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Abstract

In this paper, we propose an unsupervised method for learn-
ing a discrete embedding of words. While being discrete,
our embedding supports vector arithmetic operations similar
to continuous embeddings by interpreting each word as a set
of propositional statements describing a rule. The formula-
tion of our vector arithmetic closely reflects the logical struc-
ture originating from the symbolic sequential decision mak-
ing formalism (classical/STRIPS planning). Contrary to the
conventional wisdom that discrete representation cannot per-
form well due to the lack of ability to capture the uncertainty,
our representation is competitive against the continuous rep-
resentations in several downstream tasks. Finally, we demon-
strate that our embedding is directly compatible with the sym-
bolic, classical planning solvers by performing a “paraphras-
ing” task.

1 Introduction
After the initial success of the distributed word representa-
tion in Word2Vec (Mikolov et al. 2013b), natural language
processing techniques have achieved tremendous progress
in the last decade, propelled primarily by the advancement
in data-driven machine learning approaches based on neu-
ral networks. Meanwhile, these data-driven approach could
suffer from biased decision making and the lack of inter-
pretability/explainability (Caliskan, Bryson, and Narayanan
2017; Bolukbasi et al. 2016).

In recent years, significant progress has been made (Asai
and Fukunaga 2018; Kurutach et al. 2018; Amado et al.
2018; Asai and Muise 2020) in the field of Automated
Planning on resolving the so-called Knowledge Acquisi-
tion Bottleneck (Cullen and Bryman 1988), the common
cost of human involvement in converting real-world prob-
lems into the inputs for symbolic AI systems. Given a set
of noisy visual transitions in fully observable puzzle envi-
ronments, the above-mentioned systems can extract a set
of anonymous propositional, predicate, or action symbols
entirely without human supervision. Each action symbol
maps to a description of the propositional transition rule in
STRIPS classical planning (Fikes, Hart, and Nilsson 1972;
Haslum et al. 2019) formalism that can be directly fed to the
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optimized implementations of the off-the-shelf state-of-the-
art classical planning solvers. Due to the logical correctness
of the graph-theoretic analysis performed by the symbolic
systems, results are guaranteed to be correct, and sometimes
also guaranteed to be optimal, depending on the setting.

In this paper, we point out some weaknesses of continuous
distributed word embeddings and address them by propos-
ing a discrete word embedding operated by set-based bit-
vector arithmetic. Unlike existing work on discrete em-
beddings (Chen, Min, and Sun 2018), our embedding can
perform semantic tasks directly in the discrete representa-
tion. We evaluate our approach in several downstream nat-
ural language tasks, including word similarity, analogy, and
text classification. Furthermore, our discrete embedding has
a unique feature that it is directly compatible with state-of-
the-art symbolic methods. We demonstrate its ability to per-
form a “paraphrasing” task using classical planners, where
the task is to logically compose the words based on cause-
effect structure in the discrete embedding.

2 Continuous embedding considered harmful
Common downstream tasks in modern natural language pro-
cessing with word embedding involve arithmetic vector op-
erations that aggregate the embedding vectors. Analogy
task (Mikolov, Yih, and Zweig 2013) is one such task that
requires a sequence of arithmetic manipulations over the
embeddings. Given two pairs of words “a is to a∗ as b
is to b∗”, the famous example being “man is to king as
woman is to queen”, the model predicts b∗ by manipulat-
ing the embedded vectors of the first three words. The stan-
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Figure 1: The shortcoming of adding con-
tinuous vectors in a cosine vector space.



dard method for obtaining such a prediction is 3COSADD
(Mikolov, Yih, and Zweig 2013), which attempts to find the
closest word embedding to a vector a∗ − a + b measured
by the cosine distance cos(v1,v2) = 1 − v1·v2

|v1||v2| , assum-
ing that the result is close to the target embedding b∗. This,
along with other analogy calculation methods (e.g., (Levy
and Goldberg 2014)), uses simple vector arithmetic to ob-
tain the result embedding used to predict the target word. In
addition, text classification evaluation methods often build
classifiers based on the mean or the sum of the word vec-
tors in a sentence or a document (Tsvetkov et al. 2015;
Yogatama and Smith 2014).

