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Abstract
We present PDDLGym, a framework that automatically con-
structs OpenAI Gym environments from PDDL domains and
problems. Observations and actions in PDDLGym are re-
lational, making the framework particularly well-suited for
research in relational reinforcement learning and relational
sequential decision-making. PDDLGym is also useful as a
generic framework for rapidly building numerous, diverse
benchmarks from a concise and familiar specification lan-
guage. We discuss design decisions and implementation de-
tails, and also illustrate empirical variations between the
20 built-in environments in terms of planning and model-
learning difficulty. We hope that PDDLGym will facilitate
bridge-building between the reinforcement learning commu-
nity (from which Gym emerged) and the AI planning commu-
nity (which produced PDDL). We look forward to gathering
feedback from all those interested and expanding the set of
available environments and features accordingly.

1 Introduction
The creation of benchmarks has often accelerated re-
search progress in various subdomains of artificial intelli-
gence (Deng et al. 2009; Wang et al. 2018; Wu et al. 2018).
In sequential decision-making tasks, tremendous progress
has been catalyzed by benchmarks such as the environments
in OpenAI Gym (Brockman et al. 2016) and the planning
tasks in the International Planning Competition (IPC) (Val-
lati et al. 2015). Gym defines a standardized way for an agent
to interact with an environment, allowing easy comparison
of various reinforcement learning algorithms. IPC provides
a set of planning domains and problems written in the Plan-
ning Domain Definition Language (PDDL) (McDermott et
al. 1998), allowing easy comparison of symbolic planners.

In this work, we present PDDLGym, an open-source
framework that combines elements of Gym and PDDL.
PDDLGym is a Python library that automatically cre-
ates Gym environments from PDDL domain and prob-
lem files. The library is available at: https://github.com/
tomsilver/pddlgym. Pull requests are welcome!

As with Gym, PDDLGym allows for episodic, closed-
loop interaction between the agent and the environment;
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Figure 1: Some examples of environments implemented
in PDDLGym. From top left: Sokoban, Hanoi, Blocks,
Travelling Salesman (TSP), Slide Tile, and Crafting.

the agent receives an observation from the environment and
gives back an action, repeating this loop until the end of
an episode. As in PDDL, PDDLGym is fundamentally rela-
tional: observations are sets of ground relations over objects
(e.g. on(plate, table)), and actions are templates
ground with objects (e.g. pick(plate)). PDDLGym is
therefore particularly well-suited for relational learning and
sequential decision-making research. See Figure 1 for ren-
derings of some environments currently implemented in
PDDLGym, and Figure 2 for code examples.

The Gym API used in reinforcement learning defines a
hard boundary between the agent and the environment. In
particular, the agent only interacts with the environment by
taking actions and receiving observations. The environment
implements a function step that advances the state given
an action by the agent; step defines the transition model
of the environment. Likewise, a PDDL domain encodes a
transition model via its operators. However, in typical us-
age, PDDL is understood to exist entirely in the “mind” of
the agent. A separate process is then responsible for turning
plans into actions that the agent can execute in the world.

PDDLGym defies this convention: in PDDLGym, PDDL
domains and problems lie firmly on the environment side of
the agent-environment boundary. The environment uses the
PDDL files to implement the step function that advances
the state given an action. PDDLGym is thus perhaps best un-
derstood as a repurposing of PDDL. Implementation-wise,
this repurposing has subtle but important implications, dis-
cussed in (§2.2) and Appendix A.



Figure 2: PDDLGym code examples. A PDDLGym environment is characterized by a PDDL domain file and a list of PDDL
problem files. (A) One operator in the PDDL domain file for Blocks. (B) An excerpt of a simple PDDL problem file for Blocks.
(C) After the PDDL domain and problem files have been used to register an environment with name “PDDLEnvBlocks-v0,” we
can interact with this PDDLGym environment in just a few lines of Python.

