
On the Robustness of Domain-Independent Planning Engines:
The Impact of Poorly-Engineered Knowledge∗

Mauro Vallati
University of Huddersfield

m.vallati@hud.ac.uk

Lukáš Chrpa
Czech Technical University in Prague, and

Charles University in Prague
chrpaluk@fel.cvut.cz

Abstract

Recent advances in automated planning are leading towards
the use of planning engines in a wide range of real-world
applications. As the exploitation of planning techniques
in applications increases, it becomes imperative to assess
the robustness of planning engines with regards to poorly-
engineered (or maliciously modified) knowledge models pro-
vided as input for the reasoning process.
In this work, to understand the impact of poorly-engineered
knowledge on planning engines, we consider the perspective
of a hypothetical attacker that is interested in subtly manip-
ulating such knowledge to introduce unnecessary overheads
that consequently slow down the planning process. This nar-
rative ploy allows us to describe different types of knowledge
engineering issues that cannot be detected via validation of
the models, and to measure their impact on the performance
of a range of planning engines exploiting very different ap-
proaches for steps like pre-processing and search.

Introduction
Automated planning is one of the most prominent AI chal-
lenges; it has been studied extensively for several decades,
and it is now exploited in a wide range of applications. Ex-
amples include network security penetration testing (Hoff-
mann 2015), urban traffic management (McCluskey and Val-
lati 2017), battery load management (Fox, Long, and Maga-
zzeni 2012), and control of robots (Kvarnström and Doherty
2010; Capitanelli et al. 2018). The availability of tools such
as planning.domains,1 or itSIMPLE (Vaquero et al. 2007),
is also fostering the independent testing and evaluation of
automated planning techniques by domain experts, that may
have limited expertise in AI planning and knowledge engi-
neering.

The vast majority of planning engines have been tradition-
ally designed and developed for working on “good quality”
and rather simple domain models. These models are devel-
oped by planning experts who leverage their experience to
encode the available domain knowledge into suitable and
efficient planning models. Despite the fact that there is no

∗This paper has been published in the proceedings of the ACM
Conference on Knowledge Capture (K-CAP) 2019.

1http://planning.domains

unified view on what good quality model means in the au-
tomated planning context (McCluskey, Vaquero, and Vallati
2017), existing pre-processing and pruning techniques ad-
dress a limited number of possible issues of planning models
(e.g., symmetries that may occur in the search space), rather
than addressing potential engineering issues of the provided
models. However, the more automated planning is exploited
in real-world applications, the higher is the probability that
planning engines are provided with low-quality (or poorly-
engineered) models, due to models being encoded by practi-
tioners or non-planning experts, or even by planning experts
with limited understanding of the application domain and
its dynamics. Furthermore, it is well-known that any com-
puter system can be the target of an attack, and attacks can
be crafted to target knowledge models. As we are more and
more using planning techniques in real-world applications,
it is incumbent on us to investigate how well planning tech-
niques can cope with malicious attacks targeting the input
provided to engines. This need is particularly pressing in
cases where planning is used for security or safety-related
purposes. In those cases, planning must become secure it-
self.

In order to investigate the robustness of domain-
independent planning engines to issues in the input knowl-
edge models, and to raise awareness of the impact of ma-
liciously modified knowledge, in this work we take an at-
tackers’ perspective. Our hypothetical attacker can manip-
ulate the input knowledge of planning engines, with the
aim of reducing planning capabilities. The attacker carefully
crafts her attacks so that they cannot be detected by a post-
hoc analysis of the generated solution plans, and can only
be spotted by an expensive and time-consuming inspection
of the input models. In fact, this is exactly what happens
in cases that are usually classified as accidental complex-
ity issues (Brooks 1987), that can typically arise when en-
coding a planning model. It should be noted that the con-
sidered attacker’s perspective is a narrative ploy used to
highlight how engineering issues –hard to identify by hu-
man experts and automated validation– affect the perfor-
mance of planning engines. It is therefore different from
traditional adversarial planning (e.g., (Brafman et al. 2009;
Speicher et al. 2018)). For the sake of our analysis, here we



assume that the defender is unaware of the attacker and of
her goals. In that, if we have to draw a parallel with other AI
areas, our narrative settings can be seen as more similar to
adversarial machine learning (Laskov and Lippmann 2010):
the only way to address (potential) attacks is by improving
the robustness of the exploited planning engines.

As additional contributions, we describe and empirically
evaluate two techniques that –by manipulating either the
problem or the domain model files by adding dummy ob-
jects or operators– can be used to degrade the performance
of state-of-the-art domain-independent planning engines.
Whereas the introduced attack techniques are easy to per-
form, and can be easily happen as the result of a poor en-
gineering process, their impact on performance of planning
engines can be considerable.

While taking an attacker’s perspective and provide sug-
gestions to reduce performance may seem counterproduc-
tive, we believe that learning the weaknesses of current plan-
ning engines is the only way to fix them in the future. In fact,
the main aim of this work is to raise awareness of the sensi-
bility of existing planning engines to seemingly unimportant
issues of knowledge models, and advocate for the develop-
ment of more robust techniques for performing planning and
for better tools for supporting the knowledge engineering of
future models.

