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Abstract

Hybrid PDDL+ models are amongst the most advanced mod-
els of systems and the resulting problems are notoriously dif-
ficult for planners to cope with due to non-linear behaviours
and immense search spaces. This difficulty is exacerbated by
the potentially huge size of the fully ground representations
that are used by modern planners in order to effectively ex-
plore the search space, which can make some problems im-
possible to tackle, with the result that in several situations the
grounding phase has to be done externally or manually. This
not only produces a much less compact problem description,
but also complicates debugging and model reuse.
To overcome the aforementioned limit, in this paper we in-
vestigate two simple grounding techniques for PDDL+ prob-
lems. The former method we propose extends the simple
mechanism of invariance analysis to limit the groundings of
operators upfront. The latter proposes to tackle the grounding
process by means of a PDDL+ to Classical Planning abstrac-
tion. A preliminary experimental analysis over benchmarks
coming from real case study shows that not only the ground-
ing can be sped up, but that also problems that were out of the
reach before can now be efficiently solved in an automated
manner.

Introduction
Automated planning is a prominent Artificial Intelligence
challenge, as well as being a common capability require-
ment for intelligent autonomous agents. The development of
domain-independent planners within the AI Planning com-
munity is leading to “off the shelf” technology that can be
used in a wide range of applications: since they accept the
domain and problem description in a standardised interface
language and return plans using the same syntax, they can
easily be exploited as embedded components within larger
frameworks, as they can be interchanged without modifying
the rest of the system.

The nature of real-world applications often necessitates
the representation of the dynamics of the application in
terms of mixed discrete / continuous effects, processes, ex-
ogenous events, and continuous activities, which can be

*This paper has been presented at the 2020 International Con-
ference on Tools for AI (ICTAI).

encoded in a hybrid model of the domain. Following on
from this, a dedicated language called PDDL+ (Fox and
Long 2006) (Planning Domain Definition Language) was
designed to support the compact encoding of such hybrid
models.

Hybrid PDDL+ models are amongst the most advanced
models of systems and the resulting problems are notori-
ously difficult for planners to cope with due to non-linear
behaviours and immense search spaces. This difficulty is ex-
acerbated by the potentially huge size of the fully ground
representations that are needed by planners in order to ex-
plore the search space: this step alone can make some prob-
lems impossible to tackle.

Despite the importance and complexity of grounding for
hybrid PDDL+ planning, there is a lack of studies focusing
on investigating techniques and approaches for optimising
this process. Most of the research on hybrid PDDL+ plan-
ning focuses on the design of complete domain-independent
planning engines, such as DiNo (Piotrowski et al. 2016),
SMTPlan (Cashmore, Magazzeni, and Zehtabi 2020), and
CASP (Balduccini et al. 2017); and emphasis has been given
to the search module of such engines. Relevant work in the
area of efficiently PDDL+ grounding focused on reformu-
lating the input models in order make them more amenable
to planning engines (Franco et al. 2019), on modifying the
internal behaviour of planning engines to adapt them to the
specific application domain (McCluskey and Vallati 2017;
Vallati et al. 2016) , rather than on designing principled
grounding modules for domain-independent planning en-
gines.

While grounding for PDDL+ has been scarcely investi-
gated, a significant amount of work has been dedicated to
designing efficient grounding approaches for classical plan-
ning. This is due to the decades of work devoted to research
in the specific field and, in a significant part, to the Interna-
tional Planning Competition (Vallati, Chrpa, and McCluskey
2018): an efficient and effective grounding can dramatically
boost the performance of a planning engine. One question
naturally arises: Can we leverage the extensive work on clas-
sical planning grounding to obtain efficient grounders for
PDDL+ engines too? To answer this question, in this pa-
per we study two grounding techniques for PDDL+ prob-



lems. The first one exploits an extended static analysis that
is aimed at identifying those elements that are necessary to
be grounded in order to not lose any valid plan. The sec-
ond method studies how to construct an abstracted, classi-
cal planning version of the PDDL+ and feed such a repre-
sentation to off-the-shelf classical planning grounders. Both
techniques have been designed in a modular fashion, to fos-
ter and support their integration into off-the-shelf planning
engines in a way that any advancement in classical plan-
ning can be reflected in PDDL+ problems. Our experimen-
tal analysis, focused on challenging hybrid planning prob-
lems –also taken from real-world applications– and on the
state-of-the-art planning engine ENHSP (Scala et al. 2016a;
Scala, Haslum, and Thiébaux 2016), highlights the impor-
tance of grounding in PDDL+, and validate the fact that it is
indeed possible to leverage on classical planning techniques
for obtaining efficient and effective PDDL+ grounders.

