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Abstract

To achieve a complex task, a robot often needs to navigate
in a physical space to complete activities in different loca-
tions. For example, it may need to inspect several structures,
making multiple observations of each structure from different
perspectives. Typically, the positions from which these activ-
ities can be performed are represented as waypoints — dis-
crete positions that are sampled from the continuous physical
space. Existing approaches to waypoint selection either iter-
atively consider the entire space or each activity separately,
which can lead to task planning problems that are more com-
plex than is necessary or to plans of compromised quality.
We offer an approach that produces more efficient plans by
performing a one-time computation of the connectivity graph
and by prioritizing waypoints from which multiple activities
can be performed. In addition, we support user specified per-
formance preferences that represent preferences a system op-
erator may have about the generated task plan but that cannot
be directly represented in the map used for navigation, such
as areas near doorways where it is preferable that the robot
does not stop to perform activities. We demonstrate the per-
formance benefits of our approach on simulated manufactur-
ing tasks in an automated factory.

Introduction

Robots are typically assigned complex missions that require
performing various activities in different locations. To com-
plete the overall mission, a mobile robotic agent must reason
over a physical space and decide which activities must be
performed as well as how to navigate between the positions
from which it can perform the activities. Since the physi-
cal space is continuous, task planning is typically performed
using an abstraction of the space. A common approach is to
use a finite set of discrete waypoints that represent specific
configurations (positions) in the space. The waypoints repre-
sent nodes in a probabilistic road map (PRM) (Kavraki et al.
1996), in which the edges represent feasible paths between
waypoints and their estimated navigation costs.

In generating waypoints there exists a trade-off between
the complexity and completeness of the resulting representa-
tion. Intuitively, a small set of waypoints is a coarse abstrac-
tion of the physical space that limits the positions that can be
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used to perform the task, potentially leading to lower quality
plans or unsolvable problems. On the other hand, a larger
set of waypoints will lead to a higher probability of finding
a plan, but may exceed the capacity of the task planner.

Generally, there are two common approaches to way-
point generation. With Fixed Waypoint Generation (FWPG),
a single waypoint is generated for each possible activ-
ity (Edelkamp et al. 2018). This approach provides a good
coverage of the space, but may yield problems that are too
big for the planner to handle. On the other end, with a Pure
PRM (PPRM) approach (Kavraki et al. 1996), a PRM is cre-
ated by randomly sampling waypoints. The size of the graph
can be set to comply with the planner’s capacity, but since
the placement of waypoints is random, the coverage of the
space may be insufficient, which requires iteratively gener-
ating a new PRM, until a solution is found.

In this work we suggest a novel approach to waypoint
generation which bridges the gap between the two com-
mon approaches to sampling and provides good coverage
of the space, while accounting for the planner’s capacity.
Our approach, which we call Task-Aware Waypoint Sam-
pling (TAWS), first generates a very Dense PRM (DPRM)
that captures a fine representation of the reachability infor-
mation in the space, and includes with very high probability
a representation of a solution to the task. To find a plan, way-
points are sampled from the DPRM according to probabili-
ties that are induced by the task description. If a plan cannot
be found with the sampled set of waypoints, a new bigger
set is re-sampled from the DPRM. Similarly, if the planner’s
capacity is exceeded, a smaller set is re-sampled.

As with PPRM, TAWS relies on sampled waypoints for
task planning. However, it avoids the need to reconstruct a
PRM at every planning iteration. As with FWPG, TAWS in-
corporates domain knowledge into the waypoint selection
process, but instead of using it to fix a set of waypoints,
it uses it to set the probabilities according to which way-
points are sampled from the DPRM. This not only can be
used to increase efficiency by prioritizing waypoints from
which more than one activity can be performed, but it also
makes it possible to account for performance preferences,
arbitrary user-defined preferences over positions from which
the robot can perform its activities but that cannot be directly
represented in the map used by the robot for navigation.
Such preferences can reflect, for example, social norms (e.g.,
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(a) 3D representation of an example fac-
tory environment, with the robot (gray
square in the center), and the machines in
green.
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(b) A map of the physical space high-
lighted by the areas from which the robot
can interact with each of 12 different ma-
chines (green crosses).

