Verifying Plans and Scripts for Robotics Tasks
Using Performance Level Profiles

Alexander Kovalchuk and Ronen 1. Brafman
Ben-Gurion University of the Negev, Beer Sheva, Israel
{kovalchu,brafman}@cs.bgu.ac.il

Abstract

Performance-Level Profiles (PLPs) were intro-
duced as a type of action representation language
suitable for capturing the behavior of functional
code for robotics. This paper addresses two is-
sues that PLPs raise: (1) Their formal semantics.
(2) How to verify a script or a plan that sched-
ule the use of components that have been docu-
mented by PLPs. We provide a formal semantics
for PLPs by mapping them to probabilistic timed
automata (PTAs). We also show how, given a script
that refers to components specified using PLPs, we
derive a PTA specification of the entire system.
This PTA can be used to verify the system’s prop-
erties and answers queries about its behavior. Fi-
nally, we empirically evaluate an implemented sys-
tem based on these ideas, demonstrating its scala-
bility. The result is a pragmatic approach for veri-
fying component-based robotic systems.

Introduction

Most robotic systems are built by assembling soft-
ware components, locally written, or imported,
each of which handles a particular capability. More
sophisticated behavior is then obtained by combin-
ing these behaviors in various ways. Unfortunately,
as noted in |Abdellatif et al.|(2012): ”Systems built
by assembling together independently developed
and delivered components often exhibit patholog-
ical behavior. Part of the problem is that develop-
ers of these systems do not have a precise way of
expressing the behavior of components..” Ad-
dressing this issue is crucial to our ability to deploy
autonomous robots in open environments.

In [Brafman, Bar-Sinai, and Ashkenazi| (2016)),
we advocated for the use of intuitive machine read-

able descriptive (rather than normative, or pre-
scriptive) behavior specifications. Such specifica-
tions make more precise what must be said and
how, and they enable the development of tools that
can utilize them to automatically support monitor-
ing, validation, and planning. To that effect, we in-
troduced Performance Level Profiles (PLPs) (Braf-
man, Bar-Sinai, and Ashkenazi, 2016}, a lan-
guage for specifying the expected behavior of
functional components. PLPs describe a num-
ber of key aspects of the performance of func-
tional modules. They combine ideas from plan-
ning language (PDDL 2.1 (Fox and Long| [2003),
probabilistic PDDL (Younes and Littman, 2004),
RDDL (Sanner, 2010)), achievement and main-
tenance goals (Ingrand et al. [1996; [Kaminka et
al.,|2007), and new notions such as progress mea-
sures and a repeat construct aimed at making ex-
plicit the frequency by which input parameters
are read and output parameters are published. Un-
like action languages that limit their expressive-
ness to meet the requirements imposed by state-of-
the-art planning technology, PLPs seek to provide
expressiveness that can be used for other tasks.
Thanks to their structured, machine readable syn-
tax, PLPs can be manipulated automatically for
the purpose of online monitoring (Brafman, Bar-
Sinai, and Ashkenazi, 2016), validation, and plan-
ning (Ashkenazi, Bar-Sinai, and Brafman, 2016).
In this paper, we describe their use in support of
verifying component-based systems.

Code for complex tasks schedules diverse be-
haviors using complex control structures — condi-
tionals, parallel execution, randomness, and loops.
Verifying and understanding the properties of com-



plex scripts that schedule existing code fragments
is crucial if we are to address our original concerns.
This paper describes an approach for performing
such validation when these code fragments have
been documented using PLPs.

Our first step is to provide formal semantics for
PLPs by mapping them to probabilistic timed au-
tomata (PTAs) (Beauquier |2003), a model that is
much used in program verification. We build on
this semantics to provide a mapping from scripts
whose primitive actions invoke code modules for
which a PLP exists, to PTAs. Our second step is
to describe a rich language for specifying complex
scripts, which we refer to as control graphs, and a
mapping that takes as input a control graph and the
PLPs of the components it uses, and outputs a large
PTA. Next, we leverage existing tools for verifying
PTAs to verify the original script. We empirically
demonstrate the scalability of this approach by ex-
perimenting with a software system (freely avail-
able) that implements these ideas.