Background
For the sake of space, we assume the reader is familiar with
the basic concepts of automated planning. For an extensive
introduction to the field, the interested reader is referred to
(Ghallab, Nau, and Traverso 2004).

Our work focuses on the language of hybrid planning
with autonomous processes, also known as PDDL+ (Plan-
ning Domain Definition Language) introduced in (Fox and
Long 2006). We will briefly report on the PDDL+ syntax
and informally define its semantics.

Logical Foundations
PDDL+ is a language based on first-order logic that uses
propositional, numeric predicates called fluents together
with the standard connectives used in logic to postulate
boolean and numeric formulas over them1. Propositional
and numeric fluents are used to create relationship for list
of objects and/or typed variables. Each such fluent is given
a name through a label specifying the identifier of such a
relation. For instance, the propositional fluent (on A B)
can be used to specify the fact that the object A is on the
object B; the numeric fluent (distance C D) specifies
the distance between city C and D. Objects are finite and
typed entities modelling basic elements of the world. Vari-
ables are devices by which one can represent generic fluents.
A fluent is said to be ground if the associated list does not
contain variables; unground otherwise. A propositional flu-
ent can be true or false. A numeric fluent can instead take
any value from Q ∪ {⊥}.

A first-order formula over such fluents is defined recur-
sively. Let ψ and φ be two first-order formulas:

• ψ being a propositional fluent is a formula

• 〈{≥, >,=}, ξ, 0〉 where ξ is an arithmetical expression
over some numeric fluents is a formula

• ¬ψ is a formula

• ψ ∧ φ is a formula

1The logical pillars of the language resemble those used in Sat-
isfiability Modulo Theory languages (Barrett and Tinelli 2018).

• ψ ∨ φ is a formula
We use these formulas with the purpose of constraining as-
signments to propositional or numeric predicates to satisfy
some requirement. For instance we may want to say that
(on A B) needs to hold in order for a goal to be reached,
or some action applicable. A PDDL+ domain models those
requirements that are general for a given domain.

Definition 1 (PDDL+ Domain Model) A PDDL+
planning domain model is defined by the tuple
〈T,C, F,X,A,E, P 〉:
• T (Types) is a set of types.
• C (Constants) is a set of typed objects, each of which is

simply a name given to the object, and its type.
• F and X are sets of propositional and numeric fluents,

respectively.
• A (Actions), E (Events), and P (Processes) are sets

of transition schemata. A transition schema is the tuple
〈σ, pre, eff〉 where:
– σ is a sequence of objects from C or variables typed in
T

– pre is a first order formula .
– eff is a set of Boolean and numeric effects. Boolean ef-

fects are assignments 〈p, {>,⊥}〉 with p ∈ F where
numeric effects are assignments 〈p, ξ〉, with ξ being an
arithmetical expression.

– Both pre and eff only mention fluents from σ or objects
from C.

A planning problem is defined combining a planning do-
main modelD with a set of typed objects, an initial state and
a goal. A planning problem asks whether, given a planning
domain model, a set of objects, an initial state and a goal,
there is a plan that lets the agent achieves the goal from such
an initial state, considering the constraints imposed by D,
and the actions that can be performed. More formally:

Definition 2 (PDDL+ Problem) Let D be a PDDL+ do-
main model; a planning problem is the tuple Π :
〈D,O, I,G〉 where:
• O is a set of typed objects.
• I is a function that assigns i) a truth value to all ground

propositional fluents in F over compatible objects from
C ∪ O ii) a rational value to all ground numeric fluents
obtained substituting all numeric fluents in X over com-
patible objects from C ∪O.

