
AMLSI: A Novel and Accurate Action Model Learning Algorithm

Maxence Grand, Damien Pellier, Humbert Fiorino
Univ. Grenoble Alpes, LIG

3800 Grenoble, France
{Maxence.Grand, Damien.Pellier, Humbert.Fiorino}@univ-grenoble-alpes.fr

Abstract

This paper presents new approach based on grammar induc-
tion called AMLSI (Action Model Learning with State ma-
chine Interactions). The AMLSI approach does not require a
training dataset of plan traces to work. AMLSI proceeds by
trial and error: it queries the system to learn with randomly
generated action sequences, and it observes the state transi-
tions of the system, then AMLSI returns a PDDL domain cor-
responding to the system. A key issue for domain learning is
the ability to plan with the learned domains. It often happens
that a small learning error leads to a domain that is unusable
for planning. Unlike other algorithms, we show that AMLSI
is able to lift this lock by learning domains from partial and
noisy observations with sufficient accuracy to allow planners
to solve new problems.

1 Introduction
Many real world systems implicitly rely on state machines.
In communicating systems, for example, each party has
to follow the same communication protocol or the system
could deadlock. Each party follows a state machine where
an action like sending or receiving a message puts the over-
all system into a new state. For instance, an ATM dispenses
cash only when the machine is in a state where a card has
been inserted and the PIN verified.

Planning Domain Definition Language (PDDL) (McDer-
mott et al. 1998) allows to model state machines and to plan
action sequences achieving targeted goals. It is generally ac-
cepted that hand-encoding PDDL is difficult, tedious and
error-prone. The experts of the system to model are not al-
ways PDDL experts and vice versa. Planning domain learn-
ing algorithms have been proposed to automatically generate
PDDL domains (Arora et al. 2018). A challenging issue for
these learning algorithms is their ability to generate domains
that planners can use to solve new planning problems. In
practice, most state of the art approaches does not evaluate
this ability. They use the syntactical error (differences in the
preconditions and the effects of operators) between Interna-
tional Planning Competition (IPC) benchmarks and learned

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

domains. Unfortunately, it is not because one learned do-
main is syntactically closer to an IPC domain that it is better
than another. It often happens that a small syntactical error
leads to a domain that is unusable for planning: the ability
of a PDDL domain to solve planning problems can depend
on a few number of decisive preconditions/effects.

In this paper, we propose a new approach based on gram-
mar induction called AMLSI (Action Model Learning with
State machine Interactions), allowing to ”retro-engineer”
real world state machines as accurate PDDL domains. The
AMLSI approach does not require a training dataset of
plan traces to work. AMLSI proceeds by trial and error: it
queries the system to learn with randomly generated action
sequences, and it observes the state transitions of the system,
then AMLSI returns a PDDL domain corresponding to the
system. For instance, in the ATM example, sequences of ac-
tions like inserting a card, typing a number, aborting money
withdrawal etc. are tested. These action sequences can possi-
bly be infeasible. No prior knowledge on correct sequences
is required. Unlike other approaches, we show that AMLSI
is able to learn domains from partial and noisy observations
with sufficient accuracy to allow planners to solve new prob-
lems.

The rest of the paper is organized as follows. In section
2 we present the related works. In section 3 we propose a
problem statement and, in section 4, we detail the AMLSI
algorithm. Finally, section 5 evaluates the performance of
AMLSI on IPC benchmarks. Also, AMLSI’s performance is
compared with the LSO-NIO (Mourão et al. 2012) algorithm
which is the approach with the closest input setting. Indeed,
LSO-NIO takes as input random walks including action fail-
ures with partial and noisy observations.

2 Related Works
Many approaches have been proposed to learn planning do-
mains. These works can be classified according to the input
data of the learning process and the complexity of the lan-
guage used in the output domain. The input data can be plan
traces obtained by resolving a set of planning problems, par-
tial planning domains to complete or random walks. The in-
put data can be complete (states and actions), partial, com-
pletely blind,or noisy. As output, the learned planning do-

mains can have different levels of expressivity: negative pre-
conditions, static relations, numerical functions or condi-
tional effects.

Many works takes as input a set of plan traces and a par-
tial action model, and tries to incrementally refine this ac-
tion model to complete it, as for instance, EXPO (Gil 1994)
and more recently RIM (Zhuo, Nguyen, and Kambhampati
2013) and OpMaker (McCluskey, Richardson, and Simpson
2002). In practice, RIM constructs sets of ”soft” and ”hard”
constraints between observed states and actions, which are
solved with weighted MAX-SAT solvers to obtain the re-
fined action models. In all these approaches, it is assumed
that the observations are complete and noiseless. Opmaker
induces operators with users interaction. Th partial domain
is built by the user within the GIPO tools (Simpson et al.
2014), then users gives plan traces and intermediate state ob-
servations and OpMaker induces pre-conditions and effects.

