
On-line Learning of Planning Domains from Sensor Data in PAL:
Scaling up to Large State Spaces

Leonardo Lamanna,1,2 Alfonso E. Gerevini,1 Alessandro Saetti,1 Luciano Serafini,2 Paolo Traverso2

1Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Italy
2Fondazione Bruno Kessler, Trento, Italy

Abstract

We propose an approach to learn an extensional representa-
tion of a discrete deterministic planning domain from obser-
vations in a continuous space navigated by the agent actions.
This is achieved through the use of a perception function pro-
viding the likelihood of a real-value observation being in a
given state of the planning domain after executing an action.
The agent learns an extensional representation of the domain
(the set of states, the transitions from states to states caused
by actions) and the perception function on-line, while it acts
for accomplishing its task. In order to provide a practical ap-
proach that can scale up to large state spaces, a “sketched”
intensional (PDDL-based) model of the planning domain is
used to guide the exploration of the environment and learn
the states and state transitions. The proposed approach uses a
novel algorithm to (i) construct the extensional representation
of the domain by interleaving symbolic planning in the PDDL
intensional representation and search in the state-transition
graph of the extensional representation; (ii) incrementally re-
fine the intensional representation taking into account infor-
mation about the actions that the agent cannot execute. An ex-
perimental analysis shows that the novel approach can scale
up to large state spaces, thus overcoming the limits in scala-
bility of the previous work.

1 Introduction
Symbolic planning techniques are based on abstract and
most often discrete representations of the world, where the
agents perform their actions, usually called planning do-
mains. A discrete planning domain is a finite state transi-
tion system, i.e., a finite set of states, a finite set of ac-
tions, and a transition relation representing how actions lead
from states to new states (Ghallab, Nau, and Traverso 2004;
2016). A planning domain can be specified either “exten-
sionally”, by explicitly describing each state and each tran-
sition (e.g., by a transition matrix), or “intensionally” by
means of a planning language, e.g., STRIPS (Fikes and
Nilsson 1971) and PDDL (McDermott et al. 1998), whose
semantics is given in terms of transition systems. In both
cases, the specification of planning domains is a challenging
task. A “good” planning domain should be simple enough
to make automatic planning feasible, as well as detailed

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

enough to generate effective solution plans (i.e., solutions
that can discriminate the states in which the agent has to
take different decisions in order to reach a goal). A good
planning domain should also abstract away the details of the
world state which are irrelevant for the achievement of the
agents’ goals, keeping only the relevant details. This is use-
ful, e.g., for alleviating the knowledge engineering effort and
having planning algorithms perform better.

In many real applications, it may happen that agents do
not have a good planning domain in advance. For instance,
a robot moving packages among rooms of a building could
reason using a planning domain that models the map of the
building with a number of flaws or relevant missing details.
In these cases, agents should be able to learn and update their
models (planning domains) while acting in the world, ob-
serving the consequences of their actions, abstracting away
the real-world states into some abstract planning state, and
updating the state transition relations accordingly. This is the
main purpose of the PAL algorithm (Acting and Learning
Planning) proposed by Serafini and Traverso (2019a), which
learns, incrementally and on-line, a discrete deterministic
planning domain from real-value observations of the world.
Each state in the domain is linked to observations by the
so called perception function, which provides the likelihood
of the observations when the agent is at that specific state.
At each iteration, PAL updates the set of states of the ex-
tensional representation of a planning domain, possibly by
introducing new states for unexpected observations, and it
adjusts the transition relation and the perception function.

A significant drawback of this version of PAL is its poor
scalability. Serafini and Traverso (2019a) show that the scal-
ability limits of PAL are due to the fact that planning do-
mains are represented extensionally by explicitly enumer-
ating the set of states that are explored by the agent, with-
out any specific heuristic guidance or reasoning. In order to
overcome this limitation of PAL, in this paper we extend it
so that to the agent is provided a “drafted” planning domain
specified by the well-known language PDDL (McDermott et
al. 1998). The domain is drafted in the sense that we require
its specification to be initially neither sufficiently detailed
nor fully correct, since its main purpose is to guide the agent
in the discovery of the world and thus also its learning. Fur-
thermore, we provide an algorithm that incrementally up-
dates the initial drafted PDDL domain with additional infor-

mation about the actions that the agent cannot execute.
In the new system, the presence of both the extensional

and the intensional models of the planning domain is ex-
ploited to efficiently achieve the agent’s goals through al-
ternative planning engines: (i) a shortest-path algorithm for
searching a plan in the learned extensional model, and (ii)
a PDDL planner for searching a plan in areas of the search
space that have not been explored (learned through experi-
ence) by the agent yet. An experimental analysis shows that:
• the new resulting method scales up to planning domains

that have a large number of states;
• the online learning can significantly reduce the possible

flaws in the given intensional planning domain, which
asymptotically converges to a correct model;

• exploiting the combined extensional and intensional mod-
els of the planning domain through different planners al-
lows the agent to efficiently accomplish its tasks.
In the reminder of the paper, first we formalize the inves-

tigated problem, then we propose the new method to address
it, provide an experimental evaluation of it, discuss related
work, and finally give conclusions.

