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Motivation
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Harbor Management
● Multiple levels of abstraction 

▸ Physical/managerial 
organization of harbor

● Higher levels:
▸ Plan abstract tasks

● Lower levels: 
▸ Multiple agents,

partial observability
dynamic change

● Continual online planning
▸ Plans are abstract and 

partial until more detail 
needed

Tasks:

Planning
·
·
·
·
·
·
·
·
·
·
·

Acting
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Hypothetical Worker Robot
● Multiple levels of abstraction 

● At higher levels:
▸ Plan abstract tasks

● At lower levels: 
▸ Nondeterminism,

partial observability
dynamic change

● Continual online planning
▸ Plans are abstract and 

partial until more detail 
needed

Tasks:

Planning
·
·
·
·
·
·
·
·
·
·
·

Acting

ungrasp
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Planning
● Prediction + search

▸ Search over predicted states, possible 
organizations of tasks and actions

● Uses descriptive models (e.g., PDDL)
▸ predict what the actions will do
▸ don’t include instructions for performing it

Acting

● Performing actions 
▸ Dynamic, unpredictable, partially observable environment
▸ Adapt to context, react to events

● Uses operational models 
▸ instructions telling how to perform the actions

Planning and Acting

Deliberation 
components

Execution platform

Commands Percepts

Other  
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting

Queries
Plans

Planning
Acting
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Opening a Door
Tasks:

Planning
·
·
·
·
·
·
·
·
·
·
·

Acting
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Opening a Door
● Different methods, depending on 

what kind of door
▸ Sliding or hinged? Hinged door that opens to 

the left, toward robot
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Opening a Door
● Different methods, depending on 

what kind of door
▸ Sliding or hinged?
▸ Hinge on left or right?

Hinged door that opens to 
the left, toward robot
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Opening a Door
● Different methods, depending on 

what kind of door
▸ Sliding or hinged?
▸ Hinge on left or right?
▸ Open toward or away?

Hinged door that opens to 
the left, toward robot
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Opening a Door
● Different methods, depending on 

what kind of door
▸ Sliding or hinged?
▸ Hinge on left or right?
▸ Open toward or away?
▸ Knob, lever, push bar, …

Hinged door that opens to 
the left, toward robot
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Opening a Door
● Different methods, depending on 

what kind of door
▸ Sliding or hinged?
▸ Hinge on left or right?
▸ Open toward or away?
▸ Knob, lever, push bar, 

pull handle, push plate, …

Hinged door that opens to 
the left, toward robot
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Opening a Door
● Different methods, depending on 

what kind of door
▸ Sliding or hinged?
▸ Hinge on left or right?
▸ Open toward or away?
▸ Knob, lever, push bar, 

pull handle, push plate, 
something else?

Hinged door that opens to 
the left, toward robot
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Deliberation 
components

Execution platform

Commands Percepts

Other  
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting

Queries
Plans

RAE and UPOM
● Python implementation: 

▸ https://github.com/sunandita/ICAPS_Summer_School_RAE_2020
▸ Full code: https://bitbucket.org/sunandita/rae/

● Related publications
▸ Patra, Mason, Kumar, Ghallab, Traverso, and Nau (2020). 

Integrating Acting, Planning, and Learning in Hierarchical 
Operational Models. 
ICAPS-2020. Best student paper honorable mention award.
https://www.aaai.org/ojs/index.php/ICAPS/article/view/6743/6597

▸ Patra, Mason, Ghallab, Dana, and Traverso (2020). 
Deliberative Acting, Online Planning and Learning with 
Hierarchical Operational Models. 
Submitted for journal publication. 
Preprint at https://arxiv.org/abs/2010.01909

▸ Ghallab, Nau, and Traverso (2016). 
Automated Planning and Acting. 
Cambridge University Press. Authors’ final manuscript at
http://projects.laas.fr/planning/

https://github.com/sunandita/ICAPS_Summer_School_RAE_2020
https://bitbucket.org/sunandita/rae/
https://www.aaai.org/ojs/index.php/ICAPS/article/view/6743/6597
https://arxiv.org/abs/2010.01909
http://projects.laas.fr/planning/
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Outline

1. Motivation

2. Representation – state variables, commands, tasks, refinement methods

3. Acting – Rae (Refinement Acting Engine)

4. Planning – UPOM (UCT-like Planner for Operational Models)

5. Acting with Planning – Rae + UPOM

6. Using the implementation – Rae code, UPOM code, examples
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Representation

