
Think Neither Too Fast Nor Too Slow:
The Computational Trade-off Between Planning And Reinforcement Learning

Thomas M. Moerland,1,2∗ Anna Deichler,1,4* Simone Baldi,3,4 Joost Broekens,2 Catholijn M. Jonker1,2

1 Interactive Intelligence, Delft University of Technology, The Netherlands
2 Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

3 School of Cyberscience and Engineering, Southeast University, China
4 Delft Center for Systems and Control, Delft University of Technology, The Netherlands

Abstract

Planning and reinforcement learning are two key approaches
to sequential decision making. Multi-step approximate real-
time dynamic programming, a recently successful algorithm
class of which AlphaZero (Silver et al. 2018) is an example,
combines both by nesting planning within a learning loop.
However, the combination of planning and learning intro-
duces a new question: how should we balance time spend on
planning, learning and acting? The importance of this trade-
off has not been explicitly studied before. We show that it is
actually of key importance, with computational results indi-
cating that we should neither plan too long nor too short. Con-
ceptually, we identify a new spectrum of planning-learning
algorithms which ranges from exhaustive search (long plan-
ning) to model-free RL (no planning), with optimal perfor-
mance achieved midway.

1 Introduction
Sequential decision-making, commonly formalized as
Markov Decision Process (MDP) optimization, is a key chal-
lenge in artificial intelligence (AI) and machine learning
research. Important solution approaches include planning
(or search) (Russell and Norvig 2016) and reinforcement
learning (Sutton and Barto 2018). Recently, a class of algo-
rithms, known as multi-step approximate real-time dynamic
programming (MSA-RTDP), combines both fields. MSA-
RTDP iterates planning, which uses a learned value/policy
function, and learning, which uses output from the plan-
ning procedure. A successful example in this class is the
AlphaZero algorithm, which achieved super-human perfor-
mance in the game of Go, Chess, and Shogi (Silver et al.
2017; 2018).

This iterated planning and learning procedure introduces
a crucial new question: how long should we plan at a given
state? We hypothesize that this is a crucial trade-off for
planning-learning integrations: when we plan too exten-
sively, we make too little progress in the domain and have
less training targets for learning, while when we plan too
briefly, our local decisions and training targets are likely

∗Authors contributed equally.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to be less optimal. This trade-off was never present in on-
line planning, where the budget per real step is typically
as high as the application permits (in the order of millisec-
onds for a video game, or in the order of seconds to minutes
for a game of Chess (Campbell, Hoane Jr, and Hsu 2002)).
It was neither present in model-free reinforcement learning
(RL), since those approaches do not have access to a dy-
namics model and can therefore not plan. Model-based RL,
where we use observed data to approximate the dynamics
model, has mostly focused on dealing with enhancing data
efficiency and dealing with uncertainty in the learned models
(Sutton 1991; Chua et al. 2018). Instead, we focus on the sit-
uation with a known, perfect model without uncertainty, to
fully investigate the trade-off between planning and learning
once a good model is available.

We therefore study the AlphaZero algorithm on several
known tasks, where we fix the overall computational bud-
get, but vary the planning budget per real step and associated
training iteration. Our results show that, for a fixed over-
all time budget, approaches with an intermediate planning
budget per time-step achieve the highest final performance.
First, this is an important empirical insight for model-based
reinforcement learning and MSA-RTDP algorithms. More-
over, the fundamental mutual benefit of planning and learn-
ing, which outperforms their isolated application, may also
provide an argument for the existence of fast prediction
(System 1) and explicit planning (System 2) in human deci-
sion making. This theory, better known as dual process the-
ory (Evans 1984), was more recently popularized as ‘think-
ing fast and slow’ (Kahneman 2011). A short summary of
our results could be: ‘think too fast nor too slow’.

The remainder of this paper is organized as follows. Sec-
tion 2 provides essential background on Markov Decision
Process optimization, while Section 3 introduces the al-
gorithm class of interest, multi-step approximate real-time
dynamic programming. Section 4 and 5 detail methodol-
ogy and results, respectively. The final sections cover Re-
lated work (Sec. 6), Discussion (Sec. 7) and Conclusion
(Sec. 8). Code to replicate experiments is available from
https://github.com/ratponto/tree-rl-adaptive.



