
PDDL Templating and Custom Reporting:
Generating Problems and Processing Plans

Peter Gregory
Schlumberger Cambridge Research Center

High Cross, Cambridge, UK
pgregory@slb.com

Abstract

Much of the literature in the Knowledge Engineering sub-
field of Automated Planning has focussed on domain engi-
neering: for example, how to assist non-experts to construct
useful PDDL domain files. In addition to domain engineering,
non-experts also have to be able to construct planning prob-
lems that are correct with respect to this domain, and also
interpret plans in a way that makes sense in the particular ap-
plication domain of study.
This work provides a collection of methods for constructing
planning problems, and interpreting plans, based on Jinja2
templating. The focus of the problem construction templat-
ing is connecting to data sources and building problems based
on these sources. Template functions range from allowing
time units and ISO times to set timed initial literals and dura-
tions to methods for constructing initial state conditions based
on database queries. We provide a unified data structure that
combines the information in the domain, problem and plan.
Combined with helper functions, we demonstrate how this
can ease the process of creating plan reports of various kinds.

1 Introduction
Much of the literature in the Knowledge Engineering sub-
field of Automated Planning has focussed on domain en-
gineering: for example, how to assist non-experts to con-
struct useful PDDL domain files. For example, the MyPDDL
system [1] is motivated by the lack of existing systems for
‘modeling complex, real-world problems’. In addition to the
task of domain model construction, existing tools also as-
sist modellers to create problem instances. The GIPO system
[2] and the itSIMPLE system [3] provide visual methods for
constructing both planning domains and problems.

This work provides a collection of methods for construct-
ing planning problems, and interpreting plans, based on
Jinja2 templating. The focus of the problem construction
template is connecting to data sources and building prob-
lems based on these sources. Rather than the GUI-based as-
pect of previous work, we are concerned with how business
systems can interact with planners.

Beyond problem construction, we are interested in plan
interpretation. Previous systems do not generally consider
what happens to plans after generation. At face-value, a plan

is simply a list of instructions that achieve a goal, if exe-
cuted. When combined with the domain model and prob-
lem, the combined structure can convey much more infor-
mation. A plan does not include details of alternative actions
that were not performed, objects that are unused in the plan,
timed initial literals, which actions achieve the goals, etc. We
provide a unified data structure that combines the informa-
tion in the domain, problem and plan. Combined with helper
functions, we demonstrate how this can ease the process of
creating plan reports of various kinds.

2 Background

This work relies heavily on Jinja templating [4]. Figure 1
shows a JSON [5] object that will be used to demonstrate
Jinja templating. The object records a list of three people
and their pets. Jinja templating is a method of transforming
a JSON object into another, typically textual, representation.
Templates are built by decorating a textual document with
references to the input JSON. Jinja offer ways of access-
ing attributes of JSON objects in a programmatically natu-
ral way, provides typical programming features like looping
and conditional statements, provides many functions and is
extensible such that a developer can add more functions.

Two examples of templates and their outputs are provided
in Figure 2 and Figure 3. Figure 2 shows simple looping
and attribute access: the template is shown at the top of the
figure, the output is shown underneath. As can be seen, at-
tributes are accessed using a double brace syntax, and con-
trol statements are accessed using a brace / percent pair syn-
tax. Figure 3 shows a more involved template and its output.
In addition to the attribute access that we saw in the previous
example, this example shows the use of functions that ma-
nipulate the input data: these functions are called ‘filters’ in
Jinja terminology, and are invoked using the pipe operator.

This example shows several of these filters: for example
the ‘selectattr’ filter that selects a subset of of the elements of
a list, based on a provided test; the ‘length’ filter that returns
the number of elements in a list and the ‘join’ filter that joins
each element of a list with a delimiter. The result of this
template is to list the different owners of the pet types.

{"data" : [
{

"name" : "Peter",
"pet" : "cat"

},
{

"name" : "Jonathan",
"pet" : "dog"

},
{

"name" : "Ben",
"pet" : "cat"

}
]}

Figure 1: An example JSON object: in this case, recording
the pets of three people: Peter, Jonathan and Ben.

Related Work
There are several existing plan reporting tools. As we will
see, these offer limited customisation.

