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Abstract

The implementation of use cases in Social Autonomous
Robotics is a complex and time consuming task to be de-
veloped by domain experts and engineers, involving a large
knowledge acquisition process. To achieve correct operation
on the robotic platform, the resulting use case description
must also be formalized taking into account stochastic events
that may occur in the real world. There are several control
architectures based on Automated Planning (AP) to deploy
robotic use cases, where the standard Planning Domain De-
scription Language (PDDL) is assumed. This manuscript fo-
cuses on bridging the gap between the domain expert defini-
tion of the use case and its formalization in PDDL. We pro-
pose a novel tool which facilitates the description of the use
case through state transition diagrams representing nominal
behaviours, exogenous events and some extra features. From
this diagram, the system automatically generates the PDDL
files, which can be injected in a standard control architecture
to setup the robotic platform. The tests show that the pro-
posed system is feasible, encouraging the use of AP in Social
Robotics and further research about tools for facilitating the
development of AP problems to experts and non-experts in
the field. In addition, our approach is general enough to also
formalize classical planning tasks.

1 Introduction
Social Robotics (Breazeal, Dautenhahn, and Kanda 2016)
is the branch of robotics where autonomous systems have
to interact with people, expecting them to have a natu-
ral behaviour in order to reduce the sense of frustration
in the user when dealing with a machine. However, real
world’s uncertainty and stochasticity make hard to ensure
the proper performance of the robot, where actions can be
interrupted by external events. For that reason, develop-
ing robots that deal autonomously in these scenarios is a
challenging task (Tapus, Mataric, and Scassellati 2007) ad-
dressed in the study of Human-Robot Interaction. Several
control systems have been proposed over time for that pur-
pose, such as Finite State Machines (Lera et al. 2018) or
distributed systems (Prenzel, Feuser, and Graser 2005). Al-
though these methods perform well, they are highly domain
dependent and their use requires extra effort to create new
applications since they have to be built from scratch in a

complex development process, specially in those ones with
sophisticated operating modes.

Some approaches in the literature (Cashmore et al. 2015;
González, Pulido, and Fernández 2017; Rajan and Py 2012;
Tran et al. 2017; Bandera et al. 2016) have dealt with
this through Automated Planning (AP) (Ghallab, Nau, and
Traverso 2004), enabling the robot control and coordination
by using a problem solver and a control architecture. Nev-
ertheless, AP has not been widely used in Social Robotics
due, among other reasons, to the complexity of identifying
and formalizing all possible actions that the robot must im-
plement or how to recover the normal behaviour from an un-
expected situation. Extracting these requirements to model
the robot behaviour also presents a problem: it is a time con-
suming task which involves an intensive knowledge engi-
neering process (Kambhampati 2007) between the domain
expert (for instance, therapists or clinicians in assistive envi-
ronments) and engineers. Therefore, modelling AP domains
for Social Robotics is usually a bottleneck for robotics de-
velopers and not a straightforward task, not only for previous
issues, but also for some other engineering problems identi-
fied in the literature (Garcı́a-Olaya et al. 2019).

This work addresses the solution for the issues above by
modelling HRI tasks using a formalization based on Classi-
cal Planning through the use of PDDL 2.1 (Fox and Long
2003). To relieve the knowledge engineering process, we
propose a design tool where the domain experts can model
their own use cases and automatically generate the appropri-
ate code which can be injected into the control architecture.
In our case, PELEA (Planning, Execution and Learning Ar-
chitecture) (Alcázar et al. 2010) is assumed, but other con-
trol systems as ROSPLAN (Cashmore et al. 2015) could be
used. The proposed system tries to solve the open questions
about managing Social Robotics with AP and ease the pro-
cess of developing new use cases, bringing the modelling
and formalization closer to domain experts.