A second group of works takes as input only plan traces.
Most of them are able to deal with partial observations
(except Observer (Wang 1995) that deal only with com-
plete observations). Among these approaches are ARMS
(Yang, Wu, and Jiang 2007), SLAF (Shahaf and Amir
2006), Louga (Kucera and Barták 2018) or Plan-Milner
algorithm (Segura-Muros, Pérez, and Fernández-Olivares
2018). ARMS gathers knowledge on the statistical distri-
bution of frequent sets of actions in the plan traces. It
then forms a weighted propositional satisfiability problem
(weighted SAT) and solves it with a weighted MAX-SAT
solver. Unlike ARMS, SLAF is able to learn action mod-
els with conditional effects. To that end, SLAF relies on
the building of logical constraint formula based on a direct
acyclic graph representation. Then, Louga takes also as in-
put plan traces and work with partial noiseless observations.
However, Louga is able to learn action models with static
properties and negative preconditions. Louga uses a genetic
algorithm to learn action effects and an ad-hoc algorithm to
learn action preconditions. Then, Plan-Milner uses a clas-
sification algorithm based on inductive rule learning tech-
niques: it learns action models with discrete numerical val-
ues from partial and noisy observations. Finally, the LOCM
family of action model learning approaches (Cresswell,
McCluskey, and West 2009; Cresswell and Gregory 2011;
Gregory and Cresswell 2015; Gregory and Lindsay 2016)
works without information about initial, intermediate and fi-
nal states. These algorithms extract, from plan traces, param-
eterized automata representing the behaviour of each object.
Then preconditions and effects are generated from these au-
tomata.

The last group of works takes as input a set of action se-
quences randomly generated. Random walk approaches like
IRALe (Rodrigues, Gérard, and Rouveirol 2010) deal with
complete but noisy observations. IRALe is based on an on-
line active algorithm to explore and to learn incrementally
the action model with noisy observations. Others approaches
such as LSO-NIO (Mourão et al. 2012) are able to deal with
both partial and noisy observations. LSO-NIO uses a classi-
fier based on a kernel trick method to learn action models.
It consists of two steps: (1) it learns a state transition func-
tion as a set of classifiers, and (2) it derives the action model

from the parameters of the classifiers.
AMLSI differs from the state-of-the-art algorithms in

several points. Firstly, AMLSI is one of the few algo-
rithms able to deal with noisy and partial observations. Sec-
ondly, AMLSI works with both feasible and infeasible ac-
tion sequences while most approaches use only feasible ac-
tion sequences or plan traces. To our best of knowledge,
only IRALe and LSO-NIO use failures in action sequences,
but AMLSI differentiates feasible and infeasible action se-
quences. In addition, AMLSI uses random walks to generate
its training datasets of both feasible and infeasible action se-
quences, whereas most of the algorithms like ARMS, Louga
and Plan-Milner either only use plan traces or random walks
generating feasible action sequences. Thirdly, in terms of ex-
pressivity, AMLSI learns PDDL domains including static re-
lations in preconditions as well as negative preconditions. To
our best knowledge, only Louga has the same expressivity
but it cannot work with noisy traces. Also, AMLSI is an in-
teractive approach. As far as we know,, the only other inter-
active approach is OpMaker, however these two approaches
differ in several ways. Indeed OpMaker takes a partial do-
main and plan traces as input while AMLSI takes random
walks. Moreover, OpMaker only uses feasible actions. Also,
the interactive aspect is different, for OpMaker the interac-
tions allow to know the intermediate states, while the inter-
actions allow AMLSI to know if an action is feasible or not
for a given state. More importantly, AMLSI is the only al-
gorithm able to learn planning domains accurate enough to
be used by planners to solve new planning problems (i.e.
that are not in the training sets) with such a level of noise in
observations (see Section 5).

3 Problem Statement
We work in the context of classical STRIPS planning (Fikes
and Nilsson 1971). World states s are modeled as sets of
propositions and actions change the world states. Formally,
let S be a set of all the propositions modeling properties of
world, and A the set of all the possible actions in this world.
A state s is a subset of S and each action a ∈ A is a tuple
(ηa, ρa, ε

+
a , ε
−
a), where ηa is the name of a, ρa, ε+a , ε

−
a ⊆ S

are sets of propositions, and ε+a ∩ ε−a = ∅. ρa are the pre-
conditions of a, that is, the propositions that must be in the
state before the execution of a. ε+a and ε−a are respectively
the positive and the negative effects of a, that is, the propo-
sitions that must be added or deleted in s after the execution
of the action a. An operator is a lifted action described with
PDDL.

Let γ : S × A → S be the state transition function of
a system such that s′ = γ(s, a) = (s ∪ ε+a) \ ε−a . γ(s, a)
is defined if and only if ρa ⊆ s. Let π = [a0, a1, . . . , an]
be a sequence of actions, and + the concatenation of two
sequences. Γ(s0, π) is defined recursively as follows:

Γ(s0, π) =

[s0] if π = ∅
[s0] if ρa0 * s0

[s0] + Γ(γ(s0, a0), [a1, . . . , an]) otherwise

π is feasible given a state s0 if and only if
Γ(s0, [a0, a1, . . . , an]) = [s0, s1, . . . , sn], and π and

[s0, s1, . . . , sn] have the same length. Otherwise π is an
infeasible sequence of actions. In this paper, we assume
that:
• for all a ∈ A, (ηa, ρa, ε

+
a , ε
−
a), the name of a is known but

not ρa, ε+a and ε−a ;
• γ is the state transition function to learn and to express as

a set of PDDL lifted operators usable by a planner ;
• the observations Γ(s0, π) are possibly partial and noisy. A

partial observation is a state where some propositions are
missing, i.e. could either be true or false. A noisy observa-
tion is state where the truth value of some propositions is
incorrect, i.e. some propositions observed as false should
have been observed as true and vice versa.

4 The AMLSI approach
The AMLSI algorithm takes as input the set of action A
and the set of propositions S, builds two datasets by inter-
actions with a state machine and returns a PDDL domain.
After building datasets, the AMLSI approach performs the
learning phase which is composed of three steps. We begin
by a grammar induction step. Then we generate, from the
grammar previously learned, PDDL operators. Finally, we
refine the domain.

