
1Nau and Patra – ICAPS 2020 Summer School

Last update: October 16, 2020

Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Integrated Planning and Acting
Using Operational Models

Dana S. Nau and Sunandita Patra
University of Maryland

http://creativecommons.org/licenses/by-nc-sa/4.0/

2Nau and Patra – ICAPS 2020 Summer School

Motivation

3Nau and Patra – ICAPS 2020 Summer School

Harbor Management
● Multiple levels of abstraction

▸ Physical/managerial
organization of harbor

● Higher levels:
▸ Plan abstract tasks

● Lower levels:
▸ Multiple agents,

partial observability
dynamic change

● Continual online planning
▸ Plans are abstract and

partial until more detail
needed

Tasks:

Planning
·
·
·
·
·
·
·
·
·
·
·

Acting

4Nau and Patra – ICAPS 2020 Summer School

Hypothetical Worker Robot
● Multiple levels of abstraction

● At higher levels:
▸ Plan abstract tasks

● At lower levels:
▸ Nondeterminism,

partial observability
dynamic change

● Continual online planning
▸ Plans are abstract and

partial until more detail
needed

Tasks:

Planning
·
·
·
·
·
·
·
·
·
·
·

Acting

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

5Nau and Patra – ICAPS 2020 Summer School

Planning
● Prediction + search

▸ Search over predicted states, possible
organizations of tasks and actions

● Uses descriptive models (e.g., PDDL)
▸ predict what the actions will do
▸ don’t include instructions for performing it

Acting

● Performing actions
▸ Dynamic, unpredictable, partially observable environment
▸ Adapt to context, react to events

● Uses operational models
▸ instructions telling how to perform the actions

Planning and Acting

Deliberation
components

Execution platform

Commands Percepts

Other
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting

Queries
Plans

Planning
Acting

6Nau and Patra – ICAPS 2020 Summer School

Opening a Door
Tasks:

Planning
·
·
·
·
·
·
·
·
·
·
·

Acting

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

open door

7Nau and Patra – ICAPS 2020 Summer School

Opening a Door
● Different methods, depending on

what kind of door
▸ Sliding or hinged? Hinged door that opens to

the left, toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

identify
type
of

door

8Nau and Patra – ICAPS 2020 Summer School

Opening a Door
● Different methods, depending on

what kind of door
▸ Sliding or hinged?
▸ Hinge on left or right?

Hinged door that opens to
the left, toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

identify
type
of

door

9Nau and Patra – ICAPS 2020 Summer School

Opening a Door
● Different methods, depending on

what kind of door
▸ Sliding or hinged?
▸ Hinge on left or right?
▸ Open toward or away?

Hinged door that opens to
the left, toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

identify
type
of

door

10Nau and Patra – ICAPS 2020 Summer School

Opening a Door
● Different methods, depending on

what kind of door
▸ Sliding or hinged?
▸ Hinge on left or right?
▸ Open toward or away?
▸ Knob, lever, push bar, …

Hinged door that opens to
the left, toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

identify
type
of

door

11Nau and Patra – ICAPS 2020 Summer School

Opening a Door
● Different methods, depending on

what kind of door
▸ Sliding or hinged?
▸ Hinge on left or right?
▸ Open toward or away?
▸ Knob, lever, push bar,

pull handle, push plate, …

Hinged door that opens to
the left, toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

identify
type
of

door

12Nau and Patra – ICAPS 2020 Summer School

Opening a Door
● Different methods, depending on

what kind of door
▸ Sliding or hinged?
▸ Hinge on left or right?
▸ Open toward or away?
▸ Knob, lever, push bar,

pull handle, push plate,
something else?

Hinged door that opens to
the left, toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

identify
type
of

door

13Nau and Patra – ICAPS 2020 Summer School

Deliberation
components

Execution platform

Commands Percepts

Other
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting

Queries
Plans

RAE and UPOM
● Python implementation:

▸ https://github.com/sunandita/ICAPS_Summer_School_RAE_2020
▸ Full code: https://bitbucket.org/sunandita/rae/

● Related publications
▸ Patra, Mason, Kumar, Ghallab, Traverso, and Nau (2020).