Z

(c) The dense PRM imposed over the map.
Each collision-free edge (blue lines) con-
nects two waypoints (configurations).

Figure 1: An example setting from the RCLL domain

(a) Map of the physical space specify-
ing first aid stations (yellow) and door-
ways (white), which represent perfor-

+

(b) Map representing the combination of
the performance preferences and the ma-
chine interaction areas.

(c) Waypoints (red squares) are sampled
from the DPRM for task planning. Ma-
chines that can be accessed from each

mance preferences of areas where robots
should not stop.

waypoints are highlighted by green edges.

Figure 2: Integrating Performance preferences into the sampling process

areas where some social event is taking place and should be
avoided by noisy robots), safety and efficiency constraints
(e.g., a carpeted area that is hard for robots to traverse, or
an area near a first aid kit robots shouldn’t block), and ar-
eas where performance is enhanced (e.g., it is preferable for
a robot to operate near a charging station since it will be
able to recharge and recover if it’s battery is unexpectedly
depleted). TAWS can account for these arbitrarily defined
preferences by changing the probability of sampling certain
positions according to the specified preferences.

Example 1 Consider the scenario used for the Robocup Lo-
gistics League (RCLL) (Niemueller, Lakemeyer, and Ferrein
2015) and depicted in Figure la in which robots must navi-
gate in a factory in order to collect items from a set of ma-
chines and deliver them to their destinations. In such sce-
narios, if the environment is fixed and known, FWPG can
be used to prescribe a finite set of waypoints, including a
waypoint for each activity robots may need to perform, such
as picking up an item from a machine. The result may in-
clude many redundant waypoints or waypoints that cannot

be connected, or lead to inefficient plans since each activity
is considered separately. Also, FWPG does not allow for it-
erations if the planner’s capacity is exceeded. On the other
hand, the PPRM approach might require many iterations to
solve problems of realistic size or produce inefficient plans
since the size of the PRM and the accuracy of its cost esti-
mations is limited by the planner’s capacity.

TAWS takes a hybrid approach by first producing a single
dense PRM (DPRM) that is used throughout the search for a
plan. This is likely to lead to plans that are more efficient at
execution since the DPRM provides more accurate naviga-
tion cost estimates. Moreover, by prioritizing positions from
which more than one machine can be accessed or waypoints
at machines from which more than one item, it minimises ex-
traneous navigation costs. It can also be used to make sure
robots do not block doors or increase the probability that
robots avoid slippery areas of the factory floor.

Our contributions are threefold. First, we suggest to per-
form a one-time computation of a connectivity graph in a
given environment, thus decoupling between the connec-



tivity analysis and the task planning process. This new ap-
proach to modeling planning problems for robots navigating
in physical space, can find the minimal number of waypoints
that are needed to solve a given problem and produce more
reliable plans. Secondly, we suggest to increase efficiency
by prioritizing waypoints from which multiple activities can
be performed. More generally, we support any performance
preferences that induce the waypoint sampling probabilities.
Finally, we use a set of simulated manufacturing tasks in an
automated factory to show that our approach is able to scale
to larger tasks, and produce more efficient plans when com-
pared to current approaches.

Related Work

Typical robotic control systems must determine which activ-
ities must be performed, and how to navigate between those
activities. Common approaches to planning for robots com-
bine motion planning and task planning (Gravot, Cambon,
and Alami 2005; Cambon, Alami, and Gravot 2009; Kael-
bling and Lozano-Pérez 2011; Dornhege, Hertle, and Nebel
2013; McMahon and Plaku 2014; Srivastava et al. 2014;
Toussaint 2015; Fernandez-Gonzélez, Karpas, and Williams
2017; Canal et al. 2018). Motion planning is the process of
finding a plan to perform a basic activity, such as picking
up an item or moving between two adjacent locations. Task
planning is the search for a sequence of activities that is pre-
dicted to achieve the goal, while minimising duration and
other costs such as energy use.