• G is a first order formulas over ground propositional and
numeric fluents.

For the sake of compactness, the initial state is usually
specified in closed world assumption using the so called set-
theoretic formulation (Ghallab, Nau, and Traverso 2004).
That is, the initial state is a set of some subset of proposi-
tional fluents and a set of assignments for some subset of
numeric fluents. Everything that does not belong to this as-
signment is assumed to be false (for propositional fluents) or
undefined (for numeric fluents).

Having defined what a PDDL+ domain model and a prob-
lem are, we can now talk about ground transitions.



(:action switchPhase

:parameters (?p - phase ?i - intersection)

:precondition (and

(controllable ?i)

(activePhase ?p)

(contains ?i ?p)

(> (phaseTime ?i) (minPhaseTime ?p) ))

:effect (and

(trigger ?i) ))

(:process flowrun_green

:parameters (?p - phase ?r1 ?r2 - link)

:precondition (and

(activePhase ?p)

(> (occupancy ?r1) 0.0)

(> (turnrate ?p ?r1 ?r2) 0.0)

(< (occupancy ?r2) (capacity ?r2)))

:effect (and

(increase

(occupancy ?r2) (* #t (turnrate ?p ?r1 ?r2)))

(decrease

(occupancy ?r1) (* #t (turnrate ?p ?r1 ?r2)))))

Figure 1: An example of PDDL+ action and process taken
from the Urban Traffic Control domain (McCluskey and Val-
lati 2017; Antoniou et al. 2019).

Definition 3 (Ground Transition and Grounding) A
transition is ground if the parameters list only involves
objects. Let Ω be a set of typed objects. The groundings of
a transition schema a over Ω is denoted by σ(a,Ω) and
corresponds to the set of all ground transitions obtained by
substituting σ with a list of compatible objects taken from
Ω, and then substituting each occurrence of the variables
which were in σ with the newly introduced objects. Actions,
processes and events are all transitions; therefore we
will also talk about ground actions/processes/events when
needed.

Hereinafter we subscript every conjunctive structure in the
problem with B and N to isolate the components that talk
only about propositional (B) or numeric (N) fluents. This
gets applied to the structure of formulas and in the initial
state. As we will see, this is useful for mapping numeric into
classical planning problems.

Figure 1 shows an example of a PDDL+ action and taken
from the Urban Traffic Control domain (McCluskey and Val-
lati 2017), that will be considered in the experimental analy-
sis. The action allows to model the decision of the planning
engine to stop early a traffic light phase; the continuous ef-
fects of the movement of traffic is modelled by the process.

Semantics, Plans and Validity (Intuitively)
The semantic of a PDDL+ planning problem is defined us-
ing the theory of hybrid automata (Henzinger 1996). We will
hereby report the basic semantics, the notion of a plan and
its validity intuitively. We say that a formula is satisfied in
a state if such a state is a model for the formula. A ground
action is applicable in a state if its precondition formula eval-
uates to true on that state. Events and processes are said to
be active in a state if their preconditions are satisfied. The

application of an action in a state s instantaneously updates
those numeric and propositional fluents which are modified
by its effects. Active processes initiate flows of continuous
changes for subsets of numeric variables. The numeric effect
of a process is to be understood as the derivative of some
variable x. Events trigger instantaneous changes on the state
if their preconditions are satisfied. Actions are decisions that
can be taken by the planning agent. Processes and Events
are responses of the environment and cannot be controlled
directly by the agent. A plan is a set of pairs 〈ti, ai〉 where
ti ∈ Q and ai ∈ σ(A). A plan is valid if each action is
applicable at the time associated with it. Plan validation cor-
responds to the task of evaluating whether each action pre-
condition is satisfied in the trajectory of states induced by
the active processes (that can change over time), the events
that have been triggered, and the actions executed. A plan
is a solution if the last state of the trajectory induced by all
actions processes and events is a goal state, that is a state in
which the goal formula is satisfied.

Domain-independent PDDL+ Grounding
This section is devoted to introduce two alternative routes
for performing PDDL+ grounding.