2 The Plan-Act-Learn Problem
We formalize the Plan-Act-Learn (PAL) problem that was
first studied by Serafini and Traverso (2019b) without giv-
ing a formal definition. A solution to a PAL-problem in-
stance consists in a learned abstract model of the agents’ en-
vironment that can be exploited to achieve a set of goals. In
the PAL problem, agents perceive the environment through
a series of perceptions, where a perception is a vector
x = 〈x1, x2, ..., xn〉 of continuous variables over real num-
bers, called perception variables. We define the environment
where agents operate as a non-deterministic infinite-state
transition system, called perceptible environment.

Definition 1 (Perceptible environment) A perceptible en-
vironment E is a tuple (Q,A, τ), where Q ⊆ Rn is a (possi-
bly infinite) set of perceptions,A is a finite set of actions, and
τ : Q×A→ 2Q is a non-deterministic transition function.

Function τ returns the set of possible perceptions after the
execution of an action a ∈ A in a state q ∈ Q (and before
executing other successive actions). We adopt the notation
τ(a,X) =

⋃
x∈X τ(a,x) for X ⊆ Q.

Specifying the components of a perceptible environment
is typically extremely complicated, and it cannot be done
by hand. In the field of planning, a common assumption is
that agents act at an abstract level. For instance, the behav-
ior of a robot moving packages among rooms of a building
can be conveniently determined by a planning domain where
each state corresponds to the fact that the robot and pack-
ages are at a certain room, and each transition correspond to
an abstract action, such as moving the robot among rooms,
picking up packages, and putting down them. We define the
search space for planning as a deterministic finite-state tran-
sition system.

Definition 2 (Extensional model) An extensional model
M of an environment E = (Q,A, τ) is a tuple (S,A, γ)

where S is a finite set of (abstract) states, and γ : S×A→ S
is a deterministic transition function.

Given a state s ∈ S and an action a ∈ A, the function γ
outputs the resulting state reached after the execution of a in
s. The action space A of the extensional model is the same
as of the perceptible environment, which consists of the set
of actions agents can perform.

Definition 3 (Perception function) Given an extensional
model M = (S,A, γ) of an environment (Q,A, τ), a per-
ception function ρ forM is a function ρ : Q×S → R+ such
that for every s ∈ S, ρ(x, s) = p(x | s), where p(x | s) is a
probability density function on Q.

The extensional model M and the perception function ρ
shares the same set of states S. Given a perception func-
tion ρ and a perception x ∈ Q, we define the function
ρ∗ : Q → S as ρ∗(x) = argmaxs∈S ρ(x, s), and similarly
ρ∗(X) = {ρ∗(x) | x ∈ X}. Intuitively, ρ∗ is the function
that discretizes the infinite set of states Q into the finite set
of states S.

Definition 4 (Plan) A plan in an extensional model M =
(S,A, γ) from state s ∈ S to state s′ ∈ S is a se-
quence (a1, . . . , am) of m actions in A such that s′ =
γ(am, γ(am−1, . . . , γ(a1, s))).

A perception goal is a perception x ∈ Q that, when per-
ceived by the agent, makes it consider the assigned task ac-
complished.

Definition 5 (PAL-problem) Given an environment E , the
PAL-problem consists in learning an extensional modelM
and a perception function ρ from E , such that, for every per-
ception x0 ∈ Q and (non-empty) perception goal set Xg ⊆
Q,M has a plan (a1, . . . , am) from ρ?(x0) to some state in
ρ?(Xg) and τ(am, τ(am−1, . . . , τ(a1,x0))) ∩Xg 6= ∅.
It is important to note that the agent does not know the envi-
ronment E . The only knowledge about the environment that
it has is the one observed through the perception variables
when executing actions, as the agent can only perceive the
environment and observe the action effects after their execu-
tion.

3 Solving the PAL Problem
In this section, we introduce an approach to solving the
PAL problem that interleaves planning, acting, and learning
using a limited amount of prior knowledge for the agent.
Our approach is named as the problem it solves, Plan-Act-
Learn (PAL). To learn the extensional model, the agent can
apply different strategies: a random exploration strategy is
not feasible, since, as shown in previous work (Serafini and
Traverso 2019b; 2019a), it does not scale to large state
spaces. Alternatively, the agent can use some prior belief
about the environment to decide a plan that will lead to its
current goal. Following this idea, we suppose that such a
belief is expressed through an exploration planning domain
De that is specified by a planning language such as PDDL
(McDermott et al. 1998). Intuitively, the agent will decide
the next action to perform by computing a plan that reaches
a state among those in an input set of goal states Ge from

Figure 1: PAL architecture. The square boxes represent mod-
ules; the circle ones represent data.

the PDDL state se representing the belief of the agent about
the current status of the environment (the e index indicates
that these are the initial state and set of goal states of the
exploration model). Note that we make no assumption about
the correctness of De; we only need that the transformation
used to derive se from the current status of the environment
is such that the inverse transformation applied to a goal state
among those in Ge derives a status of the environment cor-
responding to a perception in Xg .

