FL-AT: A Formal Language-Automaton Transmogrifier

Jaime Middleton*!, Toryn Q. Klassen?, Jorge Baier'$, Sheila A. Mcllraith?
tPontificia Universidad Catélica de Chile, Santiago, Chile
$Millennium Institute for Foundational Research on Data, Chile
iDepartrnent of Computer Science, University of Toronto and Vector Institute, Toronto, Canada
f{jamiddleton@uc.cl, jabaier@ing.puc.cl} *{toryn,sheila} @cs.toronto.edu

Abstract

Many sequential decision making tasks aim to realize objec-
tives that are temporally extended in nature, involving pat-
terns of properties or behaviours that are realized over time.
These so-called non-Markovian objectives are often easily
specified using formal languages, such as dialects of linear
temporal logic or other regular language specifications. Nev-
ertheless, many state-of-the-art planning and reinforcement
learning systems require such goals, preferences, or reward
functions to be represented in automata-like structures. FL-
AT is a formal language—automaton transmogrifier, a tool
designed to accept as input temporally extended objectives
specified in a diversity of formal languages and translate them
to semantically equivalent automata-like structures appropri-
ate for planning or reinforcement learning. FL-AT is offered
as a web service, a local program, and as a RESTful APL. It
is intended as a community tool that will house translators
developed by different researchers.

1 Motivation

Temporally extended qualities including goals, preferences,
assumptions, and rewards have been utilized in planning, re-
active synthesis, and reinforcement learning to capture se-
quential decision making objectives involving patterns of
behaviour that are realized over time. In automated plan-
ning such objectives include safety and/or liveness proper-
ties; e.g., “Always go to the charging station when the bat-
tery is low” or “Go to the bank and then go home”.

Within the ICAPS planning community many such objec-
tives can be specified in PDDL3.0 (Gerevini et al. 2009),
which incorporates a restricted subset of Linear Temporal
Logic (LTL) (Pnueli 1977) interpreted over finite traces. In
reactive synthesis, controller objectives, and agent and en-
vironment behaviours, are also commonly specified in LTL
(Pnueli and Rosner 1989; De Giacomo and Vardi 2013). In
reinforcement learning (RL), non-Markovian reward func-
tions have been encoded as regular languages including with
LTL and/or directly as automata-like structures (e.g., Toro
Icarte et al. 2018a; 2018b; Brafman, De Giacomo, and Pa-
trizi 2018; Camacho et al. 2019) .

*Work was done while the author was visiting Univ. of Toronto.

Early deterministic planning systems that planned with
temporally extended properties (e.g., Bacchus and Kabanza
2000) and preferences (e.g., Bienvenu, Fritz, and Mcllraith
2006; 2011) used LTL or other regular language specifi-
cations directly. However deterministic planners that rep-
resented temporally extended objectives as automata com-
bined with heuristic search turned out to be orders of
magnitude faster (e.g., Baier and Mcllraith 2006b; 2006a;
Baier et al. 2008; Baier, Bacchus, and Mcllraith 2009).
Since then, a number of planners have followed this trend,
planning with temporally extended objectives specified us-
ing automata for deterministic goals (e.g., Patrizi et al.
2011; Torres and Baier 2015) and preference-based plan-
ning (Baier, Bacchus, and Mcllraith 2009; Coles and Coles
2011), Fully Observable Non-Deterministic (FOND) plan-
ning (e.g., Patrizi, Lipovetzky, and Geffner 2013; Cama-
cho et al. 2017b), reactive synthesis (e.g., Zhu et al. 2017;
Camacho et al. 2018a; Zhu, Pu, and Vardi 2019), and
Markov Decision Processes (e.g., Camacho et al. 2017a;
2018b; Brafman, De Giacomo, and Patrizi 2018).

