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Abstract

This work addresses the problem of how to automatically
generate Hierarchical Task Network (HTN) planning do-
mains, in order to faithfully represent the dynamics of a
video game. We introduce a KE process that receives as in-
put a video game and game-level descriptions in the standard
language VGDL, and returns an HTN planning domain and
problem. Therefore, with the inclusion of a agent strategy,
an HTN planner can guide the behaviour of an automated
player. The effectiveness of this process is tested in 4 dif-
ferent video games of the GVGAI environment, a standard
framework containing more than 100 different video games
descriptions, and whose main advantage in our approach is
the ability to integrate an HTN planner as a controller in po-
tentially any of its video games, requiring a minimum effort
from a knowledge engineer.

Introduction
The use of automated planning (and particularly HTN plan-
ning) to guide the behaviour of either an automated player
or Non Playable Characters (NPCs) in a video game has
been previously addressed (Kelly et al. 2008; Hoang, Lee-
Urban, and Muñoz-Avila 2005) providing several advan-
tages, among them that the agent is endowed with delib-
erative reasoning capable of solving problems in the video
game, thus increasing the cognitive capabilities of auto-
mated players.

HTNs are hand-coded structures that encode knowledge
about the domain. A planner takes as input an HTN domain
and information about the specific planning problem, and
outputs a plan that guides the agent behaviour in the video
game. However, an important obstacle hinders the adoption
of this technology: the creation of a planning domain that
perfectly fits to the requirements of a video game is a long,
difficult and meticulous task, where a minimum mistake can
break the domain and produce inconsistent plans. For this
reason we propose an automated process that starts from a
formal description of the video game, and ends with an HTN
domain that incorporates the objects and dynamics of the
game described in the initial format, allowing the introduc-
tion of a planner to solve problems in the video game.
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We are using a simple but expressive language such as
VGDL (Video Game Description Language) (Schaul 2013)
to formally describe the objects and dynamics of the video
game, as well as the different levels or scenarios. This is a
language used to describe many video games. For example,
more than 100 video games are defined in the GVGAI en-
vironment (Perez-Liebana et al. 2016) following the VGDL
standard. Our aim is to seamlessly integrate and HTN plan-
ner into the GVGAI framework (Perez-Liebana et al. 2015)
while reducing at the minimum the KE effort to represent
planning knowledge. The goal of GVGAI is to serve as a
benchmark for testing techniques oriented to Artificial Gen-
eral Intelligence (AGI), and this automated KE process en-
ables HTN planning techniques to be tested and compared
with other AGI techniques that have already been success-
fully proved on previous competitions over this environment
(Torrado et al. 2018). In this work we are presenting the first
step towards this goal.

Therefore, our main contribution is an automated knowl-
edge based process that, receiving a VGDL game and level
description, produces both an HTN domain that represents
the game objects, their relationships and the dynamics, and a
problem representing a concrete initial game configuration.
The so generated domain and problem can be provided later
as input to an HTN planner to produce plans that guide the
behaviour of the agent. Moreover, having the generated do-
main as a basis, a human designer can also define a specific
agent strategy to act accordingly towards the desired goals1.

The effectiveness of this process was tested in four cases
of study, producing domains for two puzzle games and two
reactive games. We have also developed a basic replanning
strategy and finally integrated the planner as a controller for
the GVGAI environment, and improved the default agent
strategy to visualize with GVGAI the potential on reaching
goals in the tested video games.

In the following sections we introduce some background
concepts on VGDL and the HTN language used, describe
the knowledge process addressed and finish analysing the
results obtained with the experiments.

1Hence we are still far from AGI, but we point out in the con-
clusions that machine learning techniques could be built upon our
proposal.



(a) Definition of the objects and their parameters. (b) Characters that represents each object in the level definition
file.

(c) An example of an interaction between the objects (d) An ending criteria for the game.

Figure 1: The four parts that compose a VGDL game description.

Related Work
The generation of planning domains from descriptions
represented in domain-specific languages has been ad-
dressed previously in approaches like (Castillo et al. 2010)
for eLearning scheduling, (González-Ferrer, Fernández-
Olivares, and Castillo 2013) for Business Process Manage-
ment, and (Fdez-Olivares et al. 2011) for supporting clinical
processes. All these works use a language related to a con-
crete problem and generate planning domains that support
expert decision making.