The architecture of the proposed solution is shown in Fig-
ure 1. The top box of the picture shows the architecture
of the PAL agent. It consists of three components: (i) the
learner module, (ii) the modeling component, formed by
three models, and (iii) the planning component using two
kinds of planners. The learner updates the perception model
using the perceptions from the environment, incrementally
constructs the extensional model and revises the exploration
model. We call the perception function, together with the
history of sensed perceptions, the perception model. The ex-
ploration model is refined when a failure occurs in the at-
tempt of executing an action. The extensional model and the
exploration one are respectively taken as input by the ex-
tensional and exploration planner. Firstly, a plan is searched
in the extensional model. The search of such a plan may
fail because the transition function γ known by the agent at
planning time could be incomplete. If no plan is found, the
goal-driven exploration strategy is applied by means of an
exploration planner. The PAL agent interacts with a simula-
tor (bottom box in the picture), the purpose of which is to
simulate the perceptible environment E where the agent op-
erates, i.e., it simulates the execution of a given action and
the sensing of the environment immediately after the action
execution. We assume that the simulator knows the compre-
hensive definition of the transition function τ of E .

The pseudocode of PAL is shown in Algorithm 1. The al-
gorithm takes as input: a perception goal set Xg , a thresh-
old t ∈ R, an initial perception function ρinit, an initial
extensional modelMinit, and an initial exploration model.
The input initial extensional modelMinit is composed by a

1 Procedure PAL(Xg, t, ρinit ,Minit ,De
init , s

e, Ge)
2 ρ, S, γ,De, π ← ρinit, Sinit, γinit,De

init, 〈〉;
3 x← SENSE();
4 S′ ← {s ∈ S | ρ(x, s) ≥ t};
5 if S′ = ∅ then
6 s← CREATESTATE(x);
7 S ← S ∪ {s};
8 end
9 else

10 s← ρ?(x);
11 end
12 P ← 〈x, s〉; /* The initial history of perceptions*/
13 while the CPU time limit is not exceeded do
14 if x ∈ Xg then
15 return Success; /* s is a goal state */
16 end
17 if π = 〈〉 then
18 Sg ← {s ∈ S | ρ(xg, s) ≥ t and xg ∈ Xg};
19 if Sg 6= ∅ then
20 π ← EXTENSIONALPLAN-

NER(γ, s, Sg);
21 end
22 if π = 〈〉 then
23 /* EXTENSIONALPLANNER has failed */
24 π ←EXPLORATIONPLANNER(De, se, Ge);
25 end
26 end
27 if π 6=〈〉 then
28 a←HEAD(π);
29 π ←TAIL(π);
30 end
31 else
32 Select an action a ∈ A randomly;
33 end
34 EXECUTE(a);
35 x←SENSE();
36 S′ ← {s ∈ S | ρ(x, s) ≥ t};
37 if S′ = ∅ then
38 s′ ← CREATESTATE(x);
39 S ← S ∪ {s′};
40 γ ← γ ∪ {(s, a, s′)};
41 se ←UPDATEPDDLSTATE(De, se, a);
42 end
43 else
44 s′ ← ρ?(x);
45 if s′ = s then /* Execution failure */
46 D ←UPDATEPDDLDOMAIN(De, se, a);
47 π ← 〈〉;
48 end
49 else
50 se ←UPDATEPDDLSTATE(De, se, a);
51 end
52 end
53 s← s′;
54 P ←APPEND(P, 〈x, s〉); /* Update perception

history */
55 ρ←UPDATEPERCEPTIONFUNC(ρ, P);
56 end
57 return Failure;

Algorithm 1: PAL algorithm.

(possibly empty) set of states Sinit, a (possibly empty) tran-
sition function γinit, and a set of actions A that agents can
perform; the input initial exploration model is composed by
De

init, s
e, and Ge.

Initially, the agent perceives the environment by sensing
perception x (step 3). Afterwards, it verifies whether there
exists at least a state among those in Sinit such that the likeli-
hood of sensing x being in this state is greater than a thresh-
old. If it does exist the current state s is set to ρ∗(x), other-
wise a new state is created (steps 5–11). The perception his-
tory is initialized with the perception x and the current state
s (step 12). If the perception x belongs to the set Xg , then s
is a goal state and the algorithm returns success (steps 14–
16). Otherwise, if the plan π is empty, the set of goal states
Sg is defined as the states in S which correspond to a goal
perception xg ∈ Xg (steps 17–18). A state s corresponds to
a goal perception xg if ρ(xg, s) ≥ t.

If the set Sg is not empty, the extensional planner is ex-
ploited to search a plan π from s to a state in Sg (steps 19–
21). Basically, the extensional planner runs the Dijkstra’s
shortest-path algorithm from the source node representing
s in the graph induced by the state transition function γ. If
the distance from the source node to a node representing a
state among those in Sg is infinity, then there exists no path
from the source node to a goal node in the induced graph,
and the extensional planner fails. Otherwise, it returns the
shortest path from the source node to any goal node. If the
extensional planner does not find a plan, the agent searches a
plan using the exploration model, i.e., it runs a PDDL plan-
ner to achieve goals Ge from se, using the PDDL domain
De (steps 22–25). Note that, since the exploration model is
an approximation of the agent behavior in the real world, it
could happen that also this plan does not exist or, if it does
exist, an action in the plan is not executable in the real world.
If the plan does not exist, an action inA is randomly selected
(step 32). Otherwise, the first action of the plan is selected
(steps 28-29) and executed (step 34).

After the execution of the action (and before executing
the next one), the agent perceives the current environment
state (step 35). It is worth noting that the sensing of the
same world state can generate different perceptions. This
can happen for several reasons. Consider the example of a
robot moving packages among rooms of a building, and as-
sume that in this example the GPS coordinates are part of
the sensed perception. It may be that the robot is at the lobby
of the building more than once, and every time it could be
at a different specific position in the lobby. Moreover, even
if every time the robot is at the same specific position, the
GPS coordinates could be different because of measurement
errors of the GPS tracking unit.