4.1 Dataset generation
The objective of this step is to build two training datasets: I+
(positive samples) containing the feasible action sequences
and the corresponding observations, and I− (negative sam-
ples) containing the infeasible action sequences: at a given
state s, we query the system about the feasibility of an action
a randomly chosen in A. If a is feasible, the current state is
observed and we add a to the current π. This random walk is
iterated until π reaches an arbitrary length, and added to I+.
If a is infeasible in the current state, the concatenation of π
and a is added to I−.

4.2 Grammar Induction
In the second step, we use the RPNI algorithm (Oncina and
Garcı́a 1992) to learn the regular grammar based on I+ and
I− inputs. RPNI has a polynomial complexity and is op-
timal: it returns the smallest automaton (a regular gram-
mar can be represented as a deterministic finite automaton)
accepting all the positive samples I+ and rejecting all the
negative samples I− when I+ and I− are ”characteristic”
(Oncina and Garcı́a 1992). Formally, the deterministic finite
automaton learned is a quintuple< A,N, n0, γ, F >, where
A is the set of actions, N is the set of nodes, n0 ∈ N is the
initial node, γ is the node transition function, and F ⊆ N is
the set of final nodes.

Finally, to prepare the grammar induction, we built IP+
and IP− , which are samples I+ and I− extended tanks a
preprocessing steps. Pairwise constraints (PC) are pairs of
action that cannot be consecutive in a sequence. These
constraints are based on the fact that for an action to be
feasible a certain number of resources must be produced
(add list) and others must be consumed (del list). For in-
stance, in the gripper domain, move(r1 r2) is never fol-
lowed by pick(b r1 grip) because (at − robby r1) must

be true to execute pick(b r1 grip), and after the execution
of move(r1 r2), (at − robby r1) is always false, therefore
pick(b r1 grip) cannot follow move(r1 r2). PC computa-
tion is based on I+: we assume that only pairs of actions in
I+ are possible:

{∀ai, aj ∈ A2, ai, aj ∈ Ip− iff @π ∈ I+ s.t. π = [π1, ai, aj , π2]}

4.3 Operator generation
Operator generation is based on four steps:

Observation mapping Once the automaton is induced,
we need to know which node of the automaton corresponds
to which observed state. To do that, we input in the au-
tomaton all the positive samples in I+ and map the pairs
”node, action” in the automaton with the pairs ”state, ac-
tion” in I+. There are two different mappings: the map-
ping (A)nte µA and the mapping (P)ost µP . µA(n, a) (resp.
µP (n, a)) gives the state before (resp. after) the execution
of the transition a in node n. Then, we compute a re-
duced mapping

⋂
µA (resp

⋂
µP), which contains the com-

mon propositions of all the states for a given (n, a). For
instance, consider the classical gripper planning domain:
(at b r1) is in

⋂
µA(0, pick(b r1 grip)) iff (at b r1) is

in all µA(0, pick(b r1 grip)). Likewise, we remove from⋂
µA(0, pick(b r1 grip)) and

⋂
µP (0, pick(b r1 grip))

all the propositions whose parameters are not a subset of
(b r1 grip), the parameters of pick(b r1 grip) (classical
planning assumption (Fikes and Nilsson 1971)).

Precondition generation To learn the preconditions of an
operator o, we find all propositions that are always present
in the reduced mapping of all the nodes where an ac-
tion a, instantiating an operator o, is feasible. Formally,
p (resp ¬p) ∈ ρo if and only if ∀a instance of o :

∀(n, a) : p (resp ¬p) ∈
⋂
µA(n, a)

Effect generation To learn the effects of an operator o,
we find all propositions that are always (resp never) present
before the execution of an action a, instantiating an operator
o, in the automaton and never (resp always) present after the
execution. Formally, ¬p (resp p) ∈ ε−o (resp ε+o) if and
only if ∀a instance of o :

∀(n, a, n′) : p (resp ¬p) ∈
⋂
µA(n, a)

∧¬p (resp p) ∈
⋂
µP (n′, a)

4.4 Operator refinement
The refinement steps of the PDDL operators are necessary
because the observations are partial and noisy. The refine-
ment is divided into 3 substeps:

Effect refinement This step ensures that the generated
operators allow to regenerate the induced grammar. We
use the reduced mappings

⋂
µA to verify that for each

couple of consecutive actions a and a′, the effects of
the action a generate the preconditions of action a′. If
it is not the case, we add in the effects of a the propo-
sitions satisfying the preconditions of a′. For instance,
suppose we have n′ = γ(n,move(r1 r2)) and n′′ =

γ(n′, pick(b r2 grip)). Now suppose we have ¬(at −
robby r2) ∈

⋂
µA(n,move(r1 r2)), (at − robby r2) ∈

ρpick(b r2 grip) and (at − robby r2) 6∈ ε+move(r1 r2). We
need to have (at − robby r2) ∈ ε+move(r1 r2) in order to
make γ(n,move(r1 r2)) and γ(n′, pick(b r2 grip)) feasi-
ble. Thus, we add (at− robby ?to) to ε+move(?from ?to).

Precondition refinement In this step, we assume like
(Yang, Wu, and Jiang 2007) that the propositions of the
negative effects must be in the action preconditions. Thus
for each negative effect in an operator, we add the cor-
responding proposition in the preconditions. For instance,
suppose ¬(at − robby ?from) ∈ ε−move(?from ?to), then
(at− robby ?from) ∈ ρmove(?from ?to) after refinement.

Since effect refinement depends on the preconditions and
precondition refinement depends on the effects, we repeat
these two steps until convergence. They converge because
the adding of preconditions is limited by the effects, and the
adding of effects is limited by the preconditions of the next
action in the induced automaton (In our experiments, see
Section 5, less than 10 iterations are needed to converge).

