
PlanCurves: An Interface for End-Users to Visualise Multi-Agent Temporal Plans

Pierre Le Bras1, Yaniel Carreno1,2, Alan Lindsay1, Ronald P. A. Petrick1,2, Mike J. Chantler1,2

1Department of Computer Science, Heriot-Watt University, Edinburgh, UK.
2Edinburgh Centre for Robotics, UK.

{p.le bras, y.carreno, alan.lindsay, r.petrick, m.j.chantler}@hw.ac.uk

Abstract

In operational contexts, there is a growing need to make au-
tomatically generated plans available for assessment, verifi-
cation, and accountability purposes, in order to evaluate the
risks associated with such plans prior to their execution. How-
ever, this task can be challenging, especially in situations
where multiple agents are scheduled to interact and carry
out activities over long periods of time. In this paper, we
present PlanCurves, a web application for visualising multi-
agent plans generated by temporal planners, to enhance end-
user understanding and interpretation of these plans. We im-
plement a familiar chart visualisation for temporal plans, in
combination with a novel layout designed to provide a rapid
overview of the plan while highlighting the relative similar-
ities between agents. We describe how the approach is both
planner and domain agnostic, and show potential applications
of the visualisation interface using example domains from the
International Planning Competition and domains with indus-
trial applications.

Introduction
While automated planning and scheduling systems progress
towards producing more reliable and efficient plans, there
are situations when a human operator needs to assess, eval-
uate, and approve of such plans prior to their execution.
In industrial contexts, for example, the movement of mo-
bile agents might need to be accounted for by a supervisor
who has up-to-date local knowledge that the system might
not have. In more unpredictable environments, this approval
might be critical for guaranteeing the plan’s safety and suc-
cess. It is therefore essential to consider how plan informa-
tion is communicated to end-users in such situations.

Multi-agent temporal plans pose a particular challenge for
human end-users in terms of understanding both the plan
status and the interactions between agents over long periods
of time. To address this problem, we present PlanCurves,
a visualisation system that enables end-users to view and
interactively explore multi-agent temporal plans. In partic-
ular, PlanCurves implements two main visualisation meth-
ods for a given plan. First, it uses the intuitive and familiar

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Gantt chart representation to display the list of actions as
bars positioned on a temporal axis. Second, it incorporates
a novel application of Time Curves (Bach et al. 2015). This
visualisation technique is used to show the timeline of an
object, distorted to illustrate the similarities between differ-
ent states. In the context of multi-agent plans, we use this
method to show multiple simultaneous actor timelines and
their relative similarities throughout the plan.

In addition to describing the available visualisations and
their uses, we also provide details of the implementation
of PlanCurves as an online tool for end-users and planning
practitioners. While PlanCurves was initially created to ad-
dress a specific issue–the analysis of planned movements for
remote agents in hazardous environments–we have evolved
its design to be both planner and domain agnostic. Plan-
Curves presently focuses on two core visualisations, but we
believe it also has the potential for further applications, and
we present details on how this system could be better inte-
grated with existing planning and verification tools.

This paper is organised as follows. First, we survey some
background on visualisation methods in the planning com-
munity. Next, we describe the particular visualisations we
use in this work. We then discuss the implementation of the
system and additional features. Finally, we highlight possi-
ble future work for this project.

Related Work
It has been recognised that systems should exploit opera-
tor expertise to facilitate optimisation tasks such as planning
and scheduling (Scott, Lesh, and Klau 2002), and visualisa-
tions have been shown to be an effective aid (Kirkpatrick,
Dilkina, and Havens 2005). While humans have a natural
capacity to discern patterns from visual cues such as prox-
imity (Ware 2012), there is however an apparent lack of vi-
sual tools, beyond domain-specific ones, designed to support
end-users assessing automatically generated plans.