● Objects
▸ Robots = {r1, r2}
▸ Containers = {c1, c2}
▸ Locations = {loc1, loc2, loc3, loc4}

● Rigid relations (properties that won’t change)
▸ adjacent(loc0,loc1), adjacent(loc1,loc0), 

adjacent(loc1,loc2), adjacent(loc2,loc1), 
adjacent(loc2,loc3), adjacent(loc3,loc2), 
adjacent(loc3,loc4), adjacent(loc4,loc3)

● State variables (fluents)
• where r ∈ Robots, c ∈ Containers, l ∈ Locations

▸ loc(r) ∈ Locations
▸ cargo(r) ∈ Containers ⋃ {empty}
▸ pos(c) ∈ Locations ⋃ Robots ⋃ {unknown}
▸ view(l) ∈ {T, F}

• Whether a robot has looked at location l
• If view(l) = T then pos(c) = l for every container c at l

● Commands to the execution platform:
▸ take(r,o,l): r takes object o at location l
▸ put(r,o,l): r puts o at location l
▸ perceive(r,l): robot r perceives what objects are at l
▸ move-to(r,l): robot r moves to location l

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1
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Tasks and Methods

● Task: an activity for the actor to perform
▸ taskname(arg1, …, argk)

● For each task, one or more refinement methods
▸ Operational models telling how to perform 

the task

method-name(arg1, …, argk)
task: task-identifier
pre:    test
body: 

a program

m-fetch1(r,c)
task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail
←––– task

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) command –––––––––→
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Outline

1. Motivation

2. Representation – state variables, commands, tasks, refinement methods

3. Acting – Rae (Refinement Acting Engine)

4. Planning – UPOM (UCT-like Planner for Operational Models)

5. Acting with Planning – Rae + UPOM

6. Using the implementation – Rae code, UPOM code, examples
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● Performs multiple tasks in parallel
▸ Purely reactive, no lookahead

● For each task or event τ, a refinement stack
▸ execution stack 
▸ corresponds to current path 

in Rae’s search tree for τ
● Agenda = {all current refinement stacks}

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

Acting

tasks

Execution Platform

Environment

eventscommands

!M ← tasks

Rae (Refinement Acting Engine)

τ1 τ2 τ3
, ,
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Representation

● Objects
▸ Robots = {r1, r2}
▸ Containers = {c1, c2}
▸ Locations = {loc1, loc2, loc3, loc4}

● Rigid relations (properties that won’t change)
▸ adjacent(loc0,loc1), adjacent(loc1,loc0), 

adjacent(loc1,loc2), adjacent(loc2,loc1), 
adjacent(loc2,loc3), adjacent(loc3,loc2), 
adjacent(loc3,loc4), adjacent(loc4,loc3)

● State variables (fluents)
• where r ∈ Robots, c ∈ Containers, l ∈ Locations

▸ loc(r) ∈ Locations
▸ cargo(r) ∈ Containers ⋃ {nil}
▸ pos(c) ∈ Locations ⋃ Robots ⋃ {unknown}
▸ view(l) ∈ {T, F}

• Whether a robot has looked at location l
• If view(l) = T then pos(c) = l for every container c at l

● Commands to the execution platform:
▸ take(r,o,l): r takes object o at location l
▸ put(r,o,l): r puts o at location l
▸ perceive(r,l): robot r perceives what objects are at l
▸ move-to(r,l): robot r moves to location l

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1
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loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

Examplem-fetch1(r,c)
task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

Search tree
fetch(r0,c2) τ

• Container locations unknown
• Partially observable 

• Robot only sees current location
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m-fetch1(r,c)
task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

Example

Candidates
= {m-fetch(r1,c2),

m-fetch(r2,c2)}

r = r0, c = c2
Search tree

fetch(r0,c2) τ

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

• Container locations unknown
• Partially observable 

• Robot only sees current location
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m-fetch1(r,c)
task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

Exampler = r1, c = c2

τ

m

Candidates
= {m-fetch(r1,c2),

m-fetch(r2,c2)}

fetch(r0,c2)

m-fetch1(r1,c2)

r0 = r1

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

Search tree

• Container locations unknown
• Partially observable 

• Robot only sees current location



23Nau and Patra – ICAPS 2020 Summer School

m-fetch1(r,c)
task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else search(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