Tabu search Finally, we perform a Tabu Search to im-
prove the PDDL operators independently of the induced
grammar, on which operator generation is based.

The neighborhood of a candidate domain is the set of do-
mains where a precondition or an effect is added or removed.
And the search space of the tabu search is the set of all pos-
sible domains compatible with the PDDL syntax constraints
(Yang, Wu, and Jiang 2007). The fitness function used to
evaluate a candidate set D of PDDL operators is:

J(D|I+, I−) = Jρ(D|I+) + Jε(D|I+)+
J+(D|I−) + J−(D|I−)

where :
• Jρ(D|I+) =

∑
π∈I+

∑
s∈Γ(s0,π)

Accept(ρa, s)−Reject(ρa, s)

computes the fitness score for the preconditions of the
actions a. Accept(ρa, s) counts the number of positive
and negative preconditions in the observed state s, and
Reject(ρa, s) counts the number of positive and negative
preconditions that are not in s.

• Jε(D|I+) =
∑
π∈I+

∑
s∈Γ(s0,π)

Equal(s, ŝ)−Different(s, ŝ)

computes the fitness score for the effects of the actions a.
s are the observed states and ŝ are the states obtained by
applying the actions of π. Equal(s, ŝ) counts the number
of similar propositions in s and ŝ, and Different(s, ŝ)
counts the differences.

• J+(D|I+) =
∑
π∈I+

|π| × 1Accept(D,π) where 1Accept(D,π) = 1 if

and only if D can generate the positive sample π. |π| is
the length of π. J+(D|I+) is weighted by the length of
π ∈ I+ because I+ is smaller than I−

• J−(D|I−) =
∑
π∈I−

1Accept(D,π+)∧Reject(D,π). As detailed

in section 4.1, the negative sample π ∈ I− is a se-
quence of n + 1 actions where the n first actions

are a prefix of a sequence in I+: π+ is this prefix.
1Accept(D,π+)∧Reject(D,π) = 1 if and only if D can gen-
erate π+ and not π.

Once the Ttabu search is done, we repeat all the refine-
ment steps until convergence.

5 Experiments
Our experiments are based on 7 IPC domains: Blocksworld,
Gripper, Peg Solitaire, Parking, Zenotravel, Sokoban and
Neg-Elevator. Neg-Elevator is a modified version of Eleva-
tor with negative preconditions to show AMLSI ability to
learn them. All the used benchmarks are STRIPS domain.
Table 1 shows our experimental setup1.

We deliberately chose the size of the test sets larger than
the learning sets to show AMLSI’s ability to learn accurate
domains with small datasets. The training and test sets are
generated as explained in Section 4.1. In the training sets, we
generate positive action sequences with a length randomly
chosen between 10 and 20, and in the test sets, we generate
positive action sequences with a length randomly chosen be-
tween 1 and 100. I− are bigger than I+ because it is more
likely to generate infeasible actions.

We test each IPC domain with three different initial states
over five runs, and we used five seeds randomly generated
for each run. Tabu search is computed over 200 runs. For
each IPC domain, we generate observed states by randomly
removing a fraction of the propositions (partial states) and
by randomly modifying their truth values. All tests were
performed on an Ubuntu 14.04 server with a multi-core In-
tel Xeon CPU E5-2630 clocked at 2.30 GHz with 16GB of
memory.

5.1 Evaluation Metrics
AMLSI is evaluated with four metrics of the literature:

Syntactical error The syntactical error error(o) (Zhuo et
al. 2010) for an operator o is defined as the number of extra
or missing predicates in the preconditions2 ρo, the positive
effects ε+o and the negative effects ε−o divided by the total
number of possible predicates. The syntactical error for a do-
main with a set of operator O is: Eσ = 1

|O|
∑
o∈O error(o).

Precondition error rate The precondition error rate
(Yang, Wu, and Jiang 2007) computes the rate of precon-
ditions that are not satisfied in the positive test set. This met-
ric measures the quality of the preconditions in the learned
domain. It is computed as follows:

Eρ =
∑
π∈E+

∑
a∈π

error(ρa, ŝ)∑
a∈π
|ρa|

1Our experimental setup can be found in: https://www.dropbox.
com/sh/t09s81bi87efhnl/AAAbPUwz5aZ7iK7xR3YLeWnAa?dl=
0

2Note that we compute the syntactical error without taking into
account the negative preconditions of the operators because some
of the chosen IPC domains do not have them.

Domain #Operators #Predicates #Objects #Actions #Propositions |I+| |I−| |π+| |π+| |E+| |E−| |e+| |e+|
Blocksworld 4 5 3 18 16 30 2421.3 15 8.3 100 26209.5 49 33.6

Gripper 3 4 5 10 8 30 1168.1 15.2 8.3 100 12940.3 50.7 33.7
Peg Solitaire 3 5 9 38 45 30 4486.8 7.1 5.4 100 14509.5 6.9 5.3

Parking 4 5 6 60 24 30 5729.53 15 8.5 100 65216.6 50.6 34
Zenotravel 5 5 7 14 10 30 1631.4 15.1 8.4 100 17850.3 49.6547 33.9
Sokoban 2 4 14 36 51 30 4634.33 15 8.2 100 51832.7 51.3 33.4

Neg Elevator 4 6 5 8 13 30 1050.7 15.1 8.6 100 13086.6 51 35.7

Table 1: Benchmark domain characteristics (from left to right): number of operators, number of predicates, number of objects
in each initial states, number of actions in each initial states, number of propositions in each initial states, average size of |I+|
and |I−| training sets, the average length of the positive (resp. negative) training sequences π+ ∈ I+ (resp. π− ∈ I−), average
size of |E+| and |E−| test sets, the average length of the positive (resp. negative) test sequences e+ ∈ E+ (resp. e− ∈ E−).

