
Agent behaviour recognition using text analysis

S. Sitanskiy, L. Sebastia, E. Onaindia1∗
1Valencian Research Institute for Artificial Intelligence

Universitat Politècnica de València
stasiig@inf.upv.es; {lsebastia, onaindia}@dsic.upv.es

Abstract

Research on AI is focusing towards explainable technology,
able to recognize the behaviour patterns of an application in
order to make sensible and informed decisions, predictions
or explaining selected choices. In this work, we are interested
in recognizing the behaviour that a planning agent follows
when solving a planning problem. In other words, our goal is
to uncover the agent’s reasons to select one action or another
at a particular moment, beyond the action model that governs
the physics of the domain.
We present in this paper a new recognition mechanism based
on machine learning methods. The idea lies in regarding a
plan as plain text instead of as a structure of action names and
objects. This way, natural language processing techniques
can be applied to extract the structure underlying a plan and,
therefore, to recognize the behaviour followed by the agent.
We have performed some experiments with several feature
extraction methods and several classification techniques for
two widely known planning domains. The results show that
this is a promising approach.

Introduction
Research on AI is more and more focusing towards explain-
able technology that accounts for the outcomes of programs
and products. One important aspect in this direction is the
ability to recognize the behaviour patterns of an application
in order to make sensible and informed decisions, predic-
tions or explaining selected choices. Another equally impor-
tant aspect is the possibility of learning agents behavior to
accelerate the construction of intelligent behaviours, or the
investigation of certain fragments of the learned behaviour.

In a planning context, an agent is in charge of synthesizing
a plan to solve a given planning problem, where a problem
is defined by a description of the initial state of the world, a
description of the desired goals, and a description of a set of
possible actions. The actions represent the model that gov-
erns the physics of the domain; i.e., the model determines the

∗This work is partially supported by the Spanish MINECO
project TIN2017-88476-C2-1-R and the FPI grant PRE2018-
083896.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

legal actions that can be performed and under which condi-
tions. However, the behaviour of a system is not only de-
termined by the model but also by the reasons for choosing
one action among many options or the order in which ac-
tions will be performed. Generally speaking, the model tells
us what can be done, the behaviour tell us how this is done.

In this work, we are interested in recognizing the be-
haviour that a planning agent follows when solving a plan-
ning problem. Our previous work (Sitanskiy, Sebastia, and
Onaindia 2020) describes a recognition mechanism based
on plan distance metrics. However, this approach has some
limitations, mainly related to the use of resources and the
order in which goals are solved.

In order to overcome these difficulties, we present in this
paper a new recognition mechanism based on machine learn-
ing methods. The idea lies in regarding a plan as plain text
instead of as a structure of action names and objects. This
way, classical machine learning methods that are currently
widely used for text recognition can be applied to recognize
the behaviour pattern underlying a plan.

This paper is organized as follows: next section introduces
the notion of agent behaviour; then, the NLP techniques used
in our approach are described and the details of our recog-
nition process are presented; section Experiments shows the
experiments we have performed in order to test our approach
and we finish with some conclusions and future work.

Agent behaviour
A planning problem is defined as P = (I,G,A), where I
and G are sets of fluents that described the initial state and
the goals, respectively, andA is the set of actions that can be
executed in the domain. Table 1 shows two plans executed
by two planning agents when solving a problem of the Lo-
gistics domain, a classical planning domain introduced in the
first International Planning Competition (IPC)1. This prob-
lem consists in transporting packages P1 and P2 from loca-
tion L1 to location L2 with two available trucks, T1 and T2.
Both plans are executable in I, and both reach the goals in
G using the actions in A.

