
Acting in Dynamic Environments:
Models of Agent-Environment Interaction

Lukáš Chrpa and Pavel Rytı́ř and Rostislav Horčı́k
Faculty of Electrical Engineering

Czech Technical University in Prague

Abstract

In real-world scenarios the environment is rarely static. Ex-
ogenous events might occur without the consent of the agent
acting in such a dynamic environment. Events account for
acts of nature without specific intentions, or actions of other
agents having their own intentions.
Restricting on two actors, an agent applying actions and an
environment applying events, we, in this paper, elaborate on
five different models of how these actors can interact. For
each actor, we assume full observability and full knowledge
of actions and events. In particular, we focus on action-event
conflicts that arise from the fact that one actor cannot con-
trol the other actor while concerning a classical and temporal
settings.

Introduction
Automated Planning is an important tool for enabling delib-
erative reasoning of intelligent agents. However, many ap-
plication domains consist of multiple actors, independent on
each other, that can either willingly or unknowingly inter-
fere with each other. One option is modifying the planning
approach to handle multiple agents (Bowling, Jensen, and
Veloso 2003; Brafman et al. 2009).

The MA-STRIPS formalism can be used to describe
multi-agent planning tasks (Brafman and Domshlak 2008).
In a nutshell, MA-STRIPS is an extension of STRIPS such
that each agent has its set of actions and goals. The task is
to find a plan for each agent such that plans of the agents
do not collide. In non-cooperative settings, the existing
techniques for generating non-conflicting multi-agent plans
focus on congestion games (Jordán and Onaindia 2015;
Jonsson and Rovatsos 2011). Another possibility is to try
to prevent conflicts between agents’ plans from occurring
by imposing social laws (Nir and Karpas 2019). In adver-
sary settings, agents deliberately try to harm each other (Ap-
plegate, Elsaesser, and Sanborn 1990; Pozanco et al. 2018)
and therefore conflicts between agents’ plans are usually un-
avoidable. Dynamicity of the environment, however, might
not only be caused by actions of other intelligent agents but
also by unintentional “acts of nature” that might also cause
conflicts. Extensional definition of all combinations of ac-
tions and events (like in MDP or FOND) can be leveraged
to handle conflicts but such a solution is rather impracti-
cal. Conflicts can also be handled ad hoc (Chrpa, Rytı́ř, and

Horčı́k 2020), which is not very practical either.

Actions of other agents as well as acts of nature can
be represented as non-deterministic exogenous events over
which the agent has no control (Dean and Wellman 1990).
There is a range of techniques that tackle plan generation
and execution under presence of (non-deterministic) exoge-
nous events. For example, there are techniques based on
Markov Decision Process (MDP) (Kolobov, Mausam, and
Weld 2012), Monte-Carlo Tree Search (Patra et al. 2019),
reasoning about “dangerous states” (Chrpa, Gemrot, and
Pilát 2017) or “safe states” and “robust plans” (Chrpa, Gem-
rot, and Pilát 2020).

In this paper, we consider a two-actor scenario, an agent
that applies actions and an environment that applies events.
The environment actor might be in form of another intel-
ligent agent, an adversary, or a nature which acts with-
out specific intentions. One actor cannot control actions or
events of the other actor and vice versa. The key ques-
tion this paper investigates is how both actors interact in
the environment keeping in mind that both actors act si-
multaneously. Our paper, therefore, discusses possibilities
how to “combine” application of actions and events in a
more practical way. We design and discuss five models
that describe how these actors interact during acting and
each model is discussed in terms of strengths and limita-
tions on three case studies we have considered. The key
issue that each model has to somehow address is how to
deal with action/event conflicts. One possibility, in the clas-
sical setting, is to alternate actions and events as in two-
player games such as Chess (Chrpa, Pilát, and Gemrot 2019;
Chrpa, Gemrot, and Pilát 2020). Another possibility is to
apply actions and events in one step while conflicts are re-
solved by taking out incompatible actions or events. In the
temporal setting, conflicts between actions and events might
occur after an action or event in question already started be-
ing applied. In consequence, precondition of an action or
event can be invalidated even after its application has started.
Such conflicts can be handled by suspending an action or
event until its precondition is satisfied again. The paper be-
sides discussing expressive power of each described model
also points out possible engineering challenges that may
arise for particular models.

Technical Background
This section introduces the terminology we use in this paper.

Classical Planning
Let V be a set of variables where each variable v ∈ V is
associated with its domain D(v). An assignment of a vari-
able v ∈ V is a pair (v, val), where its value val ∈ D(v).
Hereinafter, an assignment of a variable is also denoted as
a fact. A (partial) variable assignment p over V is a set of
assignments of individual variables from V , where vars(p)
is a set of all variables in p and p[v] represents a value of
v in p. A state is a complete variable assignment (over V).
We say that a (partial) variable assignment q holds in a (par-
tial) variable assignment p, denoted as p |= q, if and only if
vars(q) ⊆ vars(p) and for each v ∈ vars(q) it is the case
that q[v] = p[v].