The paper is organized as follows: next section shows the
background about control architectures based on AP, while
Section 3 introduces the usual process to generate Social
Robotics use cases and the features of the graphic editor
we propose. Section 4 details the main concepts that must
be specified to describe an use case in AP, whose formal-



ization using the PDDL language is detailed in Section 5.
Further details about non fully guided use cases are shown
in Section 6. To conclude, we show the tests performed, the
conclusions and future lines.

2 Background
Planning, execution and monitoring architectures are essen-
tial for implementation of AP in real social robotics. These
systems typically involve a planner and a formal planning
model to generate the sequence of actions the robot must
perform. Once generated they are executed using the ap-
propriate robot commands, while monitoring the correct ex-
ecution of the plan. Some examples of control architec-
tures are the aforementioned PELEA (Alcázar et al. 2010)
and ROSPLAN (Cashmore et al. 2015), both using Classical
Planning (Ghallab, Nau, and Traverso 2004). Architectures
like T-REX (Rajan and Py 2012) support other planning
paradigms like timeline-based planning. In general, these ar-
chitectures implement the robot deliberative behaviour ac-
cording to the information sensed from the environment and
provide a sequence of actions to manage the current situa-
tion. In the case of PELEA, the architecture applied in our
work, the formal model is based on Classical Planning and
uses the PDDL language to describe the planning problem.
It is divided in two parts: the domain model, which contains
a generic definition of the world and the possible behaviours;
and the specific problem to solve related to that domain. Fig-
ure 1 shows the architecture of PELEA.

Figure 1: PELEA Architecture

At the beginning, the problem-solver (DECISION SUP-
PORT) obtains a plan π whose actions will be sent in se-
quence to the robot platform by EXECUTION, assuming that
no events will interrupt the execution. To verify whether
the plan goes as expected, external information of the en-
vironment is sensed by the robot. If differences are found
by MONITORING, it indicates that an unexpected event in
the scenario has occurred, needing a new plan π′ to solve
the current situation. Otherwise, the initial plan can continue
with the normal behaviour.

Minor modules HIGHTOLOW and LOWTOHIGH receive
as input a catalogue where low and high-level conversions

are specified. They are responsible for the mapping between
both the architecture and the robot since they do usually
work at different abstraction levels. Plan actions such as
greeting a person may imply several tasks at a low-level,
including arm movement and voice playback. Conversely
data coming for example from a 3D person-tracking sen-
sor must be summarised to convert them into predicates like
(person-walking) or (person-standing). High
Level planning is performed via the Metric-FF (Hoffmann
2003) PDDL2.1 compliant planner.

3 Graphic Editor for Domain Modelling
Despite the architecture used, the general case to use AP
in Social Robotics usually involves a software developer, a
knowledge engineer and an expert in the application field.
The knowledge engineer is in charge of generating a plan-
ning model of the use case following the instructions of the
expert. This model will be generated in a planning language
like PDDL. Meanwhile, the software developer adapts the
control architecture to the specifications of the use case. Our
proposal is to foster the implication of the domain experts in
the process, allowing them to participate in modelling their
own use cases in collaboration with knowledge engineers.
This is done thanks to a graphical interface and a model
compiler to automatically generate the formal model, which
can then be injected into the control architecture, as shown
in Figure 2. This user interface is intended to ease the mod-
elling and maintenance of social robotics domains and prob-
lems through an AP approach.

The interface we propose allows the user to completely
edit the models, defining all objects, facts, states and ac-
tions involved in the use case, corresponding to the elements
needed to create an AP model. As will be explained later,
predicates and states may have some relevant features for
the use case definition, which are represented by checkboxes
and can be chosen by the user during their definition. The
graphic model of the use case is reflected in real-time on
the visual area, depicted as workflows. Exogenous events
in the environment may need corrective actions to be han-
dled, which are defined through minor workflows in new
graphical areas, adding or switching them in the upper tabs.

Figure 2: Proposed use case development process



The editor also allows to define problems associated with
the domain previously modelled, specifying the initial state
and goals to meet. Finally, the management buttons allow
to save the model. The Export/Save component stores the
graphic design to recover it again if necessary, and gener-
ates the XML file which contains the model to be translated
into the PDDL formalization. In addition, thanks to the Im-
port/Load feature that can be found in the menu window, the
user is able to manipulate existing domains and problems in
an intuitive way, without the need for an AP expert.