However, both plans use different strategies (behaviours)

1http://ipc98.icaps-conference.org/



Plan A Plan B
LOAD P1 T1 L1 LOAD P1 T1 L1
LOAD P2 T1 L1 DRIVE T1 L1 L2
DRIVE T1 L1 L2 UNLOAD P1 T1 L2
UNLOAD P1 T1 L2 DRIVE T1 L2 L1
UNLOAD P2 T1 L2 LOAD P2 T1 L1

DRIVE T1 L1 L2
UNLOAD P2 T1 L2

Table 1: Two example plans, representing different be-
haviours: Plan A - load all of the packages in the truck before
starting to unload and Plan B - transport all the packages one
by one

to solve the problem. Plan A follows Behaviour 1 (which
consists in loading all of the packages onto the truck before
starting to unload them), whereas plan B follows Behaviour
2 (which consists in transporting the packages one by one).

The behaviour of an agent can be represented in several
ways. The field of game computing has developed an exten-
sive work in behaviour representation and reasoning. Most
games require artificial opponents against which the player
is competing and these artificial players should be credi-
ble opponents that demonstrate intelligent behaviour in the
course of the game. Traditionally, rule-based systems and
finite-state machines have been used to represent the be-
haviour of non-player characters (NPC) in computer games
(Cavazza 2000). A rule-based system comprises several el-
ements: (i) a rule formalism/syntax; (ii) a unification al-
gorithm; and (iii) an inference engine. Behaviour-oriented
rule-based systems, such as those used in simulation, tend
to adopt forward chaining where traditional decision sup-
port systems would use either backward or forward chain-
ing. On the other hand, NPC behaviour can be controlled by
a finite-state transition network, in which state transitions are
driven by percepts from the embodied agents. Percepts are
calculations made within the game world from the agent’s
perspective. Actions to be carried out by NPC in the game
environment are associated with these state transitions.

Recently, behaviour trees have been introduced to repre-
sent NPC behaviour. A behaviour tree (BT) is a model of
plan execution that is graphically represented as a tree. A
node in a tree either encapsulates an action to be performed
or acts as a control flow component that directs traversal over
the tree. Behavior trees are appropriate for specifying the be-
havior of non-player characters and other entities because of
their maintainability, scalability, reusability, and extensibil-
ity (Marcotte and Hamilton 2017).

In (Sitanskiy, Sebastia, and Onaindia 2020), BTs are used
to represent the behaviour of different planning agents in
the Logistics domain. The BTs are used to synthesize a plan
that solves a planning problem. The cited work compares a
plan generated with the LAMA planner (Richter and West-
phal 2010) for a particular behaviour encoded in the plan-
ning domain with the plans produced by the BTs. Various
plan distance metrics are used so as to identify the under-
lying behaviour of the LAMA plan. The authors conclude
that this approximation to behaviour recognition has some

Figure 1: Recognition model building and validation process

limitations mainly due to the inability to discern among re-
sources and the order in which goals must be solved.

In this paper, we analyze the behaviour recognition prob-
lem from a different perspective. In particular, each plan is
regarded as a sequence of words, each of which has a certain
semantic meaning, being some words action names while
others represent objects in the problem. Our proposal does
not build upon the meaning of the words but on the applica-
tion of statistical methods to analyze the structure of the plan
by using Natural Language Processing (NLP) techniques.

Figure 1 shows the recognition process. The input is a set
of plans in plain format, labeled with the behaviour that they
follow. Then, a feature extraction process assigns a feature
vector to each plan. The result of the plan vectorization is
used by a classifier to train a model that learns the differ-
ent behaviours followed by each agent. The model will then
be used at the recognition stage to determine the underlying
behaviour of a given plan.

In the next section, we explain several vectorization tech-
niques that have been used to extract plan features. Several



classification methods have also been tested to analyze the
one that returns the best accuracy.

Feature extraction
Text classification is a very common task in NLP. NLP tech-
nologies are widely used in areas such as speech recogni-
tion, natural language understanding, and natural language
generation. Specifically, bag of words and n-grams models
have been used for age and gender prediction and sentiment
and mood analysis based on news in social networks (Peers-
man, Daelemans, and Van Vaerenbergh 2011) (Rodrigues et
al. 2016) (Wang et al. 2014), checking e-mails for spam
(Barushka and Hajek 2019), translation (Ma et al. 2018)
(De Vries, Schoonvelde, and Schumacher 2018) and many
others.