Exampler = r1, c = c2

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

σ
τ

m

Candidates
= {m-fetch(r1,c2),

m-fetch(r2,c2)}

fetch(r0,c2)

m-fetch1(r1,c2)

r0 = r1

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

Search tree

• Container locations unknown
• Partially observable 

• Robot only sees current location
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Progress(σ):
m-fetch1(r,c)

task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

Exampler = r1, c = c2

σ
τ

m

Candidates
= {m-fetch(r1,c2),

m-fetch(r2,c2)}

fetch(r0,c2)

m-fetch1(r1,c2)

r0 = r1

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

Search tree

is 
m’s current step 

a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

no

• Container locations unknown
• Partially observable 

• Robot only sees current location
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fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

m-fetch1(r,c)
task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

r = r1, c = c2 Example Progress(σ):

τ′

l = loc1
r0 = r1

τ

m

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

Search tree

is 
m’s current step 

a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

no

• Container locations unknown
• Partially observable 

• Robot only sees current location
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Example Progress(σ):

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

m-fetch1(r,c)
task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

r = r1, c = c2

τ′

l = loc1
r0 = r1

τ

m

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

Search tree

is 
m’s current step 

a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

no

• Container locations unknown
• Partially observable 

• Robot only sees current location
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Example Progress(σ):

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

m-fetch1(r,c)
task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

r = r1, c = c2

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

τ′

l = loc1
r0 = r1

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

τ

m

Search tree

σ

is 
m’s current step 

a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

no
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Example Progress(σ):

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

m-fetch1(r,c)
task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

r = r1, c = c2

l = loc1

← running …
r0 = r1

τ

m

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

Search tree

is 
m’s current step 

a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

no
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Example Progress(σ):

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

m-fetch1(r,c)
task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

r = r1, c = c2

l = loc1

← succeeded
r0 = r1

τ

m

Search tree

loc0
loc2

loc1
c1

loc4

loc3

c2

r2r1

is 
m’s current step 

a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

no
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fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

perceive(r1,loc1)

Example Progress(σ):
m-fetch1(r,c)

task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

r = r1, c = c2

l = loc1
r0 = r1

τ′

τ

m

loc0
loc2

loc1
c1

loc4

loc3

c2

r2r1

Search tree

is 
m’s current step 

a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

no
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fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

perceive(r1,loc1)

Example Progress(σ):
m-fetch1(r,c)

task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

r = r1, c = c2

l = loc1
r0 = r1

sensor failure

τ′

τ

m

loc0
loc2

loc1
c1

loc4

loc3

c2

r2r1

Search tree

← failed

is 
m’s current step 

a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

no



32Nau and Patra – ICAPS 2020 Summer School

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

perceive(r1,loc1)

Example Progress(σ):
m-fetch1(r,c)

task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

sensor failure

r0 = r2
retry

m-fetch1(r2,c2)

Candidates
= {m-fetch(r1,c2),

m-fetch(r2,c2)}

r = r2, c = c2

τ

loc0
loc2

loc1
c1

loc4

loc3

c2

r2r1

Search tree

is 
m’s current step 

a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

no
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fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

perceive(r1,loc1)

Example Progress(σ):
m-fetch1(r,c)

task: fetch(r,c) 
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then 

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c) 
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then 
take(r,c,pos(c)) 

else do 
move-to(r,pos(c))
take(r,c,pos(c)) 

sensor failure

m-fetch1(r2,c2)

Candidates
= {m-fetch(r1,c2),

m-fetch(r2,c2)}

r = r2, c = c2

Is this the same as a 
backtracking search?

r0 = r2

loc0
loc2

loc1
c1

loc4

loc3

c2

r2r1

Search tree

τ
retry

is 
m’s current step 

a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

no
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Extensions to Rae

● Methods for events
▸ e.g., an emergency

● Methods for goals
▸ special kind of task: achieve(goal)
▸ sets up a monitor to see if the goal has been 

achieved
● Concurrent subtasks
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Outline

● Motivation

● Representation – state variables, commands, tasks, refinement methods

● Acting – Rae (Refinement Acting Engine)

● Planning – UPOM (UCT-like Planner for Operational Models)

● Acting with Planning – Rae + UPOM

● Using the implementation – Rae code, UPOM code, examples
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Why Plan?
is m’s current 

step a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

no

● Bad choice may lead to 
▸ more costly solution
▸ failure, need to recover
▸ unrecoverable failure