4 Modelling Social Robotics Use Cases
Through Automated Planning

Similar to AP, we define a Robotic Use Case as a tuple P =
{S,A, I,G}, where S is the set of possible states, A is the
set of actions that the robot can carry out to transit between
states, I ⊂ S defines the initial state, and G ⊂ S specifies
the goal or conditions that the use case must meet. Thus, the
user has to specify all these elements to properly build the
use case, where a briefly definition is detailed below.

Objects
Every element in the real world involved in the use case must
be defined as an object of the domain. It is also possible to
define an object-type hierarchy, which is useful to make gen-
eralizations. The types of objects are defined in the domain,
but instantiated in the problem definition.

Facts and (Partial) States
After defining the objects we need to define the facts that
can appear in the world involving the robot, the user and the
environment. In PDDL planning this is done through predi-
cates, which are composed of the objects that they affect. It
is important to distinguish among different types of facts that
are part of the domain. We define the following categories:

• Dynamic: dynamic facts can be added, removed or modi-
fied as necessary. We can distinguish two types:

1. Sensed: obtained from the robot sensors, as the robot
battery level.

2. Internal: they belong to the control knowledge and their
value is internally calculated, such as the number of
repetitions performed during the exercise. At the same
time, these predicates are divided in persistent and non-
persistent. The former are facts that never become false,
unless an explicit action is executed to remove them or
if information suggesting they are no longer valid is re-
ceived from the environment. For instance, if the robot
puts a bracelet on the patient we assume that the person
will keep it during the whole use case.

• Static: Static facts are those that can not change during
the plan execution. For instance, it can be assumed that
the training area does not change during the session.

Users are required to mark every predicate in the defini-
tion stage by choosing the most appropriate characteristic
for each case. As a result, we have states composed by a
subset of facts that represent the situations which may take

(detected-patient ?robot ?patient)

(identified-patient ?robot ?patient)

(greeted-patient ?robot ?patient)

(at-training-area ?robot ?tr)

(at-training-area ?patient ?tr)

Figure 3: Example of (partial) state in PDDL

place during the robot performance. Although we will call
them states, they are partial states since we only specify for
them the set of facts that must be true to consider if the robot
is in such state. Figure 3 shows an example of state where a
patient has already been detected, identified and greeted by
the robot and both are in the training area, ready to start the
session. Other components of the state, as the location of the
training area or the name of the patient, are ignored here as
they are not considered relevant for the current step.

Actions
Following a Classical Planning approach, actions are de-
fined as deterministic operators composed by parameters,
preconditions and effects. Preconditions are a set of facts
that must occur to perform the action, while effects define
how the world changes after executing the action by adding,
removing or modifying facts. Since actions are carried out in
the real world, they have stochastic outcomes. However, to
model them according to the previous definition we perform
a determination with known effects. The stochasticity of the
actions is solved by replanning, which is widely used (Yoon,
Fern, and Givan 2007) to address such issues. The control
architecture must monitor the execution of actions and com-
pute a new plan if any unexpected situation arises.

Actions allow transitions between successive situations.
As usual in AP, we assume that the state from they start rep-
resents the minimal facts needed to execute the action, in
other words, its preconditions. Since social use cases may
present actions which can be repeated several times, we also
allow the modelling of sequential or looped actions.

All these elements are the basis for starting to model So-
cial Robotics use cases, that correspond to the AP problems
elements. However, this is not enough to achieve a natural
interaction. Concepts introduced below are intended to mit-
igate the issues associated to these models.

The Nominal Flow
Since people in the real world follow a series of ordered
steps to build a coherent interaction, we assume a workflow
as a suitable way to represent the desired interaction in So-
cial Robotics. The user is requested to model the expected
behaviour by describing the states that must be transited dur-
ing its execution. Along with that, actions are the activities
that the robot is able to perform, modelled by connecting
states. An action connects two states if the first one goes be-
fore in terms of social interaction. As we saw before, that
means that this first state is the precondition of that action.