One shortcoming of these vector operations is that the re-
sulting embedding is easily affected by the syntactic and se-
mantic redundancy. These redundancies should ideally carry
no effect on logical understanding, and at most with dimin-
ishing effect when repetition is used for subjective emphasis.
Consider the phrase “red red apple”. While the first “red”
has the effect of specifying the color of the apple, the second
“red” is logically redundant in the syntactic level. Phrases
may also contain semantic redundancy, such as “free gift”
and “regular habit”. However, in a continuous word embed-
ding, simple summation or averaging would push the result
vector toward the repeated words or meanings. That is, for
any non-zero vectors a and b, cos(a · n+ b,a)→ 0, (n→
∞) (Fig. 1). Even with a more sophisticated aggregation
method for a vector sequence, such as the recurrent neural
networks (Hochreiter and Schmidhuber 1997), the problem
still remains as long as it is based on a continuous represen-
tation.

This behavior is problematic in critical applications which
require logical soundness. For example, one may attempt
to fool the automated topic extraction or auditing system
by repeatedly adding a certain phrase to a document in
an invisible font (e.g., transparent) as a form of adversar-
ial attack (Jia and Liang 2017). This issue is also re-
lated to the fact that word2vec embedding encodes impor-
tant information in its magnitude (Schakel and Wilson 2015;
Wilson and Schakel 2015). While Xing et al. (2015) pro-
posed a method to train a vector embedding constrained to
a unit sphere, the issue caused by the continuous operations
still remains.

On the other hand, symbolic natural language methods
rely on logical structures to extract and process information.
For example, Abstract Meaning Representation (AMR) (Ba-
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Figure 2: Cube-Space AE (Asai and Muise 2020) for a vi-
sual time series (xi,x′i) that applies Back-to-Logit to the
binary representation (si, s′i) and the action vector ai.

narescu et al. 2013) encodes a natural language sentence into
a tree-structured representation with which a logical query
can be performed. However, while there are systems that
try to extract AMR from natural language corpora (Flani-
gan et al. 2014; Wang, Xue, and Pradhan 2015), these ap-
proaches rely on annotated data and hand-crafted symbols
such as want-01 or c / city. In addition to the anno-
tation cost, these symbols are opaque and lack the internal
structure which allows semantic information to be queried
and logically analyzed. For example, a node city does
not by itself carry information that it is inhabited by the lo-
cal people and is a larger version of a town. In contrast,
a Word2Vec embedding may encode such information in its
own continuous vector.

To address the issues in both paradigms, we propose a
binary discrete embedding scheme that stands upon propo-
sitional logic (like AMR) while supporting vector arithmetic
(like continuous embedding). To achieve this goal, we com-
bine the existing discrete variational method with CBOW
Word2Vec and obtain an atomic propositional representation
of the words.

3 Preliminary and background
We denote a multi-dimensional array in bold and its sub-
arrays with a subscript (e.g., x ∈ RN×M , x2 ∈ RM ), an
integer range n < i < m by n..m, and the i-th data point of
a dataset by a superscript i which we may omit for clarity.
Functions (e.g., log, exp) are applied to the arrays element-
wise.

The Word2Vec Continuous Bag of Word (CBOW) with
Negative Sampling (Mikolov et al. 2013a; 2013b) language
model is a shallow neural network that predicts a specific
center word of a 2c + 1-gram from the rest of the words
(context words). The model consists of two embedding ma-
trices W,W ′ ∈ RV×E where V is the size of the vocabu-
lary and E is the size of the embedding. For a 2c + 1-gram〈
xi−c, . . . , xi+c

〉
(xi ∈ 1..V ) in a dataset X =

{
xi
}

, it
computes the continuous-bag-of-words representation ei =∑
−c≤j≤c,j 6=0Wxi+j . While it is possible to map this vector

to the probabilities over V vocabulary words with a linear
layer, it is computationally expensive due to the large con-
stant V . To avoid this problem, Negative Sampling maps
the target word xi to an embedding W ′xi , performs a ran-
dom sampling over V to select K words (rk, k ∈ 1..K),
extracts their embeddings W ′rk , then maximizes the loss:
log σ(ei ·W ′xi) +

∑K
k=1 log σ(−ei ·W ′rk).