Regarding video games, automated planning has for long
been considered an enabling technology to control the be-
haviour of deliberative agents. (Černỳ et al. 2016) shows
an in-depth review of related work about planning and
video games. Nevertheless, up to the authors’ knowledge,
the works are focused on evaluating the performance of
planners, and planning domains are manually represented.
In most of the cases, only a single planning domain is
represented and planner performance is evaluated on dif-
ferent problems (or game scenarios/levels). On the other
hand, approaches like (Geffner and Geffner 2015) go fur-
ther, and show that planning algorithms are competitive with
respect to standard techniques in Atari video games, but
without a compact PDDL-model for those games. Regard-
ing video game frameworks, several planning architectures
have been integrated with standard frameworks like Star-
Craft (Martı́nez and Luis 2018) or Minecraft (Bonanno et
al. 2016), based on the idea of evaluating the performance
of an online planning architecture using a single planning
domain.

It is widely known that machine learning techniques have
proven to be useful when applied to video games. Concern-
ing GVGAI, some approaches provide results that allow re-
active controllers to learn with relative success (Torrado et
al. 2018). However, these controllers lack deliberative capa-
bilities. On the other hand, in this paper we are interested in
HTN approaches, which are well suited to providing knowl-
edge to deliberative agents, although a knowledge engineer
needs to provide advice to obtain an effective controller.
For these cases approaches like (Gopalakrishnan 2017) and
(Zhuo et al. 2009) propose different methodologies to learn
HTN domain structures automatically. We point out in the
last section a research direction to address this issue.

As previously mentioned, we are concerned with the
video game framework GVGAI (Perez-Liebana et al. 2016)
(described later). To the best of our knowledge, the only at-
tempt of applying planning to this framework is (Couto Car-
rasco 2015), where authors manually define a controller for
puzzle games using PDDL. The approach here presented
tries to go one step further, by proposing a methodology
to automatically generate HTN planning domains from any
video game described in VGDL in this framework, and inte-
grating an HTN planner in order to control the behaviour of
an automated player.

Background
GVGAI and VGDL
GVGAI (General Video Game AI) (Perez-Liebana et al.
2016) is a framework for evaluating the performance and
generalization capabilities of AI-based techniques in multi-
ple domains (video games), and includes a vast variety of
video games descriptions and levels of all kind. Although
the framework is oriented to address problems of General
Artificial Intelligence, we aim to use this framework as a
workbench for planning techniques, specially for the inte-
gration of planning and acting.

The underlying language that GVGAI uses for video
games descriptions is a variant of VGDL (Video Game De-
scription Language) (Schaul 2013), a high-level language
to describe video games, focused on speed and simplicity.
There is a huge variety of predefined types in VGDL, rang-
ing from static ones to different classes of NPCs and agents,
making possible to define many types of video games.

A VGDL game is specified with two text files, one de-
tailing the types of objects, their relationships and dynam-
ics (a video game description file), and another describing
the game level, representing an initial configuration for the
objects involved in the game. A VGDL description is struc-
tured in four parts (see Figures 1a, 1b, 1c and 1d):
• SpriteSet: A specification of game objects (avatar, en-

emies, walls, missiles, etc.). Figure 1a shows an exam-
ple of object definition and their attributes, where we can
see that boulder is a missile (an object with a continu-
ous movement) that only goes downward. VGDL incor-
porates a set of default avatars (according to the different
types of available actions that an avatar can execute), for



Figure 2: Level representation in GVGAI. Notice how each
character represents an instance of an object. For example:
“w” means wall, “.” means a free cell, “A” means avatar and
each number a different enemy.

example, the same figure shows that user is an instance
of VerticalAvatar, i.e., a player agent with two available
movements, up and down. The declaration of game ob-
jects can also be hierarchical, allowing the inheritance of
attributes and behaviour.

• LevelMapping: A set of characters used in a level file to
represent the objects that appears in a game level scenario.
Figure 1b shows how the boulder and user objects are re-
spectively represented as b and u in the level description.

• InteractionSet: A specification of the interactions be-
tween the objects, indicating which actions have to be ex-
ecuted over objects (by the game engine) when they col-
lide with each other. In the same way as sprites, there is
a previously defined repertory of interactions in VDGL.
In Figure 1c we can see an interaction between boulder
and user, called killIfFromAbove, meaning that the boul-
der “kills” the avatar user if the former falls from above
the latter. The order upon which the objects are defined is
relevant, being the first one the producer of the action and
the second one the receiver of the effects.