As a running example, Figure 4 shows a robotics Use
Case for motor rehabilitation sessions as it is modelled in
the graphic editor. It is extracted from a real system driven



Figure 4: Social Robotics use case modelled in the graphical tool (modified image to provide a clearer vision in the paper)

by AP (Pulido et al. 2017). The project presents a support
tool for therapists, based on a humanoid robot which au-
tonomously drives a complete non-contact upper-limb re-
habilitation session for children. Each session is composed
by repetitions of exercises based on pose execution; first the
robot performs each exercise, then it asks the kid to repeat
it while controlling she does it correctly. This graph repre-
sents the ideal that the robot must follow, where no errors
nor stochastic events are taken into account.

Identifying Exogenous Events
The nominal execution can be interrupted by incidents,
called exogenous events, which generate an unexpected
state. They are not represented along with the nominal flow
as they can occur at any time and none of the actions of
the normal behaviour produce them. Identifying exogenous
events is essential in order to provide a model with corrective
actions which are able to recover the nominal flow, building
a robust system and showing a coherent reaction in all sit-
uations. Otherwise, the robot will be stuck with no way of
restoring the interaction with the user. By this reason, in the
use case definition it is necessary to model independently
(in upper tabs of the editor window) minor workflows which
indicate what is the action or actions to perform to solve
an unexpected situation. These actions will have the unex-
pected fact(s) as a precondition(s), ensuring that they will be
executed just in case of nominal behaviour failure.

Figure 5: Representation of state - action

Defining Islands

As mentioned before, the social behaviour has a number of
steps that are usually executed together to achieve a coherent
interaction. Actions such as greeting a person before start-
ing to talk and some other activities that follow a particular
order are the behaviours we want to ensure in the robot ex-
ecution. Since the discussed use cases try to imitate social
behaviours, we represent these interaction stages as groups
of actions and states. In the example depicted in Figure 4
we can see the nominal behaviour split into these different
phases, referred to as islands in the remainder of this paper.
Their definition is aimed to provide a coherent execution of
the use case. It allows returning to the nominal behaviour
from a logical point when an unexpected event occurs, going
back to the beginning of the island to execute it again. Oth-
erwise, the nominal flow would be recover from the point
where the error took place. These return points are set by
the user to their choice, who just has to mark the beginning
of the desired phases, where the execution has to recover the
normal flow.

5 Formalizing Social Robots Behaviours

The development of PDDL code is a tedious and complex
task, in addition to problems related to how to define de-
terministic actions to model stochastic domains and still
achieve a natural interaction. These challenges slow down
the adoption of AP in this field. In this section we present
our approach to solve these issues at a high-level, propos-
ing a PDDL formalization which is automatically generated
from the input model given by the user through the graphical
editor. We present the PDDL formalization of the use case
of the social robot for motor rehabilitation previously shown
in Figure 4.



Formalizing Sequential Connections
According to the interaction graph previously presented, ev-
ery state where an action starts defines its preconditions,
since it contains the facts that the environment must hold to
execute the action. In this way, for the start-training
action, whose previous state is depicted in Figure 5, we will
obtain the formalization shown in Figure 6, which follows
the standard PDDL. To simplify the model, effects are not
taken from the next state, but specified during the action def-
inition. Action parameters are defined by all the objects that
are involved in the facts of the preconditions and effects, get-
ting them automatically.