Additionally, text analysis techniques have been used to
extract and model the structure of other type of sequences,
such as musical chord sequences (Scholz, Vincent, and Bim-
bot 2009), genome sequences (Tomović, Janičić, and Kešelj
2006), microRNAs (Ding, Zhou, and Guan 2011), proteins
(Vishnoi, Garg, and Arora 2020), etc. In these cases, n-grams
analysis is usually the most popular technique. In the context
of automated planning, n-grams have been used to predict
operator sequences in plans (Muise et al. 2009).

Our work is based on these ideas. First, the family of bag
of words techniques were investigated to be used in our ap-
proach. Then, we also analyzed n-grams, which are able to
take in account the word order.

Bag of words
One of the simplest methods for text analysis is the bag of
words. It consists in representing a text as the bag that con-
tains the words of the text, ignoring grammar and word or-
der, but keeping multiplicity. Given a corpus of text data, a
list of words appearing in this corpus (dictionary) is created.
For example, the dictionary obtained when processing the
plans in Table 1 would be {LOAD, DRIVE, UNLOAD,
P1, P2, L1, L2, T1, T2}; that is, the action names
in A and the objects appearing in I.

Once the dictionary is created, each document or data
record, each plan in our case, is represented as a numerical
vector based on the dictionary. There are several methods
that can be used to create this vector. In this work, we have
used the count and the tf-idf vectorizer methods:

• Count vectorizer converts a collection of text documents
into a matrix of token counts, counting the number of rep-
etitions of each unique word in a document. As an exam-
ple, the vector for plan A in Table 1 would be:

load drive unload P1 P2 L1 L2 T1 T2
2 1 2 2 2 3 3 5 0

The plan length and its content can be represented with
this method, but no mechanism is provided to represent
the ordering of actions.

• tf-idf vectorizer, short for term frequency–inverse docu-
ment frequency, is a numerical statistic that is intended to
reflect how important a word is to a document in a corpus
(Rajaraman, Leskovec, and Ullman 2014). The value for

each term t in a document d given a corpus D is the result
of the following calculation:

tf-idf(t, d,D) = tf(t, d) ∗ idf(t,D) (1)

tf is the relative frequency of terms calculated for each
term in each document:

tf(t, d) =
nt

Td
, (2)

where nt is the number of times term t appears in docu-
ment d and Td is the total number of terms in document
d.
idf is the inverse document frequency, which measures
how important a word is for differentiating each docu-
ment, and it is calculated as follows:

idf(t,D) = log

(
D

Dt

)
, (3)

where D is the total number of documents and Dt is the
number of documents that contain term t.
The application of this method to the term ”T1” (truck 1)
of plan A in Table 1 produces the result:

tf(T1, P lanA) =
5

20
= 0.25

idf(T1, {PlanA, P lanB}) = log

(
2

2

)
= 0

tf-idf(T1, P lanA, {PlanA, P lanB}) = 0.25 ∗ 0 = 0

Clearly, this method is not appropriate when comparing
plans that employ the same resource pool. Moreover, it
does not enable to represent the plan length and, like the
count vectorizer method, it has no mechanism to represent
the ordering of actions.

N-grams
The two methods described above ignore the text structure,
and the tf-idf vectorizer method ignores the text length as
well. With the aim to extract more helpful features for text
classification, we carried out an analysis based on n-grams.

An n-gram is a sequence of n words (Jurafsky 2000).
Given Plan A in Table 1, a 2-gram (or bigram) is a two-word
sequence like "LOAD P1", "P1 T1" or "T1 L1", and a
3-gram (or trigram) is a three-word sequence; e.g., "LOAD
P1 T1", "P1 T1 L1" or "T1 L1 LOAD". Thus, n-
grams enable to capture from a fragment of one action to
several actions (and their variables) as a whole.