Given the last executed action a and the last perception
x, the learner updates the perception model, the extensional
model and the exploration model. Specifically, if the prob-
ability of observing x from each state in S is lower than
threshold t, then the agent creates a new state s′, adds s′
to S, adds transition 〈s, a, s′〉 to γ and updates the PDDL
state se (steps 37–42). The state se is updated according to
De, i.e., adding the positive effects and deleting the nega-
tive effects of action a. Otherwise, the agent selects the state

s′ that maximizes the likelihood of observing x as the next
state (step 44). If the states in S that maximize the likelihood
of observing x are more than one, one of them is randomly
selected. If s = s′, i.e., the execution of action a fails, then
the agent makes plan π empty and updates the PDDL do-
main De in such a way that action a cannot be executed in
state se (steps 45–48). If the action has been successfully
executed, the PDDL state is updated by applying the action
effects (step 50). Finally, the current state s is set to the next
state s′, the pair (x, s) is added to the perception history
P , and the perception function ρ is updated according to P
(steps 53–55). The loop 13–56 is repeated until the CPU-
time limit is exceeded. If the loop terminates without having
reached a goal state, the algorithm returns failure (step 57).

4 Learning the Perception Function
The perception function ρ allows the agent to map a value
x = (x1, . . . , xn) of n perception variables to the state
s∗ according to the maximum likelihood criteria s∗ =
argmaxsi∈S ρ(si,x). When the number of perception vari-
ables and number of states in the extensional model is
high, modelling ρ(si,x) with an n-dimensional distribution
p(x | s), as proposed by Serafini and Traverso (2019a), is
extremely expensive from the computational point of view
and result infeasible. A practical simplifying hypothesis can
be obtained by assuming that ρ factorizes in n perception
functions, one for each perception variable. This means that

ρ(si,x) =

n∏
j=1

ρj(si, xj)

where each ρj(si, x) is an unidimensional probability den-
sity function. The additional advantage of this factorization
is that it allows to associate different thresholds to each per-
ception variable for the same state, instead of a single thresh-
old. We therefore replace the single threshold t in Algorithm
PAL with a vector t = (t1, . . . , tn) where ti ∈ R+ is the
threshold associated to the i-th perception variable. The set
of abstract states on which we have to maximize the likeli-
hood in order to find the next state is thereby defined as

S′ = {si ∈ S | ρ(si,x) ≥ t}
where condition ρ(si,x) ≥ t stands for

∧n
j=1 ρj(si, xj) ≥

tj (steps 4, 18, 36 of Algorithm PAL). A concrete, but still
very general, model for a single variable perception function
which we decided to adopt is the normal distribution. We
therefore suppose that, for every state si and perception vari-
able j, ρj(si, xj) is the normal distributionN (xj | µij , σij)
with mean µij and variance σij .

The parameters µij and σij can be learned online (step
55 of Algorithm PAL). Given a sequence of m observations
(x(k))mk=1 associated to the same state si, the mean µij of
the j-th perception variable is updated as follows:

µij =
2

m(m+ 1)

m−1∑
k=0

(m− k)x(m−k)j

For each perception variable, its mean in the state si is set to
the normalized weighted sum of all perception observations

associated to the state si. The first observation x(1) is the
one associated to the state when it is created; x(m) is the
last perception associated to the state by procedure PAL. The
oldest the observation, the less weight is given. We assume
that the standard deviation σij is known a priori and keeps
unchanged since given by the sensors, although in principle
our approach could learn it from the data.

The choice of the sequence t is important since it strongly
affects the agent capability to correctly build the extensional
model. The higher the thresholds the more states are cre-
ated. With a very low threshold redundant states can be in-
troduced, i.e., states that corresponds to very similar percep-
tions; from these states agents have to take the same decision
to reach a goal state, and hence they should be clustered
in the same state. On the other hand, if the thresholds are
too low, then more than one abstract state is collapsed in a
unique extensional state. A reasonable setting for ti can be
obtained by defining ti = N (2σnoise,i|0, σnoise,i), where
σnoise,i is the maximum measurement noise of the sensor
associated to the i-th perception variable.

5 Experimental Analysis
In our experimental analysis we evaluate the effectiveness
of the proposed approach and, in particular, the usefulness
of using the exploration planner for guiding the search.
As exploration planner we used the well-known planner
FastDownward (Helmert 2006). All experimental tests were
conducted on an Intel Xeon Skylake 2.3 GHz with 8 cores
and 128 GB of RAM. The time limit for each run of PAL
was 60 minutes, after which termination was forced.

Benchmarks and simulators Our benchmarks derive
from three well-known planning domains: Logistics, Grid,
and Rovers. We assume that these domains are approxima-
tions of the world where agents act. For instance, Logistics
concerns moving packages among cities by airplanes and
trucks; in the real world only a number of air routes are per-
mitted, while in the standard PDDL Logistics domain air-
planes can move between any pair of airports. This simplifi-
cation could be adopted because, e.g., the exact network of
the air routes is unknown to the domain model engineer.