(:action start-training

:parameters(?r-robot ?p-patient ?tr-location ?s-session)

:precondition (and (detected-patient ?r ?p)

(identified-patient ?r ?p)

(greeted-patient ?r ?p)

(at-training-area ?r ?tr)

(at-training-area ?p ?tr))

:effect (started_session ?r ?p ?s)

)

Figure 6: PDDL code of the start-training action

Formalizing Loops
Since loops can be seen as for or while statements, they need
to have an exit condition that makes possible to leave the
loop when reached. The difference depends on whether the
predicate which controls the loop is internal or sensed, re-
spectively. If it is internal, it acts as a counter, which will be
incremented or decreased during the cycles until it reaches
the exit condition. Otherwise, the loop will be like a while
statement if the value of the variable is not modified in a
explicit way, but sensed from the environment. In that case,
the execution will leave the loop when the correct value is
sensed.

Figure 7: Representation of states involved in a loop

As an example, the loop found in Figure 4 (Island 2), is
composed by three actions whose states are represented in
Figure 7. In this case, the objective is to achieve the desired
number of poses to complete the exercise. All of the states

represent the current situation according to the exercise
stage, where poses have been executed and corrected. How-
ever, in state 1 there is one more detail, where two situations
can occur: the number of executed poses (pose-counter)
is below the desired number of repetitions (pose-number
?e) or it is equal to that value.

The user has to model both options in that stage. With
the first one the loop is still running, whereas reaching
the number of poses allows leaving the loop. Mapping
it into PDDL code means to associate the statement (<
(pose-counter) (pose-number ?e)) with the
preconditions of the action execute-pose. On the other
hand, the action finish-exercise only will be exe-
cuted when the poses counter reaches the exit condition, so
the function (= (pose-counter) (pose-number
?e)) will be part of the precondition of this action. This
distinction is automatically done when mapping the concep-
tual model to its formalization. The user just has to indicate
which is the action that allows to leave the loop. The counter
must be increased after the execution of the last action of the
loop, finish-pose.

Formalizing Exogenous Events
Actions of the nominal behaviour will be executed
while no external events interrupt the robot work. For
that purpose, we automatically introduce a flag called
(can-continue) on the precondition of each nominal
behaviour action, which forces the flow to continue only
if everything goes according to the established plan. Oth-
erwise, this flag will be removed and the robot feedback will
include the error found, which will be translated to high-
level predicates by the LOWTOHIGH module.

Exogenous events are closely related to island definition.
As we explained before, the user has to decide which states
are the beginning of the islands, acting as a restoration point.
Considering the Island 1 in Figure 4, going back to the
first state means that the next action to execute again af-
ter recovering the normal flow is greet-patient. This
implies that this action must be able to be executed even
in error case. This is easily done by adding the disjunc-
tion (or (can-continue)(restore)) in its precon-
dition, declaring that it can be performed in case of no error
or when returning at the beginning of that island.

Regarding to the effects, passing through that action in-

(:action greet-patient

:parameters (?r-robot ?p-patient)

:precondition (and (detected-patient ?r ?p)

(identified-patient ?r ?p)

(or(can-continue)(restore)))

:effect (and (greeted_patient ?r ?p)

(can-continue)

(not (restore))

(assign (island-number) 1))

)

Figure 8: PDDL code for greet-patient action, marked as a
restoration point



(:action search-patient

:parameters (?r-robot ?p-patient)

:precondition (and (not (can-continue))

(not (detected-patient ?r ?p)))

:effect (and (detected-patient ?r ?p)

(restore-action))

)

Figure 9: PDDL code for corrective action

dicates that the execution is already in the first island, rea-
son why it assigns this value to island-number. In case
of running this action after an unexpected state, we assume
that the nominal flow is restored, indicating that the work-
flow can continue again and it is not necessary to go back
to previous restoration points. The formal definition of this
action can be seen in the Figure 8. In this way, if the patient
is lost during the training, the right way to respond is greet-
ing again the patient if they were in island 1 or restarting
the exercise if they were in island 2. Users have the possibil-
ity to define corrective actions to handle those situations by
specifying the events that they want to solve and how these
actions manage the situation. These actions will be only in-
cluded in the plan if the nominal flow can not continue.