Visual Studio Code Extension The VS Code Extension
[6] is the most sophisticated plan reporting tool that we are
aware of. The purpose of the extension is developing plan-
ning domains and problems. The plan reporting tool, there-
fore is domain independent, and shows the plan in a Gannt
chart, then each object’s timeline, and finally a graph of each
of the numeric fluents. An example of the output is shown
in Figure 5. This report can either be viewed within Visual
Studio Code itself, or exported as HTML. The report can be
customised in the following ways:

• The width of the report can be altered.

• The line charts can be displayed either as one chart per
grounded function, or one chart per lifted function with
one line per grounded function.

Only aesthetic customisations can therefore be made to the
report.

VAL Plan Validation Reporting The VAL plan validator
[7] has the ability to create a LATEX validation report. This
is a comprensive report on the plan validity, state changes
that occur in the plan, graphs of numeric fluents and a Gannt
chart view of the plan. The report is customisable only to the
extent that the LATEX source is available for editing.

{% for person in data %}
{{person.name}} owns a {{person.pet}}.

{% endfor %}

Peter owns a cat.
Jonathan owns a dog.
Ben owns a cat.

Figure 2: An example Jinja template and its output, given the
data in Figure 1. Jinja is a templating language that allows
typical programming constructs to produce custom views of
data.

{% set cats =
data|selectattr("pet","eq","cat")|list %}

{% set dogs =
data|selectattr("pet","eq","dog")|list %}

There are {{cats|length}} cat owners:
{{cats|map(attribute='name')|join(", ")}}.

There are {{dogs|length}} dog owners:
{{dogs|map(attribute='name')|join(", ")}}.

There are 2 cat owners:
Peter, Ben.

There are 1 dog owners:
Jonathan.

Figure 3: A slightly more involved Jinja template and its out-
put, given the data in Figure 1. This example demonstrates
the use of filters: essectially functions that manipulate the
input data. The filters in this example are selectattr,
list, length, map and join.

planning.domains By using the planning.domains web-
site [8], plans are reported as a list of actions. If an action is
selected, then the grounded operator is shown in an adjacent
panel. This shows the grounded preconditions and effects of
the action, which presumably could aid in both the under-
standing of a domain, and in the debugging of a domain (if,
for example, it was not expected that a certain action was
applicable). This is the only way in which a plan can be
viewed, and there is no customisation available. However,
the action selection does show how a dynamic aspect to a
plan report can allow more information to be presented as
and when the user requires it.

3 Problem Construction
The Visual Studio Code PDDL Extension [6] allows the con-
struction of planning problems using a templating language.
In this section, we describe some additional filters to enrich
this templating language. These filters are designed to make
the bridge between business data and the planning model as
small as possible. Reducing the steps between original data
and a planning model correspondingly reduces the potential
to introduce translation errors.

Table-Based Initial State Generators
The initial state generators that we present are conceived on
the notion that the true valuations of a particular predicate
type, or numeric function type, can be described in their ex-

Location Road

Manchester M6
Cambridge M11
Birmingham M6

(connected Manchester M6)
(connected Cambridge M11)
(connected Birmingham M6)

Figure 4: A table of data on the left, and an equivalent set of
predicates on the right. Much data is stored, or queried, in
tabular form. This table shows motorways that connect to a
few British cities.

tensional form. That is, in the form of a table, with all val-
ues enumerated. For example, the table in Figure 4 shows
a table view of a predicate type, along with the correspond-
ing predicates of this type in the initial state of a planning
problem. Figure 6 shows the equivalent for numeric fluent
assignments in the initial state.

Database queries typically return tables: this is true both
of relational databases in SQL queries and linked databases
in SPARQL queries. Spreadsheets form another source of
table-based data; Microsoft Excel forms the primary data
format in many business areas. As such, we provide three
types of filter for constructing initial state predicates from
tables (we have corresponding filters for generating fluent
assignments, which we omit here due to their similarity):

init_pred_sql(pred_name,query) This filter
takes a file or URL containing the predicate name and
an SQL query that generates the initial state. It then
outputs the result as predicates. The SQL server, user-
name and password must be supplied either through a
separate configuration file, or through the additional filter
sql_config(server, username, password).

init_pred_sparql(pred_name,query) This fil-

Figure 5: An example of the VS Code plan report. This re-
port displays a Gannt Chart view of the plan, a swim-lane
view for each object, and a line chart for each numeric flu-
ent.