2 Preliminaries
We study the Markov Decision Process (MDP) (Puterman
2014) optimization problem. An MDP is defined by a state
space S, an action space A, a transition function T : S ×
A → p(S), a reward functionR : S×A×S → R, an initial
state distribution p(s0) and a discount parameter γ ∈ [0, 1].

We can interact with the environment through a policy
π : S → p(A). After specifying an action at in state st,
the environment returns a next state st+1 ∼ T (·|st, at) and
associated reward rt = R(st, at, st+1). We are interested in
finding the policy that gives the highest cumulative pay-off.
Define the state-action value as:

Q(s, a)=̇Eπ,T

[
K∑
k=0

γkrt+k

∣∣∣st = s, at = a

]
(1)

and V (s) = Ea∼π(·|s)[Q(s, a)]. There is only one optimal
value function Q?(s, a) (Sutton and Barto 2018), and our
goal is to find an optimal policy π? that achieves the optimal
value:

π? = arg max
π

Q(s, a). (2)

The possible approaches to this problem crucially rely on
our type of access to the environment dynamics T and re-
ward function R. In model-free reinforcement learning, the
environment cannot be reverted, and we therefore have to
sample forward from the state that we reach. This property,
also referred to as an ‘unknown model’, is also part of the
real world. In contrast, in planning and model-based RL, we
are either given or have learned a reversible model, better
known as a ‘known model’, which we can query for a next
state and reward for any state-action pair that we impute.

A classic approach in the latter case (known model) is
Dynamic Programming (DP) (Bellman 1966). For example,
in Q-value iteration we sweep through a state-action value
table, where at each location we update Q(s, a) according
to:

Q(s, a)← Es′∼T (·|s,a)

[
R(s, a, s′) + γmax

a∈A
Q(s, a)

]
(3)

Dynamic programming is guaranteed to converge to the
optimal policy. However, due to the curse of dimensionality,
it can not be applied in high-dimensional problems. In the
next section we introduce a recently popularized extension
of DP.

3 Multi-step Approximate Real-Time
Dynamic Programming

Multi-step approximate real-time dynamic programming
(Efroni, Ghavamzadeh, and Mannor 2019) has recently
shown impressive empirical results, for example beating hu-
mans and achieving state-of-the-art performance in the game
of Go (Silver et al. 2017), Chess and Shogi (Silver et al.
2018). MSA-RTDP is based on Dynamic Programming con-
cepts, but adds three additional concepts:

Figure 1: Multi-step Real-time Dynamic Programming. The
three key procedures are 1) Planning, 2) Learning, and 3)
Real steps (acting).

• ‘Real time’ (Barto, Bradtke, and Singh 1995) implies that
we act on traces through the environment that start from
some initial state s0 ∼ p(s0). This property is assumed
by most RL and planning algorithms. Compared to the
DP sweeps, it avoids work on states that we will never
reach.

• ‘Approximate’ implies that we will use function approxi-
mation to store a global parametrized solution, in the form
of a value Vθ(s)/Qθ(s, a) and/or policy function πθ(a|s),
where θ ∈ Θ denote the parameters of the approximation.
Compared to a tabular representation, approximate rep-
resentations can deal with high-dimensional state spaces
and benefit from generalization between similar states, al-
though they do make approximation errors. Approximate
solutions are especially popular in RL literature.

• ‘Multi step’ implies that for every Dynamic Programming
back-up, we are allowed to make a multi-step lookahead,
i.e., we can plan.

The resulting multi-step approximate RTDP algorithm
class has three key components, which are visualized in Fig-
ure 1:

1. Plan: At every state st in the trace, we get to expand some
computational budget B of forward planning, which could
for example be a depth-d full-breadth search (Russell and
Norvig 2016), or a more complicated planning procedure
like Monte Carlo Tree Search (Browne et al. 2012). The
planning procedure can use learned value/policy functions
to aid planning, for example through bootstrapping (Sut-
ton and Barto 2018).

2. Learn: After planning, we use the output of planning (our
improved knowledge about the optimal value and policy
at st) to train our global value/policy approximation.