Previous work has been done to support user develop-
ing domains with visual representations such as node-link
diagrams, notably within GIPO (McCluskey and Simpson
2006) but not exclusively (Kim and Blythe 2003; Vodrážka
and Chrpa 2010; Vrakas and Vlahavas 2003). Porta (2000)
also uses node-link representations to support plan author-



Figure 1: Activity Charts are similar to Gantt charts and depict the order, sequence, and timing of activities. Bars representing
activities are grouped by actor, providing users with a perspective on their individual missions.

ing. In itSIMPLE, Vaquero et al. (2007) make use of Petri-
nets to represent domains. The scope of our work, however,
emphasises the visualisation of plans themselves (rather than
domains) for assessment by non-planning experts prior to
their implementation.

Gantt charts are probably the most common type of vi-
sualisation used to map a set of tasks (or actions) onto a
time axis. As such, they are the go-to representation for sys-
tems visualising temporal plans, e.g., in itSIMPLE (Vaquero
et al. 2007), EUROPA (Barreiro et al. 2012), or ModPlan
(Edelkamp and Mehler 2005). These classical Gantt charts
come with a constraint: the activities are simply listed and
ordered chronologically. The relationship between tasks,
based on actor or resources used, are therefore not repre-
sented. Recent implementations, however, propose to re-
order activities in more meaningful ways (Pralet et al. 2018;
Sampath et al. 2013), grouping them by actor, resources,
or locations. These works are however integrated within
domain-specific applications.

Gupta et al. (2016) formalise this revision of Gantt charts
to depict similarity information between activities. In their
work, they use two categorical axes to estimate the similar-
ities between activities: actors and discrete location. Since
our work focuses on depicting multi-agent plans and, in par-
ticular, making the different agent tracks understandable to
end-users, we implement a similar activity chart, grouping
activities by agent, hence providing a familiar display.

Another common visualisation method for plans is to
use simulations, for example of a set environment (Do et
al. 2011; Haas and Havens 2008), enabling the users’ tacit
knowledge of the environment (Fraternali et al. 2012). These
techniques can be combined with the above-mentioned
Gantt charts to provide more in-depth analyses of plans
(Hoogendoorn et al. 2006). These types of visualisations,
however, rely on the assumption that the domain also de-
scribes an environment, sometimes too specific to be gen-
eralisable. We therefore propose to add the optional use of

tailored environment simulation for users.
Edelkamp and Mehler (2005) and Vaquero et al. (2007)

use abstract simulations (e.g., UML diagrams). While these
can be informative, they are still limited by their frame-by-
frame display method, requiring more time and attention
from operators analysing the plans.

A final, less common, type of representation for temporal
plans are timelines. Chakraborti et al. (2017) use timelines to
display alternative plans. Timelines have also been used to
represent resource usage (Barreiro et al. 2012), constraints
(Porteous et al. 2011), or property evolution (Vaquero et al.
2009). Batrinca et al. (2013) use this representation to enable
collaborative planning across multiple teams. This approach
could be used to represent the parallel timelines of multiple
agents in a plan. Additionally, while timelines are often rep-
resented in a straight linear manner, visualisations such as
Time Curves propose to encode similarity information and
distort timelines to represent proximity between states (Bach
et al. 2015). In our work, we augment the Time Curves vi-
sualisation method and display to users the simultaneous ac-
tivities of multiple agents while showing their relative inter-
actions based on custom similarity measures.

Visualisations
In this section, we present the two main visualisation meth-
ods we use to display plans to users: the Activity Chart and
Time Curves. We then present how interactivity can support
users in their exploration, and the potential uses of these vi-
sualisations.

Activity Chart
The Activity Chart (Figure 1) relies on the familiar princi-
ples of Gantt charts to display activities as horizontal bars,
scaling their position and width to a time axis in order to
convey two kinds of information: the sequence in which ac-
tivities take place, and their timings.