For each of the considered domains we developed a sim-
ulator that simulates the physics of the domain with some
discrepancies w.r.t. the available PDDL model. Differently
from the Logistics domain model, a number of air and road
routes are forbidden in the simulator. Specifically, all the air-
ports but one are partitioned into two sets, each airplane can
visit airports in only one of the two sets, plus a special air-
port that is not in either set. Similarly, all the locations within
each city are divided into two overlapping sets, each truck
can visit locations in only one of the two sets. We assume
that GPS trackers are installed on board of both trucks and
airplanes, RFID readers are installed on board of trucks as
well as in storage areas, and that there are RFID tags stuck
on packages. The simulation of an action of the Logistics
domain outputs a perception consisting of readings made by
GPS trackers and RFID readers. The GPS coordinates of a
location are random numbers ranging from 1500 to 30,000;
each reading made by the GPS tracker of a vehicle at a cer-

tain location is a pair of GPS coordinates corresponding to
the location of the vehicle with a noise ranging from 0 to 5;
the reading made by the RFID reader at location l for the
RFID tag of package p is a random number ranging from
0.8 to 1, if p is at l; it is a random number ranging from 0 to
0.2 otherwise; the same reading is made by the RFID reader
installed on board of a vehicle for the RFID tag of a pack-
age. For Logistics and all other tested domains, the noise is
sampled according to a Gaussian distribution.

Domain Grid concerns moving a robot among a grid
of rooms, some of which are closed by doors that can be
opened by keys located in different rooms. A robot can move
from room x to room y only if the two rooms are adjacent
in the grid. Differently from the (standard PDDL) Grid do-
main, in the simulator x and y need to be connected in order
for the robot to move between the two adjacent rooms, and
only 3 over 4 adjacent rooms are connected. We assume that
a GPS tracker and a RFID reader are installed on board of
the robot, keys have GPS trackers and RFID tags, and there
are sensors mounted on doors which detect whether doors
are open or closed. The simulation of an action of the Grid
domain outputs a perception consisting of readings made by
GPS trackers, RFID readers, and door sensors. The GPS co-
ordinates of room (x, y) in the grid are (100 · x, 100 · y).
The reading made by the GPS tracker of the robot at a cer-
tain room is a pair of GPS coordinates corresponding to the
room coordinates with a noise ranging from 0 to 5; the same
reading is done by the GPS trackers mounted on keys. The
reading made by the RFID reader of the robot for the RFID
tag of a certain key is a random number ranging from 0.8 to
1.0, if the key is grasped by the robot; it is a random number
ranging from 0 to 0.2 otherwise. Similarly, the reading of the
door sensors is a random number ranging from 0.8 to 1.0, if
the door is open; it is a random number ranging from 0 to
0.2, if the door is closed.

Domain Rovers concerns moving rovers on the surface of
a planet, taking images, collecting samples, and communi-
cating images back to a lander. A rover at a waypoint can
take an image of an objective only if the objective is visi-
ble from the waypoint. Similarly, a rover at a waypoint can
communicate back data to the lander only if the lander is
visible from the waypoint. Differently from the PDDL do-
main model, the simulator does not allow to take image at
a half of the waypoints from which an objectives is visible,
and it does not allow to communicate back data to the lander
at a half of the waypoints from which the lander is visible.

Table 1: Minimum and maximum number of domain states
(1st column), actions (2nd column), perception variables
(3rd column), and number of states learned by PAL with the
CONTINUE setting (4th column) over the instances of our
benchmark domains solved by PAL.

Domain S A PV LS

Logistics [e+21, e+219] [650, 151400] [269, 18152] [856, 4864]
Grid [e+07, e+35] [726, 26135] [47, 147] [204, 1983]
Rovers [e+10, e+68] [362, 33732] [165, 3961] [114, 1286]

Figure 2: Average number of action-execution failures of PAL-NoUpdateEM and PAL-UpdateEM with settings REPEAT and
CONTINUE for 10 episodes of domains Logistics, Grid, and Rovers.

Figure 3: Average CPU-time of PAL using the REPEAT setting with/without the exploration model (EM) for up to 10 episodes
of domains Logistics, Grid, and Rovers.

We assume that rovers have GPS trackers on board, and that
there are sensors which output real numbers on the basis of
the truth values of facts of the domain. The simulation of an
action of domain Rovers outputs a perception consisting of
readings made by GPS trackers and sensors. The GPS coor-
dinates of a waypoint are random numbers ranging from 0
to 3400; the reading made by the GPS tracker of a rover at a
waypoint are the same GPS coordinates as for the waypoint
with a noise ranging from 0 to 5; the reading of the sensors
is a random number ranging from 0.8 to 1.0, if the fact the
sensor detects is true, it is a random number ranging from 0
to 0.2 otherwise.

We generated and tested the following PAL problems: 37
problems derived from the largest instances of Logistics
used in the first two International Planning Competitions
(IPCs) (Bacchus 2001; McDermott 2000); the 5 problems
derived from the instances of Grid used in the first IPC
(McDermott 2000) plus 30 problems derived from randomly
generated instances; and 40 problems derived from the in-
stances of Rovers used in the third IPC (Fox and Long
2011). The initial and goal perceptions of the PAL problems
were derived from the initial states and sets of goals of the
relative IPC problems.

