
ICAPS Online School Lab: Plan Execution
This ROSject was created by Gerard Canal and Stefan Bezrucav.

Preliminaries

We will use The Construct as the simulation environment. This eases the task of setting up ROS, ROSPlan
and eases the way to running the simulations.

To start with, you will need to create an account here. Once you have your account, log in the ROS
Development Studio, and you will have your workspace.

The next step is to fork the base simulator. Note that each fork is an own copy, so it's like you were working
on your computer. While simulations are public, the files will only be modifiable by you, so be sure to use an
appropriate way of sharing code with your group (more on that later).

Now, navigate to the Base Summer School simulation: ROSject: Task Planning for Robotics (ICAPS Summer
School 2020) and fork it by pressing the fork button and then pressing "yes" so it clones the project:

af://n2
https://gerardcanal.github.io/
https://www.igmr.rwth-aachen.de/index.php/en/team-en/bezrucav-en
af://n4
https://www.theconstructsim.com/
http://rds.theconstructsim.com/
http://rds.theconstructsim.com/
https://rds.theconstructsim.com/r/gerardcanal/task_planning_for_robotics_icaps_summer_school_2020_ac52/

This will bring you to a similar page, but for your forked simulation. Now, start the simulation by pressing
"Open Rosject". Make sure you do that in your fork:

After loading (this may take a while), you should see this screen:

Now, we're ready to go!

af://n19

Exercise 1 - Preparation of the workspace

We have prepared a base source code for you to develop. The simulation includes all the needed code
already, but the exercises will need you to fork our repository and install it in the construct.

Either individually or with your working group, fork the Training Lab repository with the exercises by going
to https://github.com/gerardcanal/ICAPS_20_SummerSchool_ROSPlan

Clone the repository by opening a terminal (shell) in the construct (under the tools setting Tools):

IMPORTANT NOTE You need to run the following code every time you open a new terminal for
everything to run smoothly:

Then clone your fork of repository by running (please, pay attention to this as the destination folder of the
files is important):

Note that each of you will work on an independent instance on The Construct, therefore you should share
your code through the git repository. Essentially, each instance of the construct is like your own computer.
Remember to commit your changes often or save the session in the construct (by clicking on the save
button at the top of the window). Otherwise, your progress may be lost!

You can save your progress in the construct by clicking the save icon:

source /home/user/catkin_ws/devel/setup.bash1

cd /home/user/catkin_ws/src/

git clone https://github.com/<YOUR-USERNAME>/ICAPS_20_SummerSchool_ROSPlan.git

1

2

af://n19
https://github.com/gerardcanal/ICAPS_20_SummerSchool_ROSPlan

Building the base code

You can build the workspace by running:

Notice that building takes time in The Construct, therefore you should try to make sure your code
works.

Remember to build your code after making changes to source files (basically to cpp files. Changes to PDDL
files do not need to be compiled).

Scenario description

We will use a robotics scenario to illustrate the use of Planning in real-world domains. The scenario looks as
follows:

cd ~/user/catkin_ws

catkin build

1

2

af://n34
af://n40

As you can see, there is a robot (Tiago) in a building with different tables, and three blocks (green, blue, and
red). The robot has to perform an inspection task, visiting a set of locations in the office (different desks),
and move the blocks from their current places to some defined goal locations.

Ideally, the robot should do this in an efficient manner, therefore taking as few time as possible. This will be
achieved by trying to minimize the number of navigation actions, and not visiting each place more than
once if possible.

Exercise 3 - Running the simulation

Let's now run the simulation to open the virtual world. In the construct, press in Simulations:

af://n47

And then, press in "choose a launch file". You will get a drop-down menu, where you will need to find the
"tiago_navigation_icaps20.launch". Hint: it's at the end, so scroll to the bottom and you will find it
under the section tiago_navigation_icaps20. Make sure you select the navigation one and not any of the
other two. Now, press LAUNCH:

The simulator (Gazebo) will start to load:

Notice the Loading on the top left, and wait until a green tick appears. If the green tick appears and the
simulation is still not there, press the refresh button. An example can be seen here:

It often happens that after pressing refresh it still does not load. If this is the case, go back to The beginning
of the exercise 3, press in "Change the simulation":

And relaunch it again as we did before. Hopefully, we will have a robot environment this time:

You can move the camera in the simulator with your mouse. With right click (holding it) you can translate
the camera, with a middle click (holding) you can rotate it. Before executing anything and after launching the
simulation, wait for tiago to tuck his arm and be in this position:

If for some reason Tiago has two arms, refresh the simulation using the refresh button from before.

Exercise 4 - Running more than the simulation

Now that we have the simulator running, let's see what do we need to run in order to test the planning
system.

Open a new Shell terminal, and source the environment:

Then, run the following line:

This will launch all the needed ROS nodes for our system to work. More specifically, this starts all ROSPlan
nodes needed for planning, and the interfaces for moving the robot.