PDDLGym serves three main purposes:
(1) Facilitate the creation of numerous, diverse bench-

marks for sequential decision-making in relational domains.
PDDLGym allows tasks to be defined in PDDL, automati-
cally building a Gym environment from PDDL files. PDDL
offers a compact symbolic language for describing domains,
which might otherwise be cumbersome and repetitive to de-
fine directly via the Gym API.

(2) Bridge reinforcement learning and planning research.
PDDLGym makes it easy for planning researchers and ma-
chine learning researchers to test their methods on the ex-
act same set of benchmarks, and to develop techniques that
draw on the strengths of both families of approaches. Fur-
thermore, since PDDLGym includes built-in domains and
problems, it is straightforward to perform apples-to-apples
comparisons without having to collect third-party code from
disparate sources (see also (Muise 2016)).

(3) Catalyze research on sequential decision-making in
relational domains. In our own research, we have found
PDDLGym to be very useful while studying exploration for
lifted operator learning (Chitnis et al. 2020), hierarchical
goal-conditioned policy learning (Silver et al. 2020a), and
state abstraction (Silver et al. 2020b). Other open research
problems that may benefit from using PDDLGym include
relational reinforcement learning (Lang, Toussaint, and Ker-
sting 2012; Džeroski, De Raedt, and Driessens 2001; Tade-
palli, Givan, and Driessens 2004), learning symbolic de-
scriptions of operators (Lang, Toussaint, and Kersting 2012;
Amir and Chang 2008; Pasula, Zettlemoyer, and Kaelbling
2007), discovering relational transition rules for efficient
planning (Xia et al. 2019; Lang and Toussaint 2010), and
learning lifted options (Konidaris, Kaelbling, and Lozano-
Perez 2014; Stolle and Precup 2002; Precup, Sutton, and
Singh 1998; Chentanez, Barto, and Singh 2005).

2 Design and Implementation
The Gym API defines environments as Python classes with
three essential methods: init , which initializes the en-
vironment; reset, which starts a new episode and returns

an observation; and step, which takes an action from the
agent, advances the current state, and returns an observation,
reward, a Boolean indicating whether the episode is com-
plete, and optional debugging information. The API also in-
cludes other minor methods, e.g., to handle rendering and
random seeding. Finally, Gym environments are required to
implement an action space, which represents the space
of possible actions, and an observation space, which
represents the space of possible observations. We next give a
brief overview of PDDL files, and then we describe how ac-
tion and observation spaces are defined in PDDLGym. Sub-
sequently, we move to a discussion of our implementation
of the three essential methods. For implementation details
regarding the main data structures used in PDDLGym, see
structs.py in the code.

2.1 Background: Domain and Problem Files
There are two types of PDDL files: domain files and problem
files. A single benchmark is characterized by one domain file
and multiple problem files.

A PDDL domain file includes predicates — named re-
lations with placeholder variables such as (on ?x ?y) —
and operators. An operator is composed of a name, a list
of parameters, a first-order logic formula over the parame-
ters describing the operator’s preconditions, and a first-order
logic formula over the parameters describing the operator’s
effects. The forms of the precondition and effect formulas
are typically restricted depending on the version of PDDL.
Early versions of PDDL only permit conjunctions of ground
predicates (Fikes and Nilsson 1971); later versions also al-
low disjunctions and quantifiers (Pednault 1989). See Figure
2A for an example of a PDDL operator.

A PDDL problem file includes a set of objects (named en-
tities), an initial state, and a goal. The initial state is a set of
predicates ground with the objects. Any ground predicates
not in the state are assumed to be false, following the closed-
world assumption. The goal is a first-order logical formula
over the objects (the form of the goal is limited by the PDDL
version, like for operators’ preconditions and effects). Note



that PDDL (and PDDLGym) also allows objects and vari-
ables to be typed. See Figure 2B for a partial example.

2.2 Observation and Action Spaces
Each observation obs in PDDLGym has three compo-
nents, mirroring the components of a PDDL problem file:
obs.objects is a set containing all objects present in
the problem; obs.goal contains the problem goal; and
obs.literals is a set of all ground predicates that are
true in the current state. These observations fully encapsu-
late the state of the environment, i.e., PDDLGym environ-
ments are fully-observed. The observation space is the pow-
erset of all possible ground predicates, together with the ob-
jects and goal, which are static. This powerset is typically
enormous; fortunately, it usually does not need to be explic-
itly computed. We expect that most algorithms for solving
PDDLGym tasks will not be sensitive to its size.