Static Analysis Method
The first approach that we present is based on the idea of
exploiting a static analysis of the domain model for focus-
ing the generation of ground actions only towards a smaller
set of parameters. Such a subset of parameters is restricted
leveraging from the necessary condition arising by looking
at the static conjuncts belonging to the transition schema
precondition, and the hidden preconditions emerging from
numeric effects that need to be applied.

This idea has been already exploited in classical plan-
ning with great success since the earlier work by Hoffmann
and Nebel in the FF planning system (Hoffmann and Nebel
2001). As we will see in this section it is possible to straight-
forwardly extend this approach to the case of hybrid PDDL+
planning. This boils down at extending the static analysis to
consider not only actions, but also processes and events as
possible transitions that can change the value of some predi-
cate and/or fluent. In a nutshell, the idea is to consider events
and processes just as actions. Notice that this is a safe relax-
ation in that we give to the planning agent the possibility of
directly controlling the environment. This obviously leads to
enlarging the set of possible trajectories2.

More formally, let Π be a PDDL+ planning domain
model. We say that a propositional or a numeric fluent v is
static iff ∀t ∈ A∪E ∪ P.abstract(v, t)∩ affected(t) = ∅
where

• abstract(v, t) is the set of propositional or numeric flu-
ents (depending on whether v is a propositional or nu-
meric fluent) obtained by getting abstracted versions of
such a fluent through some transition t. This abstraction
amounts at substituting the variables in the parameters of

2A similar relaxation schema has been implemented by the
AIBR relaxation heuristic presented by (Scala et al. 2016b).



v (if any) with compatible variables taken from the pa-
rameters of t. Note that there may be different substitu-
tions also in this case, depending on which variables from
the parameters list are taken.

• affected(t) is the set of propositional or numeric fluents
that are affected by the transition. That is affected(t) =
{v1 | 〈v1, ξ〉 ∈ eff(t)} ∪ {v1 | 〈v1, {>,⊥} ∈ eff(t)〉}
Intuitively, given a set of static propositional and numeric

fluents, and an action t, the set of possible substitutions for
the variables belonging to t parameters, i.e., σ (t) can be
constrained looking at the necessary static precondition con-
juncts that need to be true for that transition to be appli-
cable, and looking at those numeric effects that need the
evaluation of some numeric fluents in order to be evalu-
ated. More precisely, we start from the universal substitu-
tion Sub : V → O ∪ C that maps every variable to a set
of objects. Then, we iterate over all identified static fluents
and reduce the objects to be mapped only towards those that
cannot be proved statically unreachable.

For instance, let us consider the example presented in
Figure 1. The (trigger ?i) predicate is not a static
predicate because its truth value may depend on whether
the action (switchPhase) (with compatible param-
eters) is applied or not. Different is the situation for
the (turnrate ?p ?r1 ?r2) numeric predicate. The
value of this predicate cannot be changed by any ac-
tion in the problem, so its numerical value solely de-
pends on the initial state of the problem. This is indeed
a static numeric predicate. In particular, if some ground-
ing of this predicate is less or equal than 0, the pa-
rameters used for that grounding cannot be used in the
flowrun_green parameters’ list. Our static analysis
method will not even try to ground the actions associated to
those parameters for which (turnrate ?p ?r1 ?r2)
leads to (> (turnrate ?p ?r1 ?r2) 0.0) being
unsatisfied. This indeed reduces the number of groundings
to only those combinations of parameters that do satisfy
(> (turnrate ?p ?r1 ?r2) 0.0); a brute force
grounding will require the cartesian product of all objects
compatible with variables ?p ?r1 ?r2. Say you have 100
objects of each kind, this will require 1, 000, 000 of ground-
ings. As we will see in our real-world use cases, this situa-
tion is not rare, and does happen due to the inherently weak-
nesses of relational representation in several domains and
problems from the International Planning Competition, too
(Vallati, Chrpa, and McCluskey 2018).