A ROS node is an executable inside the ROS ecosystem, which is connected to other nodes by means of
topics (which are pipes between nodes), services (blocking function calls from one node to another) and
actions (non-blocking function calls).

source /home/user/catkin_ws/devel/setup.bash1

roslaunch icaps_ss icaps_ss_full_system.launch1

af://n67

Notice that you can run the system with a custom domain and problem file by doing:

As an example:

Wait until everything has correctly launched, and you see something like the following in the terminal:

Now, you will learn how to run the planning system for the rest of the exercises, and see the robot moving.

Open a new shell terminal, and remember to source the setup.bash:

Now, to run the planning system and have the robot moving, run:

This will run the bash script called main_executor.sh which is inside the ROS package called icaps_ss.

The script performs call to the necessary ROSPlan services to perform:

Problem generation
Planning
Plan parsing
Plan dispatcher (execution)

You can take a look at it by opening the IDE under the Tools menu in the construct, and navigating to
catkin_ws/src/ICAPS_2020_SummerSchool_ROSPlan/icaps_ss Shell/src :

roslaunch icaps_ss icaps_ss_full_system.launch domain_path:=<domain_path>

problem_path:=<problem_path>

1

cd /home/user/catkin_ws/src/ICAPS_20_SummerSchool_ROSPlan/ai_planning/common

roslaunch icaps_ss icaps_ss_full_system.launch domain_path:=$PWD/domain_start.pddl

problem_path:=$PWD/problem_start.pddl

1

2

[INFO] [1602255285.929269681, 1100.282000000]: KCL: (place) Ready to receive

[INFO] [1602255286.032010338, 1100.294000000]: KCL: (grasp) Ready to receive

1

2

source /home/user/catkin_ws/devel/setup.bash1

rosrun icaps_ss main_executor.sh1

Notice that every time that the planning execution fails (which happens often in the real world), you will
need to re-run the script to plan from the current state onwards. Don't worry about errors that terminal
when planning fails.

You can use the IDE to modify the code and files inside the construct.

Once you have seen the robot moving around, try to see what is it doing, but you don't need to wait until
the end. We'll go through that in the following exercises. You can stop the processes by pressing Ctrl+C in
each terminal.

Planning exercises

Exercise 1 - Do we really need planning for this?

One way to solve the problem would be using a State Machine (SM). Therefore, let's develop one to solve
the problem.

First, design a State Machine to solve the "visit all" problem (visiting a set of waypoints in the map). Feel free
to implement it in Python, so we can add calls to the robot movements later (this is optional).

Once you have designed your visit-all SM, add there the ability of moving the cubes to the designated
locations.

That should have been doable. Now, let's say we want it to be more efficient, so it minimizes the traveled
distance or the time that the robot needs to perform the task. How would you do that?

af://n105
af://n106
https://en.wikipedia.org/wiki/Finite-state_machine

Exercise 2 - Now let's try with Planning

The Robot Operating System (ROS) is a set of tools to programming robots. In order to perform task
planning for robots, the ROSPlan system simplified a lot the task, as it's built on ROS and has many planners
available, as well as action dispatchers. Feel free to check the webpage and the tutorials, although you do
not need to do them in order to complete these exercises.

We have made a visit-all domain that you can find in the ai_planning package, which is inside the repository
you downloaded.

The domains are in /home/user/catkin_ws/src/ICAPS_20_SummerSchool_ROSPlan/ai_planning/common .
You should use the domain_start.pddl and the problem_start.pddl . Proposed solutions are already
there, but we strongly encourage you to not cheat and try to solve the problems first.

Run the domain and see what the robot does. The robot should visit 6 waypoints (places where the robot
needs to go, plus the initial position of the robot). Following, a depiction of where is each waypoint located:

Is the robot visiting all the 6 waypoints? If not, can you fix the problem file so it visits all of them?

Planning for moving objects

Similar to what we did with the SM, let's add the option to move the objects. If you check the domain file
domain_start.pddl , you will see that there are two actions, the grasp and the place to grasp and place

an object on the surface, respectively.

af://n116
https://www.ros.org/
http://kcl-planning.github.io/ROSPlan/
af://n125

Now, modify the problem file so that the planner also grasps and places the objects. More
specifically, we want to end the task with:

The red box in the wp2

The blue box in the wp1

The green box in the wp3

You may also have to specify the initial state, so check where are the objects located!

Let's execute now the problem and see what happens. Is the planner able to find a plan? If not, can you
find why and fix the issue? Hint: check the domain file, and make sure the actions are correctly defined and
make sense

Notice that the robot may fail to perform the grasps, or lose the box in the meantime. In such cases, the
plan will continue as if the robot grasping was correct and place an invisible box.

green_cube_picked

Exercise 3 - Adding costs

At this point, you should be able to find and execute a plan where the robot (tries to) move the cubes
around and visit all the set of waypoints. Now, let's make it more efficient by adding some distance costs.