An action is a pair a = (pre(a), eff (a)), where pre(a) is
a partial variable assignment representing a’s precondition
and eff (a) is a partial variable assignment representing a’s
effects. We say that an action a is applicable in state s if and
only if pre(a) holds in s. The result of applying a in s is a
state s′ such that for each variable v ∈ V , s′[v] = eff (a)[v]
if v ∈ vars(eff (a)) while s′[v] = s[v] otherwise.

A planning task is a quadruple P = (V,A, I,G), where
V is a set of variables, A a set of actions, I a complete vari-
able assignment representing the initial state and G a partial
variable assignment representing the goal.

Durative actions
To accommodate the notion of time, we consider a se-
quence of (discrete) timestamps to represent a time-
line. Hereinafter, we denote that a state s holds
in a timestamp t as s(t). An action is a tuple
a = (dur(a), pre`(a), pre à(a), prea(a), eff`(a), effa(a)),
where dur(a) represents duration of a’s application and the
other elements are sets of partial variable assignments. In
particular, pre` represents action precondition before its ap-
plication, prea represents action precondition before finish-
ing its application, pre à represents action precondition for
the whole time interval of its application, eff`(a) represents
action effects taking place after starting its application and
effa(a) represents action effects taking place after finishing
its application. We say that an action a is applicable in a
state s in time t if and only if pre`(a) holds in s(t), prea(a)
holds in s(t + dur(a)) and ∀t′ ∈ [t, t + dur(a)] : pre à(a)
holds in s(t′). The result of applying a in a state s in time t
(if possible) is that eff`(a) becomes true in s(t) and effa(a)
becomes true in s(t+dur(a)). Note that by a partial variable
assignment q becoming true in s(t) we mean that for each
v ∈ vars(q) : s(t)[v] = q[v]. We also consider frame ax-
ioms, that is, the values of variables that are not affected by
effects of actions are carried forward to the next timestamp,
i.e., from a state s(t) to a state s(t+ 1).

Non-deterministic Events
Similarly to the definition of an action, a (non-deterministic)
event is a tuple e = (pre(e), eff (e)), where pre(e), eff (e)

are partial variable assignments representing e’s precondi-
tion and effects respectively. Applicability of an event in a
state as well as the result of an application of an event is
defined in the same way as for actions.

We can also define a (non-deterministic)
durative event as a tuple e =
(dur(e), pre`(e), pre à(e), prea(e), eff`(e), effa(e)),
where the elements of that tuple are analogous to those of a
durative action.

Technically, a non-deterministic event can (but does not
necessarily have to) occur in a state where event’s precon-
ditions are met modifying the state of the environment ac-
cording to event’s effects. The agent that is planning and
executing its actions has no control over whether or not an
event will occur if its precondition is met.

Relations between Actions and/or Events
In classical planning, it is often the case that a plan, a so-
lution of a planning task, is a totally ordered sequence of
actions transforming the environment from the given initial
state to some state in which the goal is satisfied.

However, we might observe that independent actions can
be applied in any order while resulting in the same state.
The notion of independent actions (defined below) has been
leveraged, for example, in the well known Graphplan algo-
rithm (Blum and Furst 1997) that considers sets of indepen-
dent actions to be applied in a single step, so the plan is in
the form of a sequence of sets of independent actions.

Definition 1. We say that actions ai and aj are independent
if and only if vars(eff(ai)) ∩ vars(pre(aj) ∪ eff(aj)) = ∅,
vars(eff(aj))∩vars(pre(ai)∪eff(ai)) = ∅ and for each v ∈
vars(pre(ai)) ∩ vars(pre(aj)) it holds that pre(ai)[v] =
pre(aj)[v]. Independence of events is defined analogously.

Speaking about situations in which two actions cannot
be applied consecutively, we define the notion of a clober-
rer (Chapman 1987) which is an action that invalidates the
precondition of another action.

Definition 2. We say that an action ai is a cloberrer to an
action aj if and only if there exists v ∈ vars(eff(ai)) ∩
vars(pre(aj)) such that eff(ai)[v] 6= pre(aj [v]). The re-
lation of being cloberrer between events is defined analo-
gously.

Durative actions, on the other hand, explicitly consider
time in which their precondition must hold and when their
effects take place. Plans are in form of collections of pairs
– timestamp, action – that provides an information when a
given action is going to be applied. Therefore, it is common
that more actions are being applied at the same time. It is
however important that during their application actions do
not interfere with each other.

Definition 3. Let ai and aj be durative actions, where di =
dur(ai) and dj = dur(aj). We say that ai and aj (in this
order) are in

• 0-effect-effect conflict iff vars(eff`(ai)) ∩
vars(eff`(aj)) 6= ∅

• di-effect-effect conflict iff vars(effa(ai)) ∩
vars(eff`(aj)) 6= ∅

• (di − dj)-effect-effect conflict iff vars(effa(ai)) ∩
vars(effa(aj)) 6= ∅

• 0-effect-precondition conflict iff vars(eff`(ai)) ∩
vars(pre`(aj)) 6= ∅

• −dj-effect-precondition conflict iff vars(eff`(ai)) ∩
vars(prea(aj)) 6= ∅

• [−dj , 0]-effect-precondition conflict iff vars(eff`(ai))∩
vars(pre à(aj)) 6= ∅

