Safe Learning of Lifted Action Models

Ben-Gurion University of the Negev

¹Washington University in St. Louis, USA

²Ben Gurion Univeristy of the Negev, Israel, ³Palo Alto Research Center, USA

1. Background and Problem Definition

Classical Domain Independent Planning

Given:

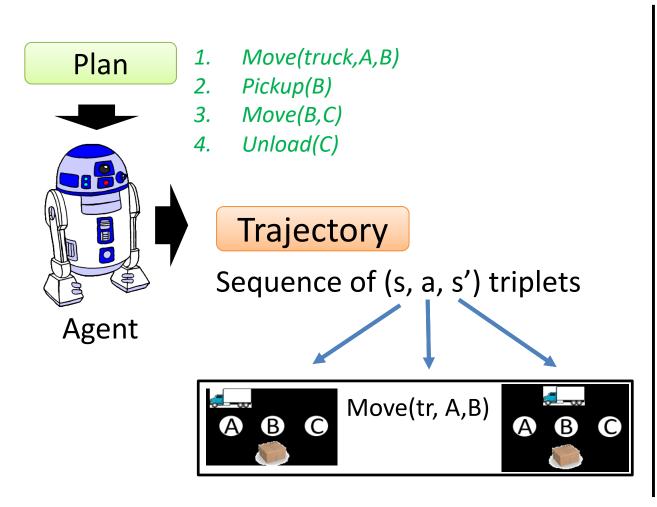
- A *domain* specifying the *action model of every* actions
 - An action model specifies actions' precond. and effects
- A *problem* specifying the start state and goal conditions

Output: a *plan*, i.e., sequence of actions that achieve the goal

Example: the Logistics domain

Problem can be "Package at location C" (At(Package, C))

Execution Traces (Trajectories)



Safe Model-Free Planning

Given:

- A *problem* **P** in some unknown domain D \bullet
- A set of **trajectories** executed in D \bullet **Not given**: the real action model M* in D

Output: a *plan* for P that is *sound* w.r.t M*

Prior work: Safe Action Model (SAM) Learning [Stern & Juba '17]

- Learns a **safe action model** M_{safe} from trajectories
- **Sound:** plans generated by M_{safe} are sound w.r.t M*
- **Incomplete:** M_{safe} may be too weak to find a plan
- Does not generalize between instances of the same action

2. SAM Learning for Grounded Domains

Def: an action model M is safe if an action A is applicable in state S iff: (1) A is applicable at S in the real action model (M*) and (2) The effects of applying A in state S are the same for M and M*

Inference rules for grounded domains

Given a state-action-state triplet (s, a, s'):

- Rule 1. [Not a precondition] $\forall l \notin s: l \notin pre(a)$
- Rule 2. [Not an effect] $\forall l \notin s' : l \notin eff(a)$
- Rule 3. [Must be an effect] $\forall l \in s' \setminus s: l \in eff(a)$

SAM Learning:

1. For each action a

1.1. Initialize pre(a) to be all literals

- 1.2. Initialize eff(a) to be an empty set
- 1.3. For each state-action-triplet (s,a,s')
- 1.3.1. Apply Rule 1 to remove literals from pre(a)
- 1.3.2. Apply Rule 3 to add literals to eff(a)

3. Lifted Domains in Classical Planning

A lifted domain defines

- A set of types (e.g., truck, package) and objects (truck1, package_A)
- Lifted literals (e.g., At(x?, y?), On(x?,y?))
- Lifted actions (e.g., Move(truck?, location?, location?))

Note: trajectories consists of grounded actions and literals

A grounding of a literal/action is a pair (lifted literal/action, binding)

- A binding maps literal/action parameters to concrete objects
- Ex.: At(tr1, A) = (At(truck?, loc?), [truck?:tr1, loc?:A])
- Ex.: Move(tr1, A,B) = (Move(truck?, loc1?, loc2?), [truck?tr1, A:loc1?, B:loc2?])

Preconditions and effects of lifted actions are **parameter-bound literals**

- A parameter-bound literal is a pair (lifted literal, parameters binding)
- Ex: precond. of Move(truck?,loc1?, loc2?) is (At(x?,y?), [x?: truck?, y?:loc1?]

Def: for a grounded action $\langle A, b_A \rangle$ and a grounded literal $\langle L, b_L \rangle$, let **bindings** (b_A, b_L) denote the set of all possible parameter-bindings between this action and literal, i.e., $\{b_{LA} | b_A \circ b_{LA} = b_L\}$.