3. Real step: We finally use the planning output to decide
which action at we will commit to, and make a ‘real step’,
transitioning to a sampled next state st+1 ∼ T (·|st, at).
The next iteration of planning continues from st+1.

MSA-RTDP has two special cases that depend on the
computation planning budget B per real step. One the one
extreme, B → ∞, we completely enumerate all possible fu-
ture traces, better known as exhaustive search (Russell and



Figure 2: Image stills from the studied tasks. Left: CartPole, where we attempt to balance the pole. Middle: MountainCar, where
we attempt to reach the top-left flag by swinging back and forth. Right: RaceCar, where we need to control a car to reach a
goal, indicated by a ball.

Norvig 2016). On the other extreme, B = 0, we do not
plan at all, but directly make a real step based on the global
approximations, better known as model-free reinforcement
learning (Sutton and Barto 2018).

Anthony, Tian, and Barber (2017) already related this ap-
proach to cognitive psychology research, in particular dual
process theory (Evans 1984; Kahneman 2011). The global
value/policy approximation, which makes fast predictions
about the value of actions, can be considered a System 1
(‘Thinking Fast’), while explicit forward planning to im-
prove over these fast approximations seems related to Sys-
tem 2 (‘Thinking slow’).

4 Methods
For this paper, we will follow the AlphaGo Zero (Silver et al.
2017) variant of MSA-RTDP. AlphaGo Zero uses a variant
of MCTS (Browne et al. 2012) for planning, and deep neu-
ral networks for leaning of a policy πθ(a|s) and value Vθ(s)
approximation. A key aspect of iterated planning-learning is
their mutual influence, where planning improves the learned
function, and the learned function directs new planning iter-
ations. We will detail both these integrations, starting with
training target construction based on planning output.

To train the policy network, we normalize the action vis-
itation counts n(s, a) at the tree root state s to a probability
distribution, and train on a cross-entropy loss:

Lπ(θ) =
∑
a

n(s, a)

n(s)
log πθ(a|s). (4)

For value network training, we use a target based on the
reweighted value estimates at the root of the MCTS,

V̂ (s) =
∑
a

n(s, a)

n(s)
Q̄(s, a), (5)

where Q̄(s, a) denotes the mean pay-off of all traces
through (s, a), and train on a squared error loss,

LV (θ) =
(
Vθ(s)− V̂ (s)

)2
. (6)

This is a slight variation of the original AlphaZero imple-
mentation, based on recent results of Efroni et al. (2018).
The above equations define the planning to learning connec-
tion in Fig. 1.

For the reverse connection, influencing planning based on
the learned functions, we i) replace the MCTS rollout by a
bootstrap estimate from the value network, and ii) modify
the MCTS selects step to

arg max
a

[
Q̄(s, a) + c · πθ(a|s) ·

√
n(s, a)

1 + n(s)

]
, (7)

where c ∈ R is a constant that scales exploration pressure.
We vary the planning budget per timestep through adjust-

ment of the number of traces per MCTS iteration, denoted
by nMCTS, while keeping the overall computational budget
(in the form of wall clock time) fixed. We experiment with
two well-known control tasks, CartPole and MountainCar,
available from the OpenAI Gym (Brockman et al. 2016),
and with the RaceCar task, available in the PyBullet package
(Coumans and Bai 2016). For MountainCar, we use a reward
function variant with r = −0.005 on every step, and r = +1
when the Car reaches the top of the hill. Visualizations of the
tasks are shown in Figure 2.

The total computational budget (planning, training and
acting) was fixed in advance on every environment: 500 sec-
onds for CartPole, 150 minutes for MountainCar, and 270
minutes for RaceCar. These budgets were predetermined
to allow for convergence on each domain. Therefore, long
planning per timestep (higher nMCTS) also implies less real
steps and less new training targets over the entire training
period.

Hyperparameters The effect of search budget may also
interact with the setting of other hyperparameters. We chose
the following approach. We quickly search for a general hy-
perparameter configuration that shows increasing learning
curves on all domains. Crucially, the search budget was var-
ied in this quick search, but we were unaware of its actual
values, to not bias the other hyperparameter settings towards
good performance on a particular search budget. We will
touch upon alternative approaches in the Discussion.