This method may reduce the number of mappings sub-
stantially, and therefore limits to some extent the combina-
torial explosion of groundings caused by the cross-product
of all universes of objects. Yet, it does not really exclude
the groundings of some actions that could be easily detected
as unreacheable. Let us come back to the example shown
in Figure 1. Note that, although we do not know in gen-
eral whether a specific (trigger ?i) will ever be sat-
isfied, we do know that only some of them can eventually be
reached. Those are the ones obtained by applying the action
swithcPhase with some parameter, or by a dedicated ad-
ditional process not shown in the provided example. Many

of these actions and processes are indeed not reachable, and
this can be easily detected by noticing that the predicate
(contains ?i ?p) is itself a static predicate.

In order to fully exploit this intuition in a systematic fash-
ion, next section shows how to make use of a classical plan-
ning abstraction, and therefore leverage from relaxed reach-
ability grounding mechanisms present in state of the art clas-
sical planning engines.

Abstracting PDDL+ Problems into Classical
Problems.
In this section we show how to leverage from grounding sys-
tems developed for classical planning. A classical planning
problem differs from a PDDL+ problem in that: (i) classi-
cal actions are not timed and are instantaneous; plans are
just sequences of partially ordered ground actions, (ii) there
are no numeric fluents and therefore formulas cannot con-
tain them, and (iii) there are no processes nor events that can
change the state of the world autonomously; classical plan-
ning only models the planning agent’s decisions. Everything
that is not modified by the action effects remain unchanged
(frame axiom).

For the sake of clarity, let us omit names of structures
(e.g., actions, events) when obvious from the context and
refer to propositional and numeric predicates using sim-
ply proposition and numeric. Let us furthermore denote
with Π : 〈T ′, C ′, O′, F ′, A′, I ′, G′〉 a classical planning
problem obtained by merging a domain model and an in-
stance problem representation3. We denote with τ the ab-
straction from a PDDL+ problem to a classical planning
problem. τ is formally a mapping from a PDDL+ problem
Π′ : 〈T,C, F,X,A,E, P,O, I,G〉 to the classical planning
problem Π′ : 〈T ′, C ′, F ′, A′, O′, I ′, G′〉 satisfying the fol-
lowing assertions:

• T ′ = T

• C ′ = C

• O′ = O

• I ′ = I ′B ∪
⋃

〈fi,ki〉∈IN
fi

• A′ =
⋃

t∈A∪E∪P
〈preN→F (t), effN→F (t)〉 where

– preN→F (t) = abs(pre(t)) ∧
∧

fi∈ξ.〈fi,ξ〉∈effN (t)

fi

– effN→F (t) = effB(t) ∪
⋃

fi.〈fi,ξ〉∈effN (t)

fi

• G′ = abs(G)

• F ′ = F ∪X
where abs(ψ) is the abstraction of a general formula ψ given
in negation normal form4, defined as follows:

3A classical planning problem is an obvious subclass of PDDL+
problems. They will not include any numeric condition, any nu-
meric assignment or update, and any process or event.

4This can be achieved by pushing negation down to atomic
propositional term, and substituting negated numeric constraints
with disjunctions.



abs(ψ) =



ψ if ψ is a proposition∧
fi∈ξ.〈R,ξ,0〉∈ψ

fi if ψ is a numeric

abs(α) ∧ abs(β) if ψ = α ∧ β
abs(α) ∨ abs(β) if ψ = α ∨ β
¬abs(α) if ψ = ¬α

(1)

Coming back to the example presented
in Figure 1, take for instance the constraint
(< (occupancy ?r2) (capacity ?r2)).
This constraint involves two numeric predicates, i.e.,
(occupancy ?r2) (capacity ?r2). These two
predicates will be reinterpreted as two new fresh proposi-
tional predicates by Equation 1 with the same name. They
will be made true, only if some other action, process or
events assign them somehow.

Definition 4 (Reachable Ground Actions) The reachable
ground actions for a planning problem Π is the set of ground
actions that can be eventually reached by iteratively apply-
ing actions starting from the initial state up-to saturation.

Proposition 1 (Over-approximation of PDDL+ through τ )
Let Π be a PDDL+ planning problem, the set of reach-
able ground actions, processes and events is a subset of
the ground actions reachable in τ(Π) (with the proper
transformation from action to process and events).

