
Entropy-Based Exploration for Mobile Robot Navigation: A Learning-Based
Approach

Nicolò Botteghi1, Khaled Alaa2, Beril Sirmacek3, Mannes Poel 4

Abstract

This work presents an exploration strategy for a Deep
Reinforcement Learning path planner for learning con-
tinuous velocity commands from raw sensory data for
solving navigation tasks in indoor environments. To the
best of the authors’ knowledge, this is the first approach
in which the map’s entropy, built online by the robot
using a Simultaneous Localization and Mapping algo-
rithm, is utilized during the training phase to shape the
reward function. The results show that the entropy term
of the reward function motivates the robot to improve
its exploration capabilities and makes it able to escape
local minima in environments with relatively complex
topology. Additionally, the proposed map-less planner
has achieved a comparable performance compared to a
traditional motion planner that requires a precise map
of the environment beforehand. The effectiveness of the
proposed approach is verified by the successful gener-
alization of the learned policy to previously unseen en-
vironments. A video of our experiments can be found at
https://youtu.be/QWRyocjQzzw

Introduction
Autonomous navigation in unknown and complex environ-
ments is an important challenge for robotics. This problem
is usually tackled using path planning algorithms (i.e po-
tential field, cell decomposition, A* graph search (Stentz
1994)) by relying on representations of the environments:
the maps. These maps are usually built using Simultaneous
Localization and Mapping (SLAM) algorithms (Thrun, Bur-
gard, and Fox 2005). However, in many interesting appli-
cations, a complete map of the environment is expensive to
obtain or difficult to keep up-to-date.

In recent years, Deep Reinforcement Learning (RL) (Sut-
ton and Barto 1998) has been used to tackle and solve sev-

1 Robotics and Mechatronics, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science, CTIT Institute, Univer-
sity of Twente, The Netherlands, n.botteghi@utwente.nl

2 Intelligent Driving Functions, IAV GmbH (Volkswagen
Group), Germany, khaled.mustafa@iav.de

3 Jönköping AI Lab (JAIL), School of Engineering, Jönköping
University, Sweden, beril.sirmacek@ju.se

4 Datamanagement and Biometrics, Faculty of Electrical En-
gineering, Mathematics and Computer Science, University of
Twente, the Netherlands, m.poel@utwente.nl

eral different robotics tasks such as stabilization, manipula-
tion, locomotion and navigation. In the context of naviga-
tion, path planners based on RL don’t usually rely on any
map or SLAM and, even though very successful, they don’t
exploit any of the important information stored in the maps.
To this category belongs the work presented in (Tai, Paolo,
and Liu 2017), (Zhelo et al. 2018), (Pfeiffer et al. 2017),
(Duo et al. 2019) and (Zhang, Zhang, and Liu 2018) where
map-less RL path planners are developed in order to solve
target-reaching navigation tasks in unknown environments
with static or simple dynamic obstacles configurations.

On the other hand, few approaches have tried to com-
bine the RL planners with maps and SLAM. In this cate-
gory, the work in (Zhang et al. 2016) proposes a successor
feature Deep Q-Network algorithm for solving navigation
tasks when a map of the environment is known a priori.
In (Brunner et al. 2017), Asynchronous Advantage Actor-
Critic (A3C) is used to navigate the robot out of a random
maze of which the map is given. The observations of the
agent include 2D-map of the environment, the robot’s head-
ing direction, the previously estimated pose and the actions
taken. In (Zhang et al. 2017), an external memory acting as
an internal representation of the environment for the agent is
fed as an input to an RL algorithm (A3C). The agent is thus
guided to make informed planning decisions to effectively
explore new environments. However, these methods suffer
from the need to store the map information not only during
training, but also during the deployment and testing phase.
Especially in the deployment phase on real robots, the com-
putational power and memory may be limited and comput-
ing and storing a full map might be prohibited. Furthermore,
all the approaches in this category rely on a discrete action
space for the agent (e.g. move forward, backward, left and
right).