Variational AutoEncoder (VAE) is a framework for re-
constructing the observation x from a compact latent repre-
sentation z that follows a certain prior distribution, which
is often a Normal distribution N (0, 1) for a continuous z.
Training is performed by maximizing the sum of the re-
construction loss and the KL divergence between the la-
tent random distribution q(z|x) and the target distribution
p(z) = N (0, 1), which gives a lower bound for the likeli-
hood p(x) (Kingma and Welling 2013). Gumbel-Softmax
(GS) VAE (Jang, Gu, and Poole 2017) and its binary spe-
cial case Binary Concrete (BC) VAE (Maddison, Mnih, and
Teh 2017) instead use a discrete, uniform categorical dis-



tribution as the target distribution, and further approximate
it with a continuous relaxation by annealing the controlling
parameter (temperature τ ) down to 0. The latent value z of
Binary Concrete VAE is activated from an input logit x by
z = BC(x) = SIGMOID((x + LOGISTIC(0, 1))/τ), where
LOGISTIC(0, 1) = log u− log(1− u) and u ∈ [0, 1] is sam-
pled from UNIFORM(0, 1). BC converges to the Heaviside
step function at the limit τ → 0: BC(x) → STEP(x) (step
function thresholded at 0).

A grounded (propositional) unit-cost STRIPS Planning
problem (Fikes, Hart, and Nilsson 1972; Haslum et al.
2019) is defined as a 4-tuple 〈P,A, I,G〉 where P is a fi-
nite set of propositions, A is a finite set of actions, I ⊆
P is an initial state, and G ⊆ P is a goal condition.
Each action a ∈ A is a 3-tuple 〈PRE(a), ADD(a), DEL(a)〉
where PRE(a), ADD(a), DEL(a) ⊆ P are preconditions,
add-effects, and delete-effects, respectively. ADD(a) ∩
DEL(a) = ∅. A state s ⊆ P is a set of propositions which
are considered to hold true in s. An action a is applica-
ble when s satisfies PRE(a), i.e., PRE(a) ⊆ s. Applying
an action a to s yields a new successor state s′ = a(s) =
(s \ DEL(a)) ∪ ADD(a). The solution to a classical plan-
ning problem is called a plan, which is a sequence of ac-
tions π =

〈
a1, a2, . . . a|π|

〉
that leads to a terminal state

s∗ = a|π| ◦ . . . ◦ a1(s) that satisfies the goal condition, i.e.,
G ⊆ s∗. Optimal plans are those whose lengths are the
smallest among possible plans. Each state s ⊆ P can be
encoded as a bit vector s ∈ {0, 1}|P | where, for each j-th
proposition pj ∈ P , sj = 1 when pj ∈ s, and sj = 0
when pj 6∈ s. A state transition graph of a classical planning
problem is a graph G = (V, E) generated by I ∈ V and A.
The nodes V are the states and the edges E are labeled by
the actions, i.e., for any edge (s, s′) ∈ E , s′ = a(s) for some
a ∈ A.

In the context of modeling the time series data, cube-
space prior (Asai and Muise 2020) is a structural prior for
a discrete latent space that restricts the state transition graph
to be an instance of directed cube-like graphs (Payan 1992).
The state transition graph of any STRIPS planning problem
is an instance of a directed cube-like graph. Therefore, com-
bining Binary Concrete variational method with this prior,
a neural network is able to encode raw inputs (time-series
data) into a state and an action representation compatible
with STRIPS planning systems.

Finally, Back-to-Logit (BTL) technique (Asai and Muise
2020) implements this prior in the continuous relaxation of
the binary latent space during the training (Fig. 2). To miti-
gate the issue of applying a prior to a discrete representation
that is known to be difficult to train by itself, BTL avoids di-
rectly operating on the discrete vectors. Instead, it converts
them to continuous vectors using Batch Normalization (BN)
(Ioffe and Szegedy 2015), takes the continuous sum with
the effect vector of an action coming from an additional net-
work, and puts the resulting logit back to the discrete space
using Binary Concrete. Formally, given an action represen-
tation a, an effect prediction network EFFECT(a), the current
state and the successor state binary latent vector si and s′i
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Figure 3: (Top Left) Traditional 3-gram CBOW with neg-
ative sampling. (Top Right) 3-gram CBOW seen as a se-
quence of continuous state manipulations. (Negative sam-
pling is not shown) (Bottom) 3-gram Discrete Sequential
Application of Words model. BN=Batch Normalization,
BC=Binary Concrete.