● Idea: do simulations to predict outcomes

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

Progress(σ):
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is m’s current 
step a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

no
Simulate-Progress(σ):

start simulation 
of τ′

UPOM(τ):
choose a method instance m for τ
create refinement stack σ for τ and m
loop while Simulate-Progress(σ) ≠ failure

if σ is completed then return (m, utility of outcome)
return failure

UPOM-Lookahead (task τ):
Call UPOM(τ) multiple times
Return the m ∈ Candidates that has the highest average utility

Planner

simulation

= Basic ideas
Ø Repeated Monte Carlo rollouts on a single task t
Ø Choose method instances using a UCT-like formula
Ø Simulated execution of commands
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is m’s current 
step a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

noSimulating a command
● Simplest case: 

▸ probabilistic action template
a(x1, …, xk)

pre: …
(p1) eff1:  e11, e12, …

…
(pm) effm:  em1, em2, …

▸ Choose randomly, each effi has probability pi
▸ Use effi to update the current state

● More general: 
▸ Arbitrary computation, e.g.,

physics-based simulation
▸ Run the code to get

prediction of effects

start simulation 
of τ′

simulation

Simulate-Progress(σ):
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= UPOM search tree more complicated 
Ø tasks, methods, commands, code execution

= If no exogenous events, can map it into UCT 
on a complicated MDP
Ø proof of convergence to optimal

sequence of code execution

m
disjunction among
alternative choices

τ1
disjunction disjunction

τ2

 j+12
⋮
j      

n+1

n

a1 a2

sample from 
possible results m1 m′1 m2 m′2

sample

m′

τ

1

task τ

action action

state

state

state state state state

actionaction

. . .
possible
choices

. . .
possible
outcomes

… …

. . .

state

Monte Carlo Rollouts● Rollouts on MDPs
▸ At each state, choose action at 

random, get random outcome
● UCT algorithm

▸ Choice of action balances 
exploration vs exploitation

▸ Converges to 
optimal choice 
at root of tree

method instance m
task: τ
pre: …
body:

action a1
task τ1
action a2
task τ2
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Outline

● Motivation

● Representation – state variables, commands, tasks, refinement methods

● Acting – Rae (Refinement Acting Engine)

● Planning – UPOM (UCT-like Planner for Operational Models)

● Acting with Planning – Rae + UPOM

● Using the implementation – Rae code, UPOM code, examples
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procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

RAE + UPOM

● Whenever RAE needs to choose a method instance, 
use UPOM-Lookahead to make the choice

is m’s current 
step a command?

command 
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps 

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

suc ceeded

started m?
yes

no

no
Progress(σ):
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Summary of Experimental Results

● Five different domains, different combinations of characteristics
● Evaluation criteria:

▸ Efficiency, successes vs failures, how many retries
● Result: planning helps

▸ Rae operates better with UPOM than without
▸ Rae operates better with more planning than with less planning
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Other Details

● Receding horizon
▸ Cut off search before accomplishing τ

• e.g., depth dmax or when we run out of time
▸ At leaf nodes, use heuristic function

● Learning a heuristic function
▸ Supervised learning

Planning
Acting
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Outline

1. Motivation

2. Representation – state variables, commands, tasks, refinement methods

3. Acting – Rae (Refinement Acting Engine)

4. Planning – UPOM (UCT-like Planner for Operational Models)

5. Acting with Planning – Rae + UPOM

6. Using the implementation – Rae code, UPOM code, examples
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Code Demo

● Github repository: https://github.com/sunandita/ICAPS_Summer_School_RAE_2020

● System requirements: 
▸ Unix based operating system preferred
▸ Have Docker or the Python Conda environment preinstalled

● Things to play with:
▸ Domain file: ICAPS_Summer_School_RAE_2020/domains/domain_x.py
▸ Problem file: ICAPS_Summer_School_RAE_2020 /problems/x/problemId_x.py
▸ x ∊ [chargeableRobot, explorableEnv, searchAndRescue, springDoor, orderFulfillment]

● How to run?
▸ cd ICAPS_Summer_School_RAE_2020/RAE_and_UPOM
▸ python3 testRAEandUPOM.py –h 

https://github.com/sunandita/ICAPS_Summer_School_RAE_2020