Background

We briefly describe PLPs and PTA. For additional
details, see: |Brafman, Bar-Sinai, and Ashkenazi
(2016); /Ashkenazi| (2017)); Beauquier| (2003).

PLPs

The primary objective of a PLP is to clarify the role
and expected/normal behavior of a module. There
are four PLP types, corresponding to four module
types. Achieve modules attempt to achieve a new
state of the world or generate a new object. For
example, changing the orientation of the robot to
some goal orientation. Maintain modules attempt
to maintain some property. For example, maintain-
ing some orientation; or, ensuring that the robot
remains within some confined area. Observe mod-
ules attempt to recognize some property of the cur-
rent state of the world. For example, the robot’s
location, or whether there is a cup on the table.
Finally, Detect modules monitor the state of the
world until some condition holds.

Each PLP document must conform to an
XML Schema Definition (XSD) that defines
the syntax of PLPs, with one XSD for ev-
ery PLP type. The schema can be found
in https://github.com/PLPbgu/PLP-repo together
with an example of a PLP of each type. Below

we provide an informal description of the informa-
tion contained in the respective XML/XSD docu-
ments. While we expect programmers or users to
provide this documentation, they are unlikely to
be able to provide precise descriptions of quanti-
tative aspects such as success probabilities. Given
recent advancements in reinforcement learning, we
expect that a more realistic approach will combine
some initial specification by the programmer that
is then improved automatically using learning al-
gorithms.

PLPs have two abstract components. The second
component specifies the code’s expected behavior
— its “guarantees”: what success means, possible
failure modes and their probabilities, a distribution
over running times, progress rates, and various sta-
tistical invariants. The first component provides the
conditions under which the ”guarantees” are valid:
properties of the world before and during execu-
tion and constraints on available resources. These
properties are necessarily observable by the robot.
For example, a sensor may guarantee normal oper-
ation under some temperature range, independent
of whether the robot has a thermostat.

Common Elements All modules specify the fol-
lowing elements: Parameters (values supplied to
the module as input or provided by the module as
its output), local variables and their ranges, and
the following set of conditions specifying the con-
texts in which the PLP is valid: required resources,
optional bounds on the maximal rate of change for
resources, concurrency conditions that must hold
at execution time, invariants, other code modules
that must or must-not be executed concurrently,
and the frequency by which each parameter must
be read or written (optional).

Each module has an intended effect, or role.
However, it may also have side-effects that are a re-
sult of executing this module, but are not a measure
of its success or failure. Resource consumption is
a primary example. In addition, modules that per-
form continuous work to achieve or maintain their
goals may specify a minimal rate of change per
time unit. For example, the rate of change of a po-
sition while navigating. Making these expectations
explicit makes it easier to recognize problematic
behaviour while the module executes.

PLP Types Achieve modules attempt to reach a
state of the world in which some desirable prop-



erty holds. For example, fuel tank is full, robot is
standing, plane has landed, etc. Achieve also covers
cases where the goal is to generate some virtual ob-
ject, such as a map or a path. Beyond the common
elements, their PLP contain an the achievement
goal, failure modes, probabilities associated with
success and each failure mode, and the running-
time distribution given success and given failure.

Maintain modules attempt to maintain the value
of a variable or the truth value of a boolean con-
dition, e.g., maintain speed or maintain perimeter
clean. The condition need not be true initially, and
so the module may need to initially attain the con-
dition. It may also become false during execution
and regained, as in the case of a cleaning robot.
This is reminiscent of a closed-loop controller that
always attempts to decrease some distance to the
desired goal condition. PLP of maintain modules
contains: the condition to be maintained, whether
it is initially true, termination conditions, one for
successful termination (optional) and one for fail-
ure, failure modes, the probability of successful
termination and different failure modes, and the
runtime distribution given success and failure.

Observe modules attempt to identify the value of
some variable(s) or a Boolean state condition, e.g.,
distance to wall or whether an object is held. Ob-
serve PLPs contain additional fields for the obser-
vation goal, the probability of failure to observe,
the probability the observation is correct or some
form of error specification, such as confidence in-
terval and confidence level, and the running-time
distribution given success and given failure.