First, let's compute the distance between all the set of waypoints. As a help, you can use the following
Python2 script:

The script obtains the coordinates of the waypoints which are stored in the ROS Parameter Server (and
loaded by the launch scripts). It then prints the distances as PDDL predicates that you can add to your
domain.

You can run it by opening a python interpreter in a shell terminal. Remember to source the devel.bash!
Then, you can type the python command in the terminal to run the interpreter, and paste the above script.

import rospy

import math

wps = rospy.get_param("/waypoints")

N = len(wps)

def euclidean(a, b):

 return math.sqrt((a['x']-b['x'])**2 + (a['y']-b['y'])**2 + (a['z']-b['z'])**2)

wps['init'] = {'position': {'x': 0, 'y': 0, 'z': 0}}

wp_names = ['init'] + ['wp' + str(i) for i in range(1, N+1)]

for a in wp_names:

 for b in wp_names:

 d = euclidean(wps[a]['position'], wps[b]['position'])

 print " (= (distance " + a + " " + b + ") " + str(d) + ")"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

af://n142

Modify anything you need so that the planner uses this distance functions to minimize the traveled
distance.

Exercise 4 - The real world is more complicated

After completing exercise 4, the robot should minimize the number of waypoints visited, so that the total
time is lower. This should be a big advance to the SM approach, and should have been way easier to
implement.

However, following this approach, you should see something strange. The robot some times leaves the
green cube in the wpXX, and then goes through the door to get the blue cube instead of getting the red one
which is closer.

Can you see why this would happen? How can you fix it?

As you can see, modeling the real world is not always as easy as one may imagine at the beginning.

Exercise 5 - Acting and replanning

You will probably have got to replan many times so far, when for instance the grasping system fails. Now,
let's force some replans and see how can we improve the way the actions work.

ROSPlan uses Action Interfaces to link the abstract PDDL actions with the low-level robot control. For
example, for the PDDL action pick a PickActionInterface is written, through which ROS modules that
control the arm and the gripper of Tiago are called.

In order to be sure that the execution of a plan does not get stuck, the ROS modules that are called for the
defined PDDL actions must consider all possible success or failure states and make sure that after a given
time one of them is reached. These states will then be passed through the Action Interfaces to the planning
module. In this way, it can be decided in the planning module if one action, and thus the entire plan, has
failed and a re-planning is needed or if one action has succeeded and it can be continued with the execution
of the next planed actions.

Let's take as an example the implementation of the PDDL action pick . One of the called ROS modules
assumes that there will be an object there. Now, let's see what happens when one object, for example the
green cube, is not there. You can move it outside the field of view of Tiago. You can do this in simulation by
changing the interaction mode to Translation Mode and then select the green cube.

af://n152
af://n159

You can move it for example at the other end of the table.

Now, you can re-start the simulation and launch in a terminal the full system. Make sure that you select the
PDDL domain and problem files through which plans containing the picking of the green cube are
generated (e.g. the solution of exercise 3).

At the end, run in another terminal the main executor:

We can see that the robot is executing all planned tasks until the pick of the green cube. It remains there
and does nothing, waiting infinitely to find the cube. Thus, the entire planning process has blocked. The
reason is that the pick module does not return any failure if no cube can be identified and thus, the action
interface can not communicate to the planning module any result. The planning module then waits infinitely
to a result before continuing with the execution.

roslaunch icaps_ss icaps_ss_full_system.launch domain_path:=<domain_path>

problem_path:=<problem_path>

1

rosrun icaps_ss main_executor.sh1

The PickActionInterface inherits ROSPlan's abstract ActionInterface class. This class automatically
subscribes to the dispatcher topics, and checks that if it needs to execute its action, by calling a user-defined
callback. It also checks the preconditions, and sets the effects of the action in the Knowledge Base. Let's see
what the Pick Interface is doing. Open the file in
catkin_ws/src/ICAPS_20_SummerSchool_ROSPlan/icaps_ss/src/RPInterfaces/RPPickActionInterface

.cpp with the IDE:

There, you will see the callback that is being called when the action is dispatched. You will see that the
callback mainly calls the service which is called /pick_gui . This service implements the pick action, waiting
for the sensors detect the AR tag to pick the box.

Now, let's modify the pick module such that it passes a response to the action interface in case that the
cube can not be recognized after a timeout (e.g. 30 seconds). For that you can modify the file pick_client.py.
You can open from the Tools button an IDE and navigate in the overview window to
catkin_ws/src/ICAPS_20_SummerSchool_ROSPlan/tiago_pick_demo/scripts and open the

file pick_client.py`.