Experimental results The first experiment we conducted
is running PAL with the IPC version of the planning domain
for the input exploration model, and empty models for the
input extensional and perception models. Algorithm 1 up-
dates the exploration model when the execution of an action
a in a state fails so that, when the exploration planner is run
again from this state, the first action to execute in the new
plan is different from a. For simplicity, in the current im-
plementation of the (automatic) revision of the exploration
model, if the execution of an action fails in a state, the model

is modified in a way that such an action is never executable.
In PDDL, we do this by adding auxiliary predicates and ac-
tion preconditions that constraint the grounding of an oper-
ator to generate only actions that are not forbidden.

Even if the physics of the world encoded in the explo-
ration model and in the simulator have discrepancies (as
previously described), PAL using FastDownward can solve
30 over 37 instances of Logistics, and all the instances of
Grid and Rovers. Table 1 shows that PAL using the explo-
ration model is able to solve quite large problems. On the
contrary, PAL without an exploration model solves no prob-
lem of our benchmarks, because it explores the world states
randomly and only tiny problems where goals are ”acciden-
tally“ reached can be solved.

Then, we tested PAL with non-empty input extensional
and perception models. For each PAL problem, we repeat-
edly ran PAL with two different settings. In the first set-
tings, PAL is run with the same initial and goal perceptions
as those of the PAL problem. We call each of these run an
episode. In the second setting, for each PAL problem we
constructed a set Xg of goal perceptions derived from ran-
domly generated sets of PDDL goals. For the first episode,
PAL is run with the same initial and goal perceptions as
those of the PAL problem; for each other episode, PAL is
run with the last perception sensed in the previous episode
as initial perception and a perception among those in Xg

as goal perception. Essentially, for this second setting PAL
continues to plan for incoming goals. In the following, the
first and second settings are called REPEAT and CONTINUE,
respectively.

We considered ten episodes and two versions of PAL. For
both versions the input knowledge is the same but the explo-
ration models are different. For every episode except the first
one, the extensional and perception models are those derived

Figure 4: Average CPU-time of PAL with the CONTINUE
setting using five different methods for determining the next
search state for 10 episodes of domain Logistics.

at the end of the previous episode; for the first episode they
are empty. One of the two versions of PAL has in input the
IPC domain model as exploration model, the other version
has in input the exploration model derived at the end of the
previous episode. We denote these two versions of PAL with
PAL-NoUpdateEM and PAL-UpdateEM, respectively.

Figure 2 shows the number of action-execution failures
of PAL-NoUpdateEM and PAL-UpdateEM for settings RE-
PEAT and CONTINUE. Since the exploration model is an ap-
proximation of the real world, the execution (through the
simulator) of an action in the plan computed by the explo-
ration planner can fail. The results in Figure 2 shows that for
both settings REPEAT and CONTINUE the number of failures
when the exploration model is updated is significantly lower
than when no update is done among the episodes. For the
REPEAT setting and every considered domain the number of
failures reduces nearly to zero at the fifth episode. Remark-
ably, even for the CONTINUE setting the number of failures
tends to decrease and is close to zero after few episodes. This
is because the number of not executable actions is incremen-
tally learned starting from the first episode, which reduces
the chance of action failures among episodes.

When the agent’s goals are satisfied in a state previously
reached (and learned) by the agent, using the extensional
planner can provide great computational benefits. This is be-
cause, typically, the (learned) state space searched by the
extensional planner is much smaller than the state space in-
duced by the exploration model searched by the exploration
planner. To evaluate these benefits, we conducted an exper-
iment using the REPEAT setting. First, we run PAL using
the exploration planner; then, we run PAL without using
the exploration planner but having the extensional and per-
ception models learned by PAL in the first run (that used
the exploration planner). Figure 3 shows the average CPU
time of PAL with/without the exploration planner for up
to ten episodes. For all the instances and episodes greater
than 8 in Logistics, and greater than 5 in Grid, we have no
action-execution failure for PAL using the exploration plan-
ner; hence the performance gap is the same as for the last
episode shown in the figure. As expected, the CPU time of
PAL using only the extensional planner is lower than when
using the exploration planner. However, achieving the goal
by the extensional planner is still, somewhat surprisingly,
quite expensive. This is because determining the next current
state of the agent from the sensed perception can be com-

putationally much expensive when the number of percep-
tion variables and (learned) states in the extensional model
is high.

To determine the next state, we filter the set of previously
reached (learned) states according to the set J of perception
variables that have been significantly changed by the exe-
cution of the last action. The next state is selected from the
set of states satisfying ρj(xj | s) > tj for each perception
j ∈ J according to the max-likelihood criteria. If this set
is empty, then a new state is introduced. In Figure 4, such a
strategy is denoted by “State filtering”. Finally, we consider
another strategy. If the perception x is obtained by execut-
ing action a in state s and the extensional model contains the
transition (s, a, s′), then, if for each perception variable i the
likelihood of sensing xi being in s′ is above threshold ti, the
next state is s′. We run PAL using such a strategy together
with the strategy for filtering states; this version of PAL is
denoted by “State filtering + early termination”. The results
in Figure 4 show that, on average, for Logistics the filtering
of states significantly improves the performance, while the
speedup obtained using the early termination is negligible.