Automated Planning
Automated planning deals with finding a (partially or to-
tally ordered) sequence of actions transforming the environ-
ment from some initial state to a desired goal state (Ghallab,
Nau, and Traverso 2004). In the classical representation, the
environment is represented by first-order logic predicates.
States are defined as sets of grounded predicates (atoms). A
planning operator o = (name(o), pre(o), eff−(o), eff+(o))
is specified such that name(o) = op name(x1, . . . , xk)
(op name is a unique operator name and x1, . . . xk are vari-
able symbols (parameters) appearing in the operator), pre(o)
is a set of predicates representing the operator’s precon-
ditions, eff−(o) and eff+(o) are sets of predicates repre-
senting the operator’s negative and positive effects. Actions
are grounded instances of planning operators. An action
a = (pre(a), eff−(a), eff+(a)) is applicable in a state s if
and only if pre(a) ⊆ s. Application of a in s (if possible)
results in a state (s \ eff−(a)) ∪ eff+(a).

In classical planning, a domain model is specified via sets
of predicates and planning operators. A problem model (or
problem instance) is specified via objects (that are substi-
tuted for free variables in predicates and operators), an ini-
tial state and a set of goal atoms. A planning task consists
of a domain model and a problem instance. A solution plan
for a planning task is a sequence of actions such that a con-
secutive application of the actions in the plan (starting in the
initial state) results in a state that in which all the goal atoms
are true.

When using the dominant family of planning knowledge
representation languages – PDDL (Mcdermott et al. 1998),
the planning domain model and problem instance are pro-
vided to planning engines as two different files, and the same

domain model is used for a class of problem instances.
The classical planning model can be extended, in order

to handle a wider range of constraints and increase expres-
siveness. For instance, this is the case in Temporal Planning,
where actions have a duration (in this case PDDL 2.1 can
be used for encoding). Uncertainty Planning studies cases
in which the environment is not fully observable and ef-
fects are non-deterministic. A further extension is named
PDDL+ (Fox and Long 2006), which contains constructs to
define hybrid domains, including processes and events. On
this matter, the interested reader is referred to Ghallab, Nau,
and Traverso (2004) and Geffner and Bonet (2013).

Formalisation
Given our attacker’s perspective, the idea lies in modifying
domain models and/or problem instances in such a way that
they still allow to produce correct solution plans, with re-
gards to the original models, while reducing the performance
of planning engines by introducing additional (and unneces-
sary) overheads. In other words, the aim of the attacker is
to make the model harder for planning engines rather than
damaging the plan, making tasks unsolvable, or terminat-
ing the engines. As it is apparent, the depicted attacker’s be-
haviour can in fact be the result of a poor knowledge engi-
neering process. Instead of attacks, they can be accidental
complexity issues. Particularly, those that are the hardest to
be spotted, due to the fact that generated plans are valid and
do not present easily recognisable oddities.

Technically speaking, the modified planning task must not
generate different solution plans than the original task. We
define two relations between planning tasks, plan equiva-
lence and plan dominance, that refer to whether two tasks
generate the same set of solution plans or one task (the orig-
inal, in this case) generates a superset of solution plans of
the other task respectively.

Definition 1. Let P and P ′ be planning tasks. We say that P
and P ′ are plan equivalent if for each sequence of actions π
it is the case that π is a solution plan of P if and only if π is
a solution plan of P ′. We also say that P is plan dominant
over P ′ if for each sequence of actions π it is the case that
π is a solution plan of P ′ if π is a solution plan of P .

If the attacker provides a modified planning task such
that the original task is plan dominant over it, then the so-
lution plans generated from the modified tasks are correct
with respect to the original task. On the other hand, such
plans might have an odd structure, that could attract attention
and thus reveal attacker’s interference (or to notice knowl-
edge engineering issues in the models). For example, in a
simple logistic domain where trucks are delivering pack-
ages between different locations, a planning task can be en-
coded in such a way that only one truck can be used to de-
liver packages (leaving the other trucks unused). Assuming
there are no restrictions for where a specific truck can go or
what packages they can load, the original task (using all the
trucks) is plan dominant over the modified task (using only
one truck). However, “one-truck” plans because of their un-
usual structure could, very likely, attract attention and thus
being quickly fixed by an expert of the domain. Hence, the



modified task should be plan equivalent or “close” to it.
Since the notion of being “close” to plan equivalence or, in
other words, a “small” plan dominance cannot be reasonably
quantified (as the set of solution plans is typically infinite),
we will hereinafter stick to the notion of plan equivalence.

Given a planning task P , the attacker provides a planning
task P ′ such that P and P ′ are plan equivalent while max-
imising the chance that a planning engine, or a class of en-
gines: (i) needs more CPU time for solving P ′ than for solv-
ing P ; (ii) by solving P ′ instead of P a lower quality solu-
tion is returned. On top of that, the modification should be
rather small as larger modifications could reveal attacker’s
interference.

In the remainder of this work, in order to analyse and for-
malise two classes of knowledge engineering issues that can
typically arise during the encoding of knowledge under the
form of planning tasks, we focus on: changes in the objects
that are named in the problem knowledge model, and the
encoding of operators that are not useful for the considered
application domain.

Problem Models: Increasing the Number of
Objects
One typical example of hard-to-spot issues of a planning
task that can make it less amenable for existing planning en-
gines, is the presence of useless objects listed in the problem
instance specification. The following condition ensures that
the modified task (by adding objects, without modifying the
initial and goal states) is plan equivalent with the original
one.