Proof 1 (Proof Sketch) We can prove this by observing that
each atom in some formula of Π that is achievable implies
that the same atom, or its abstraction in case we are dealing
with numeric condition, is achievable in τ(Π) (note that the
contrary is not true, i.e., there can be cases where an atom
in the abstraction is reachable, but it is not in the concrete
problem). If the set of atoms that is reachable is the same, we
can safely observe that all those actions in τ(Π) that have
their precondition reachable will become themselves reach-
able. This observation is trivial for propositional condition,
and only a bit more involved for numeric conditions. For this
latter case indeed, if some numeric condition is reachable in
Π, this means that there is an action that can eventually sat-
isfy it by interacting with some numeric variable in it. If we
look at the abstraction operator of Equation 1, we observe
that it suffices to have all numeric predicates evaluated in
the numeric condition. And this is indeed the case if there
is some action assigning it, or the initial state setting them
to some value. Analogous is the consideration for the right
hand side of all effects in the transitions.

Calculating the exact set of reachable ground actions is
however unfeasible because it would require unrolling the
complete transitions system, which, in the case of a PDDL+
problem may imply visiting an infinite set of states. How-
ever, thanks to the fact that we have a finite abstraction of
the problem we can limit this worst case behaviour adopting
approximations that are used in classical planning problems.
As matter of facts, in order to overcome the problem of de-
tecting all reachable actions, modern classical planners use
relaxed reachability grounding, based on ideas borrowed by
Answer Set Programming (Helmert 2009). This gives us a

superset of reachable actions in that the transition system
is itself approximated with one where the validity of con-
ditions grows monotonically. Thanks to Proposition 1 then,
we know that the set of reachable actions for the abstraction
of a PDDL+ problem is a superset of the actions reachable
in classical planning. By transitivity, we can hence use the
classical ground actions as a way to over-approximate the
reachable grounding for all events, actions and processes for
the concrete PDDL+ problem. Of course, once this approx-
imation is done, we can perform reachability analysis on
numeric problems (such as (Scala, Haslum, and Thiébaux
2016)) and refine the set of ground action even further. Yet,
this refinement is already done on a smaller set (the one com-
puted by the classical planning abstraction), so it is expected
to be done much faster. To some extent, this method can be
seen as a two level reachability analysis. The former is dealt
with using classical planning. The latter using techniques
that are aware of the numeric structure of the problem.

The abstraction based mechanism has the obvious advan-
tage of capturing deeper causal dependencies between ac-
tions. However, it introduces a bit of an overhead. The sys-
tem indeed needs to make use of an external classical plan-
ner, and there may be delays caused by encoding and de-
coding information from and to the PDDL+ representation.
Next section studies this aspect empirically.

Experimental Analysis

This experimental analysis aims at evaluating the impact
and the importance of the proposed domain-independent
PDDL+ grounding techniques for solving hybrid planning
instances.

Experimental Settings

We implemented the considered grounding techniques as a
modular component of the state-of-the-art planning engine
ENHSP (Scala et al. 2016a; Scala, Haslum, and Thiébaux
2016). ENHSP is a Java-based planning engine that in-
cludes a wide range of domain-independent search tech-
niques and heuristics for solving PDDL+ planning instances,
and is modular in nature. The results reported in this anal-
ysis have been obtained by running ENHSP with default
parameters unless differently specified. The classical plan-
ning abstraction of our PDDL+ problem is given to the
Fast-Downward Grounding mechanism. Then, we collect
all the ground actions and remap them in the original ac-
tions/processes/events they have been generated from.

We consider three different grounders in this analysis.
The Naive grounder is our baseline: it naively grounds
everything without any sort of pre-processing. The Static
grounder refers to the first approach introduced in the
“Domain-independent PDDL+ Grounding” section , while
FDI is the term used to indicate the second approach de-
scribed in that section.

All the experiments were performed on an Intel i7-
4750HQ CPU, 8 Gb of RAM and Linux operating system.
A 15 CPU-time minutes cut-off time limit was enforced.