To address this problem, in (Mustafa et al. 2019) and (Bot-
teghi et al. 2020), we combined an RL path planner with a
reward function based on the map built with a SLAM al-
gorithm. The map is only used during training to improve
the learning performances and the navigation skill, however,
it is not used during testing. The policies learned with this
approach are not only able to generalize well to unseen en-
vironments and targets, but they can be directly, without any
further tuning, transferred to the real robot as well. Further-
more, we rely on a continuous action space to achieve more

https://youtu.be/QWRyocjQzzw

advanced maneuvers and smoothness of the trajectories.
In our previous work, (Mustafa et al. 2019) and (Botteghi

et al. 2020), we only considered the distance to the obsta-
cles to achieve higher obstacle-awareness. However, the im-
proved collision-awareness alone, granted by those meth-
ods, is not enough when the environments grow in complex-
ity (e.g. multi-room indoor environments) and present local
minima (e.g. getting stuck in a room with the target on the
other side of the wall). In this work, we further strengthen
the connection between RL and SLAM by exploiting more
of the knowledge stored in the map. In particular, we use the
map’s entropy to improve the exploration skills of the plan-
ner and its ability to escape navigation minima that occur
when the environments are more complex and realistic. The
proposed method is shown in Figure 1.

The rest of the paper is organized as follows. In Section
Background, the theory behind Reinforcement Learning and
Simultaneous Localization and Mapping is presented. Our
proposed approach is described in details in Section Method-
ology. Section Experimental design describes the experi-
ments performed. Furthermore, Sections Results and discus-
sion and Conclusion discuss the results and the conclusions.

Background
Reinforcement Learning
RL (Sutton and Barto 1998) is the Machine Learning (ML)
branch in charge of learning sequential decision making pro-
cesses. The agent, i.e. the decision-maker, by interacting
with the environment tries to learn the optimal way of behav-
ing. This interaction process can be modelled as a Markov
Decision Process (MDP), M = (S,A,P,R), where S is
the state space, A is a set of actions, P(st+1|st, at) is the
state-transition probability distribution and R(st, at) is the
reward function. The aim of RL is finding the optimal policy
πθ(st), mapping states into actions, for maximizing the total
cumulative discounted rewards in Equation (1).

R = ΣTt=0γ
trt+1 (1)

Mobile robot navigation can be phrased as an RL problem
in which the goal is to learn collision-free paths to reach
target locations in environments with unknown topology and
obstacle configuration.

Deep Deterministic Policy Gradient Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al. 2016) is a model-
free, off-policy RL algorithm with an actor-critic structure.
The actor, usually represented by a neural network, chooses
an action at for each given state st. On the other hand,
the critic, represented as well by a neural network, assesses
the performances of the actor by estimating the state-action
value function Q as it happens in the Deep Q-Network
(DQN) algorithm (Mnih et al. 2013). DDPG can be seen as
the extension of DQN for continuous action spaces.

The parameters of the critic network, θQ, are adjusted ac-
cording to Equation (2).

Li(θ
Q
i) = Es∼ρπ,a∼π[(Q(st, at|θQi)− yi)2] (2)

where yi = r(st, at) + γQ(st+1, at+1|θQi) is the the tar-
get Q-value used for computing the error that is backprop-
agated to adjust the parameters of the critic network and π
is the behavioral policy that the robot uses for exploration.
The estimation of the state-action value function Q is used to
update the parameters of the actor network, θπ , that are ad-
justed in the direction of the gradient of the expected return,
θπi+1 = θπi + αθπ∇θπJ(πθ). The gradient of the expected
return is shown in Equation (3).

∇θπJ(πθ) = Es∼ρπ [∇aQ(st, π(st|θπ)|θQ)∇θππ(st|θπ)]
(3)

In this way, the improvements in the actor’s policy are
guided by the estimated state-action value function.