Unlike the bag of words, where a dictionary entry is a sin-
gle word, in the n-gram model the dictionary entry is a word
sequence, and the vectorization process consists in count-
ing how many times an n-gram appears in a given plan. An
n-gram model is used to assign probabilities to entire se-
quences of words (Jurafsky 2000). It allows to detect differ-
ences in the ordering of actions and to follow up the use of a
resource object of a plan.



We developed three different n-gram approaches in the
vectorization process:

• Basic approach: a plan is assigned a vector that captures
how many times an n-gram appears in the plan.

• No resources approach: plans are preprocessed to remove
mentions to objects and resources, giving as a result a
plan that consists solely of action names. After the pre-
processing, the n-grams are calculated. For example, the
two plans given in Table 1 are transformed as follows:

Plan A Plan B
LOAD LOAD
LOAD DRIVE
DRIVE UNLOAD
UNLOAD DRIVE
UNLOAD LOAD

DRIVE
UNLOAD

Examples of 3-grams in Plan A are "LOAD LOAD
DRIVE" or "LOAD DRIVE UNLOAD".
This method ignores the objects and resources selected
to achieve the goal. The focus is on detecting patterns of
action-name sequences rather than patterns of objects and
resources.

• Anonymous resources approach: after calculating the n-
grams, resources are anonymized inside the n-grams. This
way, references to different resources in the n-grams may
remain the same if they have the same structure. This
method enables to consider whether the objects and re-
sources used in a n-gram are the same or not. We show
this with two examples:

– Example 1: given the following two 4-grams:
DRIVE T1 L2 L3
DRIVE T2 L4 L2

the anonymization process will translate them into the
same anonymized 4-gram:

DRIVE TX LX LY

, which represents that a truck is driven from one loca-
tion to another, regardless the truck and the locations.
Therefore, it can be concluded that the two 4-grams
given above share the same structure.

– Example 2: given the 8-gram
DRIVE T1 L3 L2 DRIVE T1 L2 L1

it will be transformed into:
DRIVE TX LX LY DRIVE TX LY LZ

In this case, the same anonymized value is used for the
two appearances of the term ”T1”. This may help to
learn sequences in which the same resources are used.

By using this anonymization process, syntactical differ-
ences in the use of objects and resources in semantically
identical plans are ignored. We believe this will improve
the accuracy of the recognition process because the fo-
cus is on the text structure rather than on the specific ob-
jects/resources that are used in the plans.

Experimental setting
This section describes the planning domains and behaviours
they represent used in the experiments as well as the tested
classification techniques.

Domains and behaviours
We used two planning domains in the experimental evalu-
ation: the Logistics domain introduced in the first IPC and
the Rovers domain introduced in the third IPC2. We used the
LAMA (Richter and Westphal 2010) planner for solving the
problems.

The Logistics domain consists in transporting packages
from one location to another. Three behaviours were defined
for this domain:

1. Behaviour ByOne consists in transporting one by one the
packages to their destinations.

2. Behaviour LoadAll consists in loading all of the packages
onto the truck before starting to unload.

3. Behaviour WithoutRestrictions consists in transporting
the packages using the shortest plan possible. This be-
haviour does not impose any restriction on the order in
which the actions are executed.

In the Rovers domain, a rover collects samples of soil,
stones, and photographs and sends them to the central sta-
tion. Five behaviours were defined for this domain:

1. Behaviour CollectFirst consists in collecting all samples
before starting the transmission to the central station.

2. Behaviour RockFirst consists in collecting all of the rock
samples before any of the soil samples.

3. Behaviour SoilFirst consists in collecting all of the soil
samples before any of the rock samples.

4. Behaviour WithoutRestrictions consists in solving the
problem using the shortest plan possible. This behaviour
does not impose any restriction on the order in which the
actions are executed.

5. Behaviour CollectFirstRock is a combination of Rock-
First and CollectFirst behaviours. The agent first collects
all rock samples, then collects all soil samples and, finally,
it will start the transmission.