Location Population

Manchester 555,000
Cambridge 124,000
Birmingham 1,140,000

(= (pop Manchester) 550000)

(= (pop Cambridge) 124000)

(= (pop Birmingham) 1140000)

Figure 6: A table of data on the left, and an equivalent set
of numeric fluent assignments on the right. This table shows
the populations of the cities mentioned in Figure 4.

ter takes the predicate name and a file or URL con-
taining and an SPARQL query that generates the ini-
tial state. It then outputs the result as predicates. The
SPARQL endpoint must be supplied either through a sep-
arate configuration file, or through the additional filter
sparql_config(sparql_endpoint).
init_pred_excel(pred_name, excel_file,
worksheet, range) This filter takes the predicate
name, an Excel file or URL, the worksheet name, and a
range of cells that form the initial state of the predicate (in
Excel, ranges are specified in “A1:C10”, for example).

These filters will be extended to allow bindings to other
data sources, and to bind to named tables in Excel, for exam-
ple. Currently no support is developed for CSV and HTML
tables, for example.

Time Filters
In PDDL, durations and other times are encoded as unit-less
numbers. In the real world, in contrast to PDDL, durations
of actions have actual time units, deadlines refer to specific
points in time and actions start and end at specific points in
time. To reflect this, we introduce a number of filters to deal
with ISO time, and time units.
pddl_time(ISO_time) This filter takes a time encoded
as an ISO time (e.g. “2020-01-03T00:00:30”) and returns
the corresponding unitless PDDL time. This function re-
quires a reference timestamp that signifies the start of the
plan, which can be passed in a configuration file, or with the
additional filter timestamp(ISO_time).
seconds(num), minutes(num), hours(num),
days(num) and months(num) This family of filters
take a number of a given time unit, and convert that to
unitless PDDL time. This filter relies on a standard time
unit being used, and this can either be set in a configuration
file, by the time_unit(unit) filter, or will default to
minutes.

These filters can be employed in the duration of actions
(for example, in the turn to action in Figure 7) or to timed
initial literals (as in the initial state fragment of Figure 7.

4 Combined PDDL Representation
Much information is contained in a PDDL plan. However,
without the domain and problem files, it is not possible to
interpret its meaning in any useful way. For example: with-
out the problem file, it isn’t possible to identify object types
(especially when subtyping is used); without the problem

(:durative-action turn_to

:parameters (?s - satellite ?d_new ?d_prev - direction)

:duration (= ?duration {{1|hours + 25|minutes}})

:condition (at start (pointing ?s ?d_prev))

:effect (and

(at end (pointing ?s ?d_new))

(at start (not (pointing ?s ?d_prev))))

)

(:init

(calibration_target instrument0 groundstation2)

(at {{"2020-01-04T00:15:00"|pddl_time}}

(not (calibration_target instrument0 groundstation2)))

(at {{"2020-01-04T00:15:00"|pddl_time}}

(calibration_target instrument0 groundstation2))

(= (slew_time phenomenon4 groundstation2) {{15|minutes}})

...

)

Figure 7: Examples of the time-related filters developed in
order to avoid errors when converting real times into PDDL
times. See the turn to action for an example of combining
time units, and the initial state fragment for examples of the
pddl time filter.

file, the timed initial literals are not seen; without the do-
main file, it is impossible to understand if a change to the
plan is valid. Put in the most general terms, the plan cannot
be interpreted without the context of the domain model and
problem. We propose a unified object that contains all rel-
evant information, in order to be able to interpret a plan in
context.

Combined PDDL JSON Object
In this section we describe the current Combined PDDL
JSON [5] Object. The object has been built organically for
applications, attributes being added to as required. In this
sense, it is not supposed to be a definitive model, but a work-
ing model that captures what we have found useful so far. We
feel, however, that it already captures a significant amount
of information. Figure 8 describes the object in a schema-
like representation. This is not formal JSON Schema, as this
would be more cumbersome to present in this report, but is
intended to be a more human-readable alternative.