4. SAM Learning for Lifted Domains

Inference rules for lifted domains

5. Theoretical Properties

Under the injective binding assumption, it holds that

Given a state-action-state triplet $(s, (A, b_A), s')$: Rule 1. $\forall (L, b_L) \notin s$: $\forall \boldsymbol{b}_{LA} \in binding(b_A, b_L): (L, b_{LA}) \notin pre(a)$ Rule 2. $\forall (L, b_L) \notin s'$: $\forall \mathbf{b}_{LA} \in binding(b_A, b_L): (L, b_{LA}) \notin eff(a)$ Rule 3. $\forall (L, b_L) \in s' \setminus s$: $\exists \boldsymbol{b}_{LA} \in binding(b_A, b_L): (L, b_{LA}) \in eff(a)$

If b_A is injective, this means $|bindings(b_A, b_L)| = \{0,1\}$ \rightarrow Rule 3 becomes simply add (L, b_{LA}) to list of effects

- SAM learning returns the **strongest** possible **safe** action model
- Planning with the returned safe action model is **sound** but **complete** 2.
- Approximate completeness: the number of trajectories required to learn the 3. action model is linear in the size of the domain model
 - \rightarrow Key: # trajectories does not depend on the number of domain objects.

Theorem 4. Under the injective binding assumption, given $m \geq \frac{1}{\epsilon}(2\ln 3|\mathcal{F}||\mathcal{A}|k^d + \ln \frac{1}{\delta})$ trajectories sampled from \mathcal{T}_D , then with probability at least $1 - \delta$ SAM learning for lifted domains (Algorithm 1) returns a safe action model M_{SAM} such that the probability of drawing from \mathcal{P}_D a problem that is not solvable with M_{SAM} is at most ϵ .

6. Multiple Action Bindings

What if b_A is not bijective?

- **bindings** $(\boldsymbol{b}_A, \boldsymbol{b}_L)$ is a non-trivial set
- Example: consider a lifted action A(x?,y?) $\underline{\mathsf{T1=}}\left<\{\}, A(o, o), \{L(o)\}\right>$
- <u>T2= $\langle \{L(o_1)\}, A(o_1, o_2), \{L(o_1)\} \rangle$ </u>
- \rightarrow Either L(x) is an effect or L(y) or both (Rule 3)
- \rightarrow L(y) is not an effect (Rule 3)
- \rightarrow L(x) is an effect!

7. Extended SAM Learning

- Generate a CNF for every lifted action describing knowledge of effects
- Create proxy actions to maintain the predictability of the effects. **Example:** assume we learn for action A the following CNF:

 \bullet

(IsEff(L1(x)) Or IsEff(L1(y))) AND (IsEff(L2(z))) Or IsEff(L2(w)))

The generated proxy actions are:: $A_{x=y}$: eff={L1(x)}, pre={L2(z), L2(w)}, merge x=y $A_{z=w}$: eff={L2(z)}, pre={L1(X), L1(Y)}, merge z=w

 $A_{x=y,z=w}$:eff={L1(x), L2(z)}, pre={}, merge x=y, z=w

Algorithm 3: Extended SAM Learning

```
Input : \Pi_{\mathcal{T}} = \langle T, O, s_I, s_g, \mathcal{T} \rangle
    Output: (pre, eff) for a safe action model
1 \mathcal{A}' \leftarrow all lifted actions observed in \mathcal{T}
2 foreach lifted action A \in \mathcal{A}' do
         (CNF_{pre}, CNF_{eff}) \leftarrow ExtractClauses(A, \mathcal{T}(A))
        CNF_{eff}^1 \leftarrow \text{all unit clauses in } CNF_{eff}
        Surely Eff \leftarrow \{l \mid \text{IsEff}(l) \in CNF_{eff}^1\}
        SurelyPre \leftarrow \{l \mid \text{IsPre}(l) \in CN\tilde{F}_{pre}\}
         /* Create proxy actions for non-unit effects clauses *
        CNF_{eff} \leftarrow CNF_{eff} \setminus CNF_{eff}^1
         foreach S \in Powerset(\tilde{CNF}_{eff}) do
              pre(A_S) \leftarrow \text{SurelyPre}; eff(A_S) \leftarrow \text{SurelyEff}
              for each C_{eff} \in CNF_{eff} \setminus S do
                   for each IsEff(l) \in C_{eff} do
                        Add l to pre(A_S)
12
              MergeObjects(S, pre(A_S), eff(A_S))
13
14 return (pre, eff)
```

8. Preliminary Experimental Results

9. Summary and Future Work

- Domains: N-Puzzle (3x3 tiles, 3 predicates, 1 action), Blocksworld (8 blocks, 5 predicates, 4 actions)
- Baseline: FAMA (Aineto et al. 2019), outcome may be a unsafe

Results:

- N-Puzzle: both algorithms find the action model with a single (s,a,s') triplet. \bullet
- Blocksworld: SAM learning able to find the action model with fewer trajectories

SAM learning can learn lifted action models!

- Number of trajectories is quasy-linear in number of lifted actions
- Does not depend on the number of objects in the world! •

Direction for future work: safe model-free planning in domains with continuous state variables, non-determinism, and partial observability.