We here report the fixed values for the other hyperparame-
ters. For neural network training, we used batches of size 16
with a replay buffer of size 5e3 and learning rate of 1e-3 on
all domains, optimized with ADAM optimizer (Kingma and



Figure 3: Learning curves on CartPole, MountainCar and RaceCar environments. The colour legend per plot displays the MCTS
trace budget before every real step (nMCTS). There is no clear normalization criterion for the return scales on each domain, so
we report their absolute values. We see that AlphaGo Zero learns on all tasks, with best performance on CartPole, MountainCar
and RaceCar achieved for budgets of, respectively, 8, 32 and 32 traces per timestep.

Figure 4: Trade-off between planning and learning. The horizontal axis shows the computational budget per MCTS search in
the form of the total number of traces. The vertical axis shows the cumulative reward achieved by the specific set-up. Data
based on last 15% of the learning curves in Fig. 3. Note that the total computation time for every repetition was fixed, i.e.,
higher planning budget per timestep will yield less real steps and less targets for training the neural networks. We observe a
clear trade-off on all domains, with optimal results achieved for intermediate search budgets.

Ba 2014). Policy and value network shared their hidden lay-
ers, with 256 hidden nodes per layer. Since the reward scales
between the task varied greatly, the c parameter (Eq. 7) did
require adjustment per domain: for CartPole we decayed it
from 0.8 to 0.05 in 500 steps, for MountainCar from 5 to
0.5 in 5000 steps, and for RaceCar from 1.0 to 0.05 in 1500
steps. All results are averaged over 3 repetitions.

5 Results
Figure 3 shows learning curves for the three environments.
We see that the AlphaZero algorithm manages to learn all
three tasks. The largest variation in performance is seen on
the CartPole task. Clearly, the most stable performance for
CartPole uses nMCTS = 8. Compared to CartPole, Moun-
tainCar has a sparser reward. We therefore require longer
total budget and more traces per timestep to achieve best
performance, which is attained with nMCTS = 32. Finally,

RaceCar has a larger action space than both other domains,
wich requires longer training, and generally more traces per
timestep. The best performance is achieved for nMCTS = 32
traces.

The learning curves indicate that optimal performance is
achieved for an intermediate search budget. To better illus-
trate this observation, we aggregate the average pay-offs
from the last 15% of total time for every planning budget
in each environment. These results are visualized in Figure
4. The horizontal axis now displays search budget, while the
vertical axis displays mean pay-off at the end of training.
For all three environments, we observe clear optimal perfor-
mance for an intermediate search budget per real step.

To further investigate what happens during training, we
visualize the output of the policy network on RaceCar for
different search budgets in Figure 5. The right, middle and
left progression refer to nMCTS settings of 16, 32 and 128,



Figure 5: Training progression of policy network on RaceCar, for a) n = 16 trace budget per MCTS iteration, b) n = 32
trace budget, and c) n = 128 trace budget. Each plot (a-c) visualizes a progression over training, where the number above
the subplot indicates the episode number. A subplot within each plot visualizes the two-dimensional state space (x-y location
of the ball in first person view), where each state is colour coded according to the entropy of the policy network at that state.
High entropy (red colour) implies an uncertain policy, while low entropy (blue) implies a converged policy network. We see
that the right progression (nMCTS = 128) qualitatively seems to slow, as there are too little training targets. The left progression
(nMCTS = 16) seems to converge fast, but Fig. 4 shows that convergence is premature, as the achieved return is worse than the
middle progression (nMCTS = 128).

respectively. Each subplot shows the two-dimensional Race-
Car state space, which describes the (x,y)-location of the ball
in first person view. Each state in this state space is coloured
according to the entropy of the policy network. Red colour
implies high entropy and therefore an uncertain policy, while
blue colour implies low entropy and a near converged pol-
icy. The number above each subplots indicates the episode
number.