Integrating Acting, Planning, and Learning in Hierarchical
Operational Models.
ICAPS-2020. Best student paper honorable mention award.
https://www.aaai.org/ojs/index.php/ICAPS/article/view/6743/6597

▸ Patra, Mason, Ghallab, Dana, and Traverso (2020).
Deliberative Acting, Online Planning and Learning with
Hierarchical Operational Models.
Submitted for journal publication.
Preprint at https://arxiv.org/abs/2010.01909

▸ Ghallab, Nau, and Traverso (2016).
Automated Planning and Acting.
Cambridge University Press. Authors’ final manuscript at
http://projects.laas.fr/planning/

https://github.com/sunandita/ICAPS_Summer_School_RAE_2020
https://bitbucket.org/sunandita/rae/
https://www.aaai.org/ojs/index.php/ICAPS/article/view/6743/6597
https://arxiv.org/abs/2010.01909
http://projects.laas.fr/planning/

14Nau and Patra – ICAPS 2020 Summer School

Outline

1. Motivation

2. Representation – state variables, commands, tasks, refinement methods

3. Acting – Rae (Refinement Acting Engine)

4. Planning – UPOM (UCT-like Planner for Operational Models)

5. Acting with Planning – Rae + UPOM

6. Using the implementation – Rae code, UPOM code, examples

15Nau and Patra – ICAPS 2020 Summer School

Representation

● Objects
▸ Robots = {r1, r2}
▸ Containers = {c1, c2}
▸ Locations = {loc1, loc2, loc3, loc4}

● Rigid relations (properties that won’t change)
▸ adjacent(loc0,loc1), adjacent(loc1,loc0),

adjacent(loc1,loc2), adjacent(loc2,loc1),
adjacent(loc2,loc3), adjacent(loc3,loc2),
adjacent(loc3,loc4), adjacent(loc4,loc3)

● State variables (fluents)
• where r ∈ Robots, c ∈ Containers, l ∈ Locations

▸ loc(r) ∈ Locations
▸ cargo(r) ∈ Containers ⋃ {empty}
▸ pos(c) ∈ Locations ⋃ Robots ⋃ {unknown}
▸ view(l) ∈ {T, F}

• Whether a robot has looked at location l
• If view(l) = T then pos(c) = l for every container c at l

● Commands to the execution platform:
▸ take(r,o,l): r takes object o at location l
▸ put(r,o,l): r puts o at location l
▸ perceive(r,l): robot r perceives what objects are at l
▸ move-to(r,l): robot r moves to location l

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

16Nau and Patra – ICAPS 2020 Summer School

Tasks and Methods

● Task: an activity for the actor to perform
▸ taskname(arg1, …, argk)

● For each task, one or more refinement methods
▸ Operational models telling how to perform

the task

method-name(arg1, …, argk)
task: task-identifier
pre: test
body:

a program

m-fetch1(r,c)
task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail
←––– task

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c)) command –––––––––→

17Nau and Patra – ICAPS 2020 Summer School

Outline

1. Motivation

2. Representation – state variables, commands, tasks, refinement methods

3. Acting – Rae (Refinement Acting Engine)

4. Planning – UPOM (UCT-like Planner for Operational Models)

5. Acting with Planning – Rae + UPOM

6. Using the implementation – Rae code, UPOM code, examples

18Nau and Patra – ICAPS 2020 Summer School

● Performs multiple tasks in parallel
▸ Purely reactive, no lookahead

● For each task or event τ, a refinement stack
▸ execution stack
▸ corresponds to current path

in Rae’s search tree for τ
● Agenda = {all current refinement stacks}

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

Acting

tasks

Execution Platform

Environment

eventscommands

!M ← tasks

Rae (Refinement Acting Engine)