Figure 2: Time Curves depict the timeline of multiple agents, across the entire plan, simultaneously. They distort the timelines
using similarity measures between states, allowing users to estimate the distances between agents throughout the entire plan.

Unlike classical Gantt charts, where bars (or activities)
would only be ordered by timing, we first group them by
actor. In multi-agent contexts, this representation provides a
different perspective to the user, by focusing on the different
agents’ overall role and individual contribution to the plan.

While it offers a familiar and intuitive layout, the Ac-
tivity Chart fails to show the interactions agents can have
with each other across the span of the plan. We therefore
use a second visualisation to represent multi-agent temporal
plans: Time Curves.

Time Curves
Time Curves were originally designed to represent the sim-
ilarity of a single entity across time (Bach et al. 2015). In
PlanCurves, we extend this visualisation technique with a
novel application: showing the timelines of multiple agents
simultaneously, as generated by temporal plans (Figure 2).

Time Curves present the timeline of each actor in the
plan, as defined by the user, with each timeline being repre-
sented using a sequence of connected dots: the actors’ states
throughout the plan. These timelines are however distorted
to communicate the relative similarities between states. We
create these distortions by calculating the similarity matrix
between states from a set of state features defined by the
user. This multidimensional similarity matrix is then embed-
ded onto a 2D projection, the Time Curves’ set of dots.

This type of visualisation for multi-agent temporal plans
offers the advantage of showing, in one display, the relative
task timing and the interaction between actors. These inter-
actions are based on the similarity measure used, which is a
function of time (to visualise the time dimension) and other
features determined by the user, such as physical position in
the environment or resources used.

Typically, an operator in charge of evaluating the planned
movements of multiple agents for a mission can use Time
Curves to display state similarity based on physical loca-
tions. An example of such visualisation is shown in Fig-

Figure 3: Time interactions implemented in the visualisa-
tion: panning on the Activity Chart and clicking on the Time
Curves. This would update the position of the time cursor
on the Activity Chart (a and b), and the focus on dots on the
Time Curves (c and d).

ure 2. In this example, they can immediately notice that:
drone1, robot1, and robot2 all start from nearby locations;
then, robot1 and robot2 follow the same route closely for
the first part of the plan; drone3 will hover over robot3 and
eventually, drone1 and drone3 will meet closely; finally, the
drones will finish their respective tasks early in the plan.

Interactivity
Plan interpretability can not solely rely on visual displays.
Interaction is required to further aid the user in understand-
ing and assessing the plan presented to them.

To facilitate the temporal exploration of the plan, we have
enabled a panning behaviour on the Activity Chart, allowing
the user to see, for a selected time in the plan, the actions car-
ried out by the actors (Figures 3a and 3b). Simultaneously,
the Time Curves’ dots change focus if the state they repre-
sent is reached at that time in the plan (Figure 3c). Should the
selected time fall between states, a diamond-shaped marker
is shown instead between the associated dots, positioned
following a linear time scale (Figure 3d). Given the Time
Curves’ potential to show the overall plan to users, we have



Figure 4: Adjusting the state feature weights (with sliders)
allows users better control over the Time Curves. In this ex-
ample, (a) shows the Time Curves with a stretched time axis,
while keeping position weights (X, Y, and Z) to show rela-
tive distances. Increasing the weights of the feature Valve
highlights the states where robots are operating on valves,
i.e. using a resource (b). Having only position features al-
lows the user to get a side view of the robots’ paths in their
environment (c): robots on the floor and drones up in the air.

also enabled a click behaviour on the dots to allow the users
to reach and assess certain parts of the plan faster.

Contextual interactions were also added to help the user
interpret the visualisations. Mousing over a bar or dot re-
veals a description of the associated action or state. These
descriptions are initially partially hidden to keep the visu-
alisation uncluttered and improve clarity. The actor’s tracks
(activity sequence, or timeline) are also highlighted to help
the user analysing the two visualisations simultaneously.