There are definitions for the domain, problem, plan and
two extra attributes that are derived from the plan: the in-
tervals over which the predicates are true and the sequence
of values for each numeric fluent in the problem. These new
attributes reflect the fact that there is hidden structure con-
tained within the plan, that can only be recovered by inter-
preting the plan, problem and domain simultaneously.

When interpreting a plan either for execution, or simply
for reporting and storage, it is often the predicates and flu-
ents that are interesting, rather than just the actions. For
example, if a fluent represents the fuel level of a vehicle,
by looking at the plan alone it isn’t possible to see that
there is a fuel level fluent at all. In order to know the ini-
tial value, the problem is required. To understand how the
value changes requires the domain file. By using the com-
bined PDDL JSON object, we have access to this informa-

tion. This information then allows us to understand our fuel
consumption or to chart fuel use over time, for example.

Finally, there is also the ‘params’ attribute, which allows
arbitrary external data to be passed to the template. Exam-
ples could include database server information, query paths,
timestamps and mappings between PDDL object names to
some external reference. Since these will be application spe-
cific, we simply define the attribute, without committing to
what will be contained within it.

PDDL Specific Jinja Filters
The PDDL Templating tool is built on top of the VAL plan
validation tool, using a C++ Jinja implementation, jinja2cpp.
This means that custom filters can be coded in C++ that
provide useful computations that could be needed in a cus-
tom report of a plan. These filters can then be used within
any template. Some of these filters compute information that
could form part of the combined PDDL JSON object. Con-
versely, some information in the PDDL JSON object (for ex-
ample, the predicate intervals), could be replaced by a filter
that would compute these values on-the-fly. The decisions
about whether to encode the information, or expose filters to
compute it, will need to be made as per user requirements as
more plan templates are developed.

The state_at Filter This filter takes a time as a param-
eter, and returns the state at that time, in the same format as
the state is defined in the initial state of the combined PDDL
JSON object. This provides the means to display the state at
any time during the plan. This could be useful, for example,
if in Driverlog the plan was to be presented as a roster for
the drivers. A time-slice of each day could be taken, and the
state would contain the truck that each driver was driving.

The applicable_at Filter This filter takes a time as
a parameter, and returns a list of actions that are applicable
in this state. This filter allows alternative actions to those
found within the plan to be reported. This could help when
debugging a domain model, for example, ensuring that those
actions that were expected to be applicable actually are.

The eval_pddl Filter This filter takes an arbitrary
PDDL expression, and returns the valuation of that expres-
sion over the length of the plan. For example, it may be use-
ful for reporting purposes to monitor those times in which a
truck was low on fuel. You could evaluate the following:

{{"(<= (fuel truck1)
(* (capacity truck1) 0.05))"|eval_pddl}}

And a list of valuations of the expression will be returned,
one for each time-point in the plan the expression changes.
In this case, a list of booleans, though numeric fluents are
equally possible. Going forwards, we would like to add more
general expressions. For example, it might be useful to count
the number of drivers who are in a truck at any one time.
Currently, this is possible from the Jinja side, for example
here:

{{state_at(0.0)
| selectattr("predicate","eq","driving")
| length }}

{"data" : {
"domain": {"name": "name"},
"problem": {"name": "problem_name",

"domain_name": "domain_name",
"objects": [{ "name": "object name", "type": "object type" }],
"initial_state": ["predicate"],
"initial_state_assignments": [

{"function": "function name",
"value": "initial assignment"}],

"timed_initial_state":
{"adds": ["predicate"],
"dels": ["predicate"]},

"goal_state": ["predicate"]}
},
"plan": [{ "name": "action name",

"args": "action arguments",
"time": "start time",
"duration": "action duration",
"end_time": "end time" }] ,

"intervals": [{"variable": "predicate name",
"intervals": [{"start": "time predicate is added",

"end": "time predicate is deleted" }] }],
"function_values": [{"function": "function name",

"values": [{"time": "time of function value change",
"value": "new function value",
"continuous": "was the change continuous" }] }],

"params": {}
}

Figure 8: The Combined PDDL JSON Object. The object combines the domain model, the problem, the plan, the predicate
intervals and the function values. By combining this information, it becomes easier to interpret the plan in context, and therefore
makes building custom reports easier.

