Think too fast nor too slow:
The computational trade-off between planning and reinforcement learning

Thomas Moerland, Anna Deichler, Simone Baldi, Joost Broekens and Catholijn Jonker
Delft University of Technology, The Netherlands

Multi-step Approximate Real-time Dynamic Programming (MSA-RTDP)
1. Multi-step: multi-step lookahead
2. Approximate: function approximation for policy/value
3. Real-time: On trace from some start state

Recently very successful class of algorithms, e.g., AlphaGo Zero

Approach

A. Use AlphaGoZero algorithm:
 1. Plan: MCTS
 2. Train: Neural network, approximation of policy \(\pi(s|a) \) and value \(V(s) \)
 3. Act/real-step

B. Fix total training time budget on each test task, but vary the planning budget per timestep.

C. Look at effect of different step-wise planning budgets on performance.

Experiments

A. Three tasks: Cartpole, MountainCar and RaceCar

Idea

There might be a trade-off between planning too short and too long!

Discussion

We face a new spectrum between full planning and full learning:
- No planning at every timestep = model-free RL
- Full planning at every timestep = exhaustive search

Future work

How should the planning budget per timestep depend on the context, in the form of:
- the type of task
- the data seen so far in the task

Email: T.M.Moerland@tudelft.nl