First of all, we may note that the entropy of the policy is
high in the entire state space at the beginning of all three
search budgets, which is to be expected. Second, we can
clearly observe a difference in the number of completed
episodes. Looking at the bottom-right subplot of the left
(nMCTS = 16), middle (nMCTS = 32) and right (nMCTS =
128) plot, we observe that we completed 750, 332 and 93
full episodes for the search budgets of 16, 32 and 128 traces
per real step, respectively. Of course, a higher search budget
implies that we complete less episodes.

More interestingly, we can qualitatively compare the con-
vergence of the policy networks in all three scenarios. When
we compare the high search budget (right) with the inter-
mediate one (middle), we see that the high search budget
shows a similar progression, but it progresses slower. For
example, the policy network at episode 93 for nMCTS = 128
shows similarity with the situation after episode 170 for
nMCTS = 32, with near convergence (blue) at the border of
the state space, and demarcation of early convergence areas
(white) in the center of state space. Although we did require
less episodes to reach that situation for nMCTS = 128, it did
take more computation due to the relatively high planning
effort per real step. Therefore, the high planning budget can-
not benefit enough from generalization of information. The
reverse situation is visible when we compare the left plot
(nMCTS = 16) with the middle plot (nMCTS = 32). In the

left plot, the policy network seems to converge faster, with
a very certain policy (blue) in most of the state space at the
end of the total time budget. However, if we look at the per-
formance in Fig. 4, the convergence was actually premature,
as we probably trained on planning targets that were too un-
stable. We will further interpret these observations in the dis-
cussion.

6 Related Work
AlphaGo Zero (Silver et al. 2017) and Alpha Zero (Sil-
ver et al. 2018), as used in this work as well, are exam-
ples of multi-step approximate real-time dynamic program-
ming. AlphaGo Zero treats the trade-off between planning
and learning as a fixed hyperparameter, where they use 1600
MCTS traces per real step in the game of Go, and 800 MCTS
traces per real step for both Chess and Shogi. A very simi-
lar algorithm is Expert Iteration (ExIt) (Anthony, Tian, and
Barber 2017), which shows state-of-the-art performance in
the game Hex. The authors do not report the MCTS budget
per search used during training.

The earliest idea of iterated search and learning seems to
date back to Samuel’s checkers programme (Samuel 1967).
In later work, Carmel and Markovitch (1999) explicitly stud-
ies lookahead-based exploration. The authors do mention
that ‘it is rational for the agent to invest in computation in
order to save interaction’, but do not further investigate this
trade-off. Chang et al. (2015) made a step towards multi-step
approximate real-time dynamic programming with Locally
Optimal Learning to Search (LOLS). LOLS iterates i) Monte
Carlo search, which leverages the policy, and ii) policy train-
ing, which is based on the estimated values during planning.
Other algorithms that update a global value approximation
based on nested search are Sheppard (2002) and Veness et
al. (2009).



A theoretical study of multi-step greedy real-time dy-
namic programming was recently provided by Efroni,
Ghavamzadeh, and Mannor (2019). One of their results
shows that the sample complexity of multi-step greedy
RTDP scales as Ω(1/d), where d denotes the depth of the
lookahead, while the computational complexity scales as
Ω(d). We directly see the trade-off appearing here, as deeper
planning decreases the required number of real steps at the
expense of increased computation. Our work provides an
empirical investigation of the effect of this trade-off. Our
results also seem to indicate that the optimal, intermediate
planning budget also correlates with the dimensionality of
the problem, where more complex problems require a higher
budget.

Our empirical results are also partly visible in the concur-
rent work of Wang et al. (2019). These authors benchmark
several model-based RL algorithms. They do not focus on
iterated search and RL algorithms, like multi-step approxi-
mate real-time dynamic programming, but do include results
of standard RL methods that train on learned dynamics mod-
els. Their results show a similar trade-off. However, their
results could also be caused by the uncertainty in a learned
model, which makes planning far ahead less reliable. In con-
trast, our work shows a more fundamental trade-off exist,
even in the case of a converged/perfect model.