However, we imagine that some expressions are better posed
as PDDL, and would like to allow some of these natural
functions, such as counting, into the eval_pddl filter.

Of course, all of these PDDL evaluations could be me-
chanically added to the domain model itself. However, often
the expressions that are used in reporting a plan are different
to those that are required in order to generate the plan. In
this sense, these extra predicates and fluents would at best
slow down the planner through redundant computation, and
at worst affect the performance of the planning heuristic.

The iso_time Filter This filter take a unitless PDDL
time value as input, and returns an ISO formatted time as a
string. The filter has two optional parameters of a reference
timestamp (the start of the plan) and a time unit (seconds,
minutes, hours or days) that the value should be interpreted
as. These parameters can also be passed in the ‘param’ at-
tribute of the combined object, since they should remain
constant for all queries to the filter.

The is_static Filter This filter takes a predicate as in-
put, and returns true if the predicate is static, and false if it is
not. Static, for the purposes of this filter, means static in the
context of the plan: i.e. maintains the same value for the du-
ration of the plan. Of course, it would be possible to encode
the more common notion of static, meaning not possible to
change by any plan. However, for reporting purposes, the
former definition has proven more useful practically.

5 Custom Plan Reporting
In this section we detail several existing custom plan reports,
both domain-independent and domain-dependent, generated
by PDDL Jinja templates. The purpose of this is to demon-
strate the flexibility of plan templating, and how different
applications can be served by the combined PDDL JSON
object.

LATEX Reporting Figure 9 shows a generic plan visuali-
sation that shows a Gannt chart view of the plan, and also
the intervals over which the predicates hold in the plan. The
Jinja template that generates the LATEX/TikZ code is shown
directly below it. This example demonstrates several of the
custom filters described above. Note, for example, that the
static predicates are not displayed in the predicates because
we filter them out using the ‘is static’ filter.

Driverlog Roadmap Generation The LATEX report shown
in Figure 9 is a domain independent template. However,
since we are interested in custom reporting, we also demon-
strate the ability to build a domain-dependent report: this
time, creating a dot representation of the roadmap. Recall,
in the Driverlog domain, there are paths that the drivers can
walk on, and roads that that can only be traversed in a truck.
Figure 11 shows this roadmap with the paths in thin edges,
and roads in thick edges. The template code is listed below
the image.

(walk driver1 s2 p1-2)
(walk driver1 p1-2 s1)
(walk driver1 s1 p1-0)
(walk driver1 p1-0 s0)

(board-truck driver1 truck1 s0)
(drive-truck truck1 s0 s1 driver1)

(disembark-truck driver1 truck1 s1)

(at driver1 p1-0)
(at driver1 p1-2)
(at driver1 s0)
(at driver1 s1)
(at driver1 s2)
(at truck1 s0)
(at truck1 s1)

(driving driver1 truck1)
(empty truck1)

{% set yscale = 0.4 %}
{% set xscale = 0.1 %}
{% for a in plan -%}
{% set idx = plan|length - loop.index %}
\node[left] at (0,{{(idx+0.5)*yscale}}) {\texttt{ {{a.action}} } };
\draw [fill=orange]

({{a.time|time_pct*xscale}},{{(idx+0.1)*yscale}})
rectangle

({{a.end_time|time_pct*xscale}},{{(idx+0.9)*yscale}});
{% endfor %}

{% for interval in intervals|rejectattr('variable','is_static') -%}
{% set idx = -(intervals|rejectattr('variable','is_static')|length - loop.index) %}
\node[left] at (0,{{(idx-0.5)*yscale}}) {\texttt{ {{interval.variable}} } };
{% for i in interval.intervals -%}
\draw [|-|, ultra thick, purple]
{{i.start|time_pct*xscale}},{{(idx-0.5)*yscale}})

--
({{i.end|time_pct*xscale}},{{(idx-0.5)*yscale}}) ;

{% endfor -%}
{% endfor -%}

Figure 9: Plan visualisation for Driverlog Problem 1 (above) and the corresponding PDDL Template Jinja code (below) that
generated the visualisation in TikZ code. This example demonstrates the use of the is_static filter which checks if a
predicate is static, and the time_pct filter, which returns a time as a percentage of the overall length of the plan.