Detect modules attempt to identify some con-
dition that is either not true now, or that is not im-
mediately observable. For example, detect intruder
or detect temperature change. Their PLPs contain
additional fields for the condition being detected,
and the probability the condition will be detected
given that it holds (frue positive) and given that it
does not hold (false positive).

PTAs

Probabilistic timed automata (PTAs) model sys-
tems with probabilistic and real-time character-
istics (Beauquier, 2003). A PTA resembles a
nondeterministic finite automaton reinforced with
integer-valued variables, probabilistic transitions,
and a concept of time passage. In its basic form,
a PTA consists of the following sets: 1. Integer-

valued variables. 2. Clocks — non-negative real-
valued variables, which all increase at the same
rate. 3. Constraints — boolean combinations of
(in)equalities consisting of sums of clock variables
and constants. 4. Locations (the PTA’s nodes) — a
finite set of locations, with a distinguished initial
location. 5. Actions (the PTA’s edges) — a finite set
of transitions between locations. 6. Invariant con-
ditions — constraints on locations. 7. Enabling con-
ditions — constraints on actions. 8. Probabilities —
transition probabilities of enabled actions. The au-
tomaton state consists of the current node and the
values of its clocks and variables.

The transition function between states allows
two types of transitions: 1. Time transition — an ad-
vancement of all clocks by a certain time interval,
while the invariant of a current node is preserved.
2. Action transition — transition on an enabled edge
chosen according to the probability. As part of the
transition, the values of variables and clocks can
be updated, too. The automaton starts at the initial
node and advance through edges according to in-
variants and enabling conditions.

We use a stronger variant of the PTA model sup-
ported by UPPAAL. 1. Urgent nodes are also al-
lowed. An urgent node is a node without time tran-
sition such that clocks cannot advance while in it.
2. In basic PTAs, one can only reset clock values
to 0. In our model, variable value can be updated
to a value which is a function of other variable val-
ues, as well as a value obtained by sampling some
distribution. 3. We use multiple concurrent PTAs.
This serves as syntactic sugar, as they can be en-
coded as a single product PTA. 4. Channels. Chan-
nels are used to synchronize the transitions of dif-
ferent PTAs. A channel is tied to an edge and can
be used either to send or receive a signal. The ac-
tion of passing a signal on a channel is immediate.
Transition on an edge with the sending end of the
channel does not delay the transition on that edge,
but transition on an edge with a receiving end of
a channel may delay the transition until the signal
on the channel is received. In addition, we use real-
valued variables for convenience, but model them
with finite precision as fractions.

Figure 1 describes in graphical form a PTA for a
connection protocol with up to three retries. There
are two clocks: x and y. Node “connect_try” is the
initial node, with invariant: x <2 Ay < 9. At any-
time in the interval [0, 1), it is impossible to tran-



// Update: /| Guard
x=0 x==3

connect}ry@/ /x Sia'ld (7 ;mbab” ty: connect_retry_delay
/l\nvariant: & "7 T
x<=2andy <=9 & :t)

/IGuard:

g
y>=9 J/Probability:
0.9

/I Syncronization

/| Syncronization ~
’ ~. chan_connected!

chan_connection_failed!

connect_failed ~_ connect_done

o

Figure 1: Example PTA for connection protocol

sition along edges because of the guards (enabling
conditions). Up until two time units, the PTA can
stay at "connect_try”, but then it must transition on
an edge to “connect_done” (with probability 0.9)
or "connect_retry_delay” (with probability 0.1). If
it transitioned to “connect_done”, it sends a sig-
nal on ”“chan_connect” channel and remains at
“connect_done” state. If it transitioned to “con-
nect_retry_delay”, it waits for x to become 3, then
updates x to 0, and transition to “connect_try” for
another connection attempt. If all three attempts
to connect fail, the automaton will transition from
“connect_try” to "connect failed”, send a signal
on "chan_connection_failed” channel, and will re-
main in "connect_failed” state. In our figures, we
use the following color codes:

Attribute Color

Node name

Node invariant

Edge guard

Edge probability

Edge update

Edge synchronization

Related Work

Our semantics for PLPs is obtained by mapping
them to PTA. This type of semantics is some-
times called translation semantics and semantic
anchoring. PTAs were used for this purpose in
a number of earlier systems: mapping AADL
to UPPAAL (Johnsen et al, [2012) and map-
ping RT-DEVS to UPPAAL (Furfaro and Nigro,
2008). Neither of these systems use the proba-
bilistic aspects of PTAs, and both are part of sys-

tems that strive to provide a complete bottom-
up approach to robot software design. Our use
of PLPs attempts to address systems that use
existing, imported, or locally developed compo-
nents. More recent work [Foughali, Ingrand, and
Seceleanul (2019) translates the code written us-
ing the Genom3 platform (Mallet, Fleury, and
Bruyninckx), 2002) to timed automata. Like the
above systems, Genom3 is a complete platform
for designing robot software. Unlike the above,
and similar to our work, this work also intro-
duces the option of using a probabilistic model of
the environment, by essentially learning the fre-
quency of different outcomes within an originally
non-deterministic model. They then use UPPAAL-
SMC to do probabilistic model checking on the re-
sulting PTA. Finally, probably closest to our work
is [Lesire, Doose, and Grand| (2020). It describes
a language for describing skills that is quite simi-
lar to PLPs, although it does not have probabilis-
tic components. From this description, they can
generate PDDL descriptions and use planning to
compose skills, much like |Ashkenazi, Bar-Sinai,
and Brafman| (2016)) as well as finite-state ma-
chines, which are then used for verification using
the NuSMYV model-checker (Cimatti et al., 2002)).

The composition of simple components to ob-
tain more complex ones is a basic technique in
automata theory, supported by operations such
as Cartesian product and automata sequenc-
ing (Hopcroft, Motwani, and Ullman, |2003). Tree
structures specifically, are often used to describe
hierarchical compositions and branching computa-
tion. Our work uses these ideas, but supports gen-
eral graphs with loops.

The idea of verifying systems viewed as trees
or graphs of processes or components is not new
in robotics. In |Simmons, Pecheur, and Srinivasan
(2000) the authors develop an approach for veri-
fying elements of the Task Description Language
(TDL) (Simmons and Apfelbaumy, |1998)) related to
decomposition and synchronisation. This is done
by providing a translation into the SMV model-
checking language. In |Armbrust et al.| (2013)
behavior networks are verified by using model-
checking. In|Heinsemann and Lange| (2018]), TSL,
a domain specific language for robotics which
makes use of task trees and hierarchical decom-
position, like TDL, is verified by translating its
specifications into a Promela model used by the



Spin model checker. More recently, ASPiC Lesire
and Pommereau| (2018)) is a system that allows the
composition of simple petri nets to obtain com-
plex control structures/plans. Combining the abil-
ity to verify petri-nets with the semantics of the
composition operators used, the system is able to
verify a certain form of soundess. The basic ele-
ments scheduled by these languages differ signif-
icantly from PLPs. First, none of these methods
model stochastic elements, while PLPs make use
of probabilistic information, and control graphs al-
low for probabilistic choice, modeling stochastic
environments and, consequently, require the use of
probabilistic model checking. Second, PLPs offer
more information about run-time behavior (e.g.,
progress measure, run-time distributions), are di-
vided into four categories based on the compo-
nent’s role, yet are not rich enough to actually al-
low for code generation, as in these methods.

Formal Semantics for PLPs

Compared to PLPs, PTAs are a much more de-
tailed, program-like description of behavior. As
such, they can be used for code specification or
for programming controllers. PLPs, on the other
hand, aim to provide a more abstract, intuitive de-
scription of implemented code. Given this, it is nat-
ural to use PTAs as a semantic model for PLPs.
Here, we outline a translation semantics for PLPs
by mapping them into PTAs. Due to space limita-
tions, we skip over some details and describe only
Achieve and Maintain. See Kovalchuk! (2018) for
the complete speciﬁcationﬂ

(1) For every PLP type, a distinctive PTA
scheme exists, but all schemes share a common
structure that we describe here.