When planning in complex scenarios, task planning typ-
ically uses an abstraction of the space. One way to abstract
the space is by using geometric computations that help the
high-level planner make appropriate choices. For example,
(Kaelbling and Lozano-Pérez 2011) handle the integration
of continuous geometric planning with task planning by us-
ing geometric “suggesters”, which construct configurations
dynamically during an “aggressively” hierarchical planning
process. Another approach integrates the motion planner’s
geometric search for positions into the symbolic forward-
search of a task planner. For example, (Cambon, Alami, and
Gravot 2009) devise an integrated task and motion planner
that reasons about geometric constraints that describe the
positions from which it is possible to accomplish some ac-
tion as sub-manifolds of the configuration space of the robot.
These sub-manifolds are mapped within the solver to high
level symbols. McMahon and Plaku (McMahon and Plaku
2014) combine task planning with sampling-based motion
planning to plan trajectories that satisfy constraints in LTL.

Another approach to abstraction uses waypoints that rep-
resent discrete positions (Cashmore et al. 2014; McMahon
and Plaku 2014; Edelkamp et al. 2018). This reduces the
complexity of the problem, making it possible to focus on
the task-planning aspect of the problem, i.e., selecting and
scheduling activities, while using heuristic approximations
to estimate navigation and motion costs. Once a high-level
task plan is produced, motion planning is delegated to a ded-
icated low-level motion planner.

In this paper we focus on waypoint-based approaches
and and on the selection of waypoints for task planning.
Waypoints can be selected randomly, for example using

a PRM (Kavraki et al. 1996), or can be generated using
knowledge of the space and task (Plaku and Hager 2010;
Edelkamp et al. 2018). The disadvantage of the random ap-
proach is that in order to ensure coverage of all interesting
areas, a large number of waypoints might be required. For
simple problems, such as inspection missions (Cashmore
et al. 2014), this can be feasible. However, in a more com-
plex task this will result in problems that are too hard to
solve within a reasonable time.

On the other hand, generating fixed waypoints means that
for each affordance in the physical space (corresponding to
a non-navigation action that the robot might make) a set of
waypoints of fixed size is generated. To demonstrate, in the
RCLL setting in Example 1, the approach by (Edelkamp
et al. 2018) generates a separate waypoint for each item
pickup activity by randomly sampling a position around
the machine the item is positioned at, even if the machine
has more than one item. These waypoints are connected to-
gether using a PRM, adding additional waypoints to cover
the space, if needed. The resulting representation is guaran-
teed to include a solution. However, as the number of ac-
tivities increases, the corresponding task planning problem
may unjustifiably exceed the planner’s capacity, even though
it may contain many redundant waypoints.

Moreover, the fixed approach relies on domain knowledge
that may not be always available. In domains with complex
configuration spaces, it may not be possible to explicitly pre-
scribe in advance the region from which an activity can be
performed, making it necessary to sample waypoints and de-
termine whether an activity is achievable from them. For
example, consider a mobile base carrying an arm with 5-
degrees of freedom, performing a picking task in a cluttered
scene. Due to the clutter, it is not possible describe in ad-
vance a region for the base from which it is guaranteed that
the arm can reach the target. However it is possible instead
to sample a position and orientation for the base and use a
motion planner to determine if there is a collision-free path
for the arm to the target.

We suggest a new approach to waypoint sampling that
combines the benefits of random sampling with the use of
domain knowledge. TAWS is in an anytime approach that
iteratively improves solution quality and that is agnostic to
the specific task and motion planners used. Most notably, all
approaches mentioned above only consider geometric con-
straints that can be imposed on the waypoint selection pro-
cess. TAWS is the first approach that also accounts for ar-
bitrary performance preferences, thus making it possible to
prioritize or discourage specific behaviors.