The action space for a PDDLGym environment is one of
the more subtle aspects of the overall framework, and there
are two possible avenues to take. Instructions for taking both
avenues are provided in the repository’s README, in the
“Step 3: Register Gym environment” section. We include a
detailed discussion of the action spaces and the related de-
sign choices in Appendix A.

2.3 Initializing and Resetting an Environment
A PDDLGym environment is parameterized by a PDDL do-
main file and a list of PDDL problem files. For research con-
venience, each PDDLGym environment is associated with
a test version of that environment, where the domain file
is identical but the problem files are different (for instance,
they could encode more complicated planning tasks, to mea-
sure generalizability). During environment initialization, all
of the PDDL files are parsed into Python objects; we use
a custom PDDL parser for this purpose. When reset is
called, a single problem instance is randomly selected.1 The
initial state of that problem instance is the state of the en-
vironment. For convenience, reset also returns (in the de-
bugging information) paths to the PDDL domain and prob-
lem file of the current episode. This makes it easy to run to
a symbolic planner and execute resulting plans in the envi-
ronment; see the repository’s README for an example that
uses Fast-Forward (Hoffmann 2001).

2.4 Implementing step
The step method of a PDDLGym environment takes in
an action, updates the environment state, and returns an
observation, reward, done Boolean, and debugging infor-
mation. To determine the state update, PDDLGym checks
whether any PDDL operator’s preconditions are satisfied
given the current state and action. Note that it is impossi-
ble to “accidentally match” to an undesired operator: each
operator has a unique precondition as illustrated in Fig-
ure 4C, which is generated automatically based on the
passed-in action. Since actions are distinct from operators

1Problem selection when resetting an episode is the only use of
randomness in PDDLGym (aside from stochastic transitions).

(Appendix A), this precondition satisfaction check is non-
trivial; non-free parameters must be bound. We have im-
plemented two inference back-ends to perform this check.
The first is a Python implementation of typed SLD res-
olution, which is the default choice when the query in-
volves only conjunctions. The second is a wrapper around
SWI Prolog (Wielemaker et al. 2012), which permits us to
handle more sophisticated preconditions involving disjunc-
tions and quantifiers. The latter is slower, but more gen-
eral, than the former. When no preconditions hold for a
given action, the state remains unchanged by default. In
some applications, it may be preferable to raise an error if
no preconditions hold; the optional initialization parameter
raise error on invalid action permits this.

Rewards in PDDLGym are sparse and binary. In particu-
lar, the reward is 1.0 when the problem goal is satisfied and
0.0 otherwise. Similarly, the done Boolean is True when the
goal is reached and False otherwise. (In practice, a maxi-
mum episode length is often used.)

If the underlying PDDL domain has probabilistic effects,
as in PPDDL (Bryce and Buffet 2008), the step method
will parse this appropriately and choose an effect based on
the given probability distribution. If the given probabilities
do not sum to 1, a default trivial effect is added in.

2.5 Development Status
In terms of lines of code, the bulk of PDDLGym is dedicated
to PDDL file parsing and inference (used in step). We are
continuing to develop both of these features so that a wider
range of PDDL domains are supported. Aspects of PDDL
1.2 that are supported by PDDLGym include STRIPS, hier-
archical typing, equality, quantifiers, constants, and derived
predicates. Notable features that are not supported include
conditional effects and action costs. Aspects of later PDDL
versions, such as numeric fluents, are not supported. Our
short-term objective is to provide full support for PDDL 1.2.
We have found that a wide range of standard PDDL domains
are already well-supported by PDDLGym; see (§3) for an
overview. We welcome requests for features and extensions,
via either issues created on the Github page or email. The
authors’ emails are provided at the top of this document.