Lastly, to support the readability of Time Curves, we have
added zoom, pan, and rotation interactions, offering the user
many viewpoints to analyse them. To support their inter-
pretability, we have added weight sliders on the state fea-
tures used to create the 2D embedding of these states. Fig-
ure 4 shows an example of this functionality, on a plan with
six agents and six user-defined state features: Time; X, Y,
and Z coordinates; the Valve operated on (if any); and the
Actor. This level of control and adjustability over the fea-
ture weights enables users to get different perspectives on

Figure 5: Time Curves for the Sokoban problem 2 of IPC
2018. Looking at the generated plans, we can quickly under-
stand that CP4TP, TFLAP, OPTIC, and TemPorAl propose
almost identical solutions (the latter two Time Curves were
generated with an inverted vertical axis). Although it starts
similarly, POPCorn’s solution finishes differently.

the time curves, in order to understand the importance of
particular features and gain further insights into the plan.

Example Uses

PlanCurves is domain and planner agnostic. For example,
we have been able to visualise the plans generated from
five different planners for the Sokoban, Road traffic, Airport,
and Trucks domains submitted to the temporal tracks of IPC
2018 (Coles, Coles, and Martinez 2018).

Using the Time Curves visualisations, we can quickly
read the actors’ interactions across the span of the plan.
This also enables users to quickly compare plans. Figure 5
for example, shows the Time Curves of the five plans for
the second Sokoban problem of IPC 2018. Looking at these
Time Curves it becomes clear that CP4TP, TFLAP, and OP-
TIC proposed almost identical solutions, although the Time
Curves from the OPTIC plan have been inverted as an arte-
fact of the projection. TemPorAl’s solution differs slightly
but retains a similar shape. Finally, we can see that POP-
Corn’s solution starts similarly, but soon differs.

This rapid analysis improves the assessment of plans by
operators prior to their implementation. In the case of com-
plex environments, it can be difficult for operators to parse
and validate the safety of plans when multiple agents are
involved. PlanCurves can assist this review by highlighting
zones of close interactions.



Figure 6: PlanCurves works in two phases: a) processing the
plan data provided by the user, and b) visualising the gener-
ated action and state data to present back to the user.

System
While the PlanCurves system was initially developed within
a larger project, we have designed it to be domain and plan-
ner agnostic by allowing the data processing rules to be cus-
tomised. As a result, we have developed PlanCurves as an
online application to be available for practitioners to use in
conjunction with any temporal planner and adapted to any
domain specification that includes actors. In this section, we
describe how the system works and the options available to
users. The application only requires the user to load their
plan as a text file. The plan is then processed to generate
action and state data for the visualisation, which are then
displayed on the interface (Figure 6).

We have observed that, although selected to compromise
on competing factors (e.g., conciseness, usability, and per-
formance), a planning domain model does not always pro-
vide the most appropriate information for creating plan vi-
sualisations. Similar limitations have been observed in the
contexts of solvability (e.g., macro actions (Newton et al.
2007)), specifying control knowledge (e.g., concept learn-
ing (Martin and Geffner 2004)), and explainability (Lind-
say 2019). This has led us to establish a loose coupling be-
tween our system and the specific planning domain, instead
organising the system around the plan outputs directly. The
system’s operation relies on inference rules that connect the
plan actions to states (similar to the states captured by the
planning model) and interpretation rules, which organise the
content (e.g., natural language annotations) for presentation
purposes.

Generating Action Data
The action data is directly generated from the plan file. The
plan is firstly parsed to produce raw action data (Figure 7
Parsing): a list of action tokens and temporal information.
The raw action is then interpreted to produce the final action
data in a JSON format (Figure 7 Interpreting). Two elements
are mandatory for the interpretation: a) the first item in the
list of action tokens has to be the action name, and b) the
action must have an actor. The interpretation then assumes
the following default rules:

• The second item in the action token list is the actor;

• The other items constitute the actions’ parameters;

Figure 7: Interpretation rules allow the user to define the ac-
tion data and adapt it to their domain. In this example, after
parsing an action from the plan, the system interprets it using
the rule associated with the action name “move”.