(i: index in a dataset), the successor state is predicted by:

s′i ≈ APPLY(a, si) = BC(BN
(
si
)
+ EFFECT(a)).

The state representation s trained with BTL has the fol-
lowing properties:
Theorem 1 ((Asai and Muise 2020)). Under the same ac-
tion a, the state transitions are monotonic and deterministic:

(add effect:) ∃i; (sij , s′ij ) =(0, 1)

⇒ ∀i; (sij , s′ij ) =(0, 1) or (1, 1),

(delete effect:) ∃i; (sij , s′ij ) =(1, 0)

⇒ ∀i; (sij , s′ij ) =(1, 0) or (0, 0) (for each j).

This theorem guarantees that each action deterministi-
cally turns a certain bit on and off in the binary latent space,
thus the resulting action theory and the bit-vector represen-
tation satisfies the STRIPS state transition rule s′ = (s \
DEL(a)) ∪ ADD(a) and a constraint DEL(a) ∩ ADD(a) = ∅.
Latplan system (Asai and Fukunaga 2018; Asai and Muise
2020) uses this framework to implement Cube-Space AE, an
autoencoder that learns to encode a noisy visual time-series
data into a STRIPS planning model with unsupervised learn-
ing.

4 Model architecture
To introduce the model, we modify the CBOW Word2Vec
(Fig. 3, left) in two steps. We first identify that CBOW can
be seen as a simple constant recurrent model (Fig. 3, mid-
dle). This trivial “recurrent” model merely adds the input
embedding to the current state. Unlike the more complex,
practical RNNs, such as LSTM (Hochreiter and Schmidhu-
ber 1997) or GRU (Cho et al. 2014), this model lacks any
form of weights or nonlinearity that transforms the current
state to the next state.



This interpretation of CBOW yields several insights:
First, there is a concept of “initial states” s0, like any other
recurrent model, that are inherited by the surrounding con-
text outside the ngram and manipulated by the effects Wxi

into the output state si+c = s0 +
∑
−c≤j≤c,j 6=0Wxi+j . Co-

incidentally, this output state is merely the sum of the effect
vectors if s0 is a zero vector, resulting in the equivalent for-
mulation as the original CBOW. This also helps us under-
stand the optimization objective behind CBOW: The effect
of the target word closely resembles the accumulated effect
of the context.

Second, upon discretizing some of the elements in this
model in the next step, we should preserve the fundamental
ability of CBOW to add(+), remove(-) or keep(0) the value
of each dimension of the state vector. It is important to re-
alize that a simple binary or categorical word embedding,
such as the work done by Chen, Min, and Sun (2018) (for
a significantly different purpose), is incompatible with the
concept of adding, removing or keeping. Notice that unlike
continuous values, categorical values lack the inherent or-
dering (total or partial). Therefore, categorical values are
not able to define adding and removing as the inverse opera-
tions, as well as keeping as an identity.

4.1 Discrete Sequential Application of Words

Based on the observations above, we propose Discrete Se-
quential Application of Words (DSAW, Fig. 3, right), which
addresses the issues in continuous embeddings, naive dis-
crete models, or hand-crafted symbolic models by using two
binary vectors to represent each word.

DSAW sequentially applies the Back-to-Logit tech-
nique to a random initial state vector sampled from the
Bernoulli(0.5) distribution. Each recurrent state st is a
continuous relaxation of a binary vector modeled by Bi-
nary Concrete. The embedding matrix W itself is not dis-
crete. However, due to Theorem 1, we can extract two
binary vectors ADD(x), DEL(x) of a word x that satisfy
s′ = (s && !DEL(x))||ADD(x), which is a bit-vector im-
plementation of set-based STRIPS action application s′ =
(s \ DEL(a)) ∩ ADD(a).