Simultaneous Localization and Mapping
In order to increase the robot’s spatial awareness, we ben-
efit from a SLAM algorithm. SLAM algorithms have been
well investigated for more than a decade in both computer
vision and robotics communities. Depending on the sen-
sors, map building needs, timing requirements, computation
platforms, researchers proposed different SLAM algorithms.
Nevertheless, all SLAM algorithms are developed for build-
ing a 2D or a 3D map of the environment around the robot
while at the same time finding the relative pose (location and
orientation vectors) of the robot within this environment.
While the robot is moving in the environment, the SLAM
algorithm is iterated. For each time step, the next time step
robot pose is estimated and also robot pose measurement is
performed. The robot pose measurement is compared with
the estimation done in the previous step and the difference
(error) is used for updating the system parameters to perform
better estimations (Thrun, Burgard, and Fox 2005).

In our study, we used Rao-Blackwellized particle filter
(RBPF) to solve the estimation step of the SLAM cycle. The
RBPF method separates the estimation of the robot’s pose
from the posterior of the environment map (Murphy 1999)
as shown in equation (4):
p(x1:t,m|z1:t, u1:t−1) = p(m|x1:t, z1:t)p(x1:t|z1:t, ut−1)

(4)
where x1:t represents the robot’s trajectory, z1:t is the set
of observations, ut−1 is the control input and m defines the
built map of the environment.
The advantage of using this factorization is that the estima-
tion of the joint posterior can be divided into two separate
steps:

Particle Filter Estimation. The particle filter estimates
the robot’s pose p(x1:t|z1:t, ut−1), represented as a proba-
bility distribution due to the presence of uncertainties in the
robot’s motion and measurements, through a finite set of par-
ticles (5).

Xt := {x(1)t , x
(2)
t , ..., x

(N)
t }, (5)

where each particle x(n)t represents a belief of the true state
at time step t. Moreover, the new set of particles Xt is con-
structed recursively from the previous set Xt−1 by sam-
pling from a proposal distribution, i.e. the probabilistic mo-
tion model p(x(n)t |x

(n)
t−1, ut−1), usually built using odome-

try information. Then, the probabilistic observation model

Figure 1: Proposed architecture for continuous control navigation in unknown environment. The motion planner is trained
through a deep-RL within an off-policy, actor-critic framework that represents the high-level controller of the robot using only

sparse laser data. The robot’s low level controller executes the navigation actions determined by the motion planner. The
occupancy grid map is built online by the robot and used to shape the reward function.

p(zt|x(n)t) is incorporated and an importance weighting fac-
tor w(n)

t is assigned to each particle. Through selective re-
sampling (Grisetti, Stachniss, and Burgard 2005), the par-
ticles with least importance weights, correspondent to un-
likely robot’s poses, are neglected. Eventually, this iterative
procedure converges to the correct estimate.

Mapping with Known Poses. After computing the pose
estimate, it is possible to estimate the posterior of the map
p(m|x1:t, z1:t). This step is usually called mapping with
known poses (Moravec 1988). The map, in this context, is
represented using an occupancy grid in which each cell can
be either occupied, unoccupied, or unknown. The resolu-
tion of the grid cells should be chosen to be compatible
with the smallest feature of the environment. When dealing
with occupancy grid maps, the probability of every grid cell,
whether it is occupied or not, is assumed to be independent
of the others. By making this assumption, the posterior prob-
ability of the entire map can be computed as the product of
the posterior of every grid cell mi in the map, as shown in
Equation (6).

p(m|z1:t, x1:t) =

M∏
i=0

p(mi|z1:t, x1:t) (6)

where M is the total number of cells in the map.

Methodology
Approach
In this work, we present the development of an RL-based
motion planner. The RL-agent uses only raw sensory infor-
mation for determining the sequence of continuous veloc-
ity commands (linear and angular velocities), that the robot

has to execute to reach target locations in environments
with unknown obstacle configuration. Differently from stan-
dard map-less RL motion planners, only during the training
phase, we exploit the knowledge of the environment stored
in the map, built online using the RBPF SLAM algorithm
introduced in Section Background, to improve the training
speed and navigation skills of the agent. The incorporation
of the knowledge stored in the map happens through the
shaping of the reward function. Unlike many RL navigation
approaches that employ only target driven reward functions
based on the distance to the target with penalties for hitting
the obstacles, to aid the navigation in complex environments,
we proposed a new reward function including the map’s en-
tropy to encourage exploratory behaviors and, hopefully, es-
cape local minima.