Taking the previous example, we have defined in the edi-
tor the corrective action search-patient, formalized in
Figure 9. It will be executed in case the patient leaves the
training area and its effect is finding her again. For this ex-
ample we assume that only one task applies as corrective
action, but a number of them can be included as needed.

In order to recover the nominal flow properly, we
add in the effects of these actions another flag called
(restore-action), which activate special actions that
enable to go back to a correct state to continue with the nom-
inal behaviour. The objective of these restorer actions is to
delete all intermediate effects added by actions of the is-
land, forcing to restart the nominal flow from the desired
point. Otherwise, the current state would still include all
these facts, going back to the exit point when the exogenous
event happened. Our compiler will generate one of these ac-
tions for each defined island, removing all facts added ex-
cept those ones marked as persistent. As an effect, it allows
to find the appropriate restoration point to recover the nom-
inal behaviour. An example can be seen in Figure 10.

It is important to remind that the PDDL formalizations

(:action restore-from-one

:parameters (?e-exercise ?r-robot ?p-patient ?s-session)

:precondition (and (restore-action)

(= (island-number) 1))

:effect (and (not (training-exercise ?e))

(not (started-session ?r ?p ?s))

(not (greeted-patient ?r ?p))

(not (restore-action))

(restore))

)

Figure 10: PDDL code for restore action

showed above are automatically generated by our compiler,
working as a black box. As a result we obtain the PDDL do-
main file corresponding to the use case defined by the user
in the graphical interface. Our system also provides PDDL
problem generation by instantiating the predicates which de-
fine the initial state and the goals to meet.

6 Non Fully Guided Social Robotics
Scenarios

The above scenario represents a full sequential use case,
where the expected behaviour has a totally preset order. In
these cases, the specialist has to define all the connections
between states and actions to generate a domain model that
allows the proper performance of the robot. However, there
might be some situations where the sequence to solve the
problem is unknown. Actually this kind of scenarios are the
ones where AP shows all its potential against other control
techniques like Finite State Machines.

Such scenarios could be depicted by disconnected graphs,
as it is shown in Figure 11. This example represents a simi-
lar use case, involving a social interactive blocks game. This
is an adaptation of the classical planning blocksworld do-
main, with misplaced blocks that must be relocated in a cer-
tain order by the children and the robot, seeking collabora-
tion among participants in a turn-based activity. The domain
is modelled taking into account that both the child and the
robot can carry out actions such as pick up a block or un-
stack it. However, we can not guess which block will be
moved first, since it depends on the initial location of the
blocks and on the child decision, i.e., on the current use case
to solve.

Since disconnected graphs do not specify the full order of
the actions, it is necessary to correctly define when the game
has to take place. This is easily done by adding a predicate
that enables/disables the execution of the game. In this case
we use the expression (play-time), that has to be true
throughout all the game. The action finish-exercise
will indicate the end of the game, removing this predicate in
its effects, as is shown in Figure 12.

As said, identifying appropriate islands is important to
achieve a natural behaviour when recovering the interaction
from an unexpected event. Restorer actions (see Figure 10)
suppose the main difference in these scenarios. For instance,
if a child is holding a block to stack it on top of another,
but during the process the block falls on the table, recogniz-
ing that situation and recovering from it depends on moni-
toring and replanning. Since at this point there is no nom-
inal flow (because there is not a unique general sequence)
and all predicates involved in the action are sensed ones,
no restorer actions will be applied and solving the current
situation relies on finding a new plan from the sensed sce-
nario. Figure 13 shows all sensed predicates involved in the
game, which specify the location of the blocks and whether
a player is able to pick a block. The only way to know if
they are true or false is sensing them from the environment.
Then, it is not necessary for the user to model actions such us
recover-fallen-block. In the case of applying such
a normal restorer action would mean that all blocks would



Figure 11: Social Robotics use case modelled using a disconnected graph

(:action finish-exercise

:parameters (?r - robot ?p - patient ?e - exercise)

:precondition (and (detected-patient ?r ?p)

(training-exercise ?e))

:effect (and (not (play-time))

(finished-exercise ?e))

)

Figure 12: PDDL code for finish-exercise action

be located as at the beginning of the game, which is an as-
sumption that can not be made. The control architecture will
obtain a new plan with the expected behaviour from that new
situation instead.

