Synthesis of Search Heuristics for Temporal Planning via Reinforcement Learning

Andrea Micheli and Alessandro Valentini
Embedded Systems Unit, Fondazione Bruno Kessler, Italy

Motivation

Once deployed, a temporal planner will solve several different problems on the same domain

Example

- Organize the logistics of the same factory once a day
- Operate the same drone in the same area for different missions from different initial states

Key intuition

Instead of resorting to pure reasoning each time, can we learn characteristics of the domain and exploit them for efficiency?

Analogous to a worker that gets accustomed to a certain workplace and gains dexterity

Pipeline

We learn a specialized heuristic keeping a fully-functional planner online

MDP for a bounded planning problem set

A bounded planning problem set with at most \(k \) objects for a planning domain \(\mathcal{D} \) (written \(\mathcal{P}^k \)) is a finite set of planning problems \(\mathcal{P}^k \) for each having less than \(k \) objects.

Given a planning domain and a bounded planning problem set we define an MDP \(\mathcal{M}^k = (S, A, T, R, \gamma) \) s.t.

- \(S = \{\ldots\} \) all planner states for all instances
- \(A = \{\ldots\} \) all actions (events) for all instances

\(T(s, a, s') = 0 \) if \(s \rightarrow a \rightarrow s' \) \(\in \mathcal{P}^k \)

\(T(s, a, s') = 0 \) if \(s \not\rightarrow a \rightarrow s' \)

\(R(s, a, s') = 1 \) if \(s' \) is a goal state

\(R(s, a, s') = 0 \) otherwise.

From the optimal value function \((\gamma^*) \) to the optimal heuristic \((h^*) \)

For a bounded planning problem set \(\mathcal{P}^k \), the following equation holds.

\[
K^*_c(s) = \begin{cases}
\log(V(s)) \text{ if } \text{if } V(s) > 0 \\
0 \text{ otherwise}
\end{cases}
\]

Intuition

\[
\begin{align*}
V^0 & = 1 \\
V^1 & = 1 \\
V^2 & = 1 \\
V^3 & = 1 \\
V^4 & = 1 \\
V^5 & = 1 \\
V^6 & = 1 \\
V^7 & = 1 \\
V^8 & = 0
\end{align*}
\]

Neural Architecture: Predicting \(V^* \)

State Vectorization

Given a planning state \(s \) we derive a vector \(z_i \) in \(\mathbb{R}^n \)

RL-Based Heuristic Learner

Basically Deep-Q-Learning on \(\mathcal{M}^k \)

with some adjustments:

- State value function, single output network instead of DQN
- Heuristic proportional random action selection
- Bias in problem selection
- Memory replay with positive bias
- Fixed max depth of episodes

Learned Heuristic

The learned heuristic \(h_{\text{Learn}} \) is an approximation of \(h^* \)

\[
h_{\text{Learn}}(s) = \begin{cases}
\min(h, V(s)) & \text{if } V(s) > 0 \\
\Delta_{h} & \text{if } V(s) = 0 \\
\text{otherwise}
\end{cases}
\]

Where \(\Delta_{h} \) is bigger than the pre-fixed cutoff length of episodes set in learning

Experimental Evaluation

Case Studies

- MaJSP: A fleet of AGVs with logistics tasks in a warehouse.
- The problems differ for the number of items to be moved and the intermediate steps.
- Kitting: A single robot serving a continuous production line with kits of components taken from shelves.
- The problems require different sequences of kits to be delivered.

Competitors

- TAMER (\(h_{\text{Learn}} \)): our fully-symbolic state-of-the-art planning
- TAMER (\(h_{\text{Q}} \)): the learned RL policy executed without backtracking.
- TAMER (\(h_{\text{RL}} \)): our planner equipped with the learned heuristic \(h_{\text{Learn}} \)

Results

10-fold cross-validation and sensitivity analysis over 100k RL episodes.

Conclusion

- Take-Away Message
 - Strict correlation between planning heuristics and state value functions in RL
 - Use RL to automatically synthesize planning heuristics looks promising

- Future work
 - Extend the approach to overcome limitations
 - Fixed state size, Fixed network architecture, Bounded numeric values, Incomplete temporal information
 - Supervised learning from search spaces