• di-effect-precondition conflict iff vars(effa(ai)) ∩
vars(pre`(aj)) 6= ∅

• di − dj-effect-precondition conflict iff vars(effa(ai)) ∩
vars(prea(aj)) 6= ∅

• [di − dj , di]-effect-precondition conflict iff
vars(effa(ai)) ∩ vars(pre à(aj)) 6= ∅
In plain words, the above definition means that actions ai

and aj (in this order) are in k-effect-effect conflict if apply-
ing aj k time units after applying ai results in a situation
that both ai and aj try to modify at least one variable at the
same time. We also consider situations in which two or more
actions modify a variable at the same time to the same value
as an effect-effect conflict too. Similarly, if actions ai and aj
(in this order) are in k-effect-precondition conflict, then if aj
is applied k time units after ai (or before ai if k is negative),
ai modifies at least one variable at the same time aj requires
the variable to have a certain value. Note that [k, l]-effect-
precondition conflict is a shortcut for ∀t ∈ [k, l] : t-effect-
precondition conflict.

In general, let ai be an action applied at time t and aj be
an action applied at time t+k. We say that ai and aj (in this
order) are in conflict if and only if ai and aj are in k-effect-
effect or k-effect-precondition conflict. Otherwise, we say
that ai and aj (in this order) are conflict-free.

PDDL 2.1 semantics (Fox and Long 2003), roughly
speaking, deals with conflicts by “ε-shifts”, that is, shifting
action application by ε, which is usually a very small con-
stant, in order to avoid conflicts with other actions. It is how-
ever not very practical for discretized timelines. Another ap-
proach, primarily designed for temporal planning with SAT
modulo Theories, is tailored for discretized (integer) time-
lines (Rintanen 2015).

Inspired by Rintanen’s approach, we consider the follow-
ing action execution model. Let {(a1, k1), . . . , (an, kn)} be
a set of actions with a relative time of their application. We
also assume that for each ai it is the case that ki ≤ dur(ai)
and all actions are pairwise conflict-free (with respect to
their application time). Note that ki might be negative which
means that the action ai will be applied after |ki| time units.
In a current state s(t), we initially check whether precondi-
tions of the actions are met (if not we fail) and then we apply
action effects and move to a state s(t+ 1). In particular, the
precondition check is done as follows:

• for each ai with ki = 0 we check whether s(t) |=
pre`(ai)

• for each ai with ki = dur(ai) we check whether s(t) |=
prea(ai)

• for each ai with 0 ≤ ki ≤ dur(ai) we check whether
s(t) |= pre à(ai)

Action effects are applied such that s(t + 1) =⋃
{i|ki=0} eff`(ai) ∪

⋃
{i|ki=dur(ai)} effa(ai) and for each

variable v 6∈ vars(s(t + 1)) we apply the frame axiom
s(t + 1)[v] = s(t)[v]. Then, all actions ai having ki =
dur(ai) are removed from the set while the k values of the
remaining actions are incremented by 1.

Note that all the notions defined above can be analogously
extended to events (as well as between actions and events).

Case Studies
In this section, we will introduce case studies that will be
used throughout the paper.

AUV Domain
Inspired by the recent work of Chrpa et al. (2015) con-
cerning task planning for Autonomous Underwater Vehicles
(AUV), Chrpa, Gemrot, and Pilát (2020) designed an “AUV
domain” that simulates the situation where an AUV has to
perform sampling of some objects of interest while there
might be ships passing by that might endanger the AUV. We
have a 4-grid environment, an AUV, ships and several re-
sources. Resources can be found on given cells. Each cell is
either free, has the AUV on it, or the ship on it (presence of
a resource does not interfere with any cell status). The AUV
can move to an adjacent cell, if the cell is free. The AUV
can sample a resource if it is at the same cell. The task for
the AUV is to sample the resources and return back to the
place of origin.

Ships, however, are not controlled by the agent, i.e., ships
are controlled by the environment. Ships can move only on
some cells from the grid or might not be present in the area.
Each ship can enter the area at its entry cells, can move to
adjacent cells it is allowed to move, and leave the area at its
exit cells. A ship can appear in its entry cell, if the ship is
not already in the area. A ship can leave the area, if it is in
its exit cell. Two “move” events are considered, move-ship-
to-free and move-ship-to-auv. Both require that the ship
can move to the destination cell. The effect of both events is
that the ship moves to the destination cell. If the ship moves
to a free cell, then besides the cell becoming not free for a
moment, nothing else happens. However, if the ship moves
to the cell with the AUV, then the AUV is destroyed (and
can no longer perform any action).

Dark Dungeon Domain
Dark Dungeon Domain has been introduced by Chrpa, Gem-
rot, and Pilát (2017). The game is played on a map consist-
ing of rooms and corridors connecting the rooms. A single
hero is present in the map whose goal is to get to a specified
room. However, there are also monsters, which can threaten
and kill the hero, and traps that might kill the hero if they are
not disarmed immediately. The hero can find a sword in the
map and use it to kill monsters. The rules of the game are
summarised in the following points:

• In each step, the hero can make one of the following ac-
tions (or do nothing):

– move to a neighbouring room,
– pickup a sword, if the sword is in the same room as the

hero,
– drop a sword, if the hero is holding it,
– disarm a trap, if the hero does not have a sword and is

in the same room as the trap.