Domain #States #Nodes #Transitions Compression level
Blocksworld 449.7 23 43.4 19.7

Gripper 455 8 16 58.9
Peg-Solitaire 212 34.6 46.7 8.1

Parking 450.4 78.7 175.3 6.1
Zenotravel 453.1 24.1 53 19.5
Sokoban 450.7 31.3 64.1 16.8

Neg Elevator 451.5 24.5 44.4 18.9

Table 2: Induced automaton characteristics (from left to
right): average number of states in the learning set, average
number of nodes, average number of transitions, compres-
sion level, i.e. average number of states per node.

error(ρa, ŝ) = |{p ∈ ρa ∧¬p ∈ ŝ}|+ |{¬p ∈ ρa ∧ p ∈ ŝ}|
gives the number of positive and negative preconditions p in
actions a that are not satisfied in the observed state ŝ.

Effect error rate The effect error rate (Kucera and Barták
2018) computes the error rate on the effects of the learned
domain. It is computed as follows:

Eε =
∑
π∈E+

∑
a∈π

error(εa, ŝ)∑
a∈π
|εa|

error(εa, ŝ) = |{p ∈ ε+a ∧¬p ∈ ŝ}|+ |{¬p ∈ ε−a ∧ p ∈ ŝ}|
gives the number of positive and negative effects p in the
actions a that are not satisfied in the observed state ŝ.

Accuracy The accuracy (Zhuo, Nguyen, and Kambham-
pati 2013) quantifies the usability of the learned model for
planning. Most of the works addressing the problem of
learning planning domains uses the syntactical error to quan-
tify the performance of the learning algorithm. However,
domains are learned to be used for planning, and it often
happens that one missing precondition or effect makes them
unable to solve new planning problems. Formally, the ac-
curacy Acc = N

N∗ is the ratio between N the number of
correctly solved problems with the learned domain and N∗
the total number of problems to solve. The accuracy is com-
puted over 20 problems. Although rarely used, we argue
that the accuracy is the most important metric because it
measures to what extent a learned domain is useful in prac-
tise for planning. Problem are solved with Fast Downward
19.06 (Helmert 2006). Plan validation is realized with the
automatic validation tool used in the IPC competition: VAL

(Howey and Long 2003). Finally, we also report in our re-
sults the ratio of solved problem that are not necessarily cor-
rectly solved, i.e. the ratio of problems where the learned
domain was able to find a plan even if the found plan was
not validated by the ground truth domain.

5.2 Results
In order to study the performances of AMLSI with respect
to noisy and partial observations, we use four different ex-
perimental scenarios:

1. Complete intermediate observations (100%) and no noise
(0%), see Table - 3a.

2. Complete intermediate observations (100%) and high
level of noise (20%), see Table - 3a.

3. Partial intermediate observations (25%) and no noise
(0%), see Table - 3b.

4. Partial intermediate observations (25%) and high level of
noise (20%), see Table - 3b.

Impact of noisy and partial observations The results of
the first scenario (complete intermediate observations and no
noise) show that AMLSI perfectly learns the preconditions
and the effects of the operators of the IPC domains. Note that
for 5 IPC domains, Peg-Solitaire, Parking and Sokoban, the
syntactical error is not equal to 0. This is because AMLSI
learns preconditions that are not in the IPC domain. On the
other hand, the obtained accuracy is optimal for all domains.
This means that the domains learned with AMLSI can be
used to solve all the problems of the IPC domains.

The results of the second scenario (complete intermedi-
ate observations and high level of noise (20%) are almost
similar to the first scenario. Noise slightly reduces the qual-
ity of learning in terms of syntactical error and accuracy for
three IPC domains (Blocksworld, Peg Solitaire and Zeno-
travel). The impact of noise on the performance of AMSLI
with complete intermediate observations is low.

The results of the third scenario (partial intermediate ob-
servations (25%) and no noise) are almost similar to the first
scenario. Partial observation slightly reduces the quality of
learning in terms of syntactical error and accuracy for one
IPC domain (Peg Solitaire). The impact of partial observa-
tion on the performance of AMLSI with noiseless observa-
tions is low.

Finally, the results of the fourth scenario (partial inter-
mediate observations (25%) and high level of noise (20%))

Noise 0% 20%
Domain Algorithm Eρ(%) Eε(%) Eσ(%) Solved(%) Acc(%) Eρ(%) Eε(%) Eσ(%) Solved(%) Acc(%)

Blocksworld

AMLSI 0 0 0 100 100 0.8 0.8 0.6 93.7 93.7
Generation step 0 0 0 100 100 0 0 33.25 0 0

Simple refinement 0 0 0 100 100 7.7 6.6 26.3 20 0
Tabu search alone 0 0 9.8 86.7 13 0.3 0.5 9.6 87 13

Without PC 19 29 22 27.7 27.7 12.3 21.3 18.5 53.3 34.3
LSO-NIO 0 0 0 100 100 13.5 14.3 20.1 0.3 0

Gripper

AMLSI 0 0 0 100 100 0 0 0 100 100
Generation step 0 0 0 100 100 0 0 46.9 0 0

Simple refinement 0 0 0 100 100 0 0 46.9 0 0
Tabu search alone 0 0 0 100 100 0 0 0 100 100