3 PDDLGym by the Numbers
In this section, we start with an overview of the domains
built into PDDLGym, as of the last date this report was up-
dated (September 22, 2020). We then provide some exper-
imental results that give insight into the variation between
these domains, in terms of planning and model-learning dif-
ficulty. All experiments are performed on a single laptop
with 32GB RAM and a 2.9GHz Intel Core i9 processor.

3.1 Overview of Environments
There are currently 20 domains built into PDDLGym. Most
of the domains are adapted from existing PDDL reposito-
ries; the remainder are ones we found to be useful bench-
marks in our own research. We have implemented custom
rendering for 11 of the domains (see Figure 1 for examples).
Table 1 gives a list of all environments, their sources, and



Domain Name Source Rendering Included Probabilistic Average FPS

Baking Ours No No 5897

Blocks (Helmert 2011) Yes No 7064

Casino Ours No No 7747

Crafting Ours Yes No 4568

Depot (Helmert 2011) No No 97

Doors (Konidaris and Barto 2007) Yes No 917

Elevator (Helmert 2011) No No 3501

Exploding Blocks (Bryce and Buffet 2008) Yes Yes 6260

Ferry (CSU 2002) No No 1679

Gripper (Soar 2020) Yes No 319

Hanoi (Soar 2020) Yes No 4580

Meet-Pass (CSU 2002) No No 7380

Rearrangement Ours Yes No 3808

River (Bryce and Buffet 2008) No Yes 18632

Search and Rescue Ours Yes No 3223

Slide Tile (Soar 2020) Yes No 3401

Sokoban (Helmert 2011) Yes No 155

Triangle Tireworld (Bryce and Buffet 2008) No Yes 6491

TSP (Soar 2020) Yes No 1688

USA Travel Ours No No 1251

Table 1: List of the 20 domains currently included in
PDDLGym, as of the last date this report was updated
(September 22, 2020). For each environment, we report the
original source of the PDDL files, whether or not we have
implemented custom rendering, whether or not the domain
has probabilistic effects, and the average frames per second
(FPS). The FPS is calculated by executing a random policy
for 100 episodes of 10 timesteps each, with no rendering.

their average frames per second (FPS) calculated by execut-
ing a random policy for 100 episodes of 10 timesteps each.

3.2 Variation in Environment Difficulty
We now provide some results illustrating the variation be-
tween the domains built into PDDLGym. We examine two
axes of variation: planning difficulty and difficulty of learn-
ing the transition model.

Figure 3 (left) illustrates the average time taken by Fast-
Forward (Hoffmann 2001) to find a plan in each of the de-
terministic environments, averaged across all problem in-
stances. The results reveal a considerable range in planning
time, with the most difficult domain (Depot, omitted from
the plot for visual clarity) requiring two orders of magni-
tude more time than the simplest one (TSP). The results also
indicate that many included domains are relatively “easy”
from a modern planning perspective. However, even in these
simple domains, there are many interesting challenges to be
tackled, such as learning the true PDDL operators from in-
teraction data, or defining good state abstractions amenable
to learning. One can always make larger problem instances
if desired, to push the limits of modern planners.

Figure 3 (right) provides insight into the difficulty of
learning transition models in some of the environments. For
each environment, an agent executes a random policy for
episodes of horizon 25. The observed transitions are used to
learn transition models, which are then used for planning on
a suite of test problems. The fraction of test problems solved
is reported as an indicator of the learned transition model.
To learn the transition models, we use first-order logic deci-
sion tree (FOLDT) learning (Blockeel and De Raedt 1998).

Figure 3: Variation among PDDLGym environments. The
PDDL domains and problems built into PDDLGym vary
considerably in terms of planning difficulty (top) and model
learning difficulty (bottom). See text for details.

Five domains are visualized for clarity; among the remain-
ing ones, several are comparable to the ones shown, but oth-
ers, including Baking, Depot, and Sokoban, are difficult for
our learning method: FOLDT learning is unable to find a
model that fits the data in a reasonable amount of time. Of
course, model-learning difficulty varies considerably with
the learning method and the exploration strategy. We have
implemented simple strategies here to show these results,
but these avenues for future research are exactly the kind
that we hope to enable with PDDLGym.