Task Aware Waypoint Sampling (TAWS)

The input to the waypoint sampling problem is a tuple p =
(M, A, F), where

e M is the set of configurations m € R"™, where n repre-
sents the dimensions of the space,

e A is a set of non-navigation activities that can be per-
formed, and

e ['is a set of performance preferences.



Each sampled waypoint corresponds to a configuration
m € R™. Each activity a € A is associated with a function
we : M — [0, 1] specifying the probability of successfully
executing a from configuration m. Typically, these proba-
bility functions are generated using prescribed templates for
each activity type the robot can perform. Each preference f
is a score function f : M — IR that is used to describe areas
from which it is (un)desirable that the robot operates.

In Example 1, a robot navigates the factory floor and can
interact with a number of stationary machines. For simplic-
ity, we ignore the orientation of the robot. The configura-
tion space is therefore described by a 2-dimensional map
(the floorplan) ,i.e., m € IR2. The activity set represents
the possible interactions of the robot with each machine
(e.g., picking up an item from a machine). The function
we : R? — {0,1} of each machine is defined by a pre-
scribed template that defines the probability of successfully
completing the activity in a given configuration, taking into
account adjacent obstacles (e.g., walls) and the extent of the
robot’s arms. Figure la shows an example setting with 12
stationary machines, with a single activity per machine. In
this setting, each the activity is deterministically mapped to
configurations from which it can be achieved, which forms
aring around the machine (Figure 1b). The areas in pink are
those from which more than one activity can be achieved.
The performance preferences can prioritize sampling from
these areas to produce more efficient plans.

Sampling Procedure

Our TAWS approach decouples the connectivity analysis of
a domain and the task planning process. First, it generates
a Dense PRM (DPRM) over the configuration space. The
process starts from the robot’s initial position. The PRM is
constructed by iteratively selecting a waypoint from the ex-
isting PRM for expansion. A set of new waypoints is cast
from the chosen waypoint. Waypoints that are not in colli-
sion, are added to the graph. The coordinates of each node
and the length of each edge are stored so that they can be
used to estimate the cost of traveling between the waypoints
during the task planning process. A DPRM for the factory
domain is shown in Figure Ic.

After completing the generation of the DPRM, the itera-
tive task planning stage begins. At each iteration, a number x
of waypoints is selected from the DPRM and sent to the task
planner. If the planner is unable to solve the problem within
a time bound, the number of waypoints z is decremented. If
the planner claims that the problem is unsolvable, the num-
ber is incremented. If a plan is found, it is recorded, and the
number of waypoints is incremented in order to find a more
efficient solution. This process is repeated iteratively until
timeout is reached. TAWS automatically finds the number
of waypoints that can be handled by the task planner.

Note that the waypoints are iteratively selected from the
DPRM which contains all the connectivity information, and
not from the underlying map. The selection of waypoints at
each iteration is done according to the following procedure:

1. A sampling probability is assigned to each waypoint in the
DPRM, using a task specific score which is based onper-

formance preferences and discussed in detail in the next
section.

2. A waypoint is sampled from the DPRM and added to the

task plan’s model. The distance between the new way-
point and all existing waypoints is calculated by finding
the shortest path through the edges of the DPRM. This
value is added to the planning model as an estimate of
the path costs. In addition, the planing model is updated
with information about all activities that can be performed
from the new waypoint.

3. The score function is updated to reduce the probability of

sampling more waypoints near the one sampled.

If a task plan is found it is passed to the executor, which
uses a motion planner to compute plans between the way-
points of the plan.

Combined Score

In order to account for both the probability of successfully
accomplishing an activity from a given configuration as well
as the performance preferences, we suggest using a sin-
gle combined score (CS) that associates a score to each
waypoint (corresponding to a sampled configuration) in the
DPRM. This score, that can be defined arbitrarily to account
for different settings, is normalized over the waypoints in the
DPRM, and is used to specify the probability of sampling
each waypoint for inclusion in the task planning problem.