We generated 80 problems for the Logistics domain and
80 problems for the Rovers domain. Since every problem
is run with all the behaviours defined for each domain, our
set of samples will contain 240 plans for Logistics and 400
plans for Rovers domain.

Vectorization techniques
As previously described, we defined five different vector-
ization methods for feature extraction. This implies that, for
each domain, five datasets are generated:

1. One dataset created by using the basic count vectorizer
with bag of words (denoted as count-BoW)

2http://ipc02.icaps-conference.org/



2. One dataset created by using the tf-idf vectorizer with bag
of words (denoted as tf-idf-BoW)

3. One dataset created by using the basic approach with n-
grams (denoted as basic-n-gram) with length from 4 to
10 terms.

4. One dataset created by using the no resources approach
with n-grams (denoted as no-resources-n-gram) with
length for 1 to 5 terms

5. One dataset created by using the anonymous re-
sources approach with n-grams (denoted as anonymous-
resources-n-gram) with length from 4 to 6 terms.

The n-grams length has been determined empirically.
As shown in Figure 1, after the feature extraction step,

each dataset is split into train and test data. We applied the
K-fold cross-validation method with 5 splits (4 parts are used
for training and 1 part for testing). Data is shuffled before
splitting and no randomness is used in the folds (in order to
make results more stable during the model testing). Finally,
the average and standard deviation of the accuracy score for
each fold is calculated.

Classification methods

In order to learn the behaviour model, four different classi-
fiers, usually applied in text recognition, have been tested:

• Linear Support Vector Classification (LSVC) is based
on the translation of the original vectors into a space
of higher dimension. It searches for a separating hyper-
plane that maximizes the distance to two parallel hyper-
planes representing the classes. This algorithm, among
others, is suitable for solving problems of text classifica-
tion (Cardoso-Cachopo and Oliveira 2003).

• Multinomial Naive Bayes (MNB) is a simple and widely
used classification algorithms in NLP (Zhang and Li
2007).

• Decision Tree Classifier (DTC) is a supervised learning
algorithm based on how humans solve forecasting prob-
lems. It defines a tree-like structure and splits the object
space accordingly to a set of splitting rules located in non-
leaf nodes. This technique is useful in text classification
tasks (Saad and Ashour 2010). For this classifier, we have
used the entropy to measure the quality of a split of a node
based on the information gain.

• Random Forest Classifier (RFC) is a supervised learning
algorithm that consists of many instances of the previ-
ously described decision trees. This is a fairly universal
algorithm, including the one used in text classification
problems (Xu et al. 2012).

Results
In the experiments with both described domains, the vector-
ization methods introduced in section ”Feature extraction”
have been tested.

Figure 2: Behaviour recognition for Logistics domain de-
pending on the vectorization method. 1-count-BoW, 2-
tf-idf-BoW, 3-basic-n-gram, 4-no-resources-n-gram, 5-
anonymous-n-gram

Logistics
Figure 2 show some results obtained for the Logistics do-
main, where bars represent the accuracy in average ob-
tained with each classification technique and whiskers de-
note the standard deviation. Some interesting points regard-
ing to these results can be highlighted:

1. We can see that count-BoW and tf-idf-BoW output sim-
ilar results, with an accuracy below 60%. For these two
vectorization methods, the lowest accuracy values are ob-
tained when using Naive Bayes. The other classification
methods, LSVC, DTC and TFC, do not exhibit a clear
pattern. Low accuracy can be explained by the informa-
tion lost during vectorization, given that these techniques
are unable to capture the ordering of actions and the use of
resources. Besides, the high standard deviation (7-14%)
shows a high reliance on data splitting.

2. With respect to the basic-n-gram vectorization method,
the results improve slightly, but the accuracy is still below
70%. This slight improvement can be explained by the
additional information (ordering of actions) that n-grams
take into account, which is a valuable information during
the recognition stage.