As mentioned before, from a psychological perspective,
our work can be related to dual process theory. Developed in
the 70’s and 80’s by Evans (1984), it describes the presence
of a System 1 and System 2 in human cognition. System
1 and 2 have more recently been popularized as ‘Thinking
Fast and Slow’ (Kahneman 2011; 2003), respectively. Sys-
tem 1 includes fast, reactive, automatic behaviour, much like
a neural network prediction, while System 2 includes slow,
calculating, effortful decision-making, which bears similar-
ity to local planning. This paper identifies the mutual benefit
of both for optimal sequential decision making, and may as
such also provide a computational motivation for the pres-
ence of both systems in humans.

7 Discussion
The computational experiments in this work clearly show a
trade-off between planning, learning and acting. We identify
planning budget per timestep as the major factor of impor-
tance: with a higher budget per timestep, we generate less
training targets (and therefore spend less time on training)
and make less real steps (complete less full episodes).

Figure 6 conceptually illustrates the observations from
this paper. On the left of this plot, we find model-free RL,
where the planning budget per timestep B = 0, and we only
make real steps. Although model-free RL has shown impres-
sive results (Mnih et al. 2015), it is known to be notoriously
unstable, especially in combination with function approxi-
mation (Sutton and Barto 2018). On the right of this plot
we find exhaustive search, where the computational budget
per timestep B → ∞, and we try to completely enumerate
all futures from the root before choosing an action. Exhaus-
tive search has high computational complexity that scales
exponentially in the depth of the problem, and is therefore
generally not a feasible approach. The problem is that it

Figure 6: Conceptual illustration of the trade-off between
planning and learning. The horizontal axis shows the com-
putational budget of planning before every real step. On the
left extreme we find model-free RL, which samples only a
single transition before every step. On the far right, we find
exhaustive search, which completely enumerates the search
tree before executing a step. The curve illustrates the exper-
imental results, which show a trade-off.

never generalizes information between states it encounters
(no learning), and therefore repeats much work.

Given the above observations, the shape of Figure 6 may
come to no surprise, as it appears to keep the best of both
worlds. On the one hand, we use local planning to i) create
better training targets for our global value/policy approxima-
tion, and ii) correct for local errors in these approximations
by looking ahead to more clearly discriminable states. On
the other hand, learning adds to pure planning the ability
to generalize and store global solutions in memory, which
avoids repeating much work, as for example present in ex-
haustive search.

As mentioned in Sec. 4, the effect of planning budget per
timestep may interact with the value of other hyperparame-
ters. For this work we chose to quickly search for a general
hyperparameter setting on all domains, while being agnos-
tic to the search budget in that phase. There could be two
alternative approaches. First, we could separately optimize
all other hyperparameters for every search budget on every
domain. This would squeeze out the optimal performance,
but is very computationally demanding. Second, we could
specify an interval for every hyperparameter with reason-
able values, and test on a set of random samples from these
ranges, which would test robustness to hyperparameter vari-
ation. These could be interesting extensions with slightly
different messages. Nevertheless, our approach is also unbi-
ased, shows consistent results over tasks, and complies with
empirical search budget decisions in other papers, for exam-
ple in AlphaGo Zero (Silver et al. 2017) (which used 1600
MCTS traces per real step, not 1 or 10 million).

Neuroscience has suggested that both systems in dual pro-
cess theory compete for control over the decision (Daw, Niv,
and Dayan 2005). Our work provides computational motiva-
tion that both systems are complementary, and actually both
necessary for optimal decision making. This may also pro-
vide an evolutionary motivation for their existence.



A clear direction of future work would be to adaptively
adjust the planning budget per timestep in a data-driven way.
Cognitive science has for long investigated how humans de-
cide on planning duration, aiming to find a ‘satisficing’ (a
portmanteau of satisfy and suffice) solution (Schwartz et al.
2002). Computational models of such data-dependent trade-
offs, possibly based on the remaining uncertainty in the plan,
may further improve performance of planning-learning in-
tergrations.

8 Conclusion
This paper investigated the computational trade-off between
planning and learning. Our results indicate that high perfor-
mance requires both local planning and global function ap-
proximation, and that the planning budget per real time-step
should neither be too high nor too low. This is an important
insight for the empirical application of model-based RL al-
gorithms, but may also provide a computational motivation
for the existence of a dual system in human cognition. More-
over, it opens up towards future research on this trade-off, for
example identifying whether the budget per time-step should
be a context-dependent function of the observed data.