• If the hero is in the same room as a monster and does not
have a sword, the hero is killed. If the hero has the sword,
the monster is killed.

• If the hero is in a room with trap, any other action than
“disarm trap” cannot be performed.

• If the hero does not immediately disarm the trap, the trap
can trigger and kill the hero.

• Disarming a trap or killing a monster removes them from
the map.

• Monsters cannot move to a room with a trap, with another
monster, or with the hero carrying a sword.

Resource Hunting Domain
We introduce a simplification of a two-player zero sum game
called Resource Hunting, recently specified by Rytı́ř, Chrpa,
and Bošanský (2019). The map of the game is modelled as
a graph in which the vertices represent locations of interest
and edges connect neighbouring locations. The (soft) goals
for each player are to collect resources that are placed in
some locations on the map. Each player controls a group of
unmanned aerial vehicles (UAVs).

There are two types of actions each player can take: the
move action, which moves an UAV from one location to an-
other such that the locations are connected by an edge, and
the collect action, where UAVs collect a resource present at
the same location as the UAVs.

After a resource is collected it is no longer available. If
both players attempt to collect the same resource at the same
time, then only one player succeeds (there is a equal chance
for both players to succeed).

We also introduce a combat variant of the domain in
which at most one UAV can be at the same location at the
same time and an UAV might shoot down a competitor’s
UAV if their current locations are at proximity to each other.

Execution Models
In classical planning, the task is to find a partially or totally
ordered sequence of actions, a plan, that transforms the envi-
ronment from the initial state to one of the goal states. Since
classical actions do not consider duration of their applica-
tion, we assume that the actions in the plan are applied (or
executed) consecutively, following the ordering constraints.

With (non-deterministic) events in play, however, the plan
execution model becomes less straightforward as, given no
notion of time, it is not implicit when events might oc-
cur. One possible solution for the issue is inspired by two-
player games in which players’ turns alternate (e.g. Chess or

Checkers). In our terminology, it means that during plan ex-
ecution actions of the agent alternate with non-deterministic
events of the environment (Chrpa, Pilát, and Gemrot 2019).
Such a solution, however, is a considerable oversimplifica-
tion that can be reasonably used only in very limited situa-
tions (e.g. one AUV and one ship).

Inspired by the Graphplan approach (Blum and Furst
1997) in which plans are in form of sequences of sets of
independent actions that can be applied simultaneously, we
amend the above idea such that sets of independent ac-
tions of the agent alternate with sets of independent (non-
deterministic) events of the environment. It should be noted
that such a model is an extension of the model of Chrpa,
Gemrot, and Pilát (2019; 2020) in which only a single ac-
tion was considered in each step.

Model 1. Let A be a set of agent’s actions and E be a set
of events. In a state s, the agent applies a set of independent
actions Ai ⊆ A (might be empty) such that each a ∈ Ai is
applicable in s, that results in a state s′. After that, a set of
independent events Ei ⊆ E (might be empty), where each
e ∈ E is applicable in s′, is applied.

One issue with Model 1 is the assumption that only inde-
pendent actions/events can be performed in a single step. To
give an example, we can have a situation where two AUVs
(or monsters) want to move simultaneously such that the
first AUV (AUV1) moves from a location l1 to a location
l2 while the second AUV (AUV2) moves from l2 to a lo-
cation l3. Such move actions are not independent as AUV2
makes l2 free while AUV1 makes l2 occupied again. On top
of that the move action for AUV1 is not applicable as AUV2
occupies l2 that the move action requires to be free.

To deal with such an issue we introduce the notion of ac-
tion compatibility (and event compatibility) that in a nutshell
specifies whether actions (events) can be applied simultane-
ously in a single step.

Definition 4. Let A be a set of actions and compA ⊆ A ×
A be a relation over a pair of actions. We say that compA
is a relation of action compatibility over A in and only if
i) for all ai, aj ∈ A being independent it is the case that
(ai, aj) ∈ compA and (aj , ai) ∈ compA, and ii) for each
(ai, aj) ∈ compA it is the case that ai is not a cloberrer for
aj . The relation of event compatibility over a set of events
E, compE , is defined analogously.

The formal definition of action/event compatibility says
that if actions/events are independent they are compatible
(i.e., i) is a sufficient condition for compatibility) while an
action/event cannot be a cloberrer for the other action/events
in order to be considered as compatible (i.e., ii) is a neces-
sary condition). The latter condition gives a degree of free-
dom for a domain engineer to decide for each pair of actions
satisfying only the condition ii) whether they are considered
as compatible or not.

To illustrate the notion of action compatibility, we extend
our above example by adding the third AUV (AUV3) that
wants to move from a location l4 to l2. We can see that mov-
ing AUV2 and AUV1 (in this order) is compatible as well as
moving AUV2 and AUV3 (in this order) is compatible. On

the other hand, moving AUV1 and AUV3 is not compati-
ble as moving AUV1 is a clobberer for moving AUV3 (and
vice versa) since both actions make l2 occupied while both
actions require l2 to be free. Also, for example, two con-
secutive move actions of a single AUV follow the necessary
condition, however, they intuitively cannot be performed in
a single step and thus should not be considered as compati-
ble.