• TerminationSet: A list of criteria that makes the game
finalize. We can see in Figure 1d an example, stating that
when the number of users alive in the game reaches zero,
the game ends and the agent loses.
A game level file is composed of a 2D matrix of char-

acters where each cell indicates the starting position of an
object instance. Each character is associated with its object
as stated in the LevelMapping section. Figure 2 shows the
transformation from the level description to the visual rep-
resentation in GVGAI.

We can see that the video game description and its dif-
ferent levels follows a similar conceptualization to the HTN
domain representation and its associated problems. Further-
more, the turn-based cycle characteristic of tile-based video
games reassembles a recursive HTN-task with termination
criteria. These similarities will be exploited in the section
devoted to the methodology.

HPDL
Regarding knowledge representation and reasoning, we are
using HPDL and SIADEX, a planning language and a plan-
ner designed to represent HTN problems successfully ap-
plied to several application domains (Fdez-Olivares et al.
2006; Fdez-Olivares et al. 2019). The syntax of HPDL em-
bodies the syntax of PDDL (Fox and Long 2003) 2.1 level

(:task <T>

:parameters (...)

(:method <T_1>

:precondition (...)

:tasks (

(subtask_1 ...)

...

(subtask_n ...)

)

)

...

(:method <T_N>

...

)

)

Figure 3: Task representation in HPDL. Each task receives a
list of parameters and contains one or more methods. Sim-
ilarly to a classic PDDL primitive, each method contains a
section of preconditions and effects, the latter represented as
abstract subtasks.

3 (the de facto standard for planning domains) to represent
PDDL objects, types, predicates and primitive actions. Fur-
ther, it extends PDDL to represent tasks at different levels
of abstraction and methods to describe alternative decom-
position schemes for compound tasks (see Figure 3). Each
task can be decomposed into several, and each decompo-
sition alternative is described by a decomposition method.
Each method contains a precondition that describes its ap-
plicability condition. An HPDL problem looks the same as
in PDDL, except for the goal. In HPDL the goal is not a set
of facts that needs to be true at the end of the plan, but a set
of tasks to be accomplished.

Methodology
The automated generation process starts from two input files
describing, respectively, a VGDL video game and a specific
level of that game. As a result, an HPDL domain and a prob-
lem are produced. The procedure, represented in Figure 4,
consist of the following steps:

1. Extraction of Game Entities. The VGDL game file is
parsed2 and a set of game entities are extracted, each
corresponding to the SpriteSet, InteractionSet, and Lev-
elMapping sections of the video game description3.

2. Domain Generation. These structures enter in a module
responsible of producing the output domain, using also as
input previously defined templates stored in a Knowledge
Base. Based on the parsed types of entities and interac-
tions, this module produces different sections of an HPDL
domain (types, predicates, tasks, methods and primitives).

2Using a parsing process based on the ANTLR (Parr and Quong
1995) parsing facilities.

3The TerminationSet part is not automatically processed due to
its complexity and ambiguous semantics. Nevertheless, the termi-
nation conditions of the game are manually represented in HPDL



Figure 4: General parsing process for a video game.

3. Problem Generation. In a similar way, the structures
parsed are provided as input, along with templates in the
Knowledge Base, to a module in charge of producing the
HPDL problem (objects, init state and goal).

4. Planning and execution. The planner uses both the do-
main and the problem generated to produce a plan for GV-
GAI, where a basic replanning strategy has been defined
to integrate an online planning and execution process in
order to control the behaviour of the avatar representing
the automated player. The online execution process is de-
signed to cope with non-deterministic situations, since the
domains produced are deterministic.

Game entities
The game entities represent the relevant concepts of a VGDL
game description and are conveniently translated into ob-
jects of the HTN domain. Different information is extracted
from each part of a VGDL description file:

• SpriteSet: The name and type of each object are parsed
from this section. In addition, because the objects are de-
fined hierarchically in the VGDL description, it is nec-
essary to maintain this hierarchy between entities in the
HPDL domain. Lastly, the functional parameters (like
speed or movement directions, not the ones concerning
the visual representation) are also parsed to specify the
properties of the objects.