Condition 1. For each operator o defined in the domain
model, it is the case that for each parameter x of o there
exists a predicate p ∈ pre(o) such that p contains x.

The useless objects are not involved in the initial and in
the goal states of the modified task, as we are considering
objects that are not actually part of the “original” problem
model. Condition 1 ensures that an atom (grounded predi-
cate) involving an object can only be added (by some oper-
ator) if some other atom involving the object is true (other-
wise the operator is not applicable).

When considering object types (i.e., the “typed STRIPS”
representation) it is possible to add objects of a given type
if Condition 1 is met for all operators’ parameters involving
that type.

In large planning instances, which are common in real-
world planning applications, useless objects can be easily
confused with actual useful objects if they follow the naming
convention used in the problem model.

As it should be apparent, most of the state-of-the-art prun-
ing techniques exploited in planning engines are able to
identify that the described added objects are not relevant for
solving the considered planning task. In that, the impact of
such object on the engines’ performance is nullified during
the search step. However, such analysis is usually done after
the first grounding step, when all the operators and pred-
icates are grounded in order to create the data structures
needed by the search phase. Therefore, this potential issue
of the problem model mainly targets the grounding step, and

(:action inapplicable-drop

:parameters

(?r - robot ?obj - object ?room - room ?g - gripper)

:precondition (and (carry ?r ?obj ?g)

(at ?obj ?room)

(at-robby ?r ?room))

:effect (and (free ?r ?g)

(at ?obj ?room)

(not (carry ?r ?obj ?g)))))

Figure 1: An example of an inapplicable dummy operator
from the Gripper domain model. The operator is obtained
by adding an additional precondition (at ?obj ?room), that
is in a mutex relationship with (carry ?r ?obj ?g).

it has the potential of slowing down planning engines by in-
creasing the size of the grounded problem.

Domain Models: Dummy Operators
With regards to domain models, a possibility for an engi-
neering issue that is hard to spot is the presence of dummy
planning operators in the original models. In order to comply
with the relation of plan equivalence, the attacker can add
only operators whose instances cannot be present in any so-
lution plan. Instances of such dummy operators must either
be inapplicable at any point, or their application must lead
to dead-ends. Intuitively, the former type of dummy opera-
tors is easier to prune, and therefore can slow down only the
grounding process of a planning engine. Dead-ends dummy
operators are much harder to prune, and hence they can slow
down the search process as well.

Inapplicable Dummy Operators For an action a (a
grounded planning operator), it is the case that a is never ap-
plicable if its precondition cannot be satisfied in any reach-
able state, i.e., there does not exist a sequence of actions
whose consecutive application in the initial state results in
a state in which all atoms from pre(a) are true. One of
the cases in which a is never applicable is when atoms
pg, qg ∈ pre(a) are mutex, i.e., pg and qg cannot be both
true in any reachable state.

Generalising the notion of mutexes for (ungrounded)
predicates, we say that predicates p and q are mutex with
respect to substitutions Θ,Ω if and only if for all grounded
instances of Θ(p) and Ω(q) it is the case that they are mu-
tex. Practically speaking, Θ and Ω are used to unify corre-
sponding predicates’ variables. For example, let us consider
the Gripper domain, where a robot with two grippers is re-
quired to move balls between different rooms. A ball can be
either placed at some location, or being carried by a robotic
gripper. Hence, predicates (at ?ball ?loc) and (carry ?robot
?ball ?gripper) are mutex (the variable ?ball is unified). An
example of an inapplicable dummy operator for the Gripper
domain is shown in Figure 1.

While there exist techniques being able to identify mu-
texes (for instance, the Fast Downward framework (Helmert
2006) includes a very effective approach), a simplistic way
how to identify (some) mutexes is to analyse planning oper-
ators defined in the domain model.



(:action opposing-drop

:parameters

(?r - robot ?obj - object ?room - room ?g - gripper)

:precondition (and (carry ?r ?obj ?g)

(at-robby ?r ?room))

:effect (and (free ?r ?g)

(not (carry ?r ?obj ?g)))))

(:action opposing-move-drop

:parameters

(?r - robot ?obj - object ?f ?to - room ?g - gripper)

:precondition (and (carry ?r ?obj ?g)

(at-robby ?r ?f))

:effect (and (at-robby ?r ?to)

(not (at-robby ?r ?f))

(free ?r ?g)

(not (carry ?r ?obj ?g))))

Figure 2: Examples of dead-end dummy operators from the
Gripper domain model. The top operator represents a dead-
end dummy operator obtained by removing the atom (at
?obj ?room). The bottom operator is obtained in a simi-
lar way, but is then combined with the move operator to in-
crease the grounded size of the planning task, and to make
the operator more likely to be selected by planning engines.

Given predicates p, q and unifying substitutions Θ,Ω we
say that p, q are mutex with respect to Θ,Ω if: for all op-
erators o there exists a renaming substitution Ψ such that
Ψ renames all variables of o it is the case that o has at
most one variant of p, or q respectively, in eff−(o) and
eff+(o), Ω(q) ∈ eff+(Ψ(o)) (or Θ(p) ∈ eff+(Ψ(o))) im-
plies Θ(p) ∈ pre(Ψ(o)) ∩ eff−(Ψ(o)) \ eff+(Ψ(o)) (or
Ω(q) ∈ pre(Ψ(o))∩ eff−(Ψ(o)) \ eff+(Ψ(o))), and there do
not exist grounded instances of Θ(p) and Ω(q) being both
present in the initial state.