Specifically, the C'S we suggest in Equation 1 is designed
for the type of settings we consider here and uses a weighted
sum over the different activities, while considering prefer-
ences multiplicatively.

CS(m) = [T £0m) 3~ wa(m) (1)
fer acA
Our scoring approach increases the score (and correspond-
ing probability) of waypoint m from which multiple actions
can be achieved by summing the probabilities w, (m) of suc-
cessfully completing each activity from m.

The application specific preferences can be used to ac-
count for anything from breaking ties between otherwise
equally probable waypoints, to imposing hard constraints
that prevent sampling in certain regions. The former case
can be achieved by setting f(m) to vary between 1 — € and
1 for some small value e, so that the score of a waypoint is
scaled down by up to 1 — € in areas where it is preferred not
to sample a waypoint. This may be relevant, for example, in
settings where a noisy robot should avoid getting close to a
working station of a human worker. In the latter case, hard
constraints, such as for ensuring that a robot never blocks
access to a first-aid station, can be enforced by setting f(m)
to 0 in the critical area. This ensures that no waypoint can be
sampled in that area, as its sampling probability will be 0.

In Figure 2a, critical areas represent doorways and first
aid stations, where a robot shouldn’t stop. The combined
score is assigned according to C'S, the cost function in Equa-
tion 1, that considers both the hidden preferences and the ac-
tivity information (Figure 2b). The score is normalized and
used to sample a set of waypoints, which is used to find a
plan for the task (Figure 2c).



Evaluation

Our empirical evaluation was designed to answer two
main questions: (1) what is the benefit of using a Dense
PRM (DPRM) over existing approaches to waypoint selec-
tion, and (2) what is the best way to account for performance
preferences in the waypoint selection process.

To address these questions we used a dataset that con-
sisted of automated factory scenarios similar to those used
for the Robocup Logistics League (RCLL) (Niemueller,
Lakemeyer, and Ferrein 2015) and described in Example 1.
In these scenarios, a robot must move between machines and
benches to pick up and place work-pieces. The work-pieces
are combined at the machines to produce a complete order
that can be delivered at a delivery window. The problem de-
scription is temporal, such that each action is described by
it’s estimated duration. In contrast with the RCLL scenario,
orders here do not change during execution nor are con-
strained by deadlines. We varied the number of machines
from 1 to 40 with 1 — 10 work-pieces per order. Each ma-
chine could have several work-pieces, and the same work-
piece could be found in different machines. For each ma-
chine count, we generated 10 different problems, varying the
types and positions of objects, for a total of 400 problems.

The Benefits of Using a DPRM

To assess the benefits of using a DPRM, we compared
TAWS that produces a single DPRM as a preprocessing step,
against FWPG and PPRM. We used the FWPG implemen-
tation from (Edelkamp et al. 2018), in which each activity
is associated with a template which prescribes the area from
which it can be performed. A waypoint is randomly sam-
pled from this area for each activity. For PPRM we used the
implementation in (Kavraki et al. 1996), which reconstructs
a (sparse) PRM at every iteration. In this part of our evalu-
ation, no performance preferences were considered beyond
the task description, so we are only evaluating the benefit of
decoupling the connectivity analysis from the task planning
process with a one time generation and reuse of the DPRM.

We embedded all three approaches in ROS using the ROS-
Plan framework (Cashmore et al. 2015) with the POPF tem-
poral planner for task planning (Coles et al. 2010). All ap-
proaches solved the same problems with a total time bound
of 10 minutes to compute a solution. For FWPG, this meant
10 minutes of planner time. For PPRM and TAWS, each call
to the planner was limited to 10 seconds'. The initial sample
set size for TAWS and PPRM was 1 and the sampling step
size was 4 (for FWPG it is fixed by definition).