• InteractionSet: The type and the objects involved in each
interaction are parsed and stored, as well as the role of

(:action MISSILE_MOVE

:parameters ()

:precondition ()

:effect (

forall (?m - Missile) (and

(when (orientation-up ?m)

(and

(assign (last_coordinate_y ?m)

(coordinate_y ?m) )

(decrease (coordinate_y ?m) 1)

)

)

(when (orientation-down ?m)

...

)

...

)

)

)

Figure 5: Automatically generated primitive for a movable
object, updating the state of all the sprites of type Missile. In
this case, the action checks the orientation of the instances
and sets their position accordingly.

each object of the pair, either producer or receiver of the
action representing the interaction.

• LevelMapping: The correspondences between the char-
acters in the level description and the specific instances of
the game objects are parsed in order to be able to produce
the HPDL problem.

Knowledge base
The Knowledge Base contains templates used to produce
the tasks, predicates, methods and primitives that forms an
HPDL domain, as well as the initial instantiated predicates
included in a HPDL problem. These templates are game-
independent, and only related to the specific element they
represent. Therefore, the Knowledge Base is organised in
three sections:

• Sprites: This section of the Knowledge Base is concerned
with the representation of objects in the game (not includ-
ing the avatar). Each sprite results in a different object
on HPDL and, depending on its type, additional primi-
tives and predicates are included in the Knowledge Base.
Furthermore, every sprite has HTN-functions (similarly
to PDDL-functions) to represent its current and previous
position. When treating with a movable object, primitives
for the direction are also represented.
As an example, a Missile type object will produce primi-
tives and predicates to update its movement in each game
turn, moving only in the direction indicated by its param-
eters, as Figure 5 shows.

• Avatars: This section is concerned with a subset of sprites
representing the automated players in the game. The ac-
tions represented for avatars in the Knowledge Base are



(:action AVATAR_MOVE_UP

:parameters (?a - <T>)

:precondition (and

(can-move-up ?a)

(orientation-up ?a)

)

:effect (and

(decrease (coordinate_x ?a) 1)

)

)

Figure 6: Example of an action template for an avatar move-
ment, where T indicates the avatar type.

(:action MOVING_WALL_STEPBACK

:parameters (?x - moving ?y - Inmovable)

:precondition (and

(= (coordinate_x ?x) (coordinate_x ?y))

(= (coordinate_y ?x) (coordinate_y ?y))

)

:effect (and

(assign (coordinate_x ?x) (lastCoordinate_x ?x))

(assign (coordinate_y ?x) (lastCoordinate_y ?x))

)

)

Figure 7: Example of an interaction, called stepBack, involv-
ing a moving type object and a wall one, and resulting in the
moving object going back to its previous position. It uses
predicates to keep track of the actual and previous object
coordinates.

limited for tile-based games with grid physics, usually in-
cluding moves in the four cardinal directions and the pos-
sibility of using as a resource a previously defined sprite
(for example, a sword that can kill enemies).

The Knowledge Base stores templates for each possible
action of a VGDL avatar and knows which ones are avail-
able for each type. With these templates, and depending
on the type of avatar, a simple strategy is included in the
domain, although we encourage to manually define one
focused on the objectives the agent is supposed to attain.

Figure 6 shows an example of an action template. After
the parsing process where the avatar type is extracted, the
variable T will be instantiated and the primitive included
in the output domain.

• Interactions: This section stores templates for VGDL in-
teractions, representing the collision of two objects in the
same tile. Each one has particular primitive and method
templates, with the resulting instantiation as shown in Fig-
ures 7 and 8. The method acts as a wrapper including extra
verifications and better organisation in the domains.

(:method moving_wall_stepback

:precondition (and

(not (= (coordinate_x ?x) -1))

(not (= (coordinate_x ?y) -1))

...

)

:tasks (

(MOVING_WALL_STEPBACK ?x ?y)

...

)

)

Figure 8: Method wrapper for the interaction in Figure 7. We
include verifications of the objects position (-1 indicates they
are not actually present in the level) to reduce the planner
search time.