Reward Function
The agent’s goal is to generate velocity commands to con-
trol a mobile robot. The robot has to be able to reach the
desired targets while avoiding collisions with obstacles and
escape local minima. To achieve these three objectives, the
proposed reward function is equal to the weighted sum of
three different terms:

• Target Driven (TD)

• Obstacle Awareness (OA)

• Map’s Entropy (Entropy)

The TD term of the reward function is based on the Eu-
clidean distance robot-target. In particular, the difference of
the distance to the target at the current time step and the dis-
tance to the target at the previous time step (see Equation
(7)). Intuitively, the agent is positively rewarded if it gets

4

1

FC
Layers

Q-Value

Fl
a
tt

e
n

2
5

6
|R

e
LU

1
2

8
|R

e
LU

1D Convolution Layers

8
|(

1
,5

)|
R

e
LU

Feature Extraction

8
|(

1
,3

)|
R

e
LU

8
|(

1
,3

)|
R

e
LU

8
|(

1
,5

)|
R

e
LU

8
|(

1
,3

)|
R

e
LU

8
|(

1
,3

)|
R

e
LU

1

1

Angular

Linear

Fl
a
tt

e
n

2
5

6
|R

e
LU

1
2

8
|R

e
LUV

2

Target in
local frame

Critic

Policy

Figure 2: The laser data is processed by the feature extraction part which consists of three convolution layers. The FC part of
the network fuses the extracted features and the target information.

closer to the target.

r1(st) =
∥∥px,yt−1 − g∥∥2 − ‖px,yt − g‖2 (7)

where ‖px,yt − g‖2 is the distance from the current position
pt of the robot at time t with respect to the inertial frame and
the target’s location g expressed in the robot’s coordinate
frame.

The OA term of the reward function includes a penalty in-
versely proportional to the squared distance to the obstacles
(see Equation (8)). It is worth to mention that the distance to
the obstacle is computed online using the laser range (i.e. Li-
DAR) data and the position of the obstacles is not assumed
to be known a priori. This term of the reward function is ac-
tivated once the distance to an obstacle, measured by the Li-
DAR, is smaller or equal than 0.6m. The agent is negatively
rewarded if it gets closer to obstacles.

r2(st) =
1

(‖px,yt − o‖2)
2 (8)

The third term is the map’s entropy term (see Equation (9)).
The map’s entropy corresponds to the sum of the entropy of
all the cell c in the map m. The agent is rewarded if it ex-
plores the environment or navigates through open and more
uncertain areas.

r3(st) =
∑
cf∈m

p(c)logp(c)+
∑
co∈m

(1−p(c))log(1−p(c))

(9)

where cf corresponds to the unknown and unoccupied cells
in the map and co to the occupied ones.

In addition, a sparse reward, rreached, is added if the agent
reaches the target within a predefined distance threshold and
a penalty, rcrashed, if the robot either collides with an obsta-
cle or exceeds the maximum number of steps T in a single
episode. Based on the above considerations, the overall re-

ward function r(st) in shown in Equation (10).

R(st,m) =


rreached, d ≤ dmin,
rcrashed, sts,

λgr1(st)− λor2(st)− λHr3(st), otherwise.
(10)

where λg , λo and λH are scalar weighting factors for the
three reward terms r1(st), r2(st) and r3(st).

Reinforcement Learning algorithm and Neural
Networks Architecture
DDPG is chosen as the candidate RL algorithm for deter-
mining the velocity commands (linear and angular veloc-
ities) of the robot in order to navigate to target locations
without colliding with obstacles. It should be pointed out
that the RL algorithm represents the high-level controller
of the robot. Once the robot’s navigation actions are deter-
mined, the robot’s low-level controller executes each action
by sending the appropriate torque commands to each ac-
tuator. To achieve smooth trajectories, the action space is
continuous. In particular, the linear velocity is a continuous
function limited in the range [0,1] to allow only forward mo-
tion (no backward) and the angular velocity is a continuous
function limited in the range [-1,1] to allow right and left
rotations. The state vector st is composed by 100 LiDAR
data points of the 360 degrees range zt, the action chosen
at the previous time step at−1 and the current distance from
the target position expressed in Euclidean coordinates g. The
state vector has dimension 104 and it is shown in Equation
(11).