• The description of the action is simply the concatenated
list of the action’s name, actor, and parameters.

The user is, however, able to customise these rules, indi-
cating, by index, which item is the action’s actor, which
items are parameters, and how the description should be con-
structed (Figure 7 Interpretation Rule).

This action data is directly used to render the Activity
Chart. It is also the base for the state data.

Generating State Data
State data is derived from the previously generated action
data. For each action, the system infers a resulting state (Fig-
ure 8 Inferring). Initial states are also inferred from the first
actions of each actor. By default, a state inherits the action
name, actor, parameters and finish time (start time for initial
states). However, users are able to provide rules for the state
name and parameters (Figure 8 Inference Rule).

The state data is then further interpreted, adding a descrip-
tion and a list of features to the state (Figure 8 Interpreting).
The list of features will be used to create the state similar-
ity matrix before projecting the states for the Time Curves.
The state time is automatically added to these features. Us-
ing interpretation rules, the user is allowed to provide their
custom set of features, using a key-value map: the key being
the feature’s name, and the value a parameter index (Figure 8
Interpretation Rule). If no rules are provided, the state actor
is added to the list of features by default.

Every type of state must have the same set of features.
The user is able to propose numerical, categorical or ordinal
features. If ordinal features are used, Ordinal Feature Rules
must be provided, mapping the parameter value to its corre-
sponding value on a numerical scale.

Two feature names are reserved and parsed differently by
the system. By using “actor”, a categorical feature taking the
value of the state’s actor will be created. Using “position” as
a feature, the corresponding point coordinates will be used.



Figure 8: The user can describe how states should be gen-
erated. Following from Figure 7, the system will create and
interpret an “at” state from the “move” action, using rules
and roadmap information provided by the user.

These coordinates must be included in a Roadmap data file
(Figure 8 Roadmap).

From the state data, the system will compute a dis-
tance (or dissimilarity) matrix. To support the combination
of categorical and numerical features, we use the general
(dis)similarity coefficient (Gower 1971). The distance be-
tween state x and y is computed as:

d(x, y) =

∑
f∈F ωfδ(xf , yf )∑

f∈F ωf

Where: F is the set of state features, ωf is the weight of
feature f , and δ(xf , yf ) is the distance between the features
f of states x and y. If f is numerical, δ(xf , yf ) is the nor-
malised difference between xf and yf ; if f is categorical and
xf = yf , δ(xf , yf ) = 0 (1 otherwise). Finally, these state
distances are passed to a dimensionality reduction algorithm
(Multi-Dimensional Scaling - MDS), to generate the projec-
tion data for Time Curves (Brandes and Pich 2007).

Additional Features
Generating Activity Charts and Time Curves visualisations
forms the basis of the PlanCurves application. We have how-
ever implemented additional features to enhance the user’s
interaction with multi-agent temporal plans, in particular to
support the analysis of plans evolving in an environment.

Scene Mapping
While Time Curves can give an overview of the agents’ rela-
tive positions throughout the plan (if using their physical po-
sition as the basis for similarity), it fails to depict their accu-
rate location within their environment. To support this type

Figure 9: The Scene Map simulation provides better estima-
tions of the actors’ physical location in their environment.

Figure 10: Path planning provides users with insights regard-
ing the actors’ planned movement and the potential zones of
conflicts. Here we show, for the same plan, the Time Curves
(a) with path planning, and (b) without path planning.

of analysis, we have implemented a Scene Map simulation
(Figure 9), which shows, at any selected time of the plan,
where the agents would be located using a top-down view.
If the physical domain spans three dimensions (described in
the Roadmap data file) the visualisation automatically in-
cludes an altitude axis too. Should the selected time corre-
spond to an in-between-states stage for an actor, its position
is estimated on a linear scale between the two states.