τ1 τ2 τ3
, ,

19Nau and Patra – ICAPS 2020 Summer School

Representation

● Objects
▸ Robots = {r1, r2}
▸ Containers = {c1, c2}
▸ Locations = {loc1, loc2, loc3, loc4}

● Rigid relations (properties that won’t change)
▸ adjacent(loc0,loc1), adjacent(loc1,loc0),

adjacent(loc1,loc2), adjacent(loc2,loc1),
adjacent(loc2,loc3), adjacent(loc3,loc2),
adjacent(loc3,loc4), adjacent(loc4,loc3)

● State variables (fluents)
• where r ∈ Robots, c ∈ Containers, l ∈ Locations

▸ loc(r) ∈ Locations
▸ cargo(r) ∈ Containers ⋃ {nil}
▸ pos(c) ∈ Locations ⋃ Robots ⋃ {unknown}
▸ view(l) ∈ {T, F}

• Whether a robot has looked at location l
• If view(l) = T then pos(c) = l for every container c at l

● Commands to the execution platform:
▸ take(r,o,l): r takes object o at location l
▸ put(r,o,l): r puts o at location l
▸ perceive(r,l): robot r perceives what objects are at l
▸ move-to(r,l): robot r moves to location l

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

20Nau and Patra – ICAPS 2020 Summer School

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

Examplem-fetch1(r,c)
task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

Search tree
fetch(r0,c2) τ

• Container locations unknown
• Partially observable

• Robot only sees current location

21Nau and Patra – ICAPS 2020 Summer School

m-fetch1(r,c)
task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

Example

Candidates
= {m-fetch(r1,c2),

m-fetch(r2,c2)}

r = r0, c = c2
Search tree

fetch(r0,c2) τ

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

• Container locations unknown
• Partially observable

• Robot only sees current location

22Nau and Patra – ICAPS 2020 Summer School

m-fetch1(r,c)
task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

Exampler = r1, c = c2

τ

m

Candidates
= {m-fetch(r1,c2),

m-fetch(r2,c2)}

fetch(r0,c2)

m-fetch1(r1,c2)

r0 = r1

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

Search tree

• Container locations unknown
• Partially observable

• Robot only sees current location

23Nau and Patra – ICAPS 2020 Summer School

m-fetch1(r,c)
task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else search(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

Exampler = r1, c = c2

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

σ
τ

m

Candidates
= {m-fetch(r1,c2),

m-fetch(r2,c2)}

fetch(r0,c2)

m-fetch1(r1,c2)

r0 = r1

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

Search tree

• Container locations unknown
• Partially observable

• Robot only sees current location

24Nau and Patra – ICAPS 2020 Summer School

Progress(σ):
m-fetch1(r,c)

task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

Exampler = r1, c = c2

σ
τ

m

Candidates
= {m-fetch(r1,c2),

m-fetch(r2,c2)}

fetch(r0,c2)

m-fetch1(r1,c2)

r0 = r1

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

Search tree

is
m’s current step

a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no

• Container locations unknown
• Partially observable

• Robot only sees current location

25Nau and Patra – ICAPS 2020 Summer School

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

m-fetch1(r,c)
task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

r = r1, c = c2 Example Progress(σ):

τ′

l = loc1
r0 = r1

τ

m

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

Search tree

is
m’s current step

a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no

• Container locations unknown
• Partially observable

• Robot only sees current location

26Nau and Patra – ICAPS 2020 Summer School

Example Progress(σ):

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

m-fetch1(r,c)
task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

r = r1, c = c2

τ′

l = loc1
r0 = r1

τ

m

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

Search tree

is
m’s current step

a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no

• Container locations unknown
• Partially observable

• Robot only sees current location

27Nau and Patra – ICAPS 2020 Summer School

Example Progress(σ):

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

m-fetch1(r,c)
task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

r = r1, c = c2

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

τ′

l = loc1
r0 = r1

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

τ

m

Search tree

σ

is
m’s current step

a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no

28Nau and Patra – ICAPS 2020 Summer School

Example Progress(σ):