To compare the performance of the approaches we mea-
sured (1) the number of instances that were solved by each
approach within different time bounds, (2) the quality of the
first and best solutions found within seven time bounds (5
and 10 seconds and 1, 2, 4, 8 and 10 minutes), and (3) the

"Due to space considerations we only report here some of our
results. In practice, we experimented with different time alloca-
tions, and different settings. The code and benchmark set can be
found in (URL omitted for blind review). The additional results can
be found in the appendix.

amount of time it took to compute the first and best solu-
tions. A quality of a plan is measured according to the total
duration of the plan (shorter is better). For each approach,
Table 1 shows the number of instances solved within each
time bound. For problems solved by all approaches, the ta-
ble shows the mean time to solution and mean plan duration
in seconds. The standard deviation is indicated in brackets.

The results show that while FWPG solves the largest num-
ber of problems within the 10 minute bound, and that the
most successful approach changes within the different time
intervals. In terms of computation time, FWPG outperforms
the other two approaches on the instances solved by all ap-
proaches. The notable achievement of TAWS is in terms of
plan quality. For all time intervals, TAWS finds shorter solu-
tions, with up to 40% reduction.

Since PPRM only solved a limited number of instances,
the results in Table 1 only reflect the performance of the
approaches on the smallest instances. We therefore com-
pared the performance of TAWS against FWPG on instances
solved by both of these approaches. In Figure 3 we com-
pare plan duration, and in Figure 4 we compare the time
to solution in seconds for an increasing problem size for
FWPG, and for the first and best solutions of TAWS. In
Figure 3, where the instances below the line are those
for which TAWS achieved a better result, we can see that
TAWS achieved better plan quality over most instances, with
an average 88% plan duration compared to FWPG across all
problems solved by both approaches.

We have seen in Table 1 that for the small instances solved
by all three approaches, FWPG outperforms the other two
approaches in terms of the mean computation time. By in-
vestigating problems according to their size, Figure 4 re-
veals FWPG’s computation time tends to be fixed around
either 600 or 5 seconds for any problem size. In contrast,
TAWS’s time to best solution increases with problem size,
and is much lower than FWPG for the majority of instances.
TAWS reaches the first solution in 17% and the best solution
in 62% of the time taken by FWPG solution.

These results can be explained by recalling that
FWPG generates a single and potentially unnecessarily large
problem. In contrast, TAWS is an anytime approach, that it-
eratively generates and sends to the planner representations
of the problem of increasing size. Our results show that
despite the fact that TAWS is only allowed 10 seconds of
planner time per iteration, the anytime approach is still able
to find solutions more quickly than the fixed approach and
those solutions are of higher quality.

Accounting for Performance Preferences

To examine the best way to account for performance pref-
erences we introduced two kinds of preferences to the au-
tomated factory domain: hard constraints, and soft prefer-
ences. Hard constraints represent restrictions that cannot be
violated, such as disallowing dwelling at locations (way-
points) in doorways and near first aid kits, as exemplified in
Figure 2a. These constraints are implemented by assigning a
zero probability for sampling in specific areas of the model.
Soft preferences represent areas of the model in which it is
preferable that the robots avoid dwelling at, such as areas



Solved Instances

Mean Time to Solution (s)

Mean Plan Duration (s)