To use this visualisation, the user has to include the “posi-
tion” feature for states, defining which parameter describes
a physical point. Additionally, a Roadmap data file must be
provided, including a list of points, with name and coor-
dinates, and details about the environment (minimum and
maximum of each spatial axis used).

Path Planning
Planners are often limited by their representation of space,
and with complex environments, they can only implement
a limited number of waypoints. To complement temporal
planners and overcome this limitation, PlanCurves offers the
possibility to have paths between points computed using a
path planner based on A* search with a Euclidean distance
heuristic (Hart, Nilsson, and Raphael 1968).

This can be achieved if the user provides a Roadmap data
file detailing the neighbours of each waypoint. In addition,



the user must describe which actions involve a movement by
using a “waypoints” rule detailing which action parameters
are the starting and finishing positions.

After getting a path, PlanCurves would then generate sub-
actions to represent it, and later sub-states. These sub-states
are directly shown in the Time Curves visualisation (Fig-
ure 10). To keep the Activity Chart uncluttered, sub-actions
are only displayed when the user decides to expand (by
clicking) the initial movement action.

Limitations and Future Work
The system described above constitutes the core of Plan-
Curves: a customisable visualisation interface for multi-
agent temporal plans. It, however, still presents constraints
and opportunities for future development and integration
with other systems.

We must first acknowledge that PlanCurves was con-
structed to highlight the interaction between multiple agents.
Its design is therefore actor-driven, and it assumes that the
plans it represents have clear and identifiable actors.

In its current implementation, PlanCurves can only parse
and visualise “simple” actions, that is, actions representing a
single task using a single actor. Future instances of Plan-
Curves will allow users to detail, in action interpretation
rules, whether an action is composite and should therefore
be interpreted as multiple linked sub-actions. Such links will
also be represented in the visualisations.

Concerning the visualisations, one major limitation for
the user is the lack of visual encoding to easily distinguish
between actions or states with different types. For example,
whether an actor is planned to simply navigate or to perform
a manoeuvre, both associated bars or dots will look identical
to the user. Icons, or glyphs, are a type of categorical graph-
ical encoding that would allow users to identify actions and
states faster (Borgo et al. 2013).

Ultimately, we wish to allow PlanCurves to connect to
other planning systems and give end-users more control and
features over their domains, problems, and plans.

Integration with online planners could be beneficial to
end-users and provide more functionalities. For example,
planning.domains (Muise 2016) which already in-
cludes a set of simple visualisation tools as addons. Beyond
the representation of plans generated by such systems, one
could imagine the possibility for non-technical users to de-
sign and better control queries to the planner (e.g. updating
problems) through interactive visualisations which improve
their comprehension and context awareness. In particular,
this could support explainability features, such as “what-if ”
queries to the planner (Fox, Long, and Magazzeni 2017).

PlanCurves infers state information from the plan pro-
vided by the user. While it opens customisability to bet-
ter suit the user’s needs, these state properties are limited
in comparison to those used within planners. Connecting to
systems such as VAL (Howey, Long, and Fox 2004) would
enable the system to infer more state properties with bet-
ter accuracy. Other information such as action dependency
would allow further explainability for the end-user, such as
“why” or “why-not” queries.

Finally, we note that implementing A* poses a limita-
tion to the wide variety of path planning algorithms avail-
able. Additional work towards that feature should include
giving more integrated options to the user (algorithms and
heuristics) or enable externally-implemented algorithms to
be used, supported by a semantic attachments interface.

Conclusion
In this paper, we address the issue of plan visualisation for
end-users by presenting PlanCurves, an online application
designed to visualise multi-agent temporal plans. We have
focused this application around two main visualisations:

• an Activity chart, showing the listing and timing of pro-
posed actions, grouped by actors to provide a rapid under-
standing of the different agents’ missions; and

• Time Curves, projecting the timelines of each agent onto a
2D display using their relative similarities, as defined by
the user, to produce an at-a-glance overview of the plan
and the interactions between the agents.