Database Code Generation Interaction with business
systems typically involves storing results in some kind
of database. Figure 10 shows a template that generates a
SPARQL query to insert the times that each package is
picked up and delivered in a Driverlog problem. A deliv-
ery system would likely need its information in a database
in order to communicate estimated times of arrival with cus-
tomers.

If the plan templating was not available, a developer
would be required to write a plan parser, and also interpret
the meaning of the PDDL times. By having the conversion
performed directly on the PDDL JSON object, the potential
for introducing mistakes through misunderstanding the plan,
or in incorrectly interpreting the time unit, is reduced.

Interactive Plan Viewer Figure 12 shows a screenshot
of a web-based interactive plan viewer, showing a Gannt
chart and predicate timelines. This visualisation is domain-

independent, but it would be straightforward to add domain-
specific components. Each component in this visualisation is
generated by a separate template. In order to enable this, we
built a web service that invokes the plan template system on
a domain / problem / plan / template combination. The inter-
active components of the visualisation are: a search field that
restricts the Gannt chart and timelines to a particular object
or object type; hovering with the mouse over the plan will
reveal the state where the cursor is placed as a tooltip.

Note that the goal predicates are highlighted in green.
Short of building a PDDL problem parser, the only way
in which this is possible is be having the combined PDDL
JSON object, which contains the goals in the problem at-
tribute. We highlight the fact that previous plan reports do
not report things like the predicate timelines, and suggest
one reason behind this is that these reports primarily report
information explicitly reported in the plan.

PREFIX dl: <http://www.driverlog.com/>

CONSTRUCT {

dl:package1 dl:pickup

"2020-01-02T10:00:00"ˆˆxsd:datetime.

dl:package1 dl:dropoff

"2020-01-02T12:00:00"ˆˆxsd:datetime.

dl:package2 dl:pickup

"2020-01-02T11:00:00"ˆˆxsd:datetime.

dl:package2 dl:dropoff

"2020-01-02T12:00:00"ˆˆxsd:datetime.

}

PREFIX dl: <http://www.driverlog.com/>

CONSTRUCT {

{% for a in plan|selectattr('action','eq','load') %}

{{a.args[0]}} dl:pickup

"{{a.start_time|iso_time}}"ˆˆxsd:datetime.

{% endfor %}

{% for a in plan|selectattr('action','eq','unload') %}

{{a.args[0]}} dl:dropoff

"{{a.start_time|iso_time}}"ˆˆxsd:datetime.

{% endfor %}

}

Figure 10: An example of a template for generating a
SPARQL query to append an ontology with the pickup and
dropoff times of each package.

6 Future Directions

In this section, we propose several interesting projects that
could be enabled by the plan templating system. These typi-
cally require additional information to be added to the com-
bined PDDL JSON object.
Automated Abstractions Abstractions of the form de-
scribed in [9] and [10], for example, can often be described
as transformations of planning domains and problems, based
on certain rules. Think of the delete relaxation heuristic of
FF [11], it is possible to transform a domain to a ‘relaxed’
version of that domain simply by removing the delete effects
of the domain operators. Currently, the operators are not ex-
posed in the PDDL JSON object. Once they are, then many
abstractions can be computed automatically.
Validation Reports One of the most important ways to de-
bug PDDL is to have automated feedback on domain mod-
els, problem files and plan validity. The VAL [7] plan valida-
tion system provides useful feedback. However, we envisage
a more structured feedback report, with error and warning
codes that could be more easily exploited in systems like the
Visual Studio Code extension [6].
Interactive Plan Editor In Section 5 we described an in-
teractive plan visualisation tool. We would like to extend
this system to be a plan editing tool, where actions can be
added, removed, dragged to different places in the plan, etc.
The mechanisms to allow this are already in place: the most
important requirement is the ‘applicable at’ filter, which re-
turns the applicable actions at a give point in the plan. We
feel that the ability to quickly modify plans to satisfy subjec-
tive preferences, whilst guaranteeing that plans remain valid
will be useful in many applications.

s0 s1s2

p1-0 p1-2

digraph x {

{% for pred in problem.initial_state

|selectattr('predicate','eq','path')|list -%}

"{{pred.arguments[0]}}" -> "{{pred.arguments[1]}}"

[arrowhead=none]

{% endfor %}

{% for pred in problem.initial_state

|selectattr('predicate','eq','link')|list -%}

"{{pred.arguments[0]}}" -> "{{pred.arguments[1]}}"

[arrowhead=none, penwidth=5]

{% endfor %}

}

Figure 11: Driverlog Map and corresponding template for
pfile1. Driveable links are shown in the figure as bold edges,
walkable paths are shown as the lighter edges.

