
Action Usability via Deadend Detection

Qianyu Zhang and Christian Muise
School of Computing, Queen’s University

qianyu.zhang@queensu.ca, christian.muise@queensu.ca

Abstract

The vast majority of planning problem models are incorrect,
incomplete, or simply inconsistent. This is particularly an
issue during the development process of a planning model.
However, there are few existing debugging tools for model-
ing to aid with this issue. In this paper, we introduce a method
for detecting actions that are deemed unusable, which may
naturally be a result of modelling errors. We use action us-
ability (or reachability) detection for on-the-fly diagnostics of
planning models. In our technique, each action is checked for
usability via problem reformulation and unsolvability detec-
tion. Through the analysis of usability, this technique could
improve the modeling process directly, and we have demon-
strated this capability through the tight integration with the
online PDDL editor at Planning.Domains.

1 Introduction
The vast majority of PDDL models that exist are just plain
wrong. This simple observation often goes overlooked, as
we typically only publish the final product of a lengthy mod-
elling process. However, until that final stage is reached, ev-
ery intermediate planning model necessarily is incomplete,
inconsistent, or just plain incorrect. Our work offers a diag-
nostic tool for planning modelling to help identify a certain
type of incorrect models: actions that are unusable.

Planning systems are typically designed to expect files in
the Planning Domain Definition Language (PDDL) (Haslum
et al. 2019). The planning tasks are separated into two in-
put files: a domain file and a problem file. The domain file
describes a system with invariant rules, like the types of ob-
jects, states of the system, and potential actions that change
the states. The problem file includes a concrete task based
on the system that is specified by the domain file, including
the specific objects, an initial state, and goal to achieve.

Unusable actions – i.e., those that can never be executed
– are a tell tale sign of an error in the domain or problem
model. It may be indicative of an incorrect precondition on
the action, or incorrect effects of another action. Either way,
it highlights a common assumption that if an action is speci-
fied, the modeller expects it to be usable in the domain. This

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is not necessarily always the case (e.g., some domains may
be automatically generated and some instances may not re-
quire all actions), but it is generally true of many modelling
situations. Note our reliance on the problem configuration
in addition to the domain. This is a concious decision, as (1)
this notion of unusable actions are a superset of those that
are unusable regardless of problem; and (2) the analysis can
lead to evidence of errors in both the domain and problem.

The output of a planner usually only shows whether the
planner finds a plan or not. If it finds a plan, it means that
the final goal is satisfied. However, if it does not find a plan,
there is no in-depth explanation to tell us why the error oc-
curs, or which part of the PDDL might be causing the error.
It is time-consuming for modellers to figure out the reasons
for a lack of solution and how to fix it. Contrasting with
other programming language, PDDL modelling tools rarely
have their own syntax checking and analysis to aid in the
modelling. There are a variety of possible planning-specific
analysis that can be done, and we present one such analysis:
detecting unusable actions.

We achieve this through the repeated reformulation of the
original model. The key insight is that we can introduce a
special (goal) fluent that an action achieves, and replace
the original goal with (goal). Doing so provides us with
a new model that has a solution if and only if the action is
usable: the goal can be achieved only if the action in question
can be executed. This provides an immediate diagnostic for
each of the lifted actions, and allows us to report those action
specifications that may be the symptom of an error. Note,
however, that we do not require the use of a lifted planner
for this – we are effectively testing if every grounding is
unusable, and if at least one grounding of the action is usable
then we assume the lifted action is as well.

We have implemented this approach and exposed it as
a service integrated with the online PDDL editor (Muise
2016).1. Users of the online editor can directly analyze their
PDDL models, and the problematic actions will be indicated
directly in the editor itself. This work represents an appeal-
ing aspect of knowledge engineering for planning. Namely,
we can use planning technology to indirectly aid in the mod-
elling of planning problems themselves.

1http://editor.planning.domains/



The rest of the paper is structured as follows. We review
some necessary background notation in Section 2. In Section
3 we describe the theoretic foundation for our approach and
follow with its implementation in Section 4. Sections 5 and
6 cover the related work and conclusions respectively.