Since state vectors are activated by Binary Concrete,
which behaves like a Sigmoid function in high temperature
and as a step function in low temperature, all state vec-
tors reside in the unit hypercube [0, 1]E . This means that
we cannot directly apply the traditional objective function
log σ(x · y) in Word2Vec to the output state vector because
it assumes that the distribution of x,y ∈ RE is centered
around the origin, while our discrete output states are heav-
ily biased toward the positive orthant. To address this issue,
we shift the mean by subtracting 0.5 from the output vec-
tor before computing the loss. Formally, our maximization
objective (including negative sampling with {r1, . . . rK})
is defined as follows, where si = APPLY(xi, s0), si−c =
APPLY(xi−c, s0), si+1 = APPLY(xi+1, si−1), si+j =

APPLY(xi+j , si+j−1)(j 6∈ {−c, 0, 1}):

log σ((si+c − 0.5) · (si − 0.5))+

K∑
k=1

log σ(−(si+c − 0.5) · (APPLY(rk, s0)− 0.5)). (1)

Once the training has been completed, we compute one for-
ward recurrent step for each word x with two initial state
vectors 0,1 each consisting of all 0s and all 1s. We can then
determine the effect in each dimension j: ADD(x)j = 1 if
APPLY(x, 0)j = 1, and DEL(x)j = 1 if APPLY(x, 1)j = 0.

4.2 Inference in the discrete space
An important question for any discrete models is how to per-
form arithmetic operations with the discrete representation.
Specifically, to perform the word analogy task (Mikolov et
al. 2013b), the representation must support both addition
and subtraction of words, which is non-trivial for discrete
vectors.

We propose to use the STRIPS progression and regres-
sion (Alcázar et al. 2013; Haslum et al. 2019) (also called
forward reasoning and backward reasoning) as the vector
addition and subtraction operation for our binary word em-
bedding. Recall that, in the continuous effect model, vec-
tor subtraction is equivalent to undoing the effect of the ac-
tion that has been performed. Similarly, a STRIPS regres-
sion 1 restores the original state of a STRIPS progression
s′ = (s\DEL(a))∩ADD(a) by s = (s′ \ADD(a))∩DEL(a).
We denote these operations as s +̂ x and s −̂ x. We note
that our operation is not associative or commutative. That
is, the result of “king-man+woman” may be different from
“king+woman-man” etc.

Next, for a sequence of operations sR1x1 . . . Rnxn(Ri ∈{
+̂, −̂

}
), we denote its combined effects as e =

R1x1 . . . Rnxn. Its add/delete-effects, ADD(e), DEL(e), are
recursively defined as follows:

ADD
(
e +̂ x

)
= ADD(e) \ DEL(x) ∪ ADD(x)

DEL
(
e +̂ x

)
= DEL(e) \ ADD(x) ∪ DEL(x)

ADD
(
e −̂ x

)
= ADD(e) \ ADD(x) ∪ DEL(x)

DEL
(
e −̂ x

)
= DEL(e) \ DEL(x) ∪ ADD(x)

In the following artificial examples, we illustrate that (1)
our set-based arithmetic is able to replicate the behavior of
the classic word analogy “man is to king as woman is to
queen”, and (2) our set-based operation is robust against se-
mantic redundancy.

Example 1. Assume a 2-dimensional word embedding,
where each dimension is assigned a meaning [female, sta-
tus]. Assume each word has the effects as shown in Table 1.

1Here we assume that the effect always invoke changes to the
state in order to obtain a deterministic outcome from the regression.
Normally, the regression is nondeterministic unless warranted by
the preconditions, e.g., if p1 ∈ PRE(a) ∧ p1 ∈ DEL(a), then p1 is
guaranteed to be true before applying the action a.



word x DEL(x) ADD(x)
King [1, 0] = {female} [0, 1] = {status}
Man [1, 0] = {female} [0, 0] = ∅

Woman [0, 0] = ∅ [1, 0] = {female}
Queen [0, 0] = ∅ [1, 1] = {female, status}

Table 1: An example 2-dimensional embedding.