If the following condition is met, then no instance of the
dummy operator o is applicable at any point of the planning
process.
Condition 2. For some predicates p and q (defined in the
domain model) that are mutex with respect to substitutions
Θ,Ω it is the case that Θ(p),Ω(q) ∈ pre(o).

Additional preconditions and effects for the dummy oper-
ator can be random or completely meaningless, but involv-
ing predicates defined in the domain model. This is typi-
cally the case of models that are incrementally generated
using simple tools such as a text editor, where changes to
some part of the model are not reflected in the rest of it.
Of course, for the sake of our attacker’s perspective, instead
of random generation, it is also possible to generate macro-
operators, by incorporating in the dummy operator param-
eters, preconditions, and effects of suitable existing opera-
tors from the considered domain model. According to Con-
dition 2, instances of the dummy operator are inapplicable in
all reachable states (regardless of additional preconditions
and effects) and thus cannot be part of any solution plan.
Hence, a task modified by adding such a dummy operator
(or more such dummy operators) is plan equivalent with the
original task.

Dead-end Dummy Operators Dead-end states are those
states from which a goal state is no longer reachable. Actions
whose application always leads to dead-end states cannot
be a part of any solution plan. For example, in the Gripper
domain, if some (dummy) action “removes” a ball from the
environment (i.e., the ball is not at any location as well as
the ball is not carried by any gripper –the ball cannot be used
anymore), then applying such an action leads to a dead-end
state (assuming that we require the ball to be placed in some
location in the goal).

With (ungrounded) operators we must ensure that all their
instances when applied lead to dead-end states. The object-
erasing strategy can be applied if a goal is defined for each
object of a given class (e.g. all balls have to be placed some-
where).

If atoms pg and qg are mutex they can be both false. How-
ever, in some cases either pg or qg must be present in each
reachable state. We say that predicates p and q alternate with
respect to Θ,Ω if they are mutex (with respect to Θ,Ω) and
for each operator o there exists a renaming substitution Ψ
such that Ω(q) ∈ eff−(Ψ(o)) (or Θ(p) ∈ eff−(Ψ(o))) im-
plies Θ(p) ∈ eff+(Ψ(o)) (or Ω(q) ∈ eff+(Ψ(o))).

If the following condition is met, then application of each
instance of a dummy operator o leads to a dead-end state.

Condition 3. Let p and q alternate with respect to Θ,Ω.
Let x be an parameter (variable symbol) that both Θ(p) and
Ω(q) share. For each object of type of x an instance of q is
present in the goal, it is the case that Θ(p) ∈ eff−(o)∩pre(o)
while Ω(q) 6∈ eff+(o).

Another object-erasing possibility is to delete atoms that
cannot be re-achieved but are required to achieve goals. We
say that a predicate q strictly requires a predicate p with re-
spect to Θ,Ω if for each operator o there exists a renam-
ing substitution Ψ such that Ω(q) ∈ eff+(Ψ(o)) implies
Θ(p) ∈ pre(Ψ(o)).

If the following condition is met, then application of each
instance of a dummy operator o leads to a dead-end state.

Condition 4. Let q strictly require p with respect to Θ,Ω.
Let x be an parameter (variable symbol) that both Θ(p) and
Ω(q) share. For each object of type of x an instance of q is
present in the goal and there is no operator o′ and a renam-
ing substitution Ψ such that Θ(p) ∈ eff+(Ψ(o′)) it is the
case that Θ(p) ∈ eff−(o) while Ω(q) 6∈ eff+(o).

Analogously to the previous case, additional precondi-
tions and effects for the dummy operator can be random
(considering the predicates defined in the domain model),
or by incorporating existing operators of the model, as long
as Condition 3 or 4 is satisfied. Again, both cases can be the
result of a poor knowledge engineering process, for instance
due to incremental modifications done via a text editor to
existing models. Both conditions ensure that if an instance
of the dummy operator is applied, then a dead-end state is
reached, since an object that has to be in a certain goal state
has been erased from the environment. Figure 2 shows two
examples of dead-end dummy operators for the Gripper do-
main, where the ball object is erased from the environment.
The top operator is obtained by removing a single fact from



the effects of the original drop operator; The bottom opera-
tor is obtained by generating a macro-operator that includes
the original move operator and the modified drop operator.
It should be noted that, for guaranteeing the solvability of
planning instances, the original operators are left in the do-
main model.

Empirical Analysis
Our experimental analysis aims to evaluate the impact that
the engineering issues described in previous sections have
on the performance of state-of-the-art planning engines, in
order to assess the robustness of the state of the art with re-
gards to such common issues.