The applicability and the result of application of compat-
ible actions/events is defined as follows.
Definition 5. Let A be a set of actions and compA be a
relation of action compatibility over A. We say that a set
of actions Ac ⊆ A is compatible if and only if for each
ai, aj ∈ Ac, where ai 6= aj , it is the case that (ai, aj) ∈
compA or (aj , ai) ∈ compA. We say that Ac is applicable
in a state s if and only if for each action a ∈ Ac it is the
case that for each v ∈ vars(pre(a)) : pre(a)[v] = s[v] or
pre(a)[v] = eff(a′)[v] for some a′ ∈ Ac, where (a′, a) ∈
compA. The result of applying Ac in s is a state s′ such
that s′[v] = s[v] for each v 6∈

⋃
a∈Ac vars(eff(a)), s′[v] =

eff(a)[v] where a ∈ Ac, v ∈ vars(eff(a)) and there does
not exist a′ ∈ Ac such that v ∈ vars(eff(a′)), eff(a′)[v] 6=
eff(a)[v] and (a, a′) ∈ compA. A set of compatible events,
its applicability and the result of its application is defined
analogously.

We can extend Model 1 by considering sets of compatible
actions/events rather than sets of independent action/events
as follows.
Model 2. Let A be a set of agent’s actions and E be a set
of events. In a state s, the agent applies a set of compatible
actions Ac ⊆ A (might be empty) such that Ac is applicable
in s, that results in a state s′. After that, a set of compatible
events Ec ⊆ E (might be empty), where Ec is applicable in
s′, is applied.

Model 2 is more expressive than Model 1 since sets
of independent actions/events are also sets of compatible
actions/events. The reverse implication does not generally
hold.

Focusing on the aspect of alternating action and event
turns that Model 1 and 2 introduce, we analyse our case stud-
ies in terms of whether Model 1 or 2 supports the specified
requirements for each domain.

For the AUV domain, both models reasonably describe
possible interaction between AUVs and ships. If an AUV
moves into a cell in front of a ship in the action turn, then
ship might run over it in the event turn. If a ship blocks
the cell an AUV wants to move, the AUV has to wait un-
til the ship moves away. Although it might be possible that
the AUV and the ship move simultaneously, the AUV might
not know whether the ship will move or not and hence it
has to wait anyway. The requirements specified in the do-
main description are hence met by Model 2 and by Model 1
for a single AUV scenarios where ships do not “share” their
cruising corridors.

In Dark Dungeon, we have some issues. Firstly, after the
hero enters a room with a trap (the action turn), the trap
might trigger and kill the hero (the event turn) without giv-
ing the hero a chance to disarm the trap. Secondly, the hero

carrying a sword can move to the room with a monster and
kill it in the action turn while leaving no opportunity for the
monster to escape (in the event turn). Hence, the require-
ments specified in the domain description are neither met by
Model 1 nor by Model 2.

In Resource Hunting, one issue is when an agent’s UAV
and a competitor’s UAV want to collect a resource at the
same time. The agent goes first and collects the resource in
the action turn. Then, the competitor can no longer collect
the resource in the event turn. Thus the player whose turns
are before the other player’s turns is in advantage and hence
the requirements specified in the domain description are nei-
ther met by Model 1 nor by Model 2.

The intuitive way how to handle the above issues is to ap-
ply actions and events simultaneously in a single step. We
can extend Definition 4 to consider compatibility between
actions and events, i.e., compAE ⊆ (A∪E)×(A∪E) (A is
a set of actions while E is a set of events). This is, however,
only a partial solution for the above issues. It solves, for ex-
ample, the problem where a monster escapes the armed hero.
The other issues, however, are related to incompatibility be-
tween actions and events.

Since the agent has no control over what events the en-
vironment selects and analogously the environment has no
control over what actions the agent selects, there has to be
some mechanism that decides which actions or events will
prevail over the incompatible events or actions. As indicated
in the above examples, we have a couple of ways how the
action/event conflicts have to be resolved. In Dark Dun-
geon, the “disarm-trap” action has to always be preferred
against the “trigger-trap” event. On the other hand, in Re-
source Hunting, the “collect” action has to have an equal
chance as the “collect” event. Following the intuition we de-
fine the action choice function as follows.

Definition 6. Let A and E be sets of actions and events
respectively. We define an action choice (partial) function
ac : A × E → [0, 1] such that for each a ∈ A and e ∈ E
where ac(a, e) is defined it represents that awill be preferred
against e by probability ac(a, e). We assume that ac(a, e) is
defined for each a ∈ A, e ∈ E such that (a, e) 6∈ compAE

and (e, a) 6∈ compAE .

In general, the action choice function as defined above
might not properly describe situations in which more than
one compatible actions are pairwise incompatible with more
than one compatible event. To do so, the action choice func-
tion would have to be defined on sets of actions and events.

