Time-based Dynamic Controllability of Disjunctive Temporal Networks with Uncertainty: A Tree Search Approach with Graph Neural Network Guidance

Kevin Osanlou^{1,2,3,4}; Jeremy Frank¹; J. Benton¹; Christophe Guettier³; Andrei Bursuc⁵ ; Tristan Cazenave⁴ ; Eric Jacopin⁶ ¹NASA Ames Research Center, ²Universities Space Research Association, ³Safran Electronics & Defense, ⁴ LAMSADE, Paris-Dauphine university, ⁵Valeo AI, ⁶CREC, Ecoles de Saint-Cyr Coëtquidan

INTRODUCTION

- Scheduling in the presence of uncertainty is an area of interest artificial intelligence due to the large number of applications.
- We study the problem of dynamic controllability (DC) for Disjunctive Temporal Networks with Uncertainty (DTNUs)
- We introduce Time-based dynamic controllability (TDC), a new form of controllability
- We design a tree search algorithm to identify TDC strategies for DTNUs, and a heuristic function to guide search based on message passing neural networks (MPNN)
- We carry out experiments comparing this work to previous state-of-the-art approaches

DEFINITIONS

• DTNU = (A, U, C, L)

•A: Controllable timepoints

•U: Uncontrollable timepoints

•C: Set of constraints (*i.e*: $a_1 - a_2 \in [1, 3] \lor a_4 - a_3 \in [10, 20] \lor a_5 - u_1 \in [1, 3]$)

•L: Set of contingency links (*i.e* Which controllable timepoint triggers the activation of which uncontrollable timepoint)

• Dynamic controllability (DC): Type of scheduling strategy which allows instantaneous reactions to uncontrollable timepoints (*i.e* take a new decision as soon as an uncontrollable timepoint occurs)

To solve DTNU in DC: Find a DC strategy which ensures all constraints in C are satisfied at the end of the scheduling

METHODS

Time-based Dynamic Controllability (TDC)

- The time horizon is discretized into intervals, which correspond to 'wait' decisions
- Uncontrollable timepoints are assumed to either occur or not in these intervals. Every outcome is considered
- A timepoint is either scheduled at the start of the interval or permitted to be reactively scheduled in response to an uncontrollable timepoint during the interval
- TDC restricts when reactive scheduling can happen, TDC strategies are less flexible than DC. TDC implies DC

Tree Search

- The search tree is built by the algorithm by discretizing time
- Tree nodes are made of either DTNU nodes (sub-problems of the original DTNU resulting from decisions taken), WAIT nodes, or logical nodes (OR, AND)
- All outcomes of uncontrollable events are developed when waiting
- A heuristic based on an MPNN is built for guidance at OR nodes, accelerates search
- Leaf nodes: Constraints are checked. True is assigned if all constraints satisfied, False otherwise. True/False values are propagated upwards in the tree (OR nodes: True if at least one child is true, False if all children are false ; AND nodes: False if at least one child is false, True if all children are true)
- True reaches root: There is a path from the root that ensures we reach a leaf node with true property

HEURISTIC

- Data generation: Random DTNUs are generated, solved with a randomized tree search based on simulations with short timeouts, DTNUs are stored with their truth values
- MPNN is trained on the data. At d-OR nodes, a DTNU is converted into a graph where nodes and edges have attributes and fed into the MPNN. Output is a probability for children nodes (suggested visit order)

EXPERIMENTS

- Fig.4 : Comparison with PYDC-SMT, state-of-the-art DC solver from (Cimatti et al. 2016) on the same benchmark as (Cimatti et al. 2016). Our approach achieves significant improvement upon state-of-the-art. Ninety seven percent of instances solved by PYDC-SMT are solved with the same conclusion
- Fig.5 : Experiment done on self-generated benchmark with harder DTNUs (25-30 controllable timepoints, 1

Figure 2. Tree search structure

Time in seconds

7.5

5.0

2.5

0.0

to 3 uncontrollable timepoints). True benefit of MPNN shown on harder problems. Different values are experimented for the parameter changing maximal depth use of the heuristic in the tree.

CONCLUSION

- Introduced TDC, a tree search and a heuristic based on message passing neural networks for DTNUs
- Although TDC is a stronger form of controllability than DC, our approach achieves almost the same DC accuracy than the state-of-the-art DC solver, but with a much higher efficiency
- Our TDC solver is based on a tree search algorithm and can be coupled with learning heuristics, which allow very significant improvement for harder problems
- MPNN generalizes to problems of bigger size than trained on, which is significant for combinatorial problems, and in line with observations of related works on combinatorial problems

Figure 4. Experiments on (Cimatti et al)'s benchmark

10.0 12.5 15.0 17.5 20.0

Figure 5. Experiments on self generated benchmark with bigger DTNUs (25-30 controllable timepoints)

 $\label{eq:research} \begin{array}{l} {\sf Research \ poster \ presentation \ design \ @ \ 2015} \\ www.PosterPresentations.com \end{array}$