4 Conclusion and Future Work
We have presented PDDLGym, an open-source Python
framework that automatically creates OpenAI Gym environ-
ments from PDDL domain and problem files. Our empirical
results demonstrate considerable diversity among the built-
in environments. We have been using PDDLGym actively in
our own research on relational sequential decision-making
and reinforcement learning. We also hope to interface
PDDLGym with other related open-source frameworks, par-
ticularly the PDDL collection in planning.domains (Muise
2016), so that one can use PDDLGym simply by specifying
a URL (along with information about free parameters).

We look forward to gathering feedback from the commu-
nity and expanding the set of environments and features.
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Figure 4: Explicating free parameters in PDDL operators. PDDL operators traditionally conflate free and non-free pa-
rameters. For example, in a typical move operator for Sokoban (A), the free parameter ?dir is included alongside non-free
parameters. PDDLGym must distinguish free parameters to properly define the action space. One option would be to require
that all operator parameters are free, and introduce quantifiers in the operator body accordingly (B); however, this is cumber-
some and leads to clunky, deeply nested operators, so we do not do this. Instead, we opt to introduce new predicates that are tied
to operators, and whose parameters are just the operators’ free parameters (C). An example of such a new predicate is shown in
yellow (move-action-selected).

A Action Space Details
The action space for a PDDLGym environment is one of the
more subtle aspects of the overall framework, and there are
two possible avenues to take. Instructions for taking both
avenues are provided in the repository’s README, in the
“Step 3: Register Gym environment” section.

The first avenue is appropriate if one wants to simply use
off-the-shelf PDDL files with PDDLGym. One can do so
by setting operators as actions to True in the envi-
ronment registration, which tells PDDLGym that the opera-
tors present in the PDDL domain file should themselves be
treated as the actions in the environment, parameterized by
those operators’ parameters.

The second avenue is recommended for more serious re-
search, and stems from the semantic difference between “op-
erators” in classical AI planning and “actions” in reinforce-
ment learning. In AI planning, actions are typically equated
with ground operators — operators whose parameters are
bound to objects. However, in most PDDL domains, only
some operator parameters are free (in terms of controlling
the agent); the remaining parameters are included in the op-
erator because they are part of the precondition/effect ex-
pressions, but can be derived from the current state or the
choice of free parameters. PDDL itself makes no distinction
between free and non-free parameters. For example, con-
sider the operator for Sokoban shown in Figure 4A. This
operator represents the rules for a player (?p) moving in
some direction (?dir) from one cell (?from) to another
cell (?to). In a real game of Sokoban, the only choice that
an agent makes is what direction to move — only the ?dir
parameter is free. The player ?p is always the same, ?from
is defined by the agent’s location in the current state, and

?to can be derived from ?from and the agent’s choice of
?dir. To properly define the action space for a PDDLGym
environment, we must explicitly distinguish free parameters
from non-free ones. One option is to require that operator
parameters are all free. Non-free parameters could then be
folded into the preconditions and effects using quantifiers
(Pednault 1989); see Figure 4B for an example. However,
this is cumbersome and leads to clunky, deeply nested oper-
ators. Instead, we opt to introduce new predicates that rep-
resent operators, and whose variables are these operators’
free parameters. We then include these predicates in the pre-
conditions of the respective operators; see Figure 4C for an
example. Doing so requires only minimal changes to exist-
ing PDDL files and does not affect readability, but requires
adding in domain knowledge about the agent-environment
boundary. Note that this domain knowledge is equivalent to
defining an action space, which is very commonly done in
reinforcement learning and is not a strong assumption. In
this case, the action space of a PDDLGym environment is
a discrete space over all possible groundings of the newly
introduced predicates.

When sampling from the action space of a PDDLGym
environment, PDDLGym will automatically only sample
valid actions, i.e., actions that satisfy the preconditions of
some operator. This check for validity is done using Fast
Downward’s translator (Helmert 2006), which can add non-
negligible overhead in large problem instances.