Then the effect of “king-man+woman” applied to a state s
is equivalent to those of “queen”:

s +̂ king −̂ man +̂ woman = s +̂ queen
= s \ {female} ∪ {status} \ ∅ ∪ {female} \ ∅ ∪ {female}.

Example 2. The effect of “king+man” is equivalent to
“king” itself as the semantic redundancy about “female”
disappears in the set operation.

s +̂ king +̂ man = s \ {female} ∪ {status} \ {female} ∪ ∅
= s +̂ king.

5 Evaluation
We trained a traditional CBOW model (our implementa-
tion) and our discrete word embedding on 1 Billion Word
Language Model Benchmark dataset (Chelba et al. 2014).
Training details are available in the appendix. We first com-
pared the performance of the resulting embedding on several
downstream tasks.

5.1 Downstream task evaluation
Word similarity task is the standard benchmark for mea-
suring attributional similarity (Miller and Charles 1991;
Resnik 1995; Agirre et al. 2009). Given a set of word pairs,
each embedding is evaluated by computing the Spearman
correlation between the similarity scores assigned by the
embedding and those assigned by human (Rubenstein and
Goodenough 1965; Faruqui and Dyer 2014; Myers, Well,
and Lorch 2010). The scores for CBOW are obtained by the
cosine similarity. For the DSAW embedding, the standard
cosine distance is not directly applicable as each embedding
consists of two binary vectors. We, therefore, turned the
effect of a word x into an integer vector of tertiary values
{1, 0,−1} by ADD(x)− DEL(x), then computed the cosine
similarity. We tested our models with the baseline mod-
els on 5 different datasets (Bruni, Tran, and Baroni 2014;
Radinsky et al. 2011; Luong, Socher, and Manning 2013;
Hill, Reichart, and Korhonen 2015; Finkelstein et al. 2001).

Next, we evaluated Word Analogy task using the test
dataset provided by Mikolov et al. (2013b). For CBOW
models, we used 3COSADD method (Sec. 2) to approximate
the target word. For the proposed models, we perform a
similar analogy, SEQADD, which computes the combined
effects e, turns it into the tertiary representation, then finds
the most similar word using the cosine distance. Since our
set-based arithmetic is not associative or commutative, we
permuted the order of operations and report the best results
obtained from e =−̂ a +̂ a∗ +̂ b. We counted the number

of correct predictions in the top-1 and top-10 nearest neigh-
bors. We excluded the original words (a, a∗ and b) from the
candidates, following the later analysis of the Word2Vec im-
plementations (Nissim, van Noord, and van der Goot 2020).

Finally, we used our embeddings for semantic text classi-
fication, in which the model must capture the semantic in-
formation to perform well. We evaluated our model in two
datasets: “20 Newsgroup” (Lang 1995) and “movie senti-
ment treebank” (Socher et al. 2013). We created binary clas-
sification tasks following the existing work (Tsvetkov et al.
2015; Yogatama and Smith 2014): For 20 Newsgroup, we
picked 4 sets of 2 groups to produce 4 sets of classification
problems (science.med vs. science.space, ibm.pc.hardware
vs. mac.hardware, baseball vs. hockey, alt.atheism vs.
soc.religion.christian.) For movie sentiment, we ignored the
neutral comments and set a threshold for the sentiment val-
ues: ≤ 0.4 as 0, and > 0.6 as 1. In both the CBOW and
the DSAW model, we aggregated the word embeddings (by
+ or +̂) in a sentence or a document to obtain the sentence
/ document-level embedding. We then classified the results
with a default L2-regularized logistic regression model in
Scikit-learn. We recorded the accuracy in the test split and
compared it across the models. We normalized the im-
balance in the number of questions between subtasks (“20
Newsgroup” have≈ 2000 each, while “movie sentiment” has
≈ 9000) and reported the averaged results.

Table 2 shows that the performance of our discrete em-
bedding is comparable to the continuous CBOW embedding
in these three tasks. This is a surprising result given that dis-
crete embeddings are believed to carry less information in
each dimension compared to the continuous counterpart and
are believed to fail because they cannot model uncertainty.