Hence, we introduce restrictions that the model has to
comply with. For each set of compatible actions Ac ⊆ A
and each set of compatible events Ec ⊆ E it is the case that
for each a ∈ Ac, e ∈ Ec such that ac(a, e) is defined: i)
there does not exist a′ ∈ Ac, a′ 6= a or e′ ∈ Ec, e′ 6= e
such that ac(a′, e) or ac(a, e′) is defined, and ii) for each
a′ ∈ Ac, a′ 6= a it is the case that a, a′ are independent and
for each e′ ∈ Ec, e′ 6= e it is the case that e, e′ are also
independent.

The following model considers applying actions and
events in a single step. The idea is that both agent and en-
vironment make their selection of compatible actions and

events. Then, for actions and events that are not pairwise
compatible, the action choice function determines what ac-
tions or events will prevail or be eliminated. Note that the
following model considers that above restrictions.

Model 3. Let A be a set of agent’s actions, E be a set of
events, and s be a state. Let ac be the action choice function,
Ac ⊆ A be a set of compatible actions and Ec ⊆ E be
a set of compatible events such that Ac ∪ Ec is applicable
in s. Then, let X = {x | ac(a, e) is defined, P (x = e) =
ac(a, e), P (x = a) = 1−ac(a, e)} (x is a random variable)
be a set of actions and events eliminated fromAc∪Ec. After
that, (Ac ∪ Ec) \X is applied in s.

Model 3 can reason with situations such as in Dark Dun-
geon where according to the specification the hero gets a
chance to disarm a trap before it can trigger, a monster can
escape the armed hero, or, in Resource Hunting, in which
two competing players try to collect a resource at the same
time. In particular, the move of the armed hero and the move
of the monster is compatible (and hence can be applied in
a single step), then, the value of the ac function for the
“disarm-trap” action will be 1 while for the “collect” action
will be 0.5. However, in the combat variant of the Resource
Hunting domain, the above restrictions would prevent to cor-
rectly model situations an agent simultaneously moves more
UAVs “in chain” (e.g. one from l1 to l2, one from l2 to l3
etc.) while an event might block one of the locations. Intu-
itively, if the event is selected and thus blocks agent’s UAVs,
more actions (all in the “chain”) are affected and cannot be
applied in the given step. Such a situation violates the con-
dition ii) of the above restriction.

Model 3 is however problematic in situations such as
moving an AUV in front of a ship that at the same time
moves and runs over the AUV. We might assume that “move-
ship-free” and “move-ship-auv” are two different events
where the former represents that the ship moves to a free
cell while the latter represents that the ship moves to the cell
occupied by an AUV. The latter event is, however, inapplica-
ble at the time of event selection since one of its precondition
can be satisfied only by the “move-auv” action. Similar issue
can be observed in the Dark Dungeon domain in situations
in which the hero and a monster move at the same time to
the same room.

The above issue can be addressed by considering condi-
tional effects that, in fact, allow to “merge” actions or events
into one. For example, “move-ship-free” and “move-ship-
auv” can be merged into “move-ship” with a conditional ef-
fect in form “if an AUV is in the destination cell, then the
AUV is no longer operational”.

An alternative solution to the above issue can be intro-
ducing a “replacing” function such that if a given action is
selected together with a given event, then either the action
or the event is replaced by the “alternative” action or event
respectively. That is, if both “move-auv” and “move-ship-
free” having the same destination location are selected, then
the “move-ship-free” event is replaced by the correspond-
ing “move-ship-auv” event. Formally, the replacing func-
tion is rep : (A ∪ E) × (A ∪ E) → (A ∪ E) such that
rep(x, y) = z specifies that if x and y are selected for be-

ing applied in the same step, then x is replaced by z. Also,
for each x, y1, y2, z1, z2, where y1 6= y2 and z1 6= z2, such
that rep(x, y1) = z1 and rep(x, y2) = z2, it is the case that
y1 and y2 are not compatible. Such a condition will prevent
ambiguities that might arise, for instance, if two events are
selected where for each of the events a different replacement
of a selected action is defined.

Model 4. Let rep be a replacing function and Y be the
set of actions and events as in Model 3. Then, we calculate
Y ′ = Y \ {x | rep(x, y) = z;x, y ∈ Y } ∪ {z | rep(x, y) =
z;x, y ∈ Y } and apply it in the current state s.

Model 4 hence deals with the above issues in the AUV
and Dark Dungeon domains.

Durative Actions and Events
With explicit reasoning about time, the issues with ac-
tion/event independence or compatibility are substituted
by selecting durative actions/events that are conflict-free.
Whereas we can reasonably assume that the agent will se-
lect and apply actions in the conflict-free fashion as well as
the environment will do so with events, conflicts might arise
between actions and events.

For situations in which actions and events are in conflict
and are selected to be applied at the same time while be-
ing incompatible (by means that either an action or an event
can be applied), we can leverage the action choice func-
tion analogously to Model 3. Therefore, we can handle con-
flicts between “disarm-trap” and “trigger-trap” or between
the “collect” action and the “collect” event in the same way
as discussed earlier. Similarly, we can leverage the replacing
function for actions and events which start at the same time
analogously to Model 4.