Let's modify line 119 as follows:

You have added a try-except block through which the command
rospy.wait_for_message('/aruco_single/pose', PoseStamped, 30) is tried. In case that it fails and this

would happen if no message about the recognized cube arrives in timeout = 30 seconds (the last
parameter of the function call) the command following the except key-word will be executed. In that case,
the TrigerredResponse will be passed to the Action Interface as false. Thus, the Action Interface will now
inform the planning module that the concrete execution of the planned pick PDDL action has failed and
consequently the entire plan will fail.

In order to check the changes you can restart the simulation and the planning module. Move the green
cube at a side of the table where it cannot be seen by Tiago and start the planning procedure with the bash
file mentioned above. You should expect that all tasks until the grasping of the green cube will be executed
as planned. The pick task will then fail and the entire plan will fail. You can see this in the terminal:

#aruco_pose = rospy.wait_for_message('/aruco_single/pose', PoseStamped)

try:

 aruco_pose = rospy.wait_for_message('/aruco_single/pose', PoseStamped, 30)

except:

 return TriggerResponse(False, "Failed to recognize cube")

1

2

3

4

5

You can move the green cube back in the field of view of Tiago and re-call the planning:

A new plan should be generated and Tiago should start the grasping procedure of the green cube. This time
it should end it successfully and continue with the planned tasks.

In this exercise you have learned that the concrete implementations of the abstract PDDL actions must
consider all success and failure states and be sure that after a given time one of those state is reached.
Furthermore, that reached state must be then passed through the Actions Interfaces to the planning
module which decides if the entire plan has failed or it can be started with the execution of the next
planned action. In case of failure a re-plan command can be called.

Exercise 6 - Planning changes based on sensing

Although we simplified it in this lab, in a real robotics scenario the Knowledge Base that keeps an updated
state will be kept up-to-date by using information from the robot sensors (for further info you can check the
ROSPlan's Sensing Interface). Thus, a change in the environment will update the knowledge base, which may
make the plan fail, for which then the robot will have to replan. This has a nice side effect, which is that the
robot may be able to solve problems even when the model is not correct (i.e. unexpected side effects of an
action that makes it fail). The robot will see that the next action can't be executed, and will replan
accordingly.
Now, let's simulate one of such events. While the robot is performing the task, execute the following before
it tries to grasp the green box. Run this command in a terminal (with the source setup.bash).

The following line will remove the fact that the robot does not have a box:

rosservice call /rosplan_knowledge_base/update "update_type: 0

knowledge:

knowledge_type: 1

 initial_time: {secs: 0, nsecs: 0}

 is_negative: true

 instance_type: ''

 instance_name: ''

 attribute_name: 'robot_does_not_have_box'

 values:

 - {key: '?robot', value: 'tiago'}

 function_value: 0.0

 optimization: ''

1

2

3

4

5

6

7

8

9

10

11

12

af://n200

And the next one, will add the fact that the robot is holding the green box:

After executing this, the Knowledge Base will be updated to add the box_on_robot predicate. Now, when
the robot tries to grasp the green_box, the action interface will see that the preconditions do not hold and
thus the plan will fail. Then, once you try to replan and execute the plan again, the planner will assume that
the box has been picked and will proceed with the plan as if this happened, but the robot will have not
attempted the grasp.

In a similar case, the sensors may update the information on the Knowledge Base based on sensors, actions
may fail, and a replan will start from an updated state of the world. Ideally, instead of mocking a grasp
action, the robot could sens that the gripper is empty and then retry the grasp action, based on sensor
information in an automatic manner.

 expr:

 tokens: []

 ineq:

 comparison_type: 0

 LHS:

 tokens: []

 RHS:

 tokens: []

 grounded: true"

13

14

15

16

17

18

19

20

21

 rosservice call /rosplan_knowledge_base/update "update_type: 0

 knowledge:

 knowledge_type: 1

 initial_time: {secs: 0, nsecs: 0}

 is_negative: true

 instance_type: ''

 instance_name: ''

 attribute_name: 'robot_does_not_have_box'

 values:

 - {key: '?robot', value: 'tiago'}

 function_value: 0.0

 optimization: ''

 expr:

 tokens: []

 ineq:

 comparison_type: 0

 LHS:

 tokens: []

 RHS:

 tokens: []

 grounded: true"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

	ICAPS Online School Lab: Plan Execution
	Preliminaries
	Exercise 1 - Preparation of the workspace
	Building the base code

	Scenario description
	Exercise 3 - Running the simulation
	Exercise 4 - Running more than the simulation
	Planning exercises
	Exercise 1 - Do we really need planning for this?
	Exercise 2 - Now let's try with Planning
	Planning for moving objects

	Exercise 3 - Adding costs
	Exercise 4 - The real world is more complicated
	Exercise 5 - Acting and replanning
	Exercise 6 - Planning changes based on sensing