st = [zt, at−1, g] (11)

The network architecture consists of mainly three parts:
feature extraction, policy (actor) and critic networks as
shown in Figure 2. The first part of the network is responsi-
ble for extracting features from the laser range finder data
through 1D-convolutional layers. Three 1D-convolutional
layers with 8 filters each, stride length 2, ReLU activations
and kernel sizes of 5, 3 and 3 respectively are used to extract

(a) Env-1. (b) Env-2. (c) Env-3.

Figure 3: The robot is trained on Env-1, in Figure 3a. Then, the performance of the policies are evaluated on the unseen a
priori Env-2 and Env-3. The environments are all of size 4.5 m x 4 m.

high-level features. These convolutional layers are used to
achieve better generalization in unseen environments. The
second part of the network is the policy network. This is
composed of three fully-connected layers responsible of es-
timating the optimal linear and angular velocities of the
robot based on the extracted features from the laser data
along with the robot’s speed in the previous time frame and
target position in the robot’s local frame. To constrain the
range of linear velocity in [0,1] and angular velocity in [-
1,1], as mentioned beforehand, sigmoid and tanh activation
functions are used respectively in the output layer. However,
the remaining layers employ ReLUs. Finally, the critic net-
work estimates the Q-values of the state and action pairs us-
ing two fully-connected layers respectively with ReLu and
linear activations.

Experimental design
Simulation Setup
The virtual 3D environment is built using the Robot Operat-
ing System (ROS) and Gazebo simulator. The experiments
were conducted on an Ubuntu 16.04 machine with an Intel
Core i7-8550 CPU. The algorithms are written using Ope-
nAI package provided by the ROS middleware. The simu-
lated platform is a skid-steering Husarion mobile robot. The
robot is controlled through velocity commands (linear and
angular velocities) that are directly sent to the low-level con-
troller, with a frequency equal to 10 Hz, where the control
loop waits until the command gets executed. This feedback
is provided by estimating the robot’s velocity from the en-
coder’s readings. Furthermore, the robot is equipped with
360 degrees 2D laser range scanner (LiDAR) for sensing the
environment.

Configuration of the RL and SLAM algorithms
For training the model, stochastic policy gradient with Adam
optimizer (Kingma and Ba 2015) is employed to train both
the actor and critic networks. However, for the actor net-
work, a learning rate of 10−4 is used whereas the critic is
updated using a learning rate of 10−3. Furthermore, L2-
regularization is included with a coefficient of 10−2 when
training the critic network to prevent overfitting. A discount
factor of γ = 0.99 and target update, τ = 0.001 is used. The

hyperparameters are selected based on the ones used in the
original paper for the DDPG (Lillicrap et al. 2016). The ex-
ploration noise is chosen as an Ornstein-Uhlenbeck process
with parameters σ = 0.2 and θ = 0.15, since these values
have empirically shown good performances.
In order to simultaneously map the environment and esti-
mate the robot pose, the ROS Gmapping SLAM package is
used (Grisetti, Stachniss, and Burgard 2007). A probability
value is assigned to each cell based on whether it is occupied
or free according to the laser sensor and odometry readings.
Similar to (Grisetti, Stachniss, and Burgard 2005), the occu-
pancy threshold value is chosen equal to 0.65 which means
that if the probability value of the cell is greater than this
value, this cell is occupied and, consequently, free otherwise.
Based on the probability assigned to every grid cell, the en-
tropy of the map is calculated according to equation (9). The
complete list of parameters’ values used in the experiments
can be found in Table 1.

parameter value
optimizer ADAM

actor learning rate 10−3

critic learning rate 10−4

L2-regularization coefficient 10−2

discount factor γ 0.99
target networks update τ 0.001

OU-noise σ 0.2
OU-noise θ 0.15
batch size 64

occupancy threshold 0.65
map update threshold 1.0

grid cell size 5 cm × 5 cm
LiDAR max. range 3 m

Table 1: Parameters of the experiments.