However, determining the next state can be a bottleneck
of the approach even using these strategies. Figure 5 shows,
for the CONTINUE setting, the average CPU time required
by PAL for planning and for determining the next state w.r.t.
the average total CPU time. For the last episodes, determin-
ing the next state is more time consuming that using the ex-
ploration planner. This is because, for the last episodes, (i)
the number of action-execution failures is low or zero, and
hence the number of times the exploration planner is run is
also low; (ii) the computational cost required to determine
the next states increases with the number of visited states,
which progressively increases with the episodes.

6 Related Work
A large amount of work on learning planning domains fo-
cuses on learning action schema from data. Gregory and
Cresswell (2016), McCluskey et al. (2009), and Cresswell,
McCluskey, and West (2013) propose learning general ac-
tion schema in a structured language starting from plans con-
taining grounded application instances of actions. Mourão et
al. (2012) learn action schemata from noisy and incomplete
observations. Each observation is a sequence of alternating
actions and set of fluent expressions. Zhuo and Yang (2014)
learn an action schema on a target domain by transfer learn-
ing from a set of source domains and by observing partial
plan traces. Aineto, Jiménez, and Onaindia (2018) propose
a method for learning action models from observations of
plan executions that compiles the learning task into a clas-
sical planning task. In all these approaches, learning is per-
formed at the symbolic level, and mappings to perceptions
in a continuous environment are not considered. This is also
the case of the work by Bonet and Geffner (2019), which
provides a framework for learning first-order symbolic rep-
resentations from plain graphs. Indeed, plain graphs are state
transition systems, and there is no mapping to perceptions in
a continuous space, which is what sensors actually provide.
All the above mentioned works do not tackle the problem of
finding an abstraction of the continuous environment (with

Figure 5: Average CPU-time for planning, determining the next search state, and total time required by PAL with the CONTINUE
setting for each episode among 10 episodes of domains Logistics, Grid, and Rovers.

continuous states) into a finite set of states. Building this ab-
straction (encoded in the perception function) is one of the
key contributions of the PAL framework.

There are however a set of approaches that learn a discrete
planning domain from a continous environment. Causal In-
foGAN learns discrete or continuous models from high di-
mensional sequential observations (Kurutach et al. 2018).
This approach fixes a priori the size of the discrete domain
model. Differently from our approach, their goal is to gener-
ate an execution trace in the high dimensional space. LatPlan
takes in input pairs of high dimensional raw data (e.g., im-
ages) corresponding to transitions (Asai and Fukunaga 2018;
Asai 2019). LatPlan is an offline approach, while our ap-
proach is online and works also in dynamic environments.
Konidaris, Kaelbling, and Lozano-Pérez (2018) construct
a STRIPS model by learning the Boolean atoms of the
preconditions and effects of actions. However, their ba-
sic assumption is that a continuous model of the world
is available, and that it is possible to know a fixed map-
ping from the continuous model to the deterministic clas-
sical planning domain. We do not rely on such assumptions.
Moreover, in our approach, the mapping through perception
functions is learned dynamically. Finally, in the work by
Konidaris, Kaelbling, and Lozano-Pérez (2018), the map-
ping is set-theoretic, while we allow for a probabilistic map-
ping through a probability density function.

Most of the work on learning and planning in Partially
Observable Markov Decision Processes (POMDP) – see,
e.g., (Ross et al. 2011; Katt, Oliehoek, and Amato 2017)
– focuses on learning transitions and policies by assuming
a fixed and given set of states and a given reward function.
Some of them drop the assumption of a bounded state space,
see, e.g., (Doshi-Velez 2009). However, none of these works
uses an intensional representation to guide the search for
learning an extensional representation of the planning do-
main.

Our approach shares some similarities with the work on
planning by reinforcement learning (Kaelbling, Littman, and
Moore 1996; Sutton and Barto 1998; Geffner and Bonet
2013; Yang et al. 2018; Parr and Russell 1997; Ryan 2002;
Leonetti, Iocchi, and Stone 2016; Garnelo, Arulkumaran,
and Shanahan 2016), since we learn by acting in the envi-
ronment. However, these works focus on learning policies
and assume the set of states and the correspondence between
continuous data from sensors and states are fixed.

A complementary approach is pursued in works that plan
and learn directly in a continuous space, see e.g., (Abbeel,
Quigley, and Ng 2006; Mnih et al. 2015; Co-Reyes et al.
2018). These approaches do not require a perception func-
tion, since there is no abstract discrete model of the world.
Such approaches are very suited to address some tasks, e.g.,
moving a robot arm to a desired position or performing some
manipulations. However, we believe that, in several situa-
tions, it is conceptually appropriate and practically efficient
to learn an abstract discrete and deterministic model where
planning is much easier and efficient to perform.

We share the idea of a planning domain at the abstract
level with all the work on abstraction on MDP models, see,
e.g., (Abel et al. 2018; Li, Walsh, and Littman 2006). How-
ever, our problem and approach is substantially different,
since in the work about abstraction on MDP models, the
mapping between original MDP states and abstract states is
given, while we learn it.

7 Conclusions
This paper extends the approach proposed in (Serafini and
Traverso 2019a; 2019b) by allowing the agent to exploit
some prior belief on the environment expressed in PDDL.
This is a believed model not a correct one. This exploration
model guides the learning of the extensional representation
of the planning domain to achieve a given goal. We have
introduced a novel algorithm that (i) interleaves symbolic
planning in the intensional representation (the PDDL model)
and searching in the extensional representation (the state
transition system); (ii) implements a goal directed heuristic
to achieve a given goal; (iii) incrementally updates the in-
tensional representation by collecting information about ac-
tions that are not executable. Moreover, we have proposed a
new formulation of the perception function that overcomes
the limits of the definition given by Serafini and Traverso
(2019b) for determining the next state when the number of
states and perception variables is high. Finally, we have ex-
perimentally shown that the novel approach can scale up to
large state spaces, while the the previous approach (Serafini
and Traverso 2019a; 2019b) could deal with only very small
state spaces.