However, a straightforward adaptation of Model 4 to du-
rative actions and events will not resolve all conflicts and,
moreover, will not prevent situations in which an action in-
validates a precondition of a currently applied event or vice
versa. The latter can be resolved by either terminating ap-
plication of an action or event whose precondition becomes
invalidated, or by suspending its application until the pre-
condition is met again. In the combat variant of the Resource
Hunting domain, shooting down an UAV while it is collect-
ing a resource essentially terminates the action application.
On the other hand, blocking a destination location by a com-
petitor’s UAV might only suspend the agent’s move action.
Technically, we can consider action/event application termi-
nation as its suspension for infinite time.

Resolving conflicts between actions and events can be
done similarly to resolving incompatible actions and events.

Definition 7. Let A and E be sets of durative actions and
events respectively. We define a conflict resolution (partial)
function cr : A × E × Q → [0, 1] such that cr(a, e, k) is
defined for each a ∈ A, e ∈ E and k such that a and e or
e and a are in k-effect-effect/precondition conflict. It means
that effects/preconditions of a will prevail over e (with re-
spect to k) with probability cr(a, e, k).

The following model wraps up the above concepts as fol-
lows.

Model 5. Let A be a set of agent’s durative actions, E be
a set of durative events. Let ac be the action choice func-
tion, rep be the replacing function, and cr be the conflict
resolution function. Let s(t) be the current state in time t.
For actions and events that start their application in time
t we consider ac (the action choice function) and rep (the
replacing function) analogously to Model 3 and Model 4 re-
spectively. If a precondition of an action/event is not met in
t, then the application of the action/event is suspended (the
relative time of its application is not incremented). Conflicts
between actions and events arising in time t are resolved
according to cr (the conflict resolution function) such that
in the case of effect-precondition conflicts, a precondition
of an action/event which “lost” is considered as unsatisfied
(and the action/event is suspended), while effects of an ac-
tion/event which “won” take place (applies also for effect-
effect conflicts).

Model 5 to a large extent correctly captures the required
behaviour for all the considered domains. However, there are
several aspects that are problematic. Firstly, situations such
as an AUV and a ship simultaneously moving to the same
cell are not properly handled. The “move-ship-AUV” event
requires “at-auv=cell” before it finishes its application. The
“move-AUV” action sets “at-auv=cell” at the end of its ap-
plication. Moreover, “move-AUV” requires “free-cell=true”
while “move-ship-AUV” sets it as false. Assuming that both
finish their application at the same time, they are in con-
flict. “Move-AUV” shall prevail, setting “at-auv=cell” while
“move-ship-AUV” becomes suspended. At the next step,
“move-ship-AUV” can be resumed and its effects are free to
take place. Note that the finishing “move-ship-AUV” action
shall prevail over any of starting “move-AUV” actions from
the same cell. Whereas the behaviour of simultaneous ap-
plication of “move-ship-AUV’ and “move-AUV” results in
desired effects (the AUV is destroyed by the ship), the pro-
cess will take one more time unit. Similar observations can
be made in Dark Dungeon in which the hero might “collide”
with monsters.

Suspending application of actions and events might be de-
sirable as, for example, an UAV might wait for a location
to become free. However, it can easily happen that multiple
UAVs will be waiting for a single location to become free.
Therefore, additional conflicts might arise (and are not lim-
ited to action-event conflicts).

Discussion and Conclusion
Planning and acting in dynamic environments poses numer-
ous challenges. One of the challenges, we discuss in this pa-
per, concerns modelling of interaction between actions and
events. We have considered a two-actor model, an agent that
applies actions and an environment that applies events. An
actor cannot control how the other actor will act, on the other
hand, we assume that each actor has full observability of the
environment and full knowledge of the actions and events
that might be applied. The key issue regarding the action
and event application is dealing with action/event conflicts.

In the “classical” variant, where actions and events do not
explicitly take time into consideration, action and event ap-

plication might alternate as in a two-player game such as
Chess. Such a model of the interaction between the agent
and the environment is rather simplistic and might be fea-
sible only for some domains (e.g. the AUV domain). On
the other hand, alternating application of sets of independent
actions and sets of independent events (i.e., Model 1) does
not require additional information to be provided alongside
a domain model. Model 4 provides more realistic interpre-
tation of the interaction between the agent and the environ-
ment and is thus feasible for a larger set of domains. On the
other hand, additional information has to be provided on top
of domain models. The relation of action/event compatibil-
ity is stronger than the relation of independence. However,
there is a degree of freedom in specifying which pairs of ac-
tions/events following only the necessary condition (and not
the sufficient condition) should be considered as compati-
ble. The action choice function for pairs – action, event –
that are not compatible has to be specified as well (if the ac-
tion choice function follows the specified restrictions can be
verifies automatically). Also, one has to specify a replacing
function. Whereas in the example domains providing such
information might be rather straightforward, in some other
and more complicated domains much more engineering ef-
fort might be necessary.