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

m-fetch1(r,c)
task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

r = r1, c = c2

l = loc1

← running …
r0 = r1

τ

m

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

Search tree

is
m’s current step

a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no

29Nau and Patra – ICAPS 2020 Summer School

Example Progress(σ):

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

m-fetch1(r,c)
task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

r = r1, c = c2

l = loc1

← succeeded
r0 = r1

τ

m

Search tree

loc0
loc2

loc1
c1

loc4

loc3

c2

r2r1

is
m’s current step

a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no

30Nau and Patra – ICAPS 2020 Summer School

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

perceive(r1,loc1)

Example Progress(σ):
m-fetch1(r,c)

task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

r = r1, c = c2

l = loc1
r0 = r1

τ′

τ

m

loc0
loc2

loc1
c1

loc4

loc3

c2

r2r1

Search tree

is
m’s current step

a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no

31Nau and Patra – ICAPS 2020 Summer School

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

perceive(r1,loc1)

Example Progress(σ):
m-fetch1(r,c)

task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

r = r1, c = c2

l = loc1
r0 = r1

sensor failure

τ′

τ

m

loc0
loc2

loc1
c1

loc4

loc3

c2

r2r1

Search tree

← failed

is
m’s current step

a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no

32Nau and Patra – ICAPS 2020 Summer School

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

perceive(r1,loc1)

Example Progress(σ):
m-fetch1(r,c)

task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

sensor failure

r0 = r2
retry

m-fetch1(r2,c2)

Candidates
= {m-fetch(r1,c2),

m-fetch(r2,c2)}

r = r2, c = c2

τ

loc0
loc2

loc1
c1

loc4

loc3

c2

r2r1

Search tree

is
m’s current step

a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no

33Nau and Patra – ICAPS 2020 Summer School

fetch(r0,c2)

m-fetch1(r1,c2)

move-to(r1,loc1) …

code execution

perceive(r1,loc1)

Example Progress(σ):
m-fetch1(r,c)

task: fetch(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(l) = F) then
move-to(r,l)
perceive(r,l)
if pos(c) = l then

take(r,c,l)
else fetch(r,c)

else fail

m-fetch2(r,c)
task: fetch(r,c)
pre: pos(c) ≠ unknown
body:

if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

sensor failure

m-fetch1(r2,c2)

Candidates
= {m-fetch(r1,c2),

m-fetch(r2,c2)}

r = r2, c = c2

Is this the same as a
backtracking search?

r0 = r2

loc0
loc2

loc1
c1

loc4

loc3

c2

r2r1

Search tree

τ
retry

is
m’s current step

a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?
pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no

34Nau and Patra – ICAPS 2020 Summer School

Extensions to Rae

● Methods for events
▸ e.g., an emergency

● Methods for goals
▸ special kind of task: achieve(goal)
▸ sets up a monitor to see if the goal has been

achieved
● Concurrent subtasks

35Nau and Patra – ICAPS 2020 Summer School

Outline

● Motivation

● Representation – state variables, commands, tasks, refinement methods

● Acting – Rae (Refinement Acting Engine)

● Planning – UPOM (UCT-like Planner for Operational Models)

● Acting with Planning – Rae + UPOM

● Using the implementation – Rae code, UPOM code, examples

36Nau and Patra – ICAPS 2020 Summer School

Why Plan?
is m’s current

step a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no

● Bad choice may lead to
▸ more costly solution
▸ failure, need to recover
▸ unrecoverable failure

● Idea: do simulations to predict outcomes

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

Progress(σ):

37Nau and Patra – ICAPS 2020 Summer School

is m’s current
step a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no
Simulate-Progress(σ):

start simulation
of τ′

UPOM(τ):
choose a method instance m for τ
create refinement stack σ for τ and m
loop while Simulate-Progress(σ) ≠ failure

if σ is completed then return (m, utility of outcome)
return failure

UPOM-Lookahead (task τ):
Call UPOM(τ) multiple times
Return the m ∈ Candidates that has the highest average utility

Planner

simulation

= Basic ideas
Ø Repeated Monte Carlo rollouts on a single task t
Ø Choose method instances using a UCT-like formula
Ø Simulated execution of commands