Without PC 0 0 0 100 100 0 0 0 100 100
LSO-NIO 0 0 5.6 100 0 6 7 22 33.3 0

Peg Solitaire

AMLSI 0 0 4.2 100 100 2.1 0.7 7.4 99.3 96.3
Generation step 0 0 4.2 100 100 0 0 24.3 0 0

Simple refinement 0 0 4.2 100 100 1.5 0 22.5 1 0
Tabu search alone 2.4 0 9.5 100 100 4.9 0.1 13.9 93 81.7

Without PC 9.4 15.4 13.2 65.7 60 4.4 3.6 10.3 92.3 89.7
LSO-NIO 0 0 3.8 100 0 8.3 10.9 18.8 48 0

Parking

AMLSI 0 0 3.9 100 100 0 0 3.9 100 100
Generation step 0 0 3.9 100 100 0 0 30.2 4.3 0

Simple refinement 0 1 4.2 100 77.3 0 0 30.8 4.3 0
Tabu search alone 0 0 8.2 85 65 0 0 8.1 84.7 63.7

Without PC 29.7 42 41.2 0.7 0.3 10.4 10 12.5 77 67.33
LSO-NIO 0 0 6.5 80 4 14.9 27.3 25 21.3 0

Zenotravel

AMLSI 0 0 0 100 100 0.1 0 0.2 100 99.3
Generation step 0 0 0 100 100 0 0 27.4 14.7 0

Simple refinement 0 0 0 100 100 0.3 1.9 22.4 21.3 0
Tabu search alone 0 0 1.8 100 73.3 0 0 5.4 100 33.3

Without PC 5 14.5 9.6 69 40 2.1 9.4 8.4 74.7 66.7
LSO-NIO 0 0 9.4 100 0 10.1 10 21.3 51 0

Sokoban

AMLSI 0 0 3.9 100 100 0 0 3.9 100 100
Generation step 0 0 3.9 100 100 0 0 20.1 13.3 0

Simple refinement 0 0 3.9 100 100 0.1 0 17.8 7.3 0
Tabu search alone 0 0 3.9 100 100 0 0 3.9 100 100

Without PC 4.4 7 13.9 33.3 33.3 0 0 3.9 100 100
LSO-NIO 0 0 7.8 100 0 2 3 20.3 0 0

Neg Elevator

AMLSI 0 0 0 100 100 0 0 0 100 100
Generation step 0 0 0 100 100 0 7.1 19 13.3 0

Simple refinement 0 0 0 100 100 1.6 0.6 14 6.7 0
Tabu search alone 0 0 5.3 100 66.7 0 0 5.3 100 66.7

Without PC 0.5 0.8 2.4 66.7 66.7 0 0 0.1 100 100
LSO-NIO 0 0 10.8 100 0 4.8 4.6 16.9 60 0

(a) Domain learning results when observations are complete.
Noise 0% 20%

Domain Algorithm Eρ(%) Eε(%) Eσ(%) Solved(%) Acc(%) Eρ(%) Eε(%) Eσ(%) Solved(%) Acc(%)

Blocksworld

AMLSI 0 0 0 100 100 2.1 1.5 1.2 76.3 76.3
Generation step 0 0 19.1 0 0 0 0 35.8 0 0

Simple refinement 0 0 0 100 100 0 0 28.7 20 0
Tabu search alone 2.34 4.5 12.3 61.7 9 2.4 4.7 13.3 67 10.3

Without PC 19.2 29.8 22.1 27.7 27.7 13.3 21.8 16.7 60 36.3
LSO-NIO 0 0 28.1 26.7 0 15.9 18.8 33.4 40.3 0

Gripper

AMLSI 0 0 0 100 100 0 0 0 100 100
Generation step 0 0 0.9 86.7 86.7 0 0 37.6 0.7 0

Simple refinement 0 0 0 100 100 0 0 28.5 13.3 0
Tabu search alone 0 0 0 100 100 0 0 0 100 100

Without PC 0 0 0 100 100 0 0 0 100 100
LSO-NIO 0 0 30 33.3 0 7.7 5 32.2 13.3 0

Peg Solitaire

AMLSI 0 0 4.9 99.3 99.3 2.3 1.9 9.9 78 61
Generation step 0 0 20.6 0 0 1.6 0 23.7 0 0

Simple refinement 0 0 11.4 0.7 0 2.1 0 19.3 0 0
Tabu search alone 3.3 0 11.2 94.7 88 6.3 2.7 17.7 59 33.7

Without PC 7.8 15 13.8 59.3 59.3 4.5 4.3 12.6 67.3 49
LSO-NIO 0 0 19.4 38.7 0 12.5 6 24 24 0

Parking

AMLSI 0 0 4.1 100 100 0.2 0 4.3 99 99
Generation step 0 0 21.2 0 0 0 0 30.9 0 0

Simple refinement 0 1 4.2 100 77.3 0 0 30.7 1.3 0
Tabu search alone 0 0 8.4 86.7 67.3 0 0 8.3 86.7 70

Without PC 29.7 42 41.2 0.7 0.3 6 5.4 11.8 77.7 56.7
LSO-NIO 0 0 25 39.7 0 11 37.2 28.3 24.7 0

Zenotravel

AMLSI 0 0 0 100 100 0 0 0 100 100
Generation step 0 0 10 12.6 0 1.7 3 25.9 19.3 0

Simple refinement 0 0 1 92.7 65.6 2.5 2.4 206 51.3 0
Tabu search alone 0 0 4.2 100 40 0 0 8.8 100 20

Without PC 4.9 13.5 9.4 69 33.3 2.8 8.9 7.5 93.3 66.7
LSO-NIO 0 0 25.4 41.3 0 10.2 7.9 28.4 13.3 0

