems beyond the tabular setting, we can no longer have per-
fect world models. In simple environments like tabular Grid-
World, perfect world models can be created, given that we
have a deterministic environment with well-defined action
space. On the other hand, in harder problems like physics
simulators and robotics, it is almost impossible to have a
perfect world model, letting alone two perfect world models
for forward and backward rollouts. The issue is significantly
worse when such a world model is learned. When we use
an inaccurate model to perform rollouts, the longer a roll-
out, the more inaccurate the predictions, caused by the issue
of compounding errors (Asadi, Misra, and Littman 2018).
To alleviate this issue, we propose the use of an ensemble

(N

of world models. The ensemble approach has been a com-
monly used approach in machine learning. The high-level
idea is to improve prediction accuracy by training a set of
models that differ by factors like different random initializa-
tion to achieve better performance. Osband et al. (2016) pro-
posed the approach of learning an ensemble of value func-
tions that are initialized differently. As learning progresses,
the difference in predictions across these functions serves as
an indicator of how certain the agent is with the predictions.
Taking inspiration from this idea, we propose having an en-
semble of learned world models. Their disagreements in the
generated rollouts can serve as an indicator of how certain
the models are with their predictions. If it is highly uncer-
tain, the agent drops those transitions and does not learn
from them. As a result, the agent can avoid learning from
data that are highly erroneous with the potential of nega-
tively affecting the learning progress. Specifically, we use
the standard deviation of predictions across all the world
models as the numerical measure. If the measure is greater
than a threshold «, the rollout is dropped to avoid the com-
pounding of errors. We denote this threshold as x. When the
rollout is not dropped, we use the averaged prediction across
the world models as the generated data. More options other
than simple averaging like weighted averaging can be fur-
ther explored.

By combining all these three techniques, we can extend
our intuition to the function approximation setting. We will
showcase the results in the experimental results section.

4 Experimental Setup

We conduct extensive experiments on the GridWorld envi-
ronment for the tabular setting and the Cartpole environment
for the linear function approximation setting.

For the GridWorld environment, an agent attempts to
reach the goal state at the upper-right corner, starting from
the lower-left corner. The agent only receives a reward
of +1 when reaching the goal state. The state represen-
tation is the coordinate of the agent on the grid. Grid-
World of various sizes are used to vary reward sparsity:
5x5, 10x10, 20x20, 40x40 and 80x80. For model-based
agents, we used a perfect forward and backward world
model with a fixed planning budget of 20 steps. To look at
the effect of rollout mechanisms, we examine three types of
model-based reinforcement learning agents, namely one that
only performs forward rollouts (Dyna_Q_Forward), one that
only performs backward rollouts (Dyna_Q_Backward) and
one that dynamically performs forward and backward roll-
outs based on the epistemic uncertainty as discussed above
(Dyna_Q_Forward_Backward).

For the Cartpole environment, a pole is attached by an
unactuated joint to a cart, moving along a frictionless track.
An episode starts with the pole upright and the goal of the
agent is to prevent the pole from falling by increasing or
decreasing the cart’s velocity along the horizontal direction.
The agent receives a reward of +1 as long as the pole is up
and a terminating reward of -1 if the pole falls. The state
representation has four features, namely the cart’s position,
the cart’s velocity, the pole’s angle, and the pole’s velocity

Gridworld (5 x 5)

3550

3500

3450

w
£
S
S

Accumulated Rewards

3350

3300 -
0 1 2

4

10

Accumulated Rewards

900

@
&
3

®
&
3

®
2
S

@
5]
S

800 -~

Gridworld (10 x 10)

2

4

Rollout Extent

Gridworld (40 x 40)
160

140

-
IN]
S

S
3

Accumulated Rewards
o @
3 3

IS
3

N
S

04

2 4
Rollout Extent

Rollout Extent

10

20

Accumulated Rewards

360

340

320

300

280

260

0

Gridworld (20 x 20)

2

4

Rollout Extent

10

20

Gridworld (80 x 80)
25

= ~
G S

Accumulated Rewards
=
15

5 Q

mmm Dyna_Q_Forward

mmm Dyna_Q_Backward

mmm Dyna_Q_Forward_Backward

o 1. 2 4 10 20
Rollout Extent

Figure 3: Performance of forward, backward and bidirectional rollouts for GridWorld environments

at the tip. We used the implementation provided by Ope-
nAl (Brockman et al. 2016). To acquire a better feature
representation with a higher number of features, we pre-
train a feature extractor using Deep Q-learning (Mnih et al.
2015) and adopt the output of the last layer as the inputs
to the learning algorithm. We assume imperfect world mod-
els by pretraining fully connected neural networks with a
fixed planning budget of 20 steps. For the ensemble method,
we use an ensemble of six world models for forward mod-
els and backward models, respectively. Details on the pre-
training of the world models and feature extractor are in-
cluded in the appendix (7.1 and 7.2) . To assess the per-
formance of our proposed method, we compare with mul-
tiple Dyna-Q variants. We consider two algorithms that use
only-forward rollouts (Dyna_Q_F) and only-backward roll-
outs (Dyna_Q_B), respectively, and two other algorithms
with the same respective settings but with an ensemble of
world model (Dyna_Q_F_DE and Dyna_Q_B_DE). Our pro-
posed method is denoted as Dyna_Q_FB_DE, which uses an
ensemble of world model and performs bidirectional rollouts
dynamically.