We selected five planning engines, based on their perfor-
mance in the International Planning Competition and/or the
use of very different planning approaches: LAMA (Richter
and Westphal 2010), Lpg (Gerevini, Saetti, and Serina
2003), Madagascar (Mp) (Rintanen 2014), Probe (Lipovet-
zky et al. 2014), and Dual-BFWS (Lipovetzky et al. 2018).
In particular, the selected planners exploit very different pre-
processing approaches, and can therefore provide some use-
ful insights into the impact of the introduced techniques.
Furthermore, by considering LAMA and Dual-BFWS, it
is possible to evaluate how planners developed on top of,
respectively, the Fast Downward (Helmert 2006) and the
LAPKT (Ramirez, Lipovetzky, and Muise 2015) frame-
works would react to the described attacks.2

We focused our study on domains that have been used
in International Planning Competitions (IPC), that allows to
meet the conditions specified in the previous section, and
for which a randomised problem generator is available. The
models we chose had at least four operators and, possibly, a
large number of predicates. These can represent conditions
under which knowledge engineering issues can more easily
arise. Selected domains are: Barman, Childsnack, Floortile,
Gripper, and Spanner. For each domain, we randomly gen-
erated 20 instances.3

Experiments were run on a dedicated machine equipped
with Intel Xeon 2.50 Ghz processors and Linux operating
system. Each run was limited to a single core, 4 GB of RAM,
and 300 CPU-time seconds, as in the Agile track of IPCs. All
the generated plans have been validated using the VAL tool
(Howey, Long, and Fox 2004) on the original domain model
and problem instance files. This has been done to check, at
least for the generated solutions, that the manipulated mod-
els maintain the plan equivalence as defined in Definition 1.
In other words, the original flawless model is used as ground
truth. Validating against the original model simulates the fact
that a formal specification of requirements for an application
domain is available, and it can be used to validate the pro-
vided knowledge models and their output.

Table 1 shows, in terms of average runtime increase and
average increase of grounded atoms, how increasing the

2It should be noted that the LAPKT framework provides a range
of techniques that can be used for parsing and pre-processing, so
the observed impact may vary accordingly.

3Domain and problem models can be found at https://tinyurl.
com/KCAP19.

number of objects of a planning instance affects the per-
formance of the selected planning engines. The table shows
the increase of grounded facts after the simplification step,
therefore the pruning of non relevant facts has already been
performed. In our experiments, the number of objects of
each type have been increased by 10%. In cases where less
than 10 objects are declared for a considered type, only 1
fictional object is added. In Gripper, objects of type room
can be used even if there is no predicate referring to them
in the initial state of the problem instance. For this reason,
no additional room objects have been added in that domain
as this type of objects violates Condition 1 (in all the other
cases the object types satisfy Condition 1.).

Results in Table 1 indicate that planning engines can be,
in some cases significantly, affected by an attack that artifi-
cially increases the number of objects of a planning instance,
even if the objects are not relevant for the task to be solved.
Among the selected planning engines, Probe is the most ro-
bust with regards to this sort of attack. Remarkably, Probe
is the only engine that is completely unaffected by the ad-
dition of dummy objects in the Floortile domain. LAMA
and Mpc are very sensitive to dummy objects added to in-
stances of the Barman domain, while LPG performance is
significantly affected in the ChildSnack domain. However,
we observed that the increase in the grounded facts does not
usually correspond to an increase in the grounded actions
taken into account during the search phase. Out of the con-
sidered planning engines, only LPG shows a slight increase
in grounded actions (+5% in ChildSnack and approximately
+1% in both Gripper and Spanner). In that, the performance
slow down can be attributed to the pre-processing phase and
to the larger size of each search state. The behaviour of
Dual-BFWS is extremely interesting: despite the fact that
no additional facts are grounded, runtime performance can
be significantly affected by an increased number of objects
in the problem model. We observed that this is due to the
fact that adding objects has an impact on the way in which
the search space is explored: in many cases, this leads to a
larger number of the visited nodes, which is reflected in an
increased runtime. On the other hand, counter-intuitively, in
some cases this can also boost the performance of the plan-
ner, as in Gripper. Our intuition is that the parsing of the
additional objects affects the data structure of the planning
engine and, despite the fact that the objects are pruned dur-
ing pre-processing, changes of the data structures affect the
subsequent search phase.

In summary, although planning engines actively prune un-
reachable actions and thus they should identify dummy ob-
jects, in about a quarter of cases, the planners are not able
to effectively prune all the dummy objects. However, even if
the dummy objects are pruned they can still affect the search
phase, mostly in a negative way but not necessarily as shown
by the Dual-BFWS planning engine in the Gripper domain.

In order to evaluate the impact of dummy operators, let
us initially consider those that intuitively should maximise
the impact on the planning engine: dead-end dummy oper-
ators. Results of this evaluation are presented in Table 2.
In each domain, a single dummy operator has been gener-
ated by merging 2 operators: the one that allows to “erase”



Table 1: Results of how increasing the number of objects of a planning instance affects the performance of the selected planning
engines. For each engine and domain, we show average percentage of runtime increase (considering only instances solved by
both runs), and the average percentage of increase of the number of facts. “–” indicates that no instance has been solved by the
planner in the corresponding domain.