7 Limitations
The combined PDDL JSON object is a work in progress.
The ultimate intention is that it makes explicit all of the im-
plicit richness of a domain model, problem and plan. Addi-
tions have currently been made to the object in as as-needed
ad hoc manner. We describe some potential additions:

• Operator object definition in the domain model. Having
operators made explicit will allow domain transforma-
tions within the PDDL templating system. We feel this is
the most important omission currently, and we are work-
ing to address this presently.

• Causal links between the actions. For many reporting pur-
poses, it will be important to understand the underlying
causal structure of the plan. For example, in the interactive
visualisation, it would be desirable to focus on an individ-
ual goal, and filter out any actions that do not contribute
to this goal in some way.

For any new piece of data that could be added, there is
a tension between adding the information explicitly in the
combined PDDL JSON object, and allowing computation of
the information via filters. By adding the information to the
object, we add richness to the object, but we also increase its
size, potentially making it bloated.

8 Conclusions
In this work, we have introduced several Jinja filters related
to problem generation and the combined PDDL JSON ob-
ject that combines information from the domain model, the
problem definition and the plan. The idea in this object is to
encapsulate as much of the richness of a plan as possible in
one place, such that it is possible to interpret plans with all
relevant context.

Figure 12: A screenshot of an interactive plan viewer. This shows similar information to exiting plan reporting systems. In
addition to a Gannt chart and the variable fluent graphs, there are predicate timelines..

References
[1] Volker Strobel and Alexandra Kirsch. “Planning in

the wild: modeling tools for PDDL”. In: Joint Ger-
man/Austrian Conference on Artificial Intelligence
(Künstliche Intelligenz). Springer. 2014, pp. 273–
284.

[2] Thomas Leo McCluskey, Donghong Liu, and Ron
M Simpson. “GIPO II: HTN Planning in a Tool-
supported Knowledge Engineering Environment.” In:
ICAPS. Vol. 3. 2003, pp. 92–101.

[3] Tiago Stegun Vaquero et al. “itSIMPLE 2.0: An In-
tegrated Tool for Designing Planning Domains.” In:
ICAPS. 2007, pp. 336–343.

[4] Pallets. “Jinja2 Documentation”. In: Jinja2 Docu-
mentation (2.11.1) (2020).

[5] Ben Smith. Beginning JSON. Apress, 2015.
[6] Derek Long, Jan Dolejsi, and Maria Fox. “Building

support for PDDL as a modelling tool”. In: KEPS
2018. 2018, p. 78.

[7] Richard Howey, Derek Long, and Maria Fox. “VAL:
Automatic Plan Validation, Continuous Effects and
Mixed Initiative Planning Using PDDL”. In: 16th
IEEE International Conference on Tools with Ar-
tificial Intelligence (ICTAI 2004), 15-17 November
2004, Boca Raton, FL, USA. IEEE Computer Society,
2004, pp. 294–301. DOI: 10.1109/ICTAI.2004.120.
URL: https://doi.org/10.1109/ICTAI.2004.120.

[8] Christian Muise. “planning.domains”. In: ICAPS sys-
tem demonstration (2016).

[9] Peter Gregory et al. “Exploiting path refinement ab-
straction in domain transition graphs”. In: Twenty-
Fifth AAAI Conference on Artificial Intelligence.
2011.

[10] Lorenza Saitta and Jean-Daniel Zucker. Abstrac-
tion in artificial intelligence and complex systems.
Vol. 456. Springer, 2013.

[11] Jörg Hoffmann. “FF: The fast-forward planning sys-
tem”. In: AI magazine 22.3 (2001), pp. 57–57.