Most recently, so called reward machines (RM) (Toro
Icarte et al. 2018b; Camacho et al. 2019; Toro Icarte et al.
2020) have emerged as an innovation for reward specifica-
tion in RL. A reward machine is a Mealy (or Moore) ma-
chine where the input alphabet consists of the set of possible
propositional truth assignments (over a given vocabulary),
and the output alphabet is reward functions. Unlike an au-
tomaton, which just accepts or rejects a trace, an RM out-
puts rewards for each step. Camacho et al. (2019) described
how RMs can be constructed by specifying temporally ex-
tended reward specifications as formulae in a diversity of
formal languages, associating each formula with a reward
(as in (Bacchus, Boutilier, and Grove 1996)), and then trans-
lating them to an RM.

A variety of tools exist for translating formal languages
into some forms of automata, including Spot (Duret-Lutz
et al. 2016), MONA (Elgaard, Klarlund, and Mgller 1998),
LTLf2DFA (Fuggitti 2019), Lisa (Bansal et al. 2020), and
translators outlined in papers above. The growing interest in
the use of automata in planning and RL motivated the de-
velopment of FL-AT, which is the first tool supporting RMs
as an output, and is intended as a vessel for the diversity of

Figure 1: Snapshot of the Web Application: translating the

LTLs formulas aUb (a until b, with a reward of 2) and F'b

(eventually b, with a reward of 4) to a Reward Machine.
Output File Image

SO # initial state

(1, 3, "'(A)&(B)', ConstantRewardFunction(6))
(1, 3,'(A)&(B)', ConstantRewardFunction(6))
(3, 3, 'True', ConstantRewardFunction(6))

(2, 4,'(B)", ConstantRewardFunction(4))

(4, 4, 'True', ConstantRewardFunction(4))

(0, 1, 'True’, ConstantRewardFunction(0))
(1,2, "'(A)&!(B)", ConstantRewardFunction(0))
(1, 1,'(A)&!(B)', ConstantRewardFunction(0))
(2,2,"(B)', ConstantRewardFunction(0))

translators being developed.

2 The FL-AT Transmogrifier

FL-AT is a formal language—automaton transmogrifier, a
tool designed to accept as input temporally extended ob-
jectives specified in a diversity of formal languages and to
translate them to semantically equivalent automata-based
structures appropriate for planning and RL.

2.1 Formal Languages and Automata

FL-AT exploits the well-established correspondence be-
tween regular languages (including LTL¢ formulas, finite
Linear Dynamic Logic (LDL¢) formulas, and regular expres-
sions) and deterministic finite state automata (DFAs) that ac-
cept the same languages. To discuss temporally extended
properties, we need the notion of a trace, a sequence of
truth assignments. Languages like LTL can be interpreted
over either infinite or finite traces, describing infinite or fi-
nite behaviours. See (De Giacomo, De Masellis, and Mon-
tali 2014) for more information on LTL and LTL¢. Currently,
FL-AT focuses on languages interpreted over finite traces.
For infinite traces, any LTL formula corresponds to a Biichi
automaton.

2.2 Functionality

FL-AT is offered as a web service, a local program, and as
a RESTful APL It is intended as a community tool that will
house translators developed by different researchers. It is de-
signed to be usable by many different users from newcomer
to expert. With this in mind, we opted for a clean inter-
face with the major options available. We focused our efforts
on some of the most commonly used input languages, Lin-
ear Temporal Logic on finite traces (LTL¢), LTL-based con-
straints with PDDL3.0 syntax, Past Linear Temporal Logic
(PLTL) and Regular Expressions (RE). Each of these has a
specific method of translation, but all can be converted to
any of the output formats we provide.

Input representation: We currently support formulae ex-
pressed in LTL¢, PLTL, RE, or LTL-based constraints with
PDDL3.0 syntax.

Output representation: The final translation can be either
be returned as one DFA for each formula, or processed
and converted into a reward machine (RM).