3. Both no-resources-n-gram and anonymous-n-gram
show the best results. The improvement with respect to
the other vectorization methods is fairly significant, with
accuracy values around 90%. Besides, the sensitivity of
these methods on data splitting is lower (6% for Naive
Bayes and 2-4% for the other classification algorithms).
The reason is that these two vectorization methods are
able to correctly identify the action order patterns in the
plans representing each behaviour. Moreover, the slightly
better results of the anonymous-n-gram method may be
due to the fact that the for this domain resource usage is
also important in each behaviour and this method is able
to capture this feature.

Table 2 shows the confusion matrix obtained when using
RFC with the anonymous-resources-n-gram vectorizer
in the Logistics domain. It can be observed that the accuracy



ByOne LoadAll WithoutRestr.
ByOne 1 0 0
LoadAll 0 0.88 0.12

WithoutRestr. 0 0 1

Table 2: Confusion matrix when using the Random Forest
Classifier with the anonymous-resources-n-gram vector-
izer method for the Logistics domain

Figure 3: Behaviour recognition for Rovers domain de-
pending on the vectorization method. 1-count-BoW, 2-
tf-idf-BoW, 3-basic-n-gram, 4-no-resources-n-gram, 5-
anonymous-n-gram

when identifying the ByOne behaviour is 100%, whereas it
is slightly more difficult to distinguish between the LoadAll
and WithoutRestrictions behaviours, given that these be-
haviours are more similar to each other.

Rovers
One of the objectives of the experimentation with the Rovers
domain is to analyze the effect of having a higher number
of behaviours. The confusion matrix with all the behaviours
is shown in Table 3. It can be observed that the Collect-
FirstRock and CollectFirst behaviours are sometimes in-
correctly identified. This is because both behaviours estab-
lish an similar order between the collecting and transmis-
sion actions. Differences in the plans of these two behaviors
are observed only at the stage of sample collection, and the
parts of the plan responsible for transmitting data after sam-
pling can be exactly the same. Thus, in simple tasks, where
only one type of samples is presented to collect, the plans for
these behaviors can be absolutely identical. The same hap-
pens with RockFirst and SoilFirst; in this case, the main
difference between the actions involves the objects that are
processed (rock and soil). And the only difference in the data
obtained after conversion to n-grams is only due to the part
of the plan in which the collection mode changes from one
type of sample to another.

Figure 3 and Table 3 shows the results for the Rovers
domain when all the behaviours (CF- CollectFirst, WR-
WithoutRestr, SF-SoilFirst, RF- RockFirst and CFR-
CollectFirstRock) are considered using all described vet-

corization and classification techniques. The best recogni-
tion value is around 65%, obtained with Multinomial Naive
Bayes and no-resources-n-gram, albeit this value is far
from the 90% obtained for the Logistics domain. This wors-
ening in accuracy may be due to the higher number of be-
haviours. Therefore, we decided to perform two more ex-
periments removing some behaviours to analyze how much
they affect the recognition accuracy.

As stated earliery, behaviours CollectFirstRock and Col-
lectFirst are very similar. Confusion matrix presented by
Table 3 shows that having behaviour CollectFirst gives
a 40% error on recognition behaviour CollectFirstRock
and having behaviour CollectFirstRock gives 60% er-
ror on recognition CollectFirst. First we remove Collect-
FirstRock since CollectFirst is a more general behaviour.
Confusion matrix for recognition results is presented in Ta-
ble 4. It can be observed that the accuracy has improved
compared to the prior experiments. Accuracy on recogni-
tion for behaviour CollectFirst improved from 28% to 80%.
In this confusion matrix, it can also be observed that Rock-
First and SoilFirst behaviours are still not well identified.
Having behaviour RockFirst, gives a 36% error on recogni-
tion of SoilFirst behaviour, and having SoilFirst behaviour
gives a 16% error on recognition of RockFirst behaviour.
Experiments have shown that there is not much difference
in overall accuracy when any of these two behaviors is ex-
cluded. Confusion matrix with recognition results after re-
moving RockFirst behaviour is presented in Table 5. It can
be observed that the accuracy on recognition of SoilFirst
behaviour improved from 60% to 90%.