Training and Evaluation
To validate the effectiveness of the proposed approach, we
compare the performances of the path planner trained us-
ing the proposed reward function, in Equation (10), with the
performances of the path planner trained used a TD reward
function, as in (Tai, Paolo, and Liu 2017), and one trained

with a TD and OA reward function, as in (Zhang, Zhang, and
Liu 2018). For a fair comparison, the same RL parameters
are used as well as the same neural network architectures.
The three different RL-agents are trained in Env-1, shown
in Figure 3a, and then tested on the same set of 100 ran-
domly generated targets environment Env-1. For each train-
ing episode, the target location g and the initial pose of the
robot p0 are sampled from a uniform distribution to avoid
biasing the policy toward specific targets and environment
topology. For the path planner trained using (10), the map is
also reset at the start of a new episode and only used when
training the agent.

Furthermore, to assess the generalization properties of
the policies learned in Env-1, we evaluate the planners on
the same sets of 100 randomly generated targets in a priori
unseen environments without further retraining: Env-2 and
Env-3, in Figure 3b and 3c respectively. Moreover, we com-
pare the RL-agents with move base, the DWA path planner
(Fox, Burgard, and Thrun 1997) of the navigation stack in
ROS. Differently from the proposed approaches move base
requires the complete map of the environment to be known
beforehand.

Results and discussion
Training Results
To compare the training performances of the RL-agents, we
analyze the collision ratio in relation to the episode number.
The results are shown in Figure 4.

3

Figure 4: Evolution of the collision ratio with the number of
training episodes. The collision samples of the proposed
approach (green) decrease much faster than the TD only

(red) and TD and OA (yellow) reward functions.

The agent trained with the TD reward function only (red
line in Figure 4) struggles to reduce the collisions during
training as it receives a penalty only when the collision has
already happened. Learning to navigate safely and far away
from the obstacle is more challenging when only sparse re-
wards are used. When the environment is fairly complex,
the agent trained with TD and OA reward function (yellow
line in Figure 4), even though slightly superior, still suf-
fers from the same problems of the TD only. Eventually,

the agent trained with (10) achieves the best training perfor-
mances by achieving a collision ratio constantly smaller than
0.2 in only 3000 episodes. This is because the entropy term
pushes the agent to better explore the environment, reach
open areas and consequently escape local minima. Further-
more, throughout the training, the agent trained with the pro-
posed approach is the only one able to consistently reduce
the fluctuation in the collision ratio by showing higher ro-
bustness and generalization skills. These fluctuations are due
to the random spawning of the robot and the target location
at the beginning of each episode.

Evaluation Results
After training the three RL-agents in Env-1, the learned poli-
cies are evaluated on the same set of 100 randomly gener-
ated targets. To guarantee fair comparison the percentage of
the successes, crashes, timeouts (episodes ended without ei-
ther reaching the target or colliding with an obstacle) and the
number of actions takes is recorded and shown in Figure 5
and Table 2.

In the training Env-1, the planner trained with TD reward
function (7) can reach only 64% of the targets and, in most
of the failed episodes, it collides with an obstacle. The plan-
ner trained with TD and OA reward function (8) achieves
better performances as it can reach 76% of the targets and
reduces the crashes compared to TD only (from 32% to 3%).
However, the enhanced obstacle awareness, when the envi-
ronment is complex and presents local minina, prevents the
agent to collide, but it is not enough to prevent to get stuck
in a room until the maximum number of action is reached.
This can be noticed in the increment of the timeouts with re-
spect to TD only (from 4% to 21%). On the other hand, the
planner trained with the reward function (10) is the only one
that can achieve good performances as it reaches the target
in 96% of the episodes.