Output formats: There are several possible formats to re-
turn the final automaton: the DOT format; the HOA for-
mat (Babiak et al. 2015), which is standard for the syn-
thesis community; and RMF and RMF2, which are what
we call the input formats for the reward machine code by
Toro Icarte et al. (2018b) and Toro Icarte et al. (2020),
respectively.

We also provide the option to generate an image of the
automata and the option to get a reduced expression of the
automata. The latter removes all states that do not reach a
final state or are unreachable.

We provide three different ways to interact with FL-AT.

Web application: The web application allows for fast and
easy interactive tinkering. It is ideal for newcomers to start
learning the basics and to get familiar with the function-
ality of the system. It also doubles as a really good plat-
form for testing ideas due to its availability and ease of
use. Figure 1 showcases the results after translating the
LTL¢ formulas aUb and F'b (which denotes “a until b”
and “eventually b” respectively) into an RM.

Local program: The local program version of FL-AT al-
lows for the most control over all the nuances of the ap-
plication, and custom modifications if necessary.

RESTful API: The RESTful API provides an easy option
to programmatically perform a number of translations
without the necessity to download code (or unnecessary
dependencies), and with almost all the functionality of the
Local program option.

Technical details There are several algorithmic options
for translating LTL¢ to automata. Given the availability and
ease of use of MONA (Elgaard, Klarlund, and Mgller 1998),
we decided to reformulate the LTL¢ formulae as an interme-
diary representation that MONA can understand and trans-
late to a Deterministic Finite Automaton (DFA). Following
the same idea as LTL, PLTL is also translated to an inter-
mediary representation and then processed through MONA.
The intermediary reformulation of the LTL¢ and PLTL for-
mulae is based on the work of Zhu, Pu, and Vardi (2019) and
Fuggitti (2019); both were reformulated as WS1S.

3 Summary and Future Work

We presented FL-AT, a formal language to automaton trans-
lation tool that compiles many of the most popular tem-
porally extended objective specification languages, via an
easy-to-use interface. This tool is available with three dif-
ferent interfaces, as a local program, a RESTful API and in
a web-based version that supports easy prototyping and test-
ing. FL-AT currently supports four specification languages
with plans to continue to increase the number of supported
languages.

References

Babiak, T.; Blahoudek, F.; Duret-Lutz, A.; Klein, J.;
Kfetinsky, J.; Miiller, D.; Parker, D.; and Strejcek, J. 2015.
The Hanoi Omega-Automata format. In Computer Aided
Verification - 27th International Conference, CAV 2015,
479-486.

Bacchus, F.,, and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123-191.

Bacchus, F.; Boutilier, C.; and Grove, A. J. 1996. Rewarding
behaviors. In AAAI 1160-1167.

Baier, J. A., and Mcllraith, S. A. 2006a. Planning with first-
order temporally extended goals using heuristic search. In
AAAI, 788-795.

Baier, J. A., and Mcllraith, S. A. 2006b. Planning with
temporally extended goals using heuristic search. In ICAPS,
342-345.

Baier, J. A.; Bacchus, F.; and Mcllraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence 173(5-6):593—
618.

Baier, J. A.; Fritz, C.; Bienvenu, M.; and Mcllraith, S. 2008.
Beyond classical planning: Procedural control knowledge
and preferences in state-of-the-art planners. In AAAI, Nectar
Track, 1509-1512.

Bansal, S.; Li, Y.; Tabajara, L. M.; and Vardi, M. Y. 2020.
Hybrid compositional reasoning for reactive synthesis from
finite-horizon specifications. In AAAL 9766-9774.
Bienvenu, M.; Fritz, C.; and Mcllraith, S. 2006. Planning
with qualitative temporal preferences. In KR, 134—144.
Bienvenu, M.; Fritz, C.; and Mcllraith, S. A. 2011. Speci-
fying and computing preferred plans. Artificial Intelligence
175(7-8):1308-1345.