For both sets of experiments, we use model-free Q-
learning as our baseline. Parameters sweeps are done on the
learning rate, 5 and (see appendix 7.3). Results reported
are averaged over 10 runs of different random seeds.

S5 Results
5.1 Tabular Setting

In Figure 3, we compare the performance of forward-only
(blue), backward-only (green), and bidirectional rollouts
(red) in the GridWorld environments of various sizes. To be-

gin with, as problem difficulty increases, we can see model-
based agents outperform the baseline Q-learning agent (yel-
low). This is obvious and expected as model-based agents
have additional learning experiences received from their cor-
responding world models. As the GridWorld size increases,
the model-free agent fails to acquire rewards due to the high
reward sparsity.

Comparing the two agents that only perform forward and
backward rollouts, we can see that as the problem difficulty
increases, the agent with only forward rollouts outperforms
the agent with only backward rollouts. One possible expla-
nation is the relatively lower capability of exploration using
backward rollouts, which prompts the question of whether
backward rollouts can be applied conditionally in combina-
tion with forward rollouts to achieve even more superior re-
sults.

Among the three types of model-based agents, our pro-
posed method with bidirectional rollouts has the best over-
all performance across GridWorld sizes. More importantly,
our proposed method has consistently better performance in
GridWorld sizes with larger reward sparsity (20x20, 40x40,
and 80x80). This provides supporting evidence of the signif-
icant impact of directionality on performance. Specifically,
learning efficiency can be improved by utilizing forward and
backward planning dynamically based on error-based epis-
temic uncertainty.

Additionally, looking at the planning shape, our tabular
results are in agreement with the conclusions made in Hol-
land, Talvitie, and Bowling (2018) under the nonlinear func-
tion approximation setting. We can see that medium-length
rollouts are much better than one-step rollouts.

Rollout size: 1

Episodic Rewards
=
1
3
Episodic Rewards
=
1
3

Rollout size: 2

0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Number of Steps

Rollout size: 10

Episodic Rewards
o
3
B

Episodic Rewards

100

Rollout size: 4

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Rollout size: 20

—Q
Dyna_Q_F

[2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

50 —— Dyna_Q_F_DE

2 —— Dyna_ QB
/\ —— Dyna_Q_B_DE

0 —— Dyna_Q_FB_DE

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Figure 4: Learning curves of forward, backward and bidirectional rollouts for Cartpole environment

5.2 Function Approximation Setting

In Figure 4, we show the performance of all the mentioned
agents across different planning shapes. Being consistent
with the results in the GridWorld Experiments, medium-
length planning shapes have the best performance for the
model-based agents.

We can see that our proposed approach (Dyna_Q_FB_DE)
has the best overall results. As the rollout length increases,
we observe how an ensemble of world models alleviates the
problem of compounding errors by dropping harmful transi-
tions. In other words, the approach is robust when we have
imperfect world models and need longer rollouts. The same
effect can also be observed in agents that only perform for-
ward or backward rollouts exclusively but with an ensem-
ble of world models (Dyna_Q_F_DE and Dyna_Q_B_DE).
By comparing with these two agents, we can see how bidi-
rectional rollouts based on epistemic uncertainty helps with
improving learning efficiency. These results in the function
approximation setting provide further support to our hypoth-
esis on the differing roles of forward planning and backward
planning, and how careful and state-dependent allocation
can improve performance.

6 Conclusion and Future Work

In this work, we investigate how the planning shape and
directionality of the rollout mechanism affect the perfor-
mance of a model-based reinforcement learning agent. We
hypothesize that if an agent can perform forward and back-
ward plannings dynamically, it can achieve better perfor-
mance and learning efficiency. We postulate that forward

and backward plannings have complementary roles of ex-
ploration and value propagation respectively. Once the qual-
ity of value estimations improves, more backward planning
should be performed to propagate the values backward to
previous states for quicker credit assignment. By doing so, a
better value function can be obtained at a faster pace.

Based on our hypotheses, we propose an online method
to perform bidirectional rollouts using error-based epistemic
uncertainty, as a numerical indicator for the quality of value
estimations. Specifically, we keep track of the maximum
learning error (or exponential moving error in the function
approximation case) of each state-action pair to assess learn-
ing progress, which is then used to allocate the planning
budget for forward and backward plannings. To further ex-
tend our method to large and continuous state space, we ap-
ply state discretization, an efficient method to overcome the
need of keeping track of all possible state-action pairs. Ad-
ditionally, to counter the problem of error compounding in
long rollouts in imperfect world models, we propose using
an ensemble of world models to drop harmful and erroneous
rollouts from learning.