References
Anthony, T.; Tian, Z.; and Barber, D. 2017. Thinking fast
and slow with deep learning and tree search. In Advances in
Neural Information Processing Systems, 5360–5370.

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
intelligence 72(1-2):81–138.

Bellman, R. 1966. Dynamic programming. Science
153(3731):34–37.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. arXiv preprint arXiv:1606.01540.

Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1):1–43.

Campbell, M.; Hoane Jr, A. J.; and Hsu, F.-h. 2002. Deep
blue. Artificial intelligence 134(1-2):57–83.

Carmel, D., and Markovitch, S. 1999. Exploration strate-
gies for model-based learning in multi-agent systems: Ex-
ploration strategies. Autonomous Agents and Multi-agent
systems 2(2):141–172.

Chang, K.-W.; Krishnamurthy, A.; Agarwal, A.; Daume, H.;
and Langford, J. 2015. Learning to Search Better than Your
Teacher. In International Conference on Machine Learning,
2058–2066.

Chua, K.; Calandra, R.; McAllister, R.; and Levine, S. 2018.
Deep reinforcement learning in a handful of trials using
probabilistic dynamics models. In Advances in Neural In-
formation Processing Systems, 4754–4765.

Coumans, E., and Bai, Y. 2016. Pybullet, a python mod-
ule for physics simulation for games, robotics and machine
learning. GitHub repository.
Daw, N. D.; Niv, Y.; and Dayan, P. 2005. Uncertainty-
based competition between prefrontal and dorsolateral stri-
atal systems for behavioral control. Nature Neuroscience
8(12):1704–1711.
Efroni, Y.; Dalal, G.; Scherrer, B.; and Mannor, S. 2018.
Beyond the One-Step Greedy Approach in Reinforcement
Learning. In International Conference on Machine Learn-
ing, 1386–1395.
Efroni, Y.; Ghavamzadeh, M.; and Mannor, S. 2019. Multi-
Step Greedy and Approximate Real Time Dynamic Pro-
gramming. arXiv preprint arXiv:1909.04236.
Evans, J. S. B. 1984. Heuristic and analytic processes in
reasoning. British Journal of Psychology 75(4):451–468.
Kahneman, D. 2003. Maps of bounded rationality: Psychol-
ogy for behavioral economics. American economic review
93(5):1449–1475.
Kahneman, D. 2011. Thinking, fast and slow. Macmillan.
Kingma, D., and Ba, J. 2014. Adam: A Method for Stochas-
tic Optimization. International Conference on Learning
Representations.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.
Puterman, M. L. 2014. Markov Decision Processes.: Dis-
crete Stochastic Dynamic Programming. John Wiley &
Sons.
Russell, S. J., and Norvig, P. 2016. Artificial intelligence: a
modern approach. Malaysia; Pearson Education Limited,.
Samuel, A. L. 1967. Some studies in machine learning using
the game of checkers. II - Recent progress. IBM Journal of
research and development 11(6):601–617.
Schwartz, B.; Ward, A.; Monterosso, J.; Lyubomirsky, S.;
White, K.; and Lehman, D. R. 2002. Maximizing versus
satisficing: Happiness is a matter of choice. Journal of per-
sonality and social psychology 83(5):1178.
Sheppard, B. 2002. World-championship-caliber Scrabble.
Artificial Intelligence 134(1-2):241–275.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science
362(6419):1140–1144.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Sutton, R. S. 1991. Dyna, an integrated architecture



for learning, planning, and reacting. ACM Sigart Bulletin
2(4):160–163.
Veness, J.; Silver, D.; Blair, A.; and Uther, W. 2009. Boot-
strapping from game tree search. In Advances in neural in-
formation processing systems, 1937–1945.
Wang, T.; Bao, X.; Clavera, I.; Hoang, J.; Wen, Y.; Lan-
glois, E.; Zhang, S.; Zhang, G.; Abbeel, P.; and Ba, J.
2019. Benchmarking Model-Based Reinforcement Learn-
ing. CoRR abs/1907.02057.