38Nau and Patra – ICAPS 2020 Summer School

is m’s current
step a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

noSimulating a command
● Simplest case:

▸ probabilistic action template
a(x1, …, xk)

pre: …
(p1) eff1: e11, e12, …

…
(pm) effm: em1, em2, …

▸ Choose randomly, each effi has probability pi
▸ Use effi to update the current state

● More general:
▸ Arbitrary computation, e.g.,

physics-based simulation
▸ Run the code to get

prediction of effects

start simulation
of τ′

simulation

Simulate-Progress(σ):

39Nau and Patra – ICAPS 2020 Summer School

= UPOM search tree more complicated
Ø tasks, methods, commands, code execution

= If no exogenous events, can map it into UCT
on a complicated MDP
Ø proof of convergence to optimal

sequence of code execution

m
disjunction among
alternative choices

τ1
disjunction disjunction

τ2

 j+12
⋮
j

n+1

n

a1 a2

sample from
possible results m1 m′1 m2 m′2

sample

m′

τ

1

task τ

action action

state

state

state state state state

actionaction

. . .
possible
choices

. . .
possible
outcomes

… …

. . .

state

Monte Carlo Rollouts● Rollouts on MDPs
▸ At each state, choose action at

random, get random outcome
● UCT algorithm

▸ Choice of action balances
exploration vs exploitation

▸ Converges to
optimal choice
at root of tree

method instance m
task: τ
pre: …
body:

action a1
task τ1
action a2
task τ2

40Nau and Patra – ICAPS 2020 Summer School

Outline

● Motivation

● Representation – state variables, commands, tasks, refinement methods

● Acting – Rae (Refinement Acting Engine)

● Planning – UPOM (UCT-like Planner for Operational Models)

● Acting with Planning – Rae + UPOM

● Using the implementation – Rae code, UPOM code, examples

41Nau and Patra – ICAPS 2020 Summer School

procedure Rae:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished then remove it

RAE + UPOM

● Whenever RAE needs to choose a method instance,
use UPOM-Lookahead to make the choice

is m’s current
step a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no
Progress(σ):

42Nau and Patra – ICAPS 2020 Summer School

Summary of Experimental Results

● Five different domains, different combinations of characteristics
● Evaluation criteria:

▸ Efficiency, successes vs failures, how many retries
● Result: planning helps

▸ Rae operates better with UPOM than without
▸ Rae operates better with more planning than with less planning

43Nau and Patra – ICAPS 2020 Summer School

Other Details

● Receding horizon
▸ Cut off search before accomplishing τ

• e.g., depth dmax or when we run out of time
▸ At leaf nodes, use heuristic function

● Learning a heuristic function
▸ Supervised learning

Planning
Acting

44Nau and Patra – ICAPS 2020 Summer School

Outline

1. Motivation

2. Representation – state variables, commands, tasks, refinement methods

3. Acting – Rae (Refinement Acting Engine)

4. Planning – UPOM (UCT-like Planner for Operational Models)

5. Acting with Planning – Rae + UPOM

6. Using the implementation – Rae code, UPOM code, examples

45Nau and Patra – ICAPS 2020 Summer School

Code Demo

● Github repository: https://github.com/sunandita/ICAPS_Summer_School_RAE_2020

● System requirements:
▸ Unix based operating system preferred
▸ Have Docker or the Python Conda environment preinstalled

● Things to play with:
▸ Domain file: ICAPS_Summer_School_RAE_2020/domains/domain_x.py
▸ Problem file: ICAPS_Summer_School_RAE_2020 /problems/x/problemId_x.py
▸ x ∊ [chargeableRobot, explorableEnv, searchAndRescue, springDoor, orderFulfillment]

● How to run?
▸ cd ICAPS_Summer_School_RAE_2020/RAE_and_UPOM
▸ python3 testRAEandUPOM.py –h

https://github.com/sunandita/ICAPS_Summer_School_RAE_2020