Generating the output
Having the game entities and the templates returned from
the Knowledge Base, it is necessary to make an instantiation
before outputting the HPDL domain and problem. With this
idea in mind, the output is divided by each file:

Domain generation Based on the templates from the
Knowledge Base and the game entities from the parsing pro-
cess, the domain is constructed as follows:

• HPDL types: For each child sprite, the hierarchy is re-
flected defining the parents as the object type. When
reached a sprite without parent, its type defined in the
VGDL file will be its HPDL type. All sprite types will
inherit from the most generic object, in the HPDL case, a
supertype called Object. This supertype allows us to gen-
eralize behaviour in predicates and functions.
Figure 9 shows an example of a hierarchy in one of the
resulting domains. Every sprite (represented enclosed in
a elipsis) inherits from its type, while these types inherit
from the supertype Object.

• HPDL predicates and functions: It is necessary to keep
two types of predicates: to know the orientation of all
movable objects and to control when a movement is avail-
able for the agent.
As for the functions, it is needed to keep track of the
former and actual position of each object (avatars and
sprites). This is necessary because there are common in-
teraction, like stepBack, that returns an object to its previ-
ous position when it collides with another. Additionally,
it is important to maintain a counter of each type of object
defined and the resources the avatar has obtained in order
to keep track of the possible ending criteria.

• HPDL compound actions: A global task Turn is gener-
ated to represent the change of state of all the entities in
a game-turn. Roughly speaking, this task represents the
game forward model, thus enabling the planner the abil-
ity to reason about the game dynamics. This task is com-
posed of two methods: one checking the ending criteria



Figure 9: Representation of the game object hierarchy in an
output domain for the game Sokoban.

(:task Turn

:parameters ()

(:method finish_game_1

:precondition (= (turn) 10)

:tasks ()

)

(:method finish_game_2

:precondition (= (counter_avatar) 0)

:tasks ()

)

...

Figure 10: Example of ending criteria for a domain. If any
of the preconditions evaluate as true, the planner stops and
return the actual plan.

and another invoking a series of subtasks with the spe-
cific game representation (further detailed in Subsection
HPDL Turn). These subtasks consist of:
– A compound subtask that represents the avatar move-

ments.
– A subtask with the changes of state of non-static sprites

(movable object like bullets or missiles).
– A recursive task that checks all possible interactions in

the game.
• HPDL primitives: The generation of primitives is struc-

tured as follows:
– For each possible movement of the avatar an action is

generated, plus one for the no-movement.
– For the non-static sprites, a primitive representing the

update of state is produced, as previously shown in Fig-
ure 5 for a Missile type object.

– Finally, for each interaction a primitive is included to
reproduce its effects, as in Figure 7. The precondition
primarily checks the collision of objects, but depending
on the type of interaction additional verifications may
be included, like checking the orientation of the sprites.

Problem generation Similarly to the domain generation
process, the problem is constructed with the help of the game
entities and the Knowledge Base. For each character on the
level description file, a new instance is created indicating its

Figure 11: Turn cycle represented in the domains.

position at the start of the game, and the counters are appro-
priately initialized. The goal will be the call to the recursive
task Turn, where the ending criteria and the game cycle is
defined. Figure 10 shows examples of two ending conditions
used in the experimentation.

HPDL Turn
In classical (non HTN) the goal is a state description that has
to be satisfied by a sequence of actions found by a search
process, e.g. the avatar must be on the exit door. However,
in HTN the goal is not a final state, but a set of tasks to be
decomposed. Therefore, the task-goal in our HPDL problem
consist only of a recursive task called Turn. This task pro-
vides additional knowledge to the planner about the game
representation. However, because we tried to keep the pro-
cess as general as possible, we did not include game-specific
heuristic knowledge, and we considered the use of tech-
niques to automatically extract it as part of Future Work.
Specifically, this Turn task codifies the changes produced by
avatars, sprites and interactions in a game cycle.

As shown in Figure 11, is divided in four subtasks:

• At the beginning of each turn, the termination criteria are
checked. In case they are achieved, the planner stops with
the current plan.
As we are only focusing on the representation of the dy-
namics, and not in winning the game, we used two con-
ditions to determine the end of the planner search: a fixed
number of calls to the task Turn; or when the quantity of
avatars alive reached zero.

• Otherwise, a new cycle starts with the following proce-
dure:

1. A movement for the avatar is selected. By default it is
chosen the first available action for the agent.

2. The rest of objects update their situation.
3. For each pair of objects it is checked if an interaction

has been produced, invoking the corresponding primi-
tive if true and updating the planning state as necessary.