Barman ChildSnack Floortile Gripper Spanner
Time Facts Time Facts Time Facts Time Facts Time Facts

Dual-BFWS +4.3% 0.0% +1.0% 0.0% +33.4% 0.0% −6.1% 0.0% +48.7% 0.0%
LAMA +16.4% +2.6% – +0.3% 0.0% +1.7% +2.5% +0.1% +0.2% +5.6%
LPG +6.4% 0.0% +56.6% +1.3% +2.0% +1.3% +3.7% +1.0% +5.8% 0.0%
Mpc +15.3% 0.0% +0.9% 0.0% +3.4% 0.0% +7.8% 0.0% +25.2% 0.0%
Probe +0.2% 0.0% – +1.8% 0.0% 0.0% +1.5% 0.0% +0.6% 0.0%

Table 2: Impact of dead-end dummy operators on the se-
lected planning engines. For each engine and domain, we
show between brackets the average runtime, followed by the
average runtime slowdown (averages are calculated by con-
sidering only instances solved by both runs), the coverage
delta (percentage), and the average increase of the number of
actions considered during the search phase. ×1.0 represents
cases where no slowdown is observed: the higher the value,
the higher the slowdown. “–” indicates that no instance has
been solved by the planner in the corresponding domain.

Time ∆ Coverage Actions
Barman

Dual-BFWS (27.9) ×2.3 −20.0% ×3.0
LAMA (5.7) ×2.1 0.0% ×2.2
LPG (7.1) ×6.4 0.0% ×3.0
Mpc (5.5) ×1.2 −10.0% ×2.3
Probe (2.1) ×3.7 −5.0% ×3.0

ChildSnack
Dual-BFWS (43.1) ×1.4 0.0% ×1.7
LAMA – – ×2.0
LPG (20.7) ×11.9 −25.0% ×2.0
Mpc (0.2) ×5.8 −6.7% ×2.0
Probe – – ×1.7

Floortile
Dual-BFWS (74.9) ×11.1 −5.0% ×1.5
LAMA (7.9) ×1.1 0.0% ×1.5
LPG (3.0) ×3.6 0.0% ×1.5
Mpc (0.1) ×2.4 0.0% ×1.5
Probe (67.2) ×2.1 0.0% ×1.5

Gripper
Dual-BFWS (57.1) ×1.1 −25.0% ×5.0
LAMA (29.5) ×6.5 −10.0% ×5.1
LPG (3.1) ×34.4 −35.0% ×5.7
Mpc (7.1) ×3.4 −50.0% ×4.5
Probe (45.1) ×3.5 −40.0% ×4.9

Spanner
Dual-BFWS (32.1) ×1.5 0.0% ×1.8
LAMA (9.1) ×1.4 0.0% ×6.4
LPG (1.9) ×1.1 0.0% ×1.8
Mpc (0.5) ×4.2 −20.0% ×1.8
Probe (5.6) ×1.4 0.0% ×1.8

objects from the environment, and another one selected fol-
lowing the criteria mentioned in the previous section. In this
analysis, we erase objects listed in the goal state, by mod-
ifying the operators that allows to reach goal facts. Added
operators are listed at the top of the domain model, follow-
ing the empirical evidence provided by Vallati et al. (2015),
suggesting that operators listed early are considered more
often during the search process. We therefore assume that in
this way, the detrimental impact on planning performance is
maximised.

In terms of runtime, all the considered planning engines
are very negatively affected by the additional dummy op-
erator. LPG is the planning engine that generally gets the
strongest slowdown: in the Gripper domain, it takes on aver-
age more than 34 times longer to solve a planning instance.
In many cases, the injection of an additional dummy oper-
ator can reduce the coverage of most of the engines. It is
worth remarking that performance reduction is not directly
related to the increase in the number of grounded actions.
In other words, the fact that a given engine grounds a larger
number of actions than another planning engine, does not
automatically result in the former planning engine being
slower than the latter. According to our analysis, the larger
number of actions leads to the generation of more search
nodes that has quite a significant impact on runtime. As an
example, in the Gripper domain Dual-BFWS generates on
average 10% more nodes.

To better clarify the impact of dead-end dummy opera-
tors, we also performed experiments by considering “mini-
malistic” dummy operators. They satisfy the introduced cri-
teria, but are generated as follows. From an operator that
achieves goal facts, the “goal achieving” effect is removed.
No additional preconditions or effects are considered. A
sample “minimalistic” dummy operator is shown in the top
part of Figure 2. The considered planning engines’ perfor-
mance are negatively affected also by this malicious input,
but in a less substantial way. As an example, the results
achieved by the considered planning engines in the Barman
domain are shown in Table 3. The use of more complex
dead-end dummy operators result in a stronger impact on
planning performance, but the extension of domain models
with minimally-modified operators still leads to noticeable
performance degradation. In the other domains, similar fig-
ures can be derived.



Table 3: Barman: impact of a “minimalistic” dead-end
dummy operator on the selected planning engines, in terms
of runtime slowdown (average runtime), coverage, and aver-
age increment of the number of actions grounded and con-
sidered during the search phase.

Time ∆ Coverage Actions
Barman

Dual-BFWS (27.9) ×1.9 -5.0% ×1.3
LAMA (5.7) ×1.3 0.0% ×1.3
LPG (7.1) ×2.3 0.0% ×1.3
Mpc (5.5) ×1.1 -10.0% ×1.3
Probe (2.1) ×1.4 0.0% ×1.3

We also empirically tested the impact on planning en-
gines’ performance of the introduced inapplicable dummy
operators. As expected, state-of-the-art planning engines
can identify and prune such operators. In most of the bench-
marks the considered engines proved to be robust with re-
gards to this sort of attack: they were able to remove all
the grounded inapplicable operators, with very limited over-
head in terms of runtime. However, this is not the case in the
Gripper domain, as shown by the results presented in Table
4. The mutex relationship between the (at ?ball ?loc) and
(carry ?robot ?ball ?gripper) predicates is not correctly
identified, and we exploited it in a “macro” composed by the
move and drop operators sequence. The inability to recog-
nise the mutex, and the fact that a large number of objects
are involved in the tasks, lead to a significant surge in run-
times. Mpc is the only considered planning engine that is
able to prune the added operator, but at the cost of a signifi-
cant increase in terms of runtime and memory consumption
of the pre-processing stage.