The crucial aspect for any learning-based approach is the
generalization to untrained situations. To test this, we trans-
fer the policies learned on Env-1 to the unseen Env-2 and
Env-3 environments. Consistently with the training results,
the proposed approach outperforms the two others in terms
of success ratio, reduction of the collisions and timeouts as
summarized in Table 2. For all the three environments we
record and analyse the average number of steps per episode
and the standard deviation as important elements for assess-
ing length and smoothness of the trajectories of the different
RL-agents. These results are presented in Table 2 as well.
The agent trained with TD reward function (7) learns an
overcautious behaviors and travels far away from the obsta-
cles. This penalizes the trajectory length as it can be seen by
the high average number of steps. When trained with TD and
OA reward function (8), the agents can reduce the cautious-
ness and learn shorter paths in terms of average number of
steps. However, when local minima are present, as in Env-2,
the planner gets stuck in them and its performances are not
much better than TD. The planner trained with the reward
function (10) is able to learn shorter trajectories with respect
to the other two thanks to the enhanced exploration granted
by the entropy term. Even in unseen environment, the agent
can escape local minima, thus it has effectively incorporated

(a) Env-1. (b) Env-2. (c) Env-3.

Figure 5: Performance comparison in the different environments of the three RL-planners.

and integrated the navigation skill with the exploration one.

Table 2: Performance assessment of the planners in Env-1,
Env-2 and Env-3.

approach success ratio number of actions
% (mean ± std)

Env-1 TD 64 % 113.07±85.43
OA+TD 76% 84.56 ± 76.31

Entropy+OA+TD 96% 59.28±37.99
Env-2 TD 58 % 140.68±99.17

OA+TD 68% 131.34± 86.78
Entropy+OA+TD 89% 124.07±74.86

Env-3 TD 51 % 115.55±84.38
OA+TD 62% 76.32±67.48

Entropy+OA+TD 84% 57.14±40.39

Eventually, we compare the trajectories generated by our
RL path planner with the one generated by move base on
the same set of targets (see Figure 6) that has to be reached
in sequence in Env-1. Both planners can successfully reach
all targets, however, the total travelled distance required to
complete the whole path by the proposed planner is shorter;
14.7 m compared to 16.3 m required by the move base. In
addition, the path generated by move base does not seem to
be as smooth as the one by the proposed planner.

1

2

3

4

5

6

7

(a) proposed planner

1

3

4

5

6

7

2

(b) move base

Figure 6: A comparison between baseline motion planner
and our proposed map-less motion planner.

Conclusions
The paper presents a DRL path planner for navigation in un-
known environments. The planner is trained by exploiting
the knowledge stored in the occupancy grid map, built on-
line using Rao-Blackwellized particle filters (SLAM). How-
ever, the planner doesn’t rely on any map except that dur-
ing training. In particular, we use the map entropy to shape
the reward function to improve the exploration skill of the
planner to escape local minima (very common in complex
environments). By learning better exploration skills, com-
pared to a target driven (TD) reward function and obstacle
aware (TD+OA) reward function, the agent trained with the
proposed approach outperforms the other two not only in
the training environment (success ratio of 96% against 64%
and 76% respectively) but also in two different unseen envi-
ronments (success ratio of 89% and 84% against 58%, 51%
and 68%, 62% respectively). Furthermore, the agent trained
with the proposed approach achieves performances close to
the ones of move base, DWA planner that requires the map
of the environment.

References
[Botteghi et al. 2020] Botteghi, N.; Sirmacek, B.; Mustafa,
K.; Poel, M.; and Stramigioli, S. 2020. On reward shap-
ing for mobile robot navigation: A reinforcement learning
and slam based approach. arXiv:200204109.

[Brunner et al. 2017] Brunner, G.; Richter, O.; Wang, Y.; and
Wattenhofer, R. 2017. Teaching a machine to read maps
with deep reinforcement learning. arXiv:171107479.

[Duo et al. 2019] Duo, N.; Wang, Q.; Lv, Q.; Wei, H.; and
Zhang, P. 2019. A deep reinforcement learning based
mapless navigation algorithm using continuous actions. In
2019 International Conference on Robots Intelligent System
(ICRIS), 63–68.

[Fox, Burgard, and Thrun 1997] Fox, D.; Burgard, W.; and
Thrun, S. 1997. The dynamic window approach to colli-
sion avoidance. Robotics and Automation Magazine, IEEE
4:23–33.