Then, by using a workflow representation we can also
model generic domains without knowing beforehand the
predicted sequence to achieve the goal. This gives auton-
omy to the robot, being able to solve the current use case
and recover itself from exogenous events that may appear
during its execution by monitoring and replanning. Here we
can see the strength of the use of AP in these cases, avoiding
the use of FSMs that have to be built for each specific case,
and making easier the deployment of robotic platforms.

(on ?obj - block ?underObj - block)

(on-table ?obj - block)

(clear ?obj - block)

(arm-empty ?pl - player)

(holding-by ?obj - block ?pl - player)

Figure 13: Sensed predicates

7 Framework Testing
We have tested our tool in four different domains. Two of
them are classical domains from the International Planning
Competition (IPC)1 and the remaining two ones are afore-
mentioned real social robotics use cases. In the four cases
the PDDL domains created have been tested to be executable
and to provide appropriate plans to solve the task in hand2.

From the IPC, we have modelled the well-known logistics
and blocksworld planning domains. Figure 14 shows how
the logistics is described using our interface by defining the
three actions which allow to transit among the different par-
tial states that are identified for this task, where packages and
vehicles can be located in different places. The blocksworld
model is shown on Island 1 in Figure 11, regardless of the
player change action.

The rehabilitation use case has been integrated in a control
architecture using the PDDL domain and problem files gen-
erated by our system as input of PELEA, which was config-
ured with two identity mappings in the highToLow and low-
ToHigh modules, and tested in simulation. We also deployed
a ROS (Robot Operating System) (Quigley et al. 2009) layer
on PELEA to simulate the communication between the con-
trol architecture and the robotic platform, responsible for
messages passing between both systems. Actions are sent
in their respective low level, waiting for the robot feedback.
As it receives a right response, next action is transmitted. To
check restore actions, we force an unexpected state after is-
lands in different executions, reporting that the patient has
left the training area. Once noticed that the current situation
does not match the expected plan, the problem-solver ob-
tains a new plan which recovers the nominal behaviour by
applying a corrective action. The replanning time provides a

1http://icaps-conference.org/index.php/Main/Competitions
2The resulting domains can be found in https://bit.ly/2ptcwyM



rapid response in less than 0.01 seconds, essential in human-
robot interaction.

Figure 14: State diagram for logistics domain

8 Related Work
Developing PDDL code is not a straightforward task, requir-
ing skills and understanding of the formalization language,
in addition to the effort to model the domain to achieve good
performance in real environments. Most of the times the de-
signer is not a planning expert, needing help to build the
system which will control the robotic platform. For that rea-
son, an important issue is the lack of tools that support the
development of planning domains. Besides some number of
PDDL editors3 which require extensive knowledge about the
specification language to be used, there are only a few sys-
tems providing a simple and intuitive interface to support the
design and development process. Similar to our approach,
we focus this section on visual interfaces, which can save
a lot of time and facilitate the design and modelling task to
people who is not a planning expert.

itSIMPLE (Vaquero et al. 2013) is a Knowledge Engi-
neering environment to support the develop of planning ap-
plications, centred on the initial design phases. This is done
using UML (Unified Modelling Language), by which the re-
quirements are gathered. They also use PDDL as represen-
tation language, translating the input model to this language.
Objects and actions are defined with OCL (Object Con-
straint Language), a pure specification language used to de-
scribe types and preconditions and effects of operations and
methods. GIPO (Simpson, Kitchin, and McCluskey 2007)
presents a planning domain definition in an object-centred
perspective. For each object the properties and the possible
transitions that can occur within each one are defined, mod-
elling in this way the domain. This definition is performed
with abstract state machines, from which propositional de-
scriptions of domain can be derived. To specify associations
between objects, different state machines can be connected,
allowing the proper translation to PDDL code. On the other
hand, VLEPPO (Hatzi et al. 2010) offers an intuitive graph-
ical interface to simplify the modelling task, even for non-
expert users. Close to our approach, relations between ob-
jects are represented by predicates and actions allow tran-
sitions between successive situations. Every element in the
domain is thus defined graphically, enabling the generation
of the corresponding PDDL code.