Table 1: Results, in terms of grounding size, CPU-time needed by the grounding process, and runtime, achieved by ENHSP
when using the three introduced grounders on the considered set of benchmarks. “–” indicates that the grounding process run
out of memory. A runtime value of 900.0 indicates timeout. Bold is used to indicate best results with regards to the considered
metrics.

Baxter
Grounding Size Grounding Time Overall Runtime

Naive Static FDI Naive Static FDI Naive Static FDI
1 16,425 2,796 276 0.6 0.6 0.6 251.5 70.3 29.0
2 17,632 2,864 342 0.7 0.6 0.6 349.1 89.7 43.2
3 8,100 1,457 621 0.6 0.4 0.6 900.0 900.0 344.2
4 5,225 1,004 756 0.6 0.4 0.6 900.0 900.0 900.0
5 65,700 6,640 5,589 0.8 0.6 0.6 900.0 900.0 900.0

Rovers
Grounding Size Grounding Time Overall Runtime

Naive Static FDI Naive Static FDI Naive Static FDI
1 304 87 73 0.5 0.4 0.4 1.3 1.3 1.5
2 42,526 1,065 96 0.5 0.6 0.5 11.5 5.6 2.4
3 472,216 3,255 96 2.3 0.6 0.6 47.5 13.2 3.0
4 472,216 3,255 96 7.4 0.8 0.6 48.9 14.1 3.4
5 946 219 162 0.5 0.5 0.5 900.0 900.0 900.0

Urban Traffic Control
Grounding Size Grounding Time Overall Runtime

Naive Static FDI Naive Static FDI Naive Static FDI
1 87,660 73,104 292 3.4 3.1 0.8 900.0 115.5 1.7
2 87,660 73,104 292 3.6 3.0 0.8 900.0 314.5 2.1
3 670,311 562,799 584 14.2 16.6 1.0 900.0 900.0 3.9
4 – – 876 – – 1.3 – – 61.0
5 – – 876 – – 1.3 – – 72.3

Considered Benchmarks
Traditional PDDL+ benchmarks include a very limited num-
ber of objects and a restricted number of predicates, oper-
ators, processes, and events. In fact, most of the existing
benchmarks have been built as toy examples to test some
specific aspects of the PDDL+ language. For this reason, fol-
lowing the approach exploited by (Franco et al. 2019), the
experimental evaluation is performed by considering three
benchmark domains, namely Rover, Urban Traffic Control,
and Baxter. In this analysis, we considered five instances per
domain.

The well-known Rovers domain model introduced in
IPC-3 (Long and Fox 2003), originally designed as a tem-
poral domain model, has been extended in PDDL+ by mod-
elling as continuous processes the movements of the rovers,
and the energy generation via solar power. Each of the men-
tioned processes can be controlled by the planner using two
actions, and is constrained, where appropriate, via events.

The Urban Traffic Control (UTC) domain has been orig-
inally introduced in (Vallati et al. 2016). It models the use of
planning for generating traffic light signal plans, in order to
de-congest an area of an urban region. In this analysis we
considered the problems introduced in (McCluskey and Val-
lati 2017), which involved a network of 10 junctions, and we
extended it by considering problems with 20 and 30 junc-
tions, obtained by connecting identical regions. On bench-

marks from this domain, ENHSP has been run with a delta
(-d) value of 50.0.

Finally, the Baxter domain exploits planning for support-
ing robots in dealing with articulated objects manipulation
tasks (Bertolucci et al. 2019). The available domain model
has been extended by adding events for preventing move-
ments wider than 360 degrees. Problems consider articulated
objects composed of between 5 and 15 links, and between 2
and 10 grippers.

Results
Table 1 compares the results achieved by ENHSP using
the three considered grounding techniques. Results are pre-
sented in terms of grounding size, i.e. the sum of instanti-
ated actions + processes + events, the CPU-time needed by
the grounding process, and the overall CPU-time needed by
the planning engine to solve the considered planning prob-
lem. The overall CPU-time includes all the steps needed by
the planning engine, and therefore includes grounding, pre-
processing, search, etc.