Sokoban

AMLSI 0 0 3.9 100 100 0 0 6.1 99.3 60
Generation step 0 0 10.6 26.7 26.7 0 0 19.2 6.7 0

Simple refinement 0 0 4.3 86.7 86.7 0.1 0 17.8 13.3 0
Tabu search alone 0 0 5.4 94.7 73.3 0 0 5 100 80

Without PC 2.6 5.7 7.7 73.3 73.3 0 0 6.5 99.3 53.3
LSO-NIO 0 0 19 20 0 20 20 24.8 0 0

Neg Elevator

AMLSI 0 0 0 100 100 0 0 0 100 100
Generation step 0 0 7.4 6.7 0 0 0 17.2 33.3 0

Simple refinement 0 0 2 46.7 46.7 0.2 0 14.2 33.3 0
Tabu search alone 0 0 5.3 100 66.7 0 0 3.2 100 80

Without PC 0.4 0.5 1.8 73.3 73.3 0 0 0.9 93.3 93.3
LSO-NIO 0 0 19.5 53.3 0 6.8 7.4 21.7 20 0

(b) Domain learning results when observations are partial (25%).

Table 3: Domain learning results on 7 IPC domains when observations are complete. AMLSI performance is measured in terms
of error rates for preconditions (resp. effects) Eρ (resp. Eε), syntactical error Eσ , the rate of solved problems Solved and
accuracy Acc. AMLSI’s performance are compared with LSO-NIO’s performance with the same experimental setup. We report
the averages computed over 15 runs (5 runs over 3 different initial states).

show that partial and noisy intermediate observations down-
grade the global performances of AMLSI. However, they re-
main high for all the IPC domains and metrics, and specif-
ically for the accuracy. Despite partial and noisy observa-
tions, AMLSI is able to generate accurate PDDL domains.

Moreover, we can observe that the domain including both
positive and negative preconditions (Neg-Elevator) is easier
to learn that domains including only positive preconditions.
This is due to the fact that negative preconditions have a
stronger impact on the fitness score of the Tabu search. Then,
for domain using only positive preconditions, the easiest do-
main to learn (Gripper) is a domain with the highest level of
compression (see Table - 2) in the induced automaton, and
the most difficult domain to learn (Peg Solitaire) is one of
the domain with the lowest level of compression.

Ablation study In addition, we perform an ablation study
of the AMLSI approach (see Tables 3a and 3b). We test each
part of the AMLSI approach independently:

1. Generation Step: We learn domains by taking into ac-
count only the operator induction step. We can observe
that for the majority of domains, this step is sufficient
for the first experimental scenario (complete and noise-
less observations). However when observations are partial
and/or noisy, this step is not able to learn domains.

2. Simple refinement: We learn refined domain by tak-
ing into account only preconditions/effects precondition
steps, i.e. without the Tabu search. As for the genera-
tion step, this refinement is generally able to learn do-
mains when observations are complete and noiseless. In
addition, this refinement is able to learn some domains
(Blocksworld and Gripper) when observations are partial
and noiseless. However when observations are noisy, this
refinement is not able to learn domains. This is due to
the fact that, during the mapping, noisy propositions will
delete a large amount of information. The effect refine-
ment steps will therefore no longer be able to detect all
of the missing effects. In addition, when observations are
noisy, there is a high risk that this step will detect addi-
tional effects.

3. Tabu search alone: We learn domains with only the Tabu
search, i.e. without the operator induction and precondi-
tions/effects refinement steps. We can observe that for the
majority of domains, Tabu search alone is not able to learn
domains, whatever the experimental scenario. We can also
note that the Tabu search alone generally learns the best
domains when observations are noisy. Finally we can note
that it is the combination of the Tabu search and the effects
and preconditions refinement steps that allow AMLSI to
learn accurate domains in each experimental scenario.

Grammar induction without pairwise constraints
Then, we test a variant of the AMLSI algorithm where
the grammar induction was performed without pairwise
constraints (noted Without PC in Tables 3a and 3b). First of
all, we can observe that the results are generally deteriorated
for each domain and for each experimental scenario.

The performance gap can be explained by the quality of
induced grammar. Indeed, as we have seen in section 4,

RPNI is optimal if and only if samples are ”characteristic”.
The construction of a characteristic sample is not feasible
a priori and we can not assume that the dataset generation
produces characteristic samples. That implies that grammars
induced without PC are more general that grammars in-
duced with PC, and there are therefore more unfeasible se-
quences, i.e. sequences present in the grammar induced and
not present in the ground truth grammar, in grammars in-
duced without PC. These unfeasible sequences causes noises
in the effects refinement, i.e. extra effects are detected during
the effects refinement step.

Finally, we can note that, when grammars are induced
without PC, domains are generally better when observations
are noisy. This due to the fact that when observations are
noisy, effects refinement step detected less extra effects.

Comparison with LSO-NIO LSO-NIO has been tested
with I+ and I−. Random walks including action failures are
obtained by merging I+ and I−. Note that, in our experiment
LSO-NIO’s training set contains between 2000 and 5000 ac-
tions with a majority of failed actions, while LSO-NIO was
tested with a training set containing 20000 actions with an
equal mixture of successful and unsuccessful actions. Also,
for our experimentation, there are fewer objects in initial
states than for the experimentation of (Mourão et al. 2012).