2 Background
STRIPS For the purposes of this paper, we formulate the
planning problems using the common STRIPS formalism
(Fikes and Nilsson 1971). In STRIPS, a planning problem
is a tuple Π = 〈F, I,G,A〉, where F is a finite set of flu-
ents, I ⊆ F is the initial state, and G ⊆ F is the goal state,
and A is the finite set of actions. Each action a1 ∈ A has
a name name(a), precondition pre(a) ⊆ F , add effects
add(a) ⊆ F , and delete effects del(a). An action a is ap-
plicable in state s ⊆ F only if pre(a) ⊆ s, and the resulting
state is computed as s′ = (s \ del(a)) ∪ add(a).

Unsolvability/Dead-ends Unsolvability (aka Dead-end
detection) in the field of Automated Planning (AP) is the
task of determining if the goal can be reached from a given
state (Eriksson et al. 2017). It indicates that there is no
solution to the problem, which means not all goals are
achievable. It might be because the problem domain exists
deadlock states or unreachable actions. As for the deadlock
states, two actions are executed infinitely times preventing
each other from accessing the next step so that the planner
can not find a valid solution. If an unusable action is an in-
dispensable step to reach a final goal, then the planner will
not find a solution. However, problems can be unsolvable
even if all actions are usable. Problems might be solvable if
there exists an unusable action when this action is useless.

Goal and Action Usability A goal g is reachable if there
are a sequence of actions such that (1) every action is exe-
cutable in the state reached by executing all previous actions;
and (2) g holds in the final state reached by the sequence of
actions. Action reachability (or usability) for action a is the
question of whether or not any state can be reached by a se-
quence of executable actions such that pre(a) holds in the
state resulting from executing the sequence.

Online PDDL editor and plugins The online PDDL Ed-
itor helps in the creation of planning tasks written in PDDL
(Muise 2016). Integrations include import functionality of
existing models and a remote solver for testing the models.
To enhance the functionality of the PDDL editor, customized
plugins can be developed, installed, and invoked by the users
of the system. We expose our work through this framework.

3 Approach
Once a planning model is incorrect, it is difficult and time-
consuming to evolve users’ mental models and let them fig-
ure out the reasons for no valid solution and how to fix it
without any assisted automated tool. To enhance the PDDL

modeling process, we introduce a mechanism to automati-
cally detect if key actions are unusable in the current spec-
ification. While this may not indicate an issue exists, quite
often it is largely indicative of a problem with the model.

We check whether an action can be executed using a
sound and complete planner. To accomplish this, we set the
new goal as executing the testing action; the effect of the
action is modified to achieve an additional auxiliary fluent.
The other actions remain unchanged. If the result is a solv-
able task, then the action is deemed usable. If not, the action
is unusable (likely indicating a bug in the domain). To guar-
antee the new goal is satisfied if and only if the testing action
is executed, their new value has to be different from any ex-
isting state. Otherwise, it is possible that the goal is achieved
because of an alternative action.

We refer to the problem reformulation process as the Ac-
tion Usability Algorithm shown in Figure 1. Each action is
evaluated in turn. We take one action a ∈ A as an example to
explain the details of the evaluation. To set the execution of
a as a temporary goal, we assign a new fluent f0 to both the
effect of action a as well as the goal: add(a) = G = {f0}.
f0 is supposed to be different from any existing predicate
(i.e., f0 ∩ F = ∅) so that no more than one action can be
the final step of reaching the goal. Since f0 does not exist in
the original domain, it is important to append it to the set of
predicates F ′ = F ∪ f0 before using f0. The variable us-
able stores the usability status of each of the actions. Then
planner() calls a sound and complete planner to find a plan
for the modified problem. If a valid plan is returned, a is
considered as a usable action. If not, then a is unusable.

Algorithm 1: Action Usability Algorithm

Input: F, I,G,A
Output: usable

1 F ′ ← F ∪ {f0};
2 G← {f0};
3 usable ← {};

4 for a ∈ A do
5 old add ← add(a);
6 add(a)← {f0};
7 usable[name(a)]←planner(F ′, I, G,A);
8 add(a)←old add ;

9 return usable;

We want to test only one action each time to make sure
that each action has its independent testing result. Therefore,
before checking the next action, the effect of current action
needs to be reverted back to its original value, old-add.
We have the following simple result:

Theorem 1 (Correctness). Algorithm 1 identifies precisely
which actions are usable and which are not.