It comes as no surprise that Naive is the technique that is
consistently delivering the worst possible performance both
in terms of grounding size, and in terms of time needed to
solve the planning instance. When compared to the other
grounders, Naive can lead to a grounding that is orders of
magnitude larger: this is then reflected in the much higher



CPU-time needed to solve the planning instances. Despite
the fact that such results are quite intuitive, this analysis pro-
vides clear evidence of the detrimental impact that an ineffi-
cient grounder can have on the performance of an otherwise
efficient planning system. In a sense, the Naive results give
a measure of how important grounding is for PDDL+. To the
best of our knowledge, this is the first time that this aspect
has been neatly assessed.

When comparing Static and FDI , Table 1 clearly indi-
cates that FDI is always able to produce a ground that is
significantly smaller; at least an order of magnitude smaller.
Notably, in instances from the UTC domain, the FDI
grounding is between 2 and 3 orders of magnitude smaller
than the corresponding Static one. In the Baxter domain,
the use of the FDI grounder allows the planning engine to
deliver the best runtime performance. In other words, the
reduced grounding size is positively affecting also the sub-
sequent steps. When analysing the provided output, we ob-
served that the lower runtime is not only due to the reduced
time needed by actually generating the ground problem, but
the smaller grounding size is having an impact also on the
search steps, resulting in a larger area of the search space
being explored. Similar results have been observed in the
Rovers domain. In this domain, the Static grounder can
lead to runtime performance that are comparable to those
achieved by using FDI only on the easiest instance.

The UTC domain provides the most challenging instances
in terms of the potential size of the grounding. A large
number of processes, events, and functions are used in this
model. Noteworthy, in 2 instances of this domain the Static
grounder runs out of memory, while the FDI grounder is
able to minimise the size of the instantiated problem, and
allows the planning engine to find a solution with the cutoff
time.

An interesting aspect to observe is that the impact of a
grounding technique on the overall CPU-time of the plan-
ning engine is not only due to the time needed by the
grounder itself. Looking at the results presented in Table 1,
it is clear that in two of the considered benchmark domains,
the differences in CPU-time between the Naive, Static,
and FDI grounders are negligible. In Baxter and Rovers,
the main differences on the runtime of the planning engine
is due to the fact that the provided ground is small and
include the relevant actions needed to solve, and is there-
fore supporting the search module by effectively making the
search easier. What happens in the UTC domain is slightly
different: in this case the ground can be extremely large,
and in fact significant differences can be observed also in
the grounding times. These results suggest that an effective
grounder can positively affect the planning process in many
ways, according to the structure of the benchmarks.

It is worth emphasising that the grounder alone can deter-
mine whether or not the planning engine will be able to solve
a given instance at all. This is particularly relevant in Baxter
and UTC, that are PDDL+ models derived from real-world
planning applications.

Conclusions
Hybrid PDDL+ models are needed to correctly and accu-
rately represent the dynamics of real-world applications.
PDDL+ models are amongst the most advanced symbolic
planning models, and are notoriously difficult for planning
engines to cope with. Complexity is exacerbated by the po-
tentially huge size of the fully ground problems, that are
needed by planning engines in order to explore the search
space. Despite the importance of the grounding step for any
domain-independent PDDL+ planning engine, there is a lack
of work devoted to the specific topic.

In this paper we introduced two approaches for effi-
cient and effective domain-independent PDDL+ ground-
ing. In particular, we focused on investigating whether the
vast amount of work done in the classical planning field
could be exploited also for supporting PDDL+ grounding.
The approaches have been developed in a modular fash-
ion, and can be easily plugged into existing planning sys-
tems based on forward search. Our experimental analysis,
that includes large benchmarks derived from real-world ap-
plications, showed that: (i) Regardless of the efficiency of
the search approach exploited, the grounding step alone can
become so critical that it may determine whether a planning
instance can be solved or not; (ii) Grounding everything and
hoping that the search component will efficiently navigate
through the search space is the worst possible option, and
(iii) it is indeed possible to fruitfully exploit grounding tech-
niques that have been originally designed for classical plan-
ning.

Future work will focus on tailoring the grounding to some
numeric aspects of the PDDL+ formalism, and on assessing
whether a smart grounding approach can support the valida-
tion of complex scenarios.
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