Time elapsed ‘ PPRM FWPG TAWS ‘ PPRM FWPG TAWS ‘ PPRM FWPG TAWS
5 secs 6 0 0 - - - - - -
10 secs 16 20 14 3.88 (0.00) 9.47 (0.36) 9.07 (0.30) 5.80 (0.80) 5.00 (0.00)  5.00 (0.00)
1 min 27 103 65 17.41 (14.66) 11.14 (1.11)  18.95 (7.48) 7.12(1.27)  12.99 (4.12) 5.00 (0.00)
2 min 40 113 103 36.40 (31.64) 11.44 (1.24) 31.22(20.60) | 8.48(2.31) 14.19(3.62) 5.33(0.64)
4 min 47 113 159 58.76 (45.79) 11.72 (1.50) 48.58 (44.78) | 10.01 (3.54) 14.03 (3.79) 6.21 (2.10)
8 min 56 113 261 110.68 (99.93)  11.60 (1.43) 54.09 (51.10) | 10.38 (3.42) 13.69 (3.88) 6.17 (2.05)
10 min 63 338 300 17431 (174.12)  11.39 (1.42) 53.55(52.43) | 10.63 (3.37) 13.35(4.55) 6.25 (2.15)
Table 1: Performance per approach; standard deviation in brackets.
PPRM FWPG TAWS ” . .
Number of solved instances 63 337 304 e *
Mean time to first solution 276.38 (284.23) 57.13 (52.31)  15.96 (4.80)
Mean first solution quality - duration 10.23 (2.76) 8.94 (4.51) 10.53 (4.46) c PR S )
Mean time to best solution 276.38 (284.23) 57.13(52.31) 61.00 (61.68) o L ¢ o
Mean best solution quality - duration 10.23 (2.76) 8.94 (4.51) 6.05 (1.86) E o .. N
8 of:‘ ’::’o .cs:’:
Table 2: Accounting for hard constraints. 5§ St
o SRR IR
=y ’: % 0.’;" o ¢
7] oo Weke S
|  PPRM FWPG TAWS 9 Gephrshie O
Number of solved instances 61 335 311 Z ® % .t::\? e’ e
Mean Time to First solution 215.84(209.21)  59.66 (56.71)  16.52 (5.00) = N R
Mean first solution quality - duration 10.21 (2.70) 10.46 (4.96) 10.76 (4.21) < . 37 2.t M
Mean First solution quality - preferences 9.80 (3.09) 16.60 (9.56) 0.63 (1.08) = A .fn:. .|
Mean Time to best solution 215.84 (209.21)  59.66 (56.71) 42.74 (33.65) ‘
Mean Best solution quality - duration 10.21 (2.70) 10.46 (4.96) 5.61 (1.11) o u mosess o
Mean Best solution quality - preferences 9.80 (3.09) 16.60 (9.56) 0.08 (0.16) .

Table 3: Accounting for constraints and preferences

near workbenches. This is implemented by allowing the user
to associate a score to each area of the model which reduces
the probability of sampling a waypoint from that area. As
depicted in our score function in Equation 1, we also ac-
count for overlap information by increasing the probability
of sampling a waypoint according to the number of activities
that can be performed from it. In the factory domain, this pri-
oritizes waypoints from which more than one machine can
be accessed and waypoints at machines from which more
than one work-piece can be collected.

Since neither FWPG nor PPRM account for performance
preferences, we extended both approaches to do so. For
FWPG, in which waypoints are chosen randomly from
within the area from which each activity can be performed,
we used performance preferences to set the probability
of sampling a specific position within each area. Perfor-
mance preferences were used in two different stages of the
PPRM generation. The first variant uses the performance
preferences to influence which existing node in the PRM is
chosen for expansion, while the alternative uses them during
expansion to set the probability of sampling a new waypoint
around the selected waypoint. As the results were similar for
both variants we only report the results of the latter.

In addition to assessing plan quality according to its dura-
tion and keeping track of the times to solution, we used the
following measure to evaluate a plan 7.

>

meMn

P(r) = dur(m) Y (1~ f(m)) @

feF

where M, are the set of waypoints visited in the plan,

FWPG Plan Duration

Figure 3: Comparison of best plan quality (plan duration
in seconds) for problems solved by both TAWS(vertical
axis) and FWPG (horizontal axis). Points below the line in-
dicate higher quality for TAWS.

dur(m) is the total time spent at waypoint m, and f(m) €
{0,1} is the normalized performance preferences score of
that waypoint’s position. This measure penalizes plans ac-
cording to the time spent in undesirable locations.