With regards to the impact of dead-end and inapplicable
dummy operators on the quality of generated plans, we did
not observe any significant variation. While it is true that the
generated plans may differ, it is not the case that the use of
domain models extended with the dummy operator leads to
worse solutions.

Summarising, the presented results demonstrate that in-
creasing the number of objects of problem instances can
be a viable way for slowing down the planning process of
domain-independent planning engines. Furthermore, from
Tables 2 and 3, it can be seen that an attack based on mod-
ifying the domain model with an additional dummy opera-
tor, that is guaranteed to generate dead ends thus will never
appear in a valid solution plan, can significantly reduce the
performance of the selected domain-independent planning
engines. Instead, attacks based on the injection of inapplica-
ble operators in the domain model showed a limited impact
performance, but can still be fruitfully exploited in some do-
mains. Finally, it is worth emphasising that the two type
of attacks have a different impact on performance: adding
dummy objects has a more limited effect on planning en-
gines than injecting of a dummy operator into the domain
model.

Table 4: Impact of an inapplicable dummy operator on
the selected planning engines, in terms of runtime slow-
down (average runtime), coverage, and average increment
of the number of actions grounded and considered during
the search phase, in Gripper.

Time ∆ Coverage Actions
Gripper

Dual-BFWS (57.1) ×1.0 -20.0% ×3.0
LAMA (29.5) ×3.5 -10.0% ×3.7
LPG (3.1) ×16.1 -20.0% ×5.2
Mpc (7.1) ×1.3 -30.0% ×1.0
Probe (45.1) ×2.5 -40.0% ×3.7

Discussion
We reckon that the domain models used in our empirical
analysis, and in general most of the benchmarks used in
the International Planning Competition, are usually much
less complex than those exploited in real-world applications.
This is because such benchmarks are primarily chosen to be
“challenging” for the participating planning engines, rather
than to describe the actual issues that engines would have
to face in real-world applications (Vallati, Chrpa, and Mc-
Cluskey 2018). Worryingly, this implies that the impact of
described knowledge engineering issues of models exploited
in planning applications is expected to be amplified. In more
complex models, difficulties for planning engines are usu-
ally exacerbated. In a nutshell, this can possibly imply that
automated planning has been deemed not to be useful in
some applications because poorly engineered models were
used for trialling purposes.

Our experimental analysis does not include portfolio-
based planners, even though they showed in recent compe-
titions to be able to consistently deliver outstanding perfor-
mance (see, e.g., (Cenamor, de la Rosa, and Fernández 2016;
Seipp et al. 2015; Gerevini, Saetti, and Vallati 2014)). This is
because the exploitation of different planning engines, com-
bined in various ways, would make it hard to understand the
actual impact of the attacks, and to isolate the step of the
planning process that has been mostly affected. Out intu-
ition with regards to portfolio approaches is that, since port-
folios are composed by “basic” planning engines, if each
basic engine is slowed down, also their combination will
be negatively affected, probably to a similar degree. How-
ever, it may be the case that some configurations of planning
engines could magnify the impact of the issues of domain
models, but that has to be assessed in a very detailed case-
by-case analysis.

Conclusion
Automated planning techniques are currently exploited in a
wide range of real-world applications. Their widespread ex-
ploitation, and the fact that practitioners and non-planning
experts are now in the position of testing planning tech-
niques by themselves, raises questions about the robustness
of planning engines with regards to issues in the provided
input. To raise awareness on the weaknesses of planning



frameworks, in this work we took an attacker’s perspective.
We provided three examples of attacks targeting the input
models, that aims at reducing (or even disrupting) the per-
formance of a planning engine without the possibility of be-
ing discovered by the analysis of the generated plans, and
that are also representative of typical knowledge engineer-
ing issues that may arise. Our experimental analysis demon-
strated that state-of-the-art planning engines can be strongly
affected by such (to some extent trivial) issues.

Given the observed results, it is pivotal to investigate tech-
niques and approaches that can improve the robustness of
planning engines, in terms of their resilience to issues in the
provided input models. This can be done, for instance, by
performing more in-depth pre-processing steps before the
actual grounding step. There is also an incumbent need for
more supportive Knowledge Engineering techniques, that
can perform both static and dynamic validation of planning
models. Such tools would support the analysis of input mod-
els, and would make much harder for an attack to be unde-
tected, or to affect the performance of a planning engine. On
this matter, results from the recent International Competi-
tion on Knowledge Engineering for Planning and Schedul-
ing (ICKEPS) highlighted the lack of tools and approaches
for supporting a principled engineering of planning models
(Chrpa et al. 2017). It is also worth noting that approaches
such as DISCOPLAN (Gerevini and Schubert 2000) are able
to detect invariants, and would help in improving the robust-
ness of planning engines. For some reasons, such techniques
are not exploited in most of the ready-to-use engines.