By conducting experiments in both the tabular and lin-
ear function approximation settings, we reaffirm the ben-
efits of medium-length rollouts when compared with one-
step rollouts for the same amount of planning steps. We also
demonstrate how our proposed method of bidirectional roll-
outs can improve performance and learning efficiency when
compared with our baseline Dyna agents of the same plan-
ning budget, particularly in the sparse reward settings. These
provide supporting evidence to the hypothesized roles of for-
ward and backward plannings.

For future work, we plan to conduct a larger scale of
study on more complicated problems to further assess our
hypotheses made in this work. We also plan to develop
better and more efficient methods in performing bidirec-
tional rollouts. For instance, we can look at more principled
approaches like Gaussian processes to model uncertainty,
which can also be used to assess a world model’s uncertainty
towards its predictions.

References

Asadi, K.; Misra, D.; Kim, S.; and Littman, M. L. 2019.
Combating the compounding-error problem with a multi-
step model. arXiv preprint arXiv:1905.13320.

Asadi, K.; Misra, D.; and Littman, M. L. 2018. Lipschitz
continuity in model-based reinforcement learning. arXiv
preprint arXiv:1804.07193.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.

Edwards, A. D.; Downs, L.; and Davidson, J. C. 2018.
Forward-backward reinforcement learning. arXiv preprint
arXiv:1803.10227.

Ghiassian, S.; Rafiee, B.; Lo, Y. L.; and White, A. 2020.
Improving performance in reinforcement learning by break-
ing generalization in neural networks. arXiv preprint
arXiv:2003.07417.

Gu, S.; Holly, E.; Lillicrap, T.; and Levine, S. 2017. Deep
reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), 3389-3396.
IEEE.

Holland, G. Z.; Talvitie, E. J.; and Bowling, M. 2018. The
effect of planning shape on dyna-style planning in high-
dimensional state spaces. arXiv preprint arXiv:1806.01825.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. nature
518(7540):529-533.

Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine learning 13(1):103-130.

Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B. 2016.
Deep exploration via bootstrapped dqn. In Advances in neu-
ral information processing systems, 4026-4034.

Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.

Sutton, R. S. 1991. Dyna, an integrated architecture
for learning, planning, and reacting. ACM Sigart Bulletin
2(4):160-163.

Talvitie, E. 2014. Model regularization for stable sample
rollouts. In UAI, 780-789.

Venkatraman, A.; Hebert, M.; and Bagnell, J. A. 2015. Im-
proving multi-step prediction of learned time series models.
In Twenty-Ninth AAAI Conference on Artificial Intelligence.

Volodymyr, M.; Koray, K.; David, S.; Andrei, A. R.; and
Joel, V. 2015. Human-level control through deep reinforce-
ment learning. Nature 518(7540):529-533.

Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279-292.

White, M. 2017. Unifying task specification in reinforce-
ment learning. In Proceedings of the 34th International Con-
ference on Machine Learning (ICML-17)-Volume 70, 3742—
3750.

7 Appendix
7.1 World Models Pretraining

To pretrain the forward and backward world models, we
first collect one million transitions by following a random
policy. Then, we perform supervised training using fully-
connected neural networks with 1 hidden layer by mini-
mizing the mean-squared errors. The parameters details are
given:

Batch Size 256

Epoch 50000

Learning Rate 0.0001

Optimizer Adam with default parameters
Number of hidden units | 512

Table 1: Hyperparameter setting for world models pretrain-
ing

For an ensemble of world models, we train each of them
with different random seeds.

7.2 Feature Extractor Pretraining

We pretrain a feature extractor using a fully-connected neu-
ral network in order to obtain a better feature representation
for linear function approximation, used for the experiments
with the Cartpole environment. To do so, we pretrain a Deep
Q learning (Mnih et al. 2015) agent and use the output of
the last layer as features. The parameters details are shown
in table 2.

Batch Size 32

Epoch 500000

Learning Rate 0.0001

Optimizer Adam with default parameters
Number of hidden units 32

Experience replay buffer size | 10000

Target network update rate 100

Table 2: Hyperparameter setting for feature extractor pre-
training

7.3 Hyperparameter Sweep

Table 3 presents the values of hyperparameters we sweep
over to produce the experimental results. We used the same
exploration policy for all the agents in this work.

GridWorld

Number of steps 100000

Learning rate 27%4€1,2,3,4,5,6,7,8
Rollout sizes 1,2, 4, 10,20
World sizes 5, 10, 20, 40, 80
Discount rate 0.999

Planning buffer size 1000

Cartpole

Number of steps 20000

Feature size 32

Learning rate 107",:€1,2,3,4
Discretization bin size | 6, 8, 10, 15, 20
beta 0.99

kappa 27'1€4,5,6,7,8
Discount rate 0.999

Planning buffer size 10000

e-greedy policy

€ starting value 1.0

€ minimum value 0.1

€ decay 0.9995

Table 3: Hyperparameter sweep for the experiments