The dependence of overall recognition accuracy on the
number of included behaviors is shown in Figure 4. The
first group of bars of Figure 4 repeats data shown in bar 4
of Figure 3, representing recognition results for classifica-
tion methods applied with anonymous-n-gram. The sec-
ond group of bars of Figure 4 show the results obtained when
removing behaviour CollectFirstRock and the third group
of bars of Figure 4 show the results obtained when removing
behaviours CollectFirstRock and RockFirst. It is seen that
accuracy improves from (52-58)% with all of the behaviours
presented in dataset to (72-76)% when behaviour Collect-
FirstRock is excluded and to (78-89)% when behaviours
CollectFirstRock and RockFirst are excluded. This config-
uration obtains the best results in accuracy for this domain.

In summary, it can be concluded that increasing the num-
ber of behaviours, when some of them are similar between
each other, causes a decrease in the recognition accuracy.

Both domains described in this paper mostly relate to the
transport type of problems, however, Rovers is a more com-
plex version of it, since it has a large number of possible
actions and resources and allow you to solve a wider range
of tasks, which can affect the accuracy of plan recognition.

Conclusions
This paper focuses on the use of text analysis techniques in
order to identify the behaviour followed by an agent when
solving a planning problem. The main idea is to transfer



CollectFirstRock CollectFirst RockFirst SoilFirst WithoutRestr.
CollectFirstRock 0.56 0.4 0 0 0.04

CollectFirst 0.6 0.28 0 0.06 0.06
RockFirst 0.15 0.04 0.59 0.22 0
SoilFirst 0.09 0 0.39 0.52 0

WithoutRestr. 0.16 0 0.4 0.12 0.68

Table 3: Confusion matrix when using the Decision Trees Classifier with the anonymous-resources-n-gram vectorizer
method for all the behaviour defined in the Rovers domain

CollectFirst RockFirst SoilFirst WithoutRestr.
CollectFirst 0.86 0.04 0 0.1
RockFirst 0.08 0.76 0.16 0
SoilFirst 0.04 0.36 0.6 0

WithoutRestr. 0.24 0.04 0 0.72

Table 4: Confusion matrix when using the Decision Trees Classifier with the anonymous-resources-n-gram vectorizer
method for behaviours CF+WR+SF+RF defined in the Rovers domain

Figure 4: Behaviour recognition for the Rovers with be-
haviours 1) CF+WR+SF+RF+CFR, 2) CF+WR+SF+RF, 3)
CF+WR+SF

CollectFirst SoilFirst WithoutRestr.
CollectFirst 0.76 0.04 0.2

SoilFirst 0.05 0.9 0.05
WithoutRestr. 0.15 0.4 0.81

Table 5: Confusion matrix when using the Decision Trees
Classifier with the anonymous-resources-n-gram vec-
torizer method for behaviours CF+SF+WR defined in the
Rovers domain

the use of these techniques to extract the structure of the
sequence of actions in a plan that denotes a particular be-
haviour. Specifically, bag of words and n-grams vectoriza-
tion methods have been analyzed, using different forms of
input plans. Additionally, several classification techniques
have been tested. All in all, the best results have been ob-
tained with n-grams models using anonymized resources in
plan actions, combined with decision-tree based classifica-
tion techniques (including also random forests).

In our experiments, several behaviours have been defined,
mainly imposing restrictions in the order in which actions
and goals have to be reached. The results show that, when

behaviours are clearly distinguishable, the accuracy is high,
like in the Logistics domain. However, when similar be-
haviours (because the action structure is similar, although
using different objects, for example) are defined, it is more
difficult to correctly identify these behaviours. This is a point
where we must work on.

First, we will test described methods on additional do-
mains. Moreover, we have observed that to solve problems
in the Rovers domain, many actions not directly related with
the specific behaviour are included in the plans (that is, the
same actions appear in all plans and, therefore, it is more dif-
ficult to distinguish between behaviours). For this reason, we
will try to improve the plans used to train the models, maybe
preprocessing them to extract the key actions or generating
the plans by means of behaviour trees.