Proof sketch. Both soundness and completeness assume a
sound and complete planning process.
Soundness: If an action is deemed unusable, then the new
goal of achieving f0 must not be feasible. If there were some
sequence of actions from A that ends with the candidate ac-



tion, then f0 must be achieved. Thus, any action deemed
unusable must in fact be unusable in the domain.
Completeness: Similarly, if the planner does find a solution,
then the sequence of actions must include the candidate one,
as it is the only action that can achieve the goal fluent f0.
Thus, the algorithm detects every action that is unusable. �

If an unusable action can be detected during modelling,
then it will improve the efficiency of the process. Possible
fixes to such a situation may include revising the problem-
atic action preconditions or the effects of another action.
Suggesting such targeted fixes is beyond the scope of this
work, but an interesting path for future work.

4 Implementation
To realize the approach presented in the previous section,
we built a plugin for the online editor at Planning.Domains.
The “Action Usability” plugin can be accessed immediately
in the online editor, and the following is a link that already
has the plugin enabled and an an (erroneous) version of the
common logistics domain ready to analyze:

http://editor.planning.domains/#read session=7izsskx26H

By developing for the online editor, the plugin is now
widely accessible to other researchers and students looking
to build and diagnose their PDDL models with the online
editor. The plugin was built using the framework defined by
the Planning.Domains system. In this section we describe
the implementation, including some of the key design deci-
sions, and the code for the plugin can be found here:

https://github.com/AI-Planning/action-usability-detection

The message flow of the action usability plugin is shown
in Figure 1. There are 5 components involving in the com-
plete action usability plugin:

1. the editor, editor.planning.domains which is the client-
side of our plugin;

2. the plugin, a JavaScript file that is used to call other
classes;

3. the wrapper, a python file that is used to implement the
action usability algorithm;

4. the solver, solver.planning.domains;

5. the parser, a python file that is used to print out the results.

Figure 1: The message flow of the action usability plugin.

Once the plugin and the domain/problem files are loaded,
the editor calls the plugin and starts the analysis. The wrap-
per is called to modify the task and then invoke the re-
mote solver multiple times. The exact number of solver calls
correspond to the number of existing action schemas (not
ground actions), so as to do the usability detection for each
and every action. The wrapper receives the usability result of
each action after calling the solver. After results for all of the
actions are gathered, the plugin calls the parser to parse the
result in JSON format and send back to the interface of the
editor. The final display on the editor shows which actions
are usable and which ones are not.

The planner service at http://solver.planning.domains is
used for the individual solver calls. Because there is a strict
resource limit placed on the service, this is a sound-but-
incomplete approach. To be conservative in our analysis, we
consider an action to be usable if the solver does not return
an answer in time. This way, our labeling of “unusable” for
any particular action is correct. For those actions that are not
flagged, they may or may not be usable.

The link provided to an online editor session at the start
of this section contains two versions of the domain – one
with the correct precondition of the load-airplane ac-
tion and one with the incorrect precondition. The difference
is minor, and reflects a common mistake of PDDL modelling
(reversing the arguments of a predicate):

; Correct
; (at ?obj ?loc)
;
; Incorrect
(at ?loc ?obj)

When the plugin is invoked on the incorrect domain, the
analysis that is conducted identifies two unusable actions (cf.
Figure 2). The problematic action is correctly identified, but
note also that the unload-airplane action is also identi-
fied as unusable. This makes intuitive sense, as you are only
able to unload an airplane in this domain if there is some-
thing already loaded. Since the initial state doesn’t begin
with any package loaded, then the unload action becomes
unusable as well. Down the road, it would be interesting to
perform a deeper analysis on the unusable actions to detect
which ones are the root cause of others not being usable.
For example, if we were to remove all of the preconditions
from the load-airplane action, then we would detect
that unload-airplane is now usable; thus indicating a
precedence in the (un)usability of these two actions (note
that the reverse is not the case).

Considerations and Discussion
We originally had planned on using a state-of-the-art detec-
tor for deadends – specifically, Aidos (Seipp et al. 2016) –
in order assess if an action was usable. We ultimately de-
cided to forgo the use of this approach for two reasons: (1)
hosting the Cplex library, which is required by the deadend
detector, would violate the licensing agreement; and (2) we
expect the majority of the sub-problems to actually be solv-
able, and trivially so. We were thus able to make do with
direct calls to the online solver.