We can observe in Tables 3a and 3b that AMLSI outper-
forms LSO-NIO. These results can be explained in several
ways. First of all, we generally have a lot of negative in-
formation than positive information. This is beneficial for
AMLSI because it makes it possible to have a good au-
tomaton, and it makes it possible to lead efficiently the Tabu
search. This bias LSO-NIO because the updated weights of
the different classifiers need more positive information. In
addition, LSO-NIO learns effects and preconditions by tak-
ing into account actions one by one. While AMLSI, during
the Tabu search, learns effects and preconditions by taking
into account all action sequences. Finally, we observe that
LSO-NIO does not learn static relations in precondition with
our samples.

6 Conclusion
In this paper we present AMLSI, a novel algorithm to learn
PDDL domains. We assume that it is possible to query a sys-
tem to model and to collect partial and noisy observations.
AMLSI is composed of four steps. The first step consists
in building two training sets of feasible and infeasible ac-
tion sequences. In the second step, AMLSI induces a regular
grammar. The third step is the generation of the PDDL op-
erators, and the last step refines the generated operators. Our
experimental results show that AMLSI successfully learns
PDDL domains with high levels of noise and incomplete ob-
servations and outperforms baseline algorithm.

The performance of AMLSI depends a lot on the induced
regular grammar. If the grammar is too complex, or too sim-
ple, AMLSI becomes more sensitive to noise and partial ob-
servations. As the complexity of the grammar depends on
the initial states, future works will focus on the selection of
the initial states. Moreover, it should be possible to bias the
training set generation in order to obtain the best possible

grammar while minimizing the queries. Finally, AMLSI will
be extended in order to learn more expressive PDDL oper-
ators with disjunctive preconditions, conditional effects and
numerical functions.

Acknowledgements
This research is supported by the French National Re-
search Agency under the ”Investissements d’avenir” pro-
gram (ANR-15-IDEX-02) through the Cross Disciplinary
Program CIRCULAR.

References
Arora, A.; Fiorino, H.; Pellier, D.; Métivier, M.; and Pesty, S.
2018. A review of learning planning action models. Knowl-
edge Eng. Review 33:e20.
Cresswell, S., and Gregory, P. 2011. Generalised domain
model acquisition from action traces. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling, ICAPS.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2009.
Acquisition of object-centred domain models from planning
examples. In Proceedings of the 19th International Confer-
ence on Automated Planning and Scheduling, ICAPS.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artif. Intell. 2(3/4):189–208.
Gil, Y. 1994. Learning by experimentation: Incremental
refinement of incomplete planning domains. In Machine
Learning, Proceedings of the Eleventh International Con-
ference, 87–95.
Gregory, P., and Cresswell, S. 2015. Domain model acqui-
sition in the presence of static relations in the LOP system.
In Proceedings of the Twenty-Fifth International Conference
on Automated Planning and Scheduling, ICAPS, 97–105.
Gregory, P., and Lindsay, A. 2016. Domain model acqui-
sition in domains with action costs. In Proceedings of the
Twenty-Sixth International Conference on Automated Plan-
ning and Scheduling, ICAPS, 149–157.
Helmert, M. 2006. The Fast Downward planning system.
Artif. Intell. 26:191–246.
Howey, R., and Long, D. 2003. Val’s progress: The auto-
matic validation tool for pddl2. 1 used in the international
planning competition. In Proceedings of ICAPS Workshop
on the IPC 2003, 28–37.
Kucera, J., and Barták, R. 2018. LOUGA: learning planning
operators using genetic algorithms. In Knowledge Manage-
ment and Acquisition for Intelligent Systems - 15th Pacific
Rim Knowledge Acquisition Workshop, PKAW, 124–138.
McCluskey, T. L.; Richardson, N. E.; and Simpson, R. M.
2002. An interactive method for inducing operator descrip-
tions. In Proceedings of the Sixth International Conference
on Artificial Intelligence Planning Systems, 121–130.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-the
planning domain definition language.

Mourão, K.; Zettlemoyer, L. S.; Petrick, R. P. A.; and Steed-
man, M. 2012. Learning STRIPS operators from noisy
and incomplete observations. In Proceedings of the Twenty-
Eighth Conference on Uncertainty in Artificial Intelligence,
614–623.
Oncina, J., and Garcı́a, P. 1992. Inferring regular languages
in polynomial update time. In Pattern Recognition and Im-
age Analysis: Selected Papers from the IVth Spanish Sympo-
sium, volume 1. World Scientific. 49–61.
Rodrigues, C.; Gérard, P.; and Rouveirol, C. 2010. Incre-
mental learning of relational action models in noisy environ-
ments. In Inductive Logic Programming - 20th International
Conference, ILP, 206–213.
Segura-Muros, J. Á.; Pérez, R.; and Fernández-Olivares, J.
2018. Learning numerical action models from noisy and par-
tially observable states by means of inductive rule learning
techniques. In KEPS, 46–53.
Shahaf, D., and Amir, E. 2006. Learning partially observ-
able action schemas. In The Twenty-First National Confer-
ence on Artificial Intelligence and the Eighteenth Innovative
Applications of Artificial Intelligence Conference, 913–919.
Simpson, R. M.; McCluskey, T. L.; Zhao, W.; Aylett, R. S.;
and Doniat, C. 2014. Gipo: an integrated graphical tool
to support knowledge engineering in ai planning. In Sixth
European Conference on Planning.
Wang, X. 1995. Learning by observation and practice: An
incremental approach for planning operator acquisition. In
Machine Learning, Proceedings of the Twelfth International
Conference on Machine Learning, 549–557.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artif.
Intell. 171(2-3):107–143.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artif. Intell. 174(18):1540–1569.
Zhuo, H. H.; Nguyen, T. A.; and Kambhampati, S. 2013.
Refining incomplete planning domain models through plan
traces. In Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, IJCAI, 2451–2458.