5.2 Redundancy elimination
We next focus on the ability of DSAW model to eliminate
the syntactic and the semantic redundancy. We used Princi-
pal Component Analysis to visualize the linear projection of
the embedding space. Phrase embeddings are obtained by
the repeated +̂ (DSAW) or averaging (CBOW) – the latter
choice is purely for the visualization (length does not affect
the cosine distance.) For both models, we used the best per-
forming hyperparameters in analogy.

In Fig. 4, we plotted syntactically and semantically re-
dundant phrases “habit”, “regular habit”, “regular ... reg-
ular habit” (repeated 8 times). In continuous embeddings
(left), phrase embeddings approach closer and closer to the
embedding of “regular” as more “regular”s are added. On
the course of additions, the vector tends to share the direc-
tion with irrelevant words such as “experiment” or “stunt”.
In contrast, in discrete embedding (right), semantically re-
dundant addition of “regular” does not seem to drastically
change the direction, nor share the direction with irrelevant
words. Also, repetitive additions do not affect the discrete
embedding.

5.3 Classical Planning in the embedding space
Finally, with a logically plausible representation of words,
we show how it can be used by a symbolic AI system. We
find “paraphrasing” an ideal task, where we provide an input



Embedding size E 200 500 1000
Model CBOW DSAW CBOW DSAW CBOW DSAW

Word Similarity 0.528 0.509 0.518 0.538 0.488 0.545
Analogy Top1 acc. 0.438 0.273 0.413 0.373 0.333 0.373
Analogy Top10 acc. 0.682 0.564 0.671 0.683 0.587 0.673

Text Classification Test 0.890 0.867 0.920 0.902 0.920 0.930

Table 2: Downstream task performance comparison between CBOW and DSAW with the best tuned hyperparameters. In all
tasks, higher scores are better. Best results in bold.

Figure 4: PCA plots of words/phrases in continous (Left)/discrete (Right) embeddings (best on computer screen). In all plots,
we additionally included the union of 50 nearest neighbor words of each dot.

word y and ask the system to discover the phrase that shares
the same concept. Given a word y, we generate a classical
planning problem whose task is to combine several words to
achieve the effects included in y in the correct order.

Formally, the instance 〈P,A, I,G(y)〉 is defined as fol-
lows: P = Padd∪Pdel = {pai | i ∈ 1..E}∪

{
pdi | i ∈ 1..E

}
,

where pai , pdi are propositional symbols with unique names.
Actions a(x) ∈ A are built from each word x in the vocabu-
lary: PRE(a(x)) = ∅, ADD(a(x)) = {pai | ADD(x)i = 1} ∪{
pdi | DEL(x)i = 1

}
, DEL(a(x)) =

{
pdi | ADD(x)i = 1

}
∪

{pai | DEL(x)i = 1}. Finally, I = ∅ and G(y) =

{pai | ADD(y)i = 1} ∪
{
pdi | DEL(y)i = 1

}
. Note that

ADD(y), DEL(x) etc. are bit-vectors, while ADD(a(x)) etc.
are sets expressed in Planning Domain Description Lan-
guage (PDDL) (Haslum et al. 2019). Finding the optimal so-
lution of this problem is NP-Complete due to PRE(a(x)) =
∅ (Bylander 1994). Due to its worst-case hardness, we do
not try to find the optimal solutions.

Notice that the goal condition of this planning problem
is overly specific because the neighbors of an embedding
vector often also carry a similar meaning. In fact, these in-
stances tend to become unsolvable (i.e., no solution exists).
To address this issue, we adapt the net-benefit planning for-
malism (Keyder and Geffner 2009), an extension of classi-
cal planning that allows the use of soft-goals. Net-benefit
planning task 〈P,A, I,G(y), c, u〉 is same as the unit-cost
classical planning except the cost function c : A→ Z+0 and
u : G(y) → Z+0. The task is to find an action sequence
π minimizing the cost