Figure 2: Usability analysis of the actions in a logistics do-
main with one action’s precondition incorrectly specified.

The action usability plugin is an open-source project for
educational and research purposes. The plugin project is
listed above, and the online service that performs the re-
peated call can be found at:

https://github.com/QuMuLab/action-usability-via-
deadend-detection

We welcome feedback on the project, and continue to im-
prove the interface. In the future, we will expose the action
usability result on the editor by automatically highlighting
unusable actions, rather than displaying the analysis a new
tab. This feature is more user-friendly and in line with com-
mon linter functionality found in many popular IDEs.

5 Related Work
The original idea of how to detect unusable actions is simi-
lar to the D3WA+ system (Sreedharan et al. 2020). It points
out a problem caused by the declarative feature of dialogue
planning: how hard it is for designers to understand the sys-
tem without knowing how it works inside in a declarative
programming paradigm. They introduce the D3WA+ system
which is an updated version of D3WA. D3WA+ adds a suite
of debugging tools upon the model acquisition framework
using Explainable AI planning (EAIP) techniques. This is
used to help users to grasp the imperative consequences to
answer questions such as why there is no solution, why this
is not a solution, and why this is a solution. To answer the
first question, D3WA+ uses repeated solvability checks to
find a subset of the domain that is unsolvable or solvable.

In our work, we consider unreachable actions as one of the
most common bugs in PDDL modeling. With a similar dead-
end detection mechanism as D3WA+, we use repeated solv-
ability checks for identifying if particular actions are usable.
The two approaches are solving different high-level prob-
lems, but are doing so with a similar technique: repeated un-
solvability checks on refinements to the planning model. In
contrast with the rich history of verification techniques, our
approach is specifically designed for the planning setting.
We rely on the high-level planning language representation,
and the affordances it provides, to detect unusable actions.

6 Summary
Unusable actions are a common symptom of buggy do-
mains. It is difficult and inefficient to do a debugging with-
out any automated assisted tool. In this paper, we presented a
simple yet powerful model debugging technique for detect-
ing when actions are unusable, and additionally provided an
integrated solution into modern modelling tools. The action
usability plugin makes use of the online editor plugin inter-
face, as well as the online solver service. It helps users to
quickly understand why there is no valid plan and improves
the efficiency of the PDDL modelling process.

When we are able to detect whether an action is us-
able/reachable, the next step is to consider if an unusable
action exists, why it occurs and how to fix it. There may
be various reasons for its existence. For example, if there is
something wrong with the precondition of the action itself,
we can just change the precondition to a suitable one. If the
unusable action itself is defined correctly, it might because
there are more than one unusable actions, or the effects of
other actions are erroneous. Being able to automatically de-
tect and suggest possible fixes for an action being unusable
is an exciting area of future research with this line of work.

Another key limitation is the assumption of independence
between the actions. It may be that one action will neces-
sarily “disable” the usability of another. This may be in-
tended, but also may be an indication of a modelling error.
The techniques we introduce apply equally well to this set-
ting (searching through pairs of lifted actions instead of each
action individually).

Additionally, in the future we will consider various types
of errors that occur in the PDDL developing process and
design a more comprehensive error checking library for
PDDL. For instance, useless actions are those that are tech-
nically usable but will never help in the quest to achieve the
goal. Identifying these for the modeller is another signal they
can use to introspect the model they are developing.

References
Richard E Fikes and Nils J Nilsson. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence, 2(3-4):189–208, 1971.
Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and
Christian Muise. An Introduction to the Planning Domain
Definition Language. Morgan & Claypool, 2019.
Christian Muise. Planning.Domains. In The 26th Interna-
tional Conference on Automated Planning and Scheduling -
Demonstrations, 2016.
Jendrik Seipp, Florian Pommerening, Silvan Sievers, Martin
Wehrle, Chris Fawcett, and Yusra Alkhazraji. Fast down-
ward aidos. Unsolvability International Planning Competi-
tion: planner abstracts, pages 28–38, 2016.
Sarath Sreedharan, Tathagata Chakraborti, Christian Muise,
Yasaman Khazaeni, and Subbarao Kambhampati. D3WA+:
A case study of XAIP in a model acquisition task. In Pro-
ceedings of the Thirtieth International Conference on Auto-
mated Planning and Scheduling (ICAPS), 2020.