References
Barushka, A., and Hajek, P. 2019. Review spam detection
using word embeddings and deep neural networks. In IFIP
International Conference on Artificial Intelligence Applica-
tions and Innovations, 340–350. Springer.
Cardoso-Cachopo, A., and Oliveira, A. 2003. An empirical
comparison of text categorization methods. Lecture Notes in
Computer Science 2857:183–196.
Cavazza, M. 2000. Al in computer games: Survey and per-
spectives. Virtual Reality 5(4):223–235.
De Vries, E.; Schoonvelde, M.; and Schumacher, G. 2018.
No longer lost in translation: Evidence that google translate
works for comparative bag-of-words text applications. Po-
litical Analysis 26(4):417–430.
Ding, J.; Zhou, S.; and Guan, J. 2011. mirfam: an effective
automatic mirna classification method based on n-grams and
a multiclass svm. BMC bioinformatics 12(1):216.
Jurafsky, D. 2000. Speech & language processing. Pearson
Education India.
Ma, S.; Sun, X.; Wang, Y.; and Lin, J. 2018. Bag-of-words
as target for neural machine translation. arXiv preprint
arXiv:1805.04871.



Marcotte, R., and Hamilton, H. J. 2017. Behavior trees for
modelling artificial intelligence in games: A tutorial. The
Computer Games Journal 6(3):171–184.
Muise, C.; McIlraith, S.; Baier, J. A.; and Reimer, M. 2009.
Exploiting n-gram analysis to predict operator sequences.
In Nineteenth International Conference on Automated Plan-
ning and Scheduling.
Peersman, C.; Daelemans, W.; and Van Vaerenbergh, L.
2011. Predicting age and gender in online social networks.
In Proceedings of the 3rd international workshop on Search
and mining user-generated contents, 37–44.
Rajaraman, A.; Leskovec, J.; and Ullman, J. 2014. Mining
of Massive Datasets.
Richter, S., and Westphal, M. 2010. The lama planner: Guid-
ing cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research 39:127–177.
Rodrigues, R. G.; das Dores, R. M.; Camilo-Junior, C. G.;
and Rosa, T. C. 2016. Sentihealth-cancer: a sentiment anal-
ysis tool to help detecting mood of patients in online so-
cial networks. International journal of medical informatics
85(1):80–95.
Saad, M., and Ashour, W. 2010. Arabic text classification
using decision trees.
Scholz, R.; Vincent, E.; and Bimbot, F. 2009. Robust
modeling of musical chord sequences using probabilistic n-
grams. In 2009 IEEE International Conference on Acous-
tics, Speech and Signal Processing, 53–56. IEEE.
Sitanskiy, S.; Sebastia, L.; and Onaindia, E. 2020. Behaviour
recognition of planning agents using behaviour trees. In 24th
International Conference on Knowledge-Based and Intelli-
gent Information & Engineering Systems, in press.
Tomović, A.; Janičić, P.; and Kešelj, V. 2006. n-gram-
based classification and unsupervised hierarchical clustering
of genome sequences. Computer methods and programs in
biomedicine 81(2):137–153.
Vishnoi, S.; Garg, P.; and Arora, P. 2020. Physicochemical
n-grams tool: A tool for protein physicochemical descriptor
generation via chou’s 5-step rule. Chemical Biology & Drug
Design 95(1):79–86.
Wang, M.; Cao, D.; Li, L.; Li, S.; and Ji, R. 2014. Mi-
croblog sentiment analysis based on cross-media bag-of-
words model. In Proceedings of international conference
on internet multimedia computing and service, 76–80.
Xu, B.; Guo, X.; Ye, Y.; and Cheng, J. 2012. An improved
random forest classifier for text categorization. JCP 7:2913–
2920.
Zhang, H., and Li, D. 2007. Naı̈ve bayes text classifier. 708
– 708.