We have designed PlanCurves to be planner and domain
agnostic, making it usable for all practitioners. In particu-
lar, we have described how users can use it to customise the
interpretation of plans for their needs and proposed several
uses for it. While it is presently being used within a larger
project with real-world industrial applications, we believe it
can be used by others for a variety of purposes.

We have laid out possible extensions of this work, and
hope it enables future collaboration within the community
to facilitate the communication of plans to users.

Acknowledgement
This work was funded and supported by the
ORCA Hub (orcahub.org), under EPSRC
grant EP/R026173/1. PlanCurves is available at:
strategicfutures.org/PlanCurves.

References
Bach, B.; Shi, C.; Heulot, N.; Madhyastha, T.; Grabowski,
T.; and Dragicevic, P. 2015. Time curves: Folding time to
visualize patterns of temporal evolution in data. IEEE trans-
actions on visualization and computer graphics 22(1):559–
568.
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.;
et al. 2012. Europa: A platform for ai planning, schedul-
ing, constraint programming, and optimization. 4th Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling (ICKEPS).
Batrinca, L.; Khan, M. T.; Billman, D.; Aydemir, B.; and
Convertino, G. 2013. A timeline visualization for multi-
team collaborative planning. In CHI’13 Extended Abstracts
on Human Factors in Computing Systems, 157–162. ACM.
Borgo, R.; Kehrer, J.; Chung, D. H.; Maguire, E.; Laramee,
R. S.; Hauser, H.; Ward, M.; and Chen, M. 2013. Glyph-
based visualization: Foundations, design guidelines, tech-
niques and applications. In Eurographics (STARs), 39–63.



Brandes, U., and Pich, C. 2007. Eigensolver methods for
progressive multidimensional scaling of large data. In Kauf-
mann, M., and Wagner, D., eds., Graph Drawing, volume
4372 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg. 42–53.
Chakraborti, T.; Fadnis, K. P.; Talamadupula, K.; Dholakia,
M.; Srivastava, B.; Kephart, J. O.; and Bellamy, R. K. 2017.
Visualizations for an explainable planning agent. arXiv
preprint arXiv:1709.04517.
Coles, A.; Coles, A.; and Martinez, M. 2018. International
planning competition 2018 temporal tracks. https://ipc2018-
temporal.bitbucket.io/. Retrieved November 5, 2019.
Do, M.; Okajima, K.; Uckun, S.; Hasegawa, F.; Kawano,
Y.; Tanaka, K.; Crawford, L.; Zhang, Y.; and Ohashi, A.
2011. Online planning for a material control system for liq-
uid crystal display manufacturing. In Twenty-First Interna-
tional Conference on Automated Planning and Scheduling.
Edelkamp, S., and Mehler, T. 2005. Knowledge acquisition
and knowledge engineering in the modplan workbench. Pro-
ceedings of the First International Competition on Knowl-
edge Engineering for AI Planning 26–33.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. arXiv preprint arXiv:1709.10256.
Fraternali, P.; Castelletti, A.; Soncini-Sessa, R.; Ruiz, C. V.;
and Rizzoli, A. E. 2012. Putting humans in the loop: Social
computing for water resources management. Environmental
Modelling & Software 37:68–77.
Gower, J. C. 1971. A general coefficient of similarity and
some of its properties. Biometrics 857–871.
Gupta, S.; Dumas, M.; McGuffin, M. J.; and Kapler, T. 2016.
Movementslicer: Better gantt charts for visualizing behav-
iors and meetings in movement data. In 2016 IEEE Pacific
Visualization Symposium (PacificVis), 168–175. IEEE.
Haas, W., and Havens, W. S. 2008. Generating random dy-
namic resource scheduling problems. In ICAPS 2008 Work-
shop on Knowledge Engineering for Planning and Schedul-
ing. Citeseer.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2):100–107.
Hoogendoorn, M.; Jonker, C. M.; Schut, M. C.; and Treur, J.
2006. Simulation, visualization, and validation of adaptive
multi-agent organizations in naval applications. SIMULA-
TION SERIES 38(1):377.
Howey, R.; Long, D.; and Fox, M. 2004. Val: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using pddl. In 16th IEEE International Conference on
Tools with Artificial Intelligence, 294–301. IEEE.
Kim, J., and Blythe, J. 2003. Supporting plan authoring and
analysis. In Proceedings of the 8th international conference
on Intelligent user interfaces, 109–116. ACM.
Kirkpatrick, A. E.; Dilkina, B.; and Havens, W. S. 2005. A
framework for designing and evaluating mixed-initiative op-
timization systems. In ICAPS Workshop on Mixed-Initiative

