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1. Background and Problem Definition

Given: 
• A domain specifying the action model of every actions

- An action model specifies actions’ precond. and effects
• A problem specifying the start state and goal conditions

Output: a plan, i.e., sequence of actions that achieve the goal

Example: the Logistics domain
• Domain includes action model for  move, pickup, & unload
• Problem can be “Package at location C” (At(Package, C)) 

Challenge: how to plan without a given action model?

Classical Domain Independent Planning 

2. SAM Learning for Grounded Domains

8. Preliminary Experimental Results

6. Multiple Action Bindings

What if 𝒃𝑨 is not bijective?

• 𝒃𝒊𝒏𝒅𝒊𝒏𝒈𝒔 𝒃𝑨, 𝒃𝑳 is a non-trivial set
• Example: consider a lifted action A(x?,y?)

T1= ⟨{}, 𝐴 𝑜, 𝑜 , {𝐿 𝑜 }⟩
T2= ⟨{𝐿(𝑜1)}, 𝐴 𝑜1, 𝑜2 , {𝐿 𝑜1 }⟩
➔ Either L(x) is an effect or L(y) or both (Rule 3)
➔L(y) is not an effect  (Rule 3)

➔L(x) is an effect!

• Domains: N-Puzzle (3x3 tiles, 3 predicates, 1 action), Blocksworld (8 blocks, 5 predicates, 4 actions)

• Baseline: FAMA (Aineto et al. 2019), outcome may be a unsafe
Results: 
• N-Puzzle: both algorithms find the action model with a single (s,a,s’) triplet. 
• Blocksworld: SAM learning able to find the action model with fewer trajectories

SAM learning can learn lifted action models!

• Number of trajectories is quasy-linear in number of lifted actions

• Does not depend on the number of objects in the world!

Direction for future work: safe model-free planning in domains with 
continuous state variables, non-determinism, and partial observability. 
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1. Move(truck,A,B)
2. Pickup(B)
3. Move(B,C)
4. Unload(C)

Safe Model-Free Planning

Given: 
• A problem P in some unknown domain D
• A set of trajectories executed in D
Not given: the real action model M* in D

Output: a plan for P that is sound w.r.t M*

Prior work: Safe Action Model (SAM ) Learning [Stern & Juba ’17]

• Learns a safe action model Msafe from trajectories
• Sound: plans generated by Msafe are sound w.r.t M*
• Incomplete: Msafe may be too weak to find a plan
• Does not generalize between instances of the same action
➔Move(A,B) and Move(C,D) are considered different actions
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Def: an action model M is safe if an action A is applicable in state S iff: 
(1) A is applicable at S in the real action model (M*) 
and (2) The effects of applying A in state S are the same for M and M*

SAM Learning:
1. For each action a
1.1. Initialize pre(a) to be all literals
1.2. Initialize eff(a) to be an empty set
1.3. For each state-action-triplet (s,a,s’)
1.3.1. Apply Rule 1 to remove literals from pre(a)
1.3.2. Apply Rule 3 to add literals to eff(a)

Inference rules for grounded domains
Given a state-action-state triplet (𝑠, 𝑎, 𝑠′):
• Rule 1. [Not a precondition] ∀𝑙 ∉ 𝑠: 𝑙 ∉ 𝑝𝑟𝑒(𝑎)
• Rule 2. [Not an effect] ∀𝑙 ∉ 𝑠′: 𝑙 ∉ eff 𝑎
• Rule 3. [Must be an effect] ∀𝑙 ∈ 𝑠′ ∖ 𝑠: 𝑙 ∈eff 𝑎
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3. Lifted Domains in Classical Planning

A lifted domain defines 
- A set of types (e.g., truck, package) and objects (truck1, package_A)
- Lifted literals (e.g., At(x?, y?), On(x?,y?))
- Lifted actions (e.g., Move(truck?, location?, location?))

A grounding of a literal/action is a pair (lifted literal/action, binding) 
- A binding maps literal/action parameters to concrete objects
- Ex.: At(tr1, A) =  (At(truck?, loc?), [truck?:tr1, loc?:A])
- Ex.: Move(tr1, A,B) = (Move(truck?, loc1?, loc2?), [truck?tr1, A:loc1?, B:loc2?])

Preconditions and effects of lifted actions are parameter-bound literals
- A parameter-bound literal is a pair (lifted literal, parameters binding) 
- Ex: precond. of Move(truck?,loc1?, loc2?) is (At(x?,y?), [x?: truck?, y?:loc1?] 

Def: for a grounded action ⟨𝐴, 𝑏𝐴⟩ and a grounded literal ⟨𝐿, 𝑏𝐿⟩, let 𝒃𝒊𝒏𝒅𝒊𝒏𝒈𝒔 𝒃𝑨, 𝒃𝑳 denote the 
set of all possible parameter-bindings between this action and literal, i.e., 𝑏𝐿𝐴 𝑏𝐴 ∘ 𝑏𝐿𝐴 = 𝑏𝐿 .

Note: trajectories consists of grounded actions and literalsNote: trajectories consists of grounded actions and literals

4. SAM Learning for Lifted Domains

If 𝒃𝑨 is injective, this means 𝑏𝑖𝑛𝑑𝑖𝑛𝑔𝑠 𝑏𝐴, 𝑏𝐿 = 0,1
➔ Rule 3 becomes simply add (𝐿, 𝑏𝐿𝐴) to list of effects

Inference rules for lifted domains
Given a state-action-state triplet (𝑠, (𝐴, 𝑏𝐴), 𝑠

′):
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5. Theoretical Properties

Under the injective binding assumption, it holds that
1. SAM learning returns the strongest possible safe action model
2. Planning with the returned safe action model is sound but complete
3. Approximate completeness: the number of trajectories required to learn the 

action model is linear in the size of the domain model
➔ Key: # trajectories does not depend on the number of domain objects. 

7. Extended SAM Learning 

• Generate a CNF for every lifted action describing knowledge of effects
• Create proxy actions to maintain the predictability of the effects.
Example: assume we learn for action A the following CNF:

( IsEff(L1(x)) Or IsEff(L1(y)) ) AND ( IsEff(L2(z)) Or IsEff(L2(w)) )

The generated proxy actions are::
𝐴𝒙=𝒚: eff={L1(x)}, pre={L2(z), L2(w)}, merge x=y

𝐴𝒛=𝒘: eff={L2(z)}, pre={L1(X), L1(Y)}, merge z=w
𝐴𝒙=𝒚,𝒛=𝒘:eff={L1(x), L2(z)}, pre={}, merge x=y, z=w

9. Summary and Future Work