[Grisetti, Stachniss, and Burgard 2005] Grisetti, G.; Stach-
niss, C.; and Burgard, W. 2005. Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals

and selective resampling. Proceedings of the 2005 IEEE in-
ternational conference on robotics and automation.

[Grisetti, Stachniss, and Burgard 2007] Grisetti, G.; Stach-
niss, C.; and Burgard, W. 2007. Improved techniques
for grid mapping with rao-blackwellized particle filters.
Robotics, IEEE Transactions on 23:34 – 46.

[Kingma and Ba 2015] Kingma, D., and Ba, J. 2015. Adam:
a Method for Stochastic Optimization,. In International
Conference on Learning Representations, 1–15.

[Lillicrap et al. 2016] Lillicrap, P.; Hunt, J.; Pritzel, A.;
Heess, N.; Erez, T.; Tasaa, Y.; Silver, D.; and Wierstra, D.
2016. Continous control with deep reinforcement learning.
International Conference on Learning Representations.

[Mnih et al. 2013] Mnih, V.; Kavukcuoglu, K.; Silver, D.;
Graves, A.; Antonoglou, I.; Wierstra, D.; and Riedmiller,
M. 2013. Playing atari with deep reinforcement learning.
arXiv:13125602.

[Moravec 1988] Moravec, H. 1988. Sensor fusion in cer-
tainty grids for mobile robots. AI Magazine 61–74.

[Murphy 1999] Murphy, K. 1999. Bayesian map learning
in dynamic environments. Neural Information Processing
Systems 12:1015–1021.

[Mustafa et al. 2019] Mustafa, K.; Botteghi, N.; Sirmacek,
B.; Poel, M.; and Stramigioli, S. 2019. Towards contin-
uous control for mobile robot navigation: A reinforcement
learning and slam based approach. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences XLII-2/W13:857–863.

[Pfeiffer et al. 2017] Pfeiffer, M.; Schaeuble, M.; Nieto, J.;
Siegwart, R.; and Cadena, C. 2017. From perception to de-
cision: A data-driven approach to end-to-end motion plan-
ning for autonomous ground robots. 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA).

[Stentz 1994] Stentz, A. 1994. Optimal and efficient path
planning for partially-known environments. IEEE Interna-
tional Conference on Robotics and Automation 3310–3317.

[Sutton and Barto 1998] Sutton, R. S., and Barto, A. 1998.
Introduction to reinforcement learning.

[Tai, Paolo, and Liu 2017] Tai, L.; Paolo, G.; and Liu, M.
2017. Virtual-to-real deep reinforcement learning: Contin-
uous control of mobile robots for mapless navigation. In-
ternational Conference on Intelligent Robots and Systems
31–36.

[Thrun, Burgard, and Fox 2005] Thrun, S.; Burgard, W.; and
Fox, D. 2005. Probabilistic robotics. MIT Press.

[Zhang et al. 2016] Zhang, J.; Springenberg, J.; Boedecker,
J.; and Burgard, W. 2016. Deep reinforcement learning
with successor features for navigation across similar envi-
ronments. arXiv:161205533.

[Zhang et al. 2017] Zhang, J.; Tai, L.; Boedecker, J.; and Liu,
M. 2017. Neural slam: Learning to explore with external
memory. arXiv:170609520.

[Zhang, Zhang, and Liu 2018] Zhang, W.; Zhang, Y.; and
Liu, N. 2018. Danger-aware adaptive composition of drl
agents for self-navigation. arXiv:180903847.

[Zhelo et al. 2018] Zhelo, O.; Zhang, J.; Tai, L.; Liu, M.;
and Burgard, W. 2018. Curiosity-driven exploration
for mapless navigation with deep reinforcement learning.
arXiv:180400456.

	Introduction
	Background
	Reinforcement Learning
	Simultaneous Localization and Mapping

	Methodology
	Approach
	Reward Function
	Reinforcement Learning algorithm and Neural Networks Architecture

	Experimental design
	Simulation Setup
	Configuration of the RL and SLAM algorithms
	Training and Evaluation

	Results and discussion
	Training Results
	Evaluation Results

	Conclusions

