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INTRODUCTION

We leverage hierarchical reinforcement learn-
ing (HRL) to integrate human expertise in the
decomposition of a complex task and implicitly
formulate a curriculum. Experimental results in
two SC2 minigames demonstrate the sample effi-
ciency and interpretability of our method.

BACKGROUND

We follow the MDP formulation, use neural net-
works to represent the value /policy function, and
conduct off-policy learning on collected experi-
ences.
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HIERARCHY

The figure below illustrates the concept of sub-
goals and subpolicies with a simple navigation
agent navigating to the flag post from sy. Sub-
goals selected by our method (red nodes) guide
the exploration, and contain structural depen-
dence structure (black dashed lines).

O State reached by agent

O Subgoal sampled automatically

O Subgoal sampled with human
expertise

Figure 1: Subgoals and Subtasks

EXPERIMENTS

Average and max rewards achieved and the num-
ber of samples used highlight sample efficiency.
The reward curves demonstrate interpretability of
the agent’s learning and performance.

Minigame | SC2LE | DRL Ours Human Expert
CMAG | 3978 | 5,055 | 478.5(527) 7 566
BM 3 123 6.7(6.24) 133
Table 1: Average Rewards Achieved
Minigame | SC2LE DRL Ours | Human Expert
CMAG 4,130 | unreported | 1825 7,066
BM 42 unreported | 22 133
Table 2: Maximum Reward Achieved
Minigame | SC2LE | DRL | Ours | Human Expert
CMAG 6e8 1le1l0 | 1e7 N.A
BM 6e8 1el0 | 3.4e6 N.A

Table 3: Training Samples Required

FUTURE RESEARCH

This initial work invites several exploration directions:

developing more efficient and effective ways of intro-
ducing human expertise; a more formal and principled
state representation to further reduce the complexity of

HIERARCHICALRLIN STARCRAFTIIWITHHUMAN
EXPERTISEIN SUBGOALS SELECTION

XINYI XU, TIANCHENG HUANG, PENGFEI WEI, AKSHAY NARAYAN, TZE-YUN LEONG

Med

MEDICAL COMPUTING LAB

TASK DECOMPOSITION & CURRICULUM DESIGN

We implement subtasks by customizing SC2 minigames. For BM we implement 3 subtasks for building
supply depots, building barracks, and building marines (with already built barracks), respectively. For
CMAG, we have 3 subtasks for collecting minerals, building refineries and collecting gas.

Figure 2: Build Marines. From left to right, top to
bottom:(1)-(4): (1) to build supply depots; (2) to build
barracks; (3) to build marines with (1) and (2) already
built; (4) all three tasks in (1), (2), (3).
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the state space (goal space) with theoretical analysis on
its complexity; and a more efficient learning algorithm
to pair with the HRL architecture, Experience Replay and
Curriculum Learning.
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Figure 3: Collect Minerals and Gas. From left to right,
top to bottom:(1)-(4): (1) to build refineries; (2) to collect
gas with built refineries; (3) both tasks in (1) and (2); (4)
all three tasks in (1), (2), (3) and collect minerals.
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