Note that the performance preferences score is accounted
for by the waypoint selection process and not directly mod-
elled in the resulting task planning domain. This allows our
approach to be used with any task planner, such as tempo-
ral, probabilistic, or contingent planners. Specifically, POPF
optimises plan duration.

Table 2 shows the results achieved for instances for which
only hard constraints were specified. For each approach, the
table shows the number of instances solved within the time
bound. For problems solved by all three approaches, we
show the mean time to the first and best solution and the
quality of the solutions in terms of duration. Table 3 shows
the results for instances for which both hard constraints and
soft preferences were specified. In addition to measuring
plan duration, we include the mean performance score ac-
cording to Equation 2 (the breakdown according to times-
tamps is shown in the appendix).

The results show that adding performance prefer-
ences does not have a substantial effect on the number of
problems solved by each approach. For instances with only
hard constraints, the mean quality of the first solution is best
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Figure 4: Comparison of time to solution for FWPG and
time to first and best solutions for TAWS, on problems
solved by both approaches, for increasing problem sizes.

for FWPG, but TAWS reaches the first solution much faster.
Moreover, TAWS achieves the best plan quality within the
time bound. As shown in Table 3, when soft constraints are
added, TAWS achieves both the lowest plan duration and the
best preference score according to Equation 2.

Again, since PPRM solves only a limited number of
instances, our analysis in tables 2 and 3 only accounts
for smaller instances. In figures 5 and 6 we therefore ex-
clude PPRM, and compare solution quality for the instances
solved by FWPG and TAWS.

+ TAWS (best) * FWPG

Preference Cost

Problem Size

Figure 5: Comparison of preference cost for FWPG and
TAWS, for increasing problem sizes.

The results in Figure 5 show that FWPG is limited in
its ability to account for the performance preferences when
compared to TAWS, which manages to achieve a penalty of
0 (according to Equation 2) for most instances. In Figure 6
we see that the better score in terms of performance pref-
erences achieved by TAWS doesn’t compromise the plans’
quality in terms of plan duration.

The superior performance of TAWS compared to
FWPG is due to fact that TAWS samples a smaller set of
waypoints that respect the performance preferences. In con-

TAWS (best) Plan Duration (s)

FWPG Plan Duration (s)

Figure 6: Comparison of plan duration for FWPG and
TAWS in problems with soft preferences. Plan quality in
terms of plan duration is comparable.

trast, FWPG may result in many redundant waypoints that
do not always respect the performance preferences, not only
making for a more complex problem, but also increasing the
probability that the resulting plan will make use of those un-
desirable areas.

Conclusion

We presented Task-Aware Waypoint Sampling (TAWS) as
a new approach to selecting waypoints for task planning.
TAWS’s novelty is in the way it decouples the connectivity
analysis of a domain from the task planning process, and its
ability to account for user defined performance preferences.

The connectivity information is captured through a dense
PRM, which is generated once and reused through the any-
time iterative planning process to estimate navigation costs.
The task planning model at each iteration is constructed by
sampling waypoints from the dense PRM according to prob-
abilities that are defined by both the activities and perfor-
mance preferences.

Our empirical evaluation on a set of automated factory
problems shows that TAWS finds solutions that maximize
compliance with the specified preferences, without compro-
mising computation time and the robot’s ability to achieve
the goal efficiently.

In the future, we intend to evaluate TAWS on other set-
tings beyond the factory use case. Specifically, we intend
to investigate exploration scenarios, in which the sampling
probability of TAWS can be used to specify areas in which
a more meticulous search is desired. Also, in this work, de-
sirable behaviors were induced by changing the robot’s task
planning procedure. As a next step, we intend to account for
settings in which robots are treated as ‘black boxes’ and their
inner implementation cannot be modified. In such settings,
their behavior can instead be influenced by changing the in-
formation that is provided to them, such as the map that is
used for navigation.
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