Syntax elements Semantic elements
Primitives Tasks Methods Types Supertypes Predicates Functions Determinism Movable objects Agent actions Interactions

Sokoban 14 5 20 5 3 10 14 Yes No 4 5
Brainman 33 5 38 11 5 11 22 Yes Yes 4 23

Aliens 17 5 19 10 9 9 25 No Yes 3 9
Boulderdash 28 5 33 10 9 12 27 No Yes 5 17

Figure 12: Syntax and semantic elements of the four domains produced.

Replanning
For replanning, we integrate the parsing process as an agent
in the GVGAI framework that updates the HTN problem
wherever there are no more remaining movements for the
avatar. This is simple because the representation of the ac-
tual state of the game in GVGAI follows a similar concep-
tualization as in VGDL.

With this process we are not only reducing the planning
computation time (because we no longer require to plan for
a great number of turns), but also helping the agent to face
non-deterministic adversities.

Experiments
It is important to note that we are only focused on extract-
ing the video game dynamics in order to be handled by an
HTN planner. We have intentionally obviated the generation
of heuristic knowledge to come up with plans that solve the
videogames. Because of that, the experimentation focuses
on validating the HTN representation of the game dynam-
ics, not in testing the quality of the plans.

We experimented with four different games, two puzzles
games and two reactive games, containing different levels of
determinism and non-determinism, of gradually increasing
representation complexity. These games are:
• Sokoban. A puzzle game where the agent has to push

all boxes into specific tiles on the map. The avatar can-
not grab any box and must push it in the same direc-
tion it is facing. It features no NPCs or any kind of
non-determinism, making Sokoban the most simple game
from the ones we tested.

• Brainman. Another puzzle game consisting on making
the agent go to the exit. As in Sokoban, in his way he must
push the keys to open the doors. However, the keys act as
missiles, meaning that when one is pushed it follows the
same direction until it collides with something.

• Aliens. Adaptation of the classic arcade game, where the
agent must kill all the aliens that spawn above him. In
this version of the game the aliens move randomly to the
sides and throw bombs to the avatar, making it highly non-
deterministic and thus difficult to represent.

• Boulderdash. The objective is to collect nine gems and
go to the exit. There are also enemies and falling boulders
around the map to disturb the agent during his task. In
occasions it is needed to use a shovel to make way through
the level, but at the same time taking care not to make the
boulders fall in undesired places.
Boulderdash is characterized by being strongly non-
deterministic, multi-objective (in the sense that the avatar
has to reach several subgoals and determine the order

Figure 13: Portion of a plan returned from the Siadex plan-
ner, representing two turns in the Boulderdash game. The
first two primitives of each turn in this plan indicates the
avatar and object movements, and the following three the
interactions produced in the turn.

to achieve each one of them) and sometimes unsolvable,
making it by far the most complex game of the four.
In addition to the same kind of experiments we made with
the others games, for Boulderdash we manually defined
an agent strategy to show the feasibility of the domain
produced.

All of the games were treated with the same procedure:
the group of templates representing the elements in the game
were included in the Knowledge Base, and a compiling pro-
cess was made from VGDL to an HPDL domain, consisting
of a description of the game dynamics in form of primitives,
tasks, methods, etc., and a naive agent strategy. This strat-
egy chooses the first available move for the agent, without
considering any objective. The next step for each game was
to test it in multiple levels with the Siadex planner and the
GVGAI framework.

As shown in Figure 13, the planner returns a serie of prim-
itives including the avatar and the rest of sprites movements,
and an action for each interaction produced in the turn. To
transform this plan into GVGAI actions only the ones rep-
resenting the avatar movement are needed, because the rest
merely update the planning state in each turn.

To validate the domains, we followed a procedure where
we followed the game execution in the planner state, ver-
ifying that the game dynamics were correctly represented.
As an example, in Boulderdash we knew a boulder should
go down until it collides with a solid object. Therefore, we
visually corroborated that the boulder coordinates were ac-
curately updated in the planner state, and the collision in-
teraction was called whenever the boulder impacted with an
object.