In the temporal variant, actions and events might get into
conflicts with each other. Whereas in cases of “at start” con-
flicts it is possible to resolve them by leveraging the action
choice function such as in the classical variant, conflicts that
arise during action/event application are more complicated
to handle. Specifying the conflict resolution function seems
to require much more engineering effort than specifying the
action choice function. Model 5 provides an interpretation of
the interaction between the agent and the environment with
some limitations. While some limitations are rather small
(e.g. requiring one more time unit to deal with AUV/ship
or hero/monster conflict), other limitations seem to be larger
(e.g. more UAVs waiting for a location to become free).

As a rule of thumb, it is advisable to encode the domain
model in such a way that domain requirements are met (or
the discrepancies are reasonably small) while needing the
simplest possible model of actor interaction. That means, in
consequence, minimising engineering effort for the model
while keeping its required expressivity. On top of that, we
believe (albeit do not discuss in detail) that techniques which
can be used for reasoning might be simpler and computa-
tionally cheaper for simpler actor interaction models.

In future, we plan to further investigate conditions which
temporal domain models have to meet to prevent undesirable
action/event suspending. Also, we plan to study how existing
techniques such as dangerous state reasoning (Chrpa, Gem-
rot, and Pilát 2017) or robust plan generation (Chrpa, Gem-
rot, and Pilát 2020) have to be adapted for different models
of actor interaction.

Acknowledgements This research was funded by AFOSR
award FA9550-18-1-0097 and by the Czech Science Foun-
dation (project no. 18-07252S).

References
Applegate, C.; Elsaesser, C.; and Sanborn, J. C. 1990. An
architecture for adversarial planning. IEEE Trans. Systems,
Man, and Cybernetics 20(1):186–194.
Blum, A., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artif. Intell. 90(1-2):281–300.
Bowling, M.; Jensen, R.; and Veloso, M. 2003. A formaliza-
tion of equilibria for multiagent planning. In IJCAI, 1460–
1462.
Brafman, R. I., and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems. In
Proceedings of the Eighteenth International Conference on
Automated Planning and Scheduling, ICAPS 2008, Sydney,
Australia, September 14-18, 2008, 28–35.
Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz,
M. 2009. Planning games. In Twenty-First International
Joint Conference on Artificial Intelligence.
Chapman, D. 1987. Planning for conjunctive goals. Artif.
Intell. 32(3):333–377.
Chrpa, L.; Pinto, J.; Ribeiro, M. A.; Py, F.; de Sousa, J. B.;
and Rajan, K. 2015. On mixed-initiative planning and con-
trol for autonomous underwater vehicles. In IROS, 1685–
1690.
Chrpa, L.; Gemrot, J.; and Pilát, M. 2017. Towards a safer
planning and execution concept. In 29th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, IC-
TAI, 972–976.
Chrpa, L.; Gemrot, J.; and Pilát, M. 2020. Planning and act-
ing with non-deterministic events: Navigating between safe
states. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, 9802–9809.
Chrpa, L.; Pilát, M.; and Gemrot, J. 2019. Compiling plan-
ning problems with non-deterministic events into FOND
planning. In Joint Proceedings of the RCRA International
Workshop and of the RCRA Incontri e Confronti Workshop
co-located with the 18th International Conference of the
Italian Association for Artificial Intelligence (AIIA 2019),
Rende, Italy, November 19-20, 2019.
Chrpa, L.; Rytı́ř, P.; and Horčı́k, R. 2020. Planning
against adversary in zero-sum games: Heuristics for select-
ing and ordering critical actions. In Proceedings of the Thir-
teenth International Symposium on Combinatorial Search,
SOCS 2020, Online Conference [Vienna, Austria], 26-28
May 2020, 20–28.
Dean, T., and Wellman, M. 1990. Planning and Control.
Morgan Kaufmann Publishers.
Fox, M., and Long, D. 2003. PDDL2.1: an extension to
PDDL for expressing temporal planning domains. J. Artif.
Intell. Res. 20:61–124.
Jonsson, A., and Rovatsos, M. 2011. Scaling up multiagent
planning: A best-response approach. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling, ICAPS.
Jordán, J., and Onaindia, E. 2015. Game-theoretic approach
for non-cooperative planning. In the Twenty-Ninth AAAI
Conference on Artificial Intelligence, 1357–1363.

Kolobov, A.; Mausam; and Weld, D. S. 2012. LRTDP versus
UCT for online probabilistic planning. In AAAI.
Nir, R., and Karpas, E. 2019. Automated verification of
social laws for continuous time multi-robot systems. In
The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of Ar-
tificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, 7683–7690.
Patra, S.; Ghallab, M.; Nau, D. S.; and Traverso, P. 2019.
Acting and planning using operational models. In The 33rd
AAAI Conference on Artificial Intelligence, 7691–7698.
Pozanco, A.; E-Martı́n, Y.; Fernández, S.; and Borrajo, D.
2018. Counterplanning using goal recognition and land-
marks. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden, 4808–4814.
Rintanen, J. 2015. Discretization of temporal models with
application to planning with SMT. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA, 3349–3355.
Rytı́ř, P.; Chrpa, L.; and Bošanský, B. 2019. Using classi-
cal planning in adversarial problems. In the IEEE 31st In-
ternational Conference on Tools with Artificial Intelligence
(ICTAI), 1327–1332.