Planning and Scheduling, held in conjunction with the Fif-
teenth International Conference on Automated Planning and
Scheduling, Monterey, California, June.
Lindsay, A. 2019. Towards exploiting generic problem
structures in explanations for automated planning. In Pro-
ceedings of the International Conference on Knowledge
Capture.
Martin, M., and Geffner, H. 2004. Learning generalized
policies from planning examples using concept languages.
Applied Intelligence 20(1):9–19.
McCluskey, T., and Simpson, R. 2006. Tool support for
planning and plan analysis within domains embodying con-
tinuous change.
Muise, C. 2016. Planning.domains. ICAPS system demon-
stration.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning macro-actions for arbitrary planners and domains.
In ICAPS, volume 2007, 256–263.
Porta, M. 2000. Visps, a visual system for plan specifica-
tion. In Proceedings of the working conference on Advanced
visual interfaces, 307–310. ACM.
Porteous, J.; Teutenberg, J.; Pizzi, D.; and Cavazza, M.
2011. Visual programming of plan dynamics using con-
straints and landmarks. In Twenty-First International Con-
ference on Automated Planning and Scheduling.
Pralet, C.; Roussel, S.; Polacsek, T.; Bouissière, F.; Cuiller,
C.; Dereux, P.-E.; Kersuzan, S.; and Lelay, M. 2018. A
scheduling tool for bridging the gap between aircraft design
and aircraft manufacturing. In Twenty-Eighth International
Conference on Automated Planning and Scheduling.
Sampath, K.; Tezabwala, A.; Chabrier, A.; Payne, J.; and
Tiozzo, F. 2013. Integrated operations (re-) scheduling from
mine to ship. In Twenty-Third International Conference on
Automated Planning and Scheduling.
Scott, S. D.; Lesh, N.; and Klau, G. W. 2002. Investigat-
ing human-computer optimization. In Proceedings of the
SIGCHI conference on Human factors in computing sys-
tems, 155–162.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itsimple 2.0: An integrated tool for designing planning
domains. In ICAPS, 336–343.
Vaquero, T. S.; Silva, J. R.; Ferreira, M.; Tonidandel, F.; and
Beck, J. C. 2009. From requirements and analysis to pddl in
itsimple3. 0. Proceedings of the Third International Compe-
tition on Knowledge Engineering for Planning and Schedul-
ing, ICAPS 2009 54–61.
Vodrážka, J., and Chrpa, L. 2010. Visual design of plan-
ning domains. In Proceedings of ICAPS 2010 workshop on
Scheduling and Knowledge Engineering for Planning and
Scheduling (KEPS), 68–69.
Vrakas, D., and Vlahavas, I. 2003. A graphical interface
for adaptive planning. In Proceedings of the Doctoral Con-
sortium of the 13th International Conference on Automated
Planning and Scheduling, 137–141.
Ware, C. 2012. Information visualization: perception for
design. Elsevier.