All of these systems show different representations to
specify planning domains. However, none of them is suit-
able for modelling social interaction use cases, either to rep-
resent a drawback for users who do not have deep knowledge

3http://editor.planning.domains/

about software engineering or become unmanageable for ex-
tensive domains. For that reason, to design Social Robotics
behaviours we choose the workflow definition, a simple way
to define the behaviour the expert expects the robot to per-
form, even in those cases where there is no fixed sequence
to solve the use case. Furthermore, none of the tools men-
tioned provide characteristics to ease the definition of usual
properties of Social Robotics, issues that we exploit in our
work allowing the user to model features such as exogenous
events and islands, thus creating a more robust model to op-
erate in real world environments.

9 Conclusions and Future Work

Applying Automated Planning to Social Robotics has been
already tested in the literature. However, it is not extensively
used due, among other reasons, to the time-consuming pro-
cess of the development of PDDL models, particularly in
this field, where an extensive knowledge engineering pro-
cess is required beforehand. Once the requirements have
been specified by the domain expert, the task of formalizing
them in the representation language is aimed to profession-
als in AP, where the complexity of modelling uncertain and
stochastic environments with deterministic operators arises.
We have developed a tool where domain experts can specify
the use case through a state transition diagram, defining the
actions that the robot must perform. Using our approach it
is also possible to model exogenous events and sequences
of actions that should be executed again after an error case,
intending to achieve a natural interaction. This is useful to
ease the knowledge acquisition process, in addition to pro-
vide details about characteristics that help to achieve natural
interaction between the robot and the human. Going a step
further, the mentioned model is automatically translated to
PDDL code, generating the domain and problem files which
can be inserted in a control architecture based on Classical
Planning to set the robotic platform. All of these features
ease the development of Social Robotics use cases, provid-
ing extended autonomy to those who are domain experts but
are not developers.

In future work, we are planning to extend the editor by in-
cluding the highToLow and lowToHigh files generation, by
building a catalogue of actions which simplifies the develop-
ment and integration of new use cases, avoiding to write ad
hoc files. Considering that PELEA also has a cloud version,
we expect that bringing the two systems together will allow
any person who has a robot and some technical background
to smoothly create and implement her own use case using
AP.
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A.; Bustos, P.; and Fernández, F. 2017. Evaluating the child–
robot interaction of the naotherapist platform in pediatric re-
habilitation. International Journal of Social Robotics 1–16.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an open-
source robot operating system. In ICRA workshop on open
source software, volume 3. Kobe, Japan.
Rajan, K., and Py, F. 2012. T-rex: Partitioned inference for
auv mission control. Further advances in unmanned marine
vehicles 171–199.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007.
Planning domain definition using GIPO. Knowledge Eng.
Review 22(2):117–134.
Tapus, A.; Mataric, M. J.; and Scassellati, B. 2007. So-
cially assistive robotics [grand challenges of robotics]. IEEE
Robot. Automat. Mag. 14(1):35–42.
Tran, T. T.; Vaquero, T. S.; Nejat, G.; and Beck, J. C. 2017.
Robots in Retirement Homes: Applying Fff-the-shelf Plan-
ning and Scheduling to a Team of Assistive Robots. Journal
of Artificial Intelligence Research 58:523–590.
Vaquero, T. S.; Silva, J. R.; Tonidandel, F.; and Beck, J. C.
2013. itsimple: Towards an integrated design system for real
planning applications. Knowledge Eng. Review 28(2):215–
230.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
Baseline for Probabilistic Planning. In International Con-
ference on Automated Planning and Schedulling (ICAPS),
352–359.