Further, with the GVGAI integration we checked that the



Turns Actions Expansions Time (s)

Sokoban
10 14 2075 0.00999
20 24 3945 0.01748
50 54 9555 0.04111

Brainman
10 21 6049 2.08517
20 41 12279 3.49277
50 101 30969 8.73218

Aliens
10 50 411 0.00499
20 100 821 0.01111
50 250 2051 0.02489

Boulderdash
10 126 844178 36.4963
20 196 1244760 55.2729
50 257 1737375 72.6214

Figure 14: Details of executions of the different games. Each
one was tested for 10, 20 and 50 turns, using the Siadex plan-
ner. Siadex uses a state-based forward search process (us-
ing DFS). Actions includes avatar, sprites and interactions
changes of state. Expansions represent the number of times a
method-decomposition process is applied in the search pro-
cess.

outputted plans could fit appropriately within the game dy-
namics.

Figure 12 shows details of the domains produced, includ-
ing the dimensions of each domain in number of tasks, pred-
icates, etc. As well as the semantic characteristics of the
games. Additionally, in Figure 14 we show the results of
actions, expansions and the duration of different executions
in each domain, for levels of similar complexity between
games, precisely the first level of each game in the GVGAI
framework.

From the tables we see that when the complexity of
the game increases (seen in the number of interactions
and types) the dimensions of its domain equally augments.
Moreover, the bigger the number of interactions and objects
defined, the bigger the dimensions of the domain produced.

Because non determinism was not represented in the do-
mains, we see that puzzle games can be in some cases more
computationally expensive than reactive ones. This shows
us the drawback of not including non-determinism, but the
dynamic events in these games makes large plans useless,
and a reactive approach with replanning can produce much
better results during execution.

Additionally, we created a handmade strategy for the
Boulderdash game, showing us the feasibility of the domain
in resolving subgoals. This strategy tries to attain the near-
est gem for the agent, evading enemies and falling boulders
when necessary, as shown in Figure 15.

Conclusions and Future Work
In this paper we have presented an automated knowledge en-
gineering process to generate a huge variety of HTN plan-
ning domains for video games. We have shown experimen-
tal results on 4 video games represented in the video game
description language VGDL. Potentially, we are able to au-
tomatically generate as many HTN domains as contained
in the video games repertory of the GVGAI framework

Figure 15: With the inclusion of a handmade strategy in the
outputted domain, the agent is capable of attaining subgoals
in Boulderdash. In this case, we can see the agent in the start-
ing position of the level and after obtaining the four nearest
gems.

(at present, more than one hundred). The process requires
to represent behaviour patterns of avatars and objects in a
Knowledge Base which are latter used as input by a com-
piling process, generating domains and problems ready to
be used by an HTN planner. We estimate that we can save
weeks of work for a knowledge engineer devoted to de-
sign planning-based deliberative agents to act on these video
games.

However, we feel that this project still has some points
that can be improved upon and be regarded as future work:

• Representation of non-determinism. This kind of situ-
ations appear frequently not only in video games, but
also in real life problems. In some cases a continuous
planning strategy integrating replanning with reactive be-
haviour can be enough to face this problem. Although if
we aim to generate a flexible and self-contained domain,
we think that the best approach is the introduction of non-
deterministic planning approaches, as (Kuter et al. 2009).

• A more complex agent strategy. Even though we are ca-
pable of representing the dynamics of the games, we are
facing the problem of integrating a learnt agent strategy,
to solve video game goals, into the HTN domain gener-
ated by the knowledge based process here presented.
This is not an easy task, because we are no longer consid-
ering an unique parsing process. It is necessary to analyse
the game and comprehend it. At present we are address-
ing the automated discovery of game strategies in two dif-
ferent lines, the techniques proposed in (Segura-Muros,
Pérez, and Fernández-Olivares 2017) and the subgoal se-
lecting architecture of (Núñez Molina, Fdez-Olivares, and
Pérez 2020).

Furthermore, the quality of the results are affected by mul-
tiple factors, mainly by the planning language and the plan-
ner used. VGDL and HPDL are just proposed as candidates
to experiment with the GVGAI framework. This process can
be generalized for others HTN languages and other descrip-
tions of objects and interactions that keep similar character-
istic with the ones aforementioned. For our next steps we
are focused on producing domains in languages as HDDL
(Höller et al. 2019) and SHOP (Nau et al. 2003).
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