We see several avenues for future work. First, we are in-
terested in evaluating the impact of the proposed attacks on
different types of planning, e.g. optimal, and with different
versions of the PDDL language. Second, we plan to evaluate
the impact of knowledge engineering issues can affect the
quality of generated plans. Finally, we aim at investigating
appropriate techniques for supporting knowledge engineers
in the tedious task of encoding planning knowledge, in or-
der to limit the arising of potentially disruptive issues in the
generated models.

Acknowledgements
This research was funded by the Czech Science Foundation
(project no. 18-07252S).

References
Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz,
M. 2009. Planning games. In IJCAI, Proceedings of
the 21st International Joint Conference on Artificial Intel-
ligence, 73–78.
Brooks, F. P. 1987. No silver bullet: Essence and accidents
of software engineering. IEEE Computer 20:10–19.
Capitanelli, A.; Maratea, M.; Mastrogiovanni, F.; and Val-
lati, M. 2018. On the manipulation of articulated objects
in human-robot cooperation scenarios. Robotics and Au-
tonomous Systems 109:139–155.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2016. The iba-
cop planning system: Instance-based configured portfolios.
J. Artif. Intell. Res. 56:657–691.

Chrpa, L.; McCluskey, T. L.; Vallati, M.; and Vaquero, T.
2017. The fifth international competition on knowledge en-
gineering for planning and scheduling: Summary and trends.
AI Magazine 38(1):104–106.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. Journal of Artificial Intel-
ligence Research 27:235–297.
Fox, M.; Long, D.; and Magazzeni, D. 2012. Plan-based
policies for efficient multiple battery load management. J.
Artif. Intell. Res. 44:335–382.
Geffner, H., and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.
Gerevini, A., and Schubert, L. K. 2000. Discovering state
constraints in DISCOPLAN: some new results. In Proceed-
ings of AAAI, 761–767.
Gerevini, A. E.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs
in LPG. Journal of Artificial Intelligence Research (JAIR)
20:239–290.
Gerevini, A.; Saetti, A.; and Vallati, M. 2014. Plan-
ning through automatic portfolio configuration: The pbp ap-
proach. J. Artif. Intell. Res. 50:639–696.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. Morgan Kaufmann Publish-
ers.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res. 26:191–246.
Hoffmann, J. 2015. Simulated penetration testing: From
”dijkstra” to ”turing test++”. In Proceedings of the Twenty-
Fifth International Conference on Automated Planning and
Scheduling, ICAPS, 364–372.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In 16th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2004), 294–301.
Kvarnström, J., and Doherty, P. 2010. Automated plan-
ning for collaborative uav systems. In Control Automation
Robotics & Vision (ICARCV), 2010 11th International Con-
ference on, 1078–1085.
Laskov, P., and Lippmann, R. 2010. Machine learning in ad-
versarial environments. Machine Learning 81(2):115–119.
Lipovetzky, N.; Ramirez, M.; Muise, C.; and Geffner, H.
2014. Width and inference based planners: Siw, bfs(f), and
probe. In Proceedings of the 8th International Planning
Competition (IPC-2014).
Lipovetzky, N.; Ramirez, M.; Frances, G.; and Geffner, H.
2018. Best-first width search in the ipc2018: Complete, sim-
ulated, and polynomial variants. In The Ninth International
Planning Competition. Description of Participant Planners
of the Deterministic Track.
McCluskey, T. L., and Vallati, M. 2017. Embedding auto-
mated planning within urban traffic management operations.
In Proceedings of the Twenty-Seventh International Confer-



ence on Automated Planning and Scheduling, ICAPS, 391–
399.
McCluskey, T. L.; Vaquero, T. S.; and Vallati, M. 2017. En-
gineering knowledge for automated planning: Towards a no-
tion of quality. In Proceedings of the Knowledge Capture
Conference, K-CAP, 14:1–14:8.
Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language. Technical re-
port, CVC TR-98-003/DCS TR-1165, Yale Center for Com-
putational Vision and Control.
Ramirez, M.; Lipovetzky, N.; and Muise, C. 2015.
Lightweight Automated Planning ToolKiT. http://lapkt.org/.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Intell. Res. 39:127–177.
Rintanen, J. 2014. Madagascar: Scalable planning with
SAT. In Proceedings of the 8th International Planning Com-
petition (IPC-2014).
Seipp, J.; Sievers, S.; Helmert, M.; and Hutter, F. 2015. Au-
tomatic configuration of sequential planning portfolios. In
Proceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence, 3364–3370.
Speicher, P.; Steinmetz, M.; Backes, M.; Hoffmann, J.; and
Künnemann, R. 2018. Stackelberg planning: Towards effec-
tive leader-follower state space search. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence.
Vallati, M.; Hutter, F.; Chrpa, L.; and McCluskey, T. L. 2015.
On the effective configuration of planning domain mod-
els. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI, 1704–1711.
Vallati, M.; Chrpa, L.; and McCluskey, T. L. 2018. What
you always wanted to know about the deterministic part of
the international planning competition (IPC) 2014 (but were
too afraid to ask). Knowledge Eng. Review 33:e3.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE 2.0: An Integrated Tool for Designing Plan-
ning Domains. In Proceedings of the International Confer-
ence on Planning and Scheduling (ICAPS), 336–343.