Brafman, R. I.; De Giacomo, G.; and Patrizi, F. 2018.
LTL{/LDLf Non-Markovian Rewards. In AAAI, 1771-1778.
Camacho, A.; Chen, O.; Sanner, S.; and Mcllraith, S. A.
2017a. Non-Markovian rewards expressed in LTL: guiding
search via reward shaping. In SOCS, 159-160.

Camacho, A.; Triantafillou, E.; Muise, C.; Baier, J. A
and Mcllraith, S. A. 2017b. Non-deterministic planning
with temporally extended goals: LTL over finite and infinite
traces. In AAAL

Camacho, A.; Baier, J. A.; Muise, C. J.; and Mcllraith, S. A.
2018a. Finite LTL synthesis as planning. In ICAPS.
Camacho, A.; Chen, O.; Sanner, S.; and Mcllraith, S. A.
2018b. Non-Markovian rewards expressed in LTL: Guiding
search via reward shaping (extended version). In GoalsRL,
a workshop collocated with ICML/IJCAI/AAMAS.
Camacho, A.; Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.;
and Mcllraith, S. A. 2019. LTL and beyond: Formal lan-
guages for reward function specification in reinforcement
learning. In IJCAI, 6065-6073.

Coles, A., and Coles, A. 2011. LPRPG-P: relaxed plan
heuristics for planning with preferences. In ICAPS.

De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In IJCAI,
854-860.

De Giacomo, G.; De Masellis, R.; and Montali, M. 2014.
Reasoning on LTL on finite traces: Insensitivity to infinite-
ness. In AAAI 1027-1033.

Duret-Lutz, A.; Lewkowicz, A.; Fauchille, A.; Michaud, T.;
Renault, E.; and Xu, L. 2016. Spot 2.0 — a framework for
LTL and w-automata manipulation. In ATVA, volume 9938
of LNCS, 122-129. Springer.

Elgaard, J.; Klarlund, N.; and Mgller, A. 1998. MONA
1.x: new techniques for WS1S and WS2S. In Proc. 10th
International Conference on Computer-Aided Verification,
CAV °98, volume 1427 of LNCS, 516-520. Springer-Verlag.

Fuggitti, F. 2019. LTLf2DFA. Version 1.0.0.post0. Zenodo.
https://doi.org/10.528 1/zenodo.3888410.

Gerevini, A. E.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth
international planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5-
6):619-668.

Patrizi, F.; Lipovetzky, N.; De Giacomo, G.; and Geffner,
H. 2011. Computing infinite plans for LTL goals using a
classical planner. In IJCAI, 2003-2008.

Patrizi, F.; Lipovetzky, N.; and Geftner, H. 2013. Fair LTL
synthesis for non-deterministic systems using strong cyclic
planners. In IJCAL

Pnueli, A., and Rosner, R. 1989. On the synthesis of a reac-
tive module. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’89, 179-190.

Pnueli, A. 1977. The temporal logic of programs. In FOCS,
SECS 77, 46-57.

Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.; and Mcllraith,
S. A. 2018a. Teaching multiple tasks to an RL agent using
LTL. In AAMAS, 452-461.

Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.; and Mcllraith,
S. A. 2018b. Using reward machines for high-level task
specification and decomposition in reinforcement learning.
In Proceedings of the 35th International Conference on Ma-
chine Learning (ICML), 2112-2121.

Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.; and Mcllraith,
S. A. 2020. Reward machines: Exploiting reward function
structure in reinforcement learning.

Torres, J., and Baier, J. A. 2015. Polynomial-time refor-
mulations of LTL temporally extended goals into final-state
goals. In IJCAI, 1696-1703.

Zhu, S.; Tabajara, L. M.; Li, J.; Pu, G.; and Vardi, M. Y.
2017. Symbolic LTLf synthesis. In IJCAI, 1362-1369.
Zhu, S.; Pu, G.; and Vardi, M. Y. 2019. First-order vs.
second-order encodings for LTL -to-automata translation.
In Theory and Applications of Models of Computation - 15th
Annual Conference, TAMC 2019, 684-705.