∑
a∈π c(a) +

∑
p∈G(y)\s∗ u(p), i.e.,

the planner tries to find a cheaper path while also satisfying
as many goals as possible at the terminal state s∗. We used
a simple compilation approach (Keyder and Geffner 2009)
to convert this net-benefit planning problem into a normal

classical planning problem.
We specified both costs a constant: c(a) = E for all ac-

tions and u(p) = U for all goals, where we heuristically
chose U = 100. We solved the problem with LAMA plan-
ner (Richter and Westphal 2010), the winner of International
Planning Competition 2011 satisficing track. This configu-
ration searches for suboptimal plans, iteratively refining the
solution by setting the upper-bound based on the cost of the
last solution. We generated 300 problems from the hand-
picked target words y. Awas generated from the 4000 most-
frequent words in the vocabulary (V ≈ 219k) excluding y,
function words (e.g., “the”, “make”), and compound words
(e.g., plurals). For each problem, we allowed the maximum
of 4 hours runtime and 16GB memory. Typically the plan-
ner found the first solution early, and continued running until
the time limit finding multiple better solutions. We show its
example outputs in Table 3.

6 Related work
The study on the hybrid systems combining the connection-
ist and symbolic approaches has a long history (Wermter
and Lehnert 1989). To our knowledge, none of the ap-
proaches attempts to generate a set of atomic propositional
symbols from the corpus without supervision. Zhao, Lee,
and Eskénazi (2018) proposed a discrete sentence represen-
tation, treating each sentence as an action. Chen, Min, and
Sun (2018) improved the training efficiency with an inter-
mediate discrete code between the vocabulary V and the
continuous embedding. These discrete representations lack
the cube-space prior and thus the state transitions cannot be
expressed as a consistent deterministic rule, precluding the
symbolic logical analysis. In the intersection of planning
and natural language processing, Geib and Steedman (2007)



Word y paraphrasing π Word y paraphrasing π Word y paraphrasing π
lamborghini luxury built car; electric car unlike toyota lake young sea intervention necessary plan

subaru motor toyota style ford river valley lake nearby delta louisville kentucky pittsburgh
fiat italian toyota; italian ford alliance valley mountain tenessee area laptop personal mac device

sushi restaurant fish maybe japanese shout bail speak reactor nuclear plant
grape wine tree; wine orange pepsi diet apple drink lesson history addition
bold fresh simple move deck floor roof; roof floor slot wish machine

fantasy dream novel grip tight presence learnt learn yesterday
interrogatoin cia torture isolation cuba situation reconstruction infrastructure recovery effort

Table 3: Paraphrasing of the source words returned by the LAMA planner.

bridged hierarchical planning (HTN) (Ghallab, Nau, and
Traverso 2004) formalisms and Context-Sensitive Grammar.
Rieser and Lemon (2009) introduced a system which models
conversations as probabilistic planning and learns a reactive
policy from interactions. Recent approaches extract a classi-
cal planning model from a natural language corpus (Lindsay
et al. 2017; Feng, Zhuo, and Kambhampati 2018), but using
the opaque human symbols. An interesting avenue of future
work is to learn a hierarchical planning model (Hogg, Kuter,
and Munoz-Avila 2010) to model the structured aspect of the
natural language.

7 Conclusion
We proposed an unsupervised learning method for discrete
binary word embeddings that preserve the vector arithmetic
similar to the continuous embeddings. Our approach com-
bines three distant areas: Unsupervised representation learn-
ing method for natural language, discrete generative mod-
eling, and STRIPS classical planning formalism which is
deeply rooted in the symbolic AIs and the propositional
logic. Inspired by the recurrent view of the Continuous
Bag of Words model, our model represents each word as
a symbolic action that modifies the binary (i.e., proposi-
tional) recurrent states through effects. Unlike the black-
box recurrent methods, our framework can extract the ef-
fects applied by each word as explicit logical formulae. Our
representation has several notable features: Logical robust-
ness against redundancy and the compatibility to the highly-
optimized off-the-shelf implementations of classical plan-
ners. We demonstrated that our discrete embedding fairs on
par with the continuous embedding in several downstream
tasks, contrary to the conventional wisdom that discreteness
would lose too much expressivity compared to the contin-
uous representations. Future work includes incorporating
ideas in state-of-the-art systems such as LSTM (Hochreiter
and Schmidhuber 1997) or BERT (Devlin et al. 2019) to our
model, while staying within planning formalism.
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