References
Abbeel, P.; Quigley, M.; and Ng, A. Y. 2006. Using inaccu-
rate models in reinforcement learning. In ICML.

Abel, D.; Arumugam, D.; Lehnert, L.; and Littman, M. L.
2018. State abstractions for lifelong reinforcement learning.
In ICML.
Aineto, D.; Jiménez, S.; and Onaindia, E. 2018. Learning
strips action models with classical planning. In ICAPS.
Asai, M., and Fukunaga, A. 2018. Classical planning in deep
latent space: Bridging the subsymbolic-symbolic boundary.
In AAAI.
Asai, M. 2019. Unsupervised grounding of plannable first-
order logic representation from images. In ICAPS.
Bacchus, F. 2001. The AIPS ’00 planning competition. AI
Magazine 22(3):47–56.
Bonet, B., and Geffner, H. 2019. Learning first-order sym-
bolic planning representations from plain graphs. CoRR
abs/1909.05546.
Co-Reyes, J. D.; Liu, Y.; Gupta, A.; Eysenbach, B.; Abbeel,
P.; and Levine, S. 2018. Self-consistent trajectory autoen-
coder: Hierarchical reinforcement learning with trajectory
embeddings. In ICML 2018.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2013. Ac-
quiring planning domain models using LOCM. Knowledge
Eng. Review 28(2):195–213.
Doshi-Velez, F. 2009. The infinite partially observable
markov decision process. In NIPS, 477–485.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2(3/4):189–208.
Fox, M., and Long, D. 2011. The 3rd international planning
competition: Results and analysis. CoRR abs/1106.5998.
Garnelo, M.; Arulkumaran, K.; and Shanahan, M. 2016.
Towards deep symbolic reinforcement learning. CoRR
abs/1609.05518.
Geffner, H., and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning - Theory and Practice. Elsevier.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Gregory, P., and Cresswell, S. 2016. Domain model acqui-
sition in the presence of static relations in the LOP system.
In IJCAI.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res. 26:191–246.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. J. Artif. Intell. Res.
4:237–285.
Katt, S.; Oliehoek, F. A.; and Amato, C. 2017. Learning in
pomdps with monte carlo tree search. In ICML.
Konidaris, G.; Kaelbling, L. P.; and Lozano-Pérez, T. 2018.
From skills to symbols: Learning symbolic representations
for abstract high-level planning. J. Artif. Intell. Res. 61:215–
289.

Kurutach, H.; Tamar, A.; Yang, G.; Russell, S.; and Abbeel,
P. 2018. Learning plannable representations with causal
infogan. In NIPS.
Leonetti, M.; Iocchi, L.; and Stone, P. 2016. A synthesis of
automated planning and reinforcement learning for efficient,
robust decision-making. Artif. Intell. 241:103–130.
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
unified theory of state abstraction for mdps. In ISAIM.
McCluskey, T. L.; Cresswell, S.; Richardson, N. E.; and
West, M. M. 2009. Automated acquisition of action knowl-
edge. In ICAART.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C. A.;
Ram, A.; Veloso, M.; Weld, D. S.; and Wilkins, D. E. 1998.
PDDL—The planning domain definition language. Tech-
nical Report DCS TR-1165, Yale Center for Computational
Vision and Control, New Haven, Connecticut.
McDermott, D. V. 2000. The 1998 AI planning systems
competition. AI Magazine 21(2):35–55.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.
Mourão, K.; Zettlemoyer, L. S.; Petrick, R. P. A.; and Steed-
man, M. 2012. Learning STRIPS operators from noisy and
incomplete observations. In UAI.
Parr, R., and Russell, S. J. 1997. Reinforcement learning
with hierarchies of machines. In NIPS.
Ross, S.; Pineau, J.; Chaib-draa, B.; and Kreitmann, P. 2011.
A bayesian approach for learning and planning in partially
observable markov decision processes. Journal of Machine
Learning Research 12:1729–1770.
Ryan, M. R. K. 2002. Using abstract models of be-
haviours to automatically generate reinforcement learning
hierarchies. In ICML, 522–529.
Serafini, L., and Traverso, P. 2019a. Incremental learning
of discrete planning domains from continuous perceptions.
CoRR abs/1903.05937.
Serafini, L., and Traverso, P. 2019b. Learning abstract
planning domains and mappings to real world perceptions.
In AI*IA 2019 - Advances in Artificial Intelligence, vol-
ume 11946 of Lecture Notes in Computer Science, 461–476.
Springer.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing - an introduction. Adaptive computation and machine
learning. MIT Press.
Yang, F.; Lyu, D.; Liu, B.; and Gustafson, S. 2018. PE-
ORL: integrating symbolic planning and hierarchical rein-
forcement learning for robust decision-making. In IJCAI.
Zhuo, H. H., and Yang, Q. 2014. Action-model acquisition
for planning via transfer learning. Artif. Intell. 212:80–103.