The successful execution path of each PTA con-
tains the following sequence of nodes: 1. "wait”
— waits for the scheduling PTA to let the current
PTA command run (i.e., the relevant code modeled
by the PLP is starting to execute)E] 2. Vstart” —
the scheduling PTA allowed the current PTA com-
mand to run. 3. "choose” — the PLP’s precondi-
tions hold. 4. “main” — run-time path for success-

! Available at https://github.com/a-l-e-x-d-s-
9/Thesis2017/blob/master/ThesisToLatex/Thesis.pdf

The scheduling PTA captures the controller that se-
lects when to execute a module. Later, we define an ex-
plicit scheduler model. Here, we simply treat it as an
external entity that decides when to activate a PLP.

ful execution. 5. "main_done” — PLP’s code ter-
minated. 6. “end” — completed current execution
cycle of PTAppp.

The transitions between nodes are as follows:
1. "wait—start” is taken when a signal from the
scheduling PTA is received. 2. “start—choose”
is taken only if the preconditions are fulfilled.
3. ”choose—main” is taken when the PTA se-
lects (probabilistically) to take the success path.
4. "main—main_done” is taken when run time is
up, and the concurrent and resource related con-
straints are fulfilled. 5. “main_done—end” updates
the side effects and goal conditions.

Besides its successful execution path, a PTApr p
may end up in one of the PLP’s failure states.
This occurs if the probabilistic choice in the choose
node leads to one of the failure path.

(2) For a given set of PLPs representing a certain
system, we list all variables, parameters, constants,
and resources, then we match a PTAprp variable
for each. PTAp;p variables are initialized accord-
ing to the initial values specified in the PLPs. We
also create one status variable for each PLP that
is used as an indication of whether the PTAp;p is
currently running or not.

(3) In PLPs the concept of a condition is used in
two distinctive ways: 1. A logical expression such
as a = b that must be satisfied by the external
world; for example, a precondition. 2. A logical
expression that is made true by the code module
modeled by the PLP — which is essentially an as-
signment, such as in the case of goal conditions.

Logical conditions are transformed to negation
normal form, and are then translated to a PTA
guard condition of an appropriate edge in the
PTAprp. Assignments are translated to a PTA up-
date of an edge in the representative PTApp ac-
cording to its role and place in the PLPE] Unfortu-
nately, our translation does not support existential
and universal quantifications, at present.

Modelling Achieve PLP

For a given achieve PLP, we create PTApp
achieve, described in Figure @ PTAp; p starts at
the initial node, wait and waits for a start signal
from the scheduling PTA. When a signal arrives
on channel "can_start”, it transitions to “start”.
First, we check the PLP’s preconditions by a tran-

Recall that action transitions perform such updates.



main

local_time <= run_time &&
concurrent_constraints &&
resources_constraints

choose local_time == run_time &&

. concurrent_constraints &&
°_ resources_constraints

preconditions  prob.

o © 0.

main_done

jocal_time <= wait &&
end Si

local_time = 0, run_time € Ds()
running = true

Iconcurrent_constraint_il

running = false
Iresource_constraint_i2
\ running = false
\

failure i3
ailure_i3

ocal_time == run_time

O

run_time € Df_i3()

running = false

repeat_wait
local_time <= repeat_timeout
. true == repeat ) &&
local._time == repeat_timeout false == repeat_terminate )
A

local_time = 0
(false == repeat )

repeat ) && ( true == repeat_terminate ) )
run_scheduler!

Iterminatior
@ Itermination
side_effect,

running = false
trap_concurrent il

trap_resource_i2

trap_failure_i3

repeat_terminate = false

Figure 2: Template for PTAp p achieve

sition to “choose” with guard condition “precon-
dition”. Then, the PTA samples a successful exe-
cution or one of the possible failure modes based
on the associated probabilities. If a failure path
is chosen, it waits for “run_time” time according
to run-time distribution "Df.i3()” in “failure_i3”
node and then stays in “trap_failure_i3” state. If a
successful execution is chosen, it transitions from
”choose” node to “main”. Time can pass in the
”main” node according to the run time distribution
”Ds()” stored in the ”run_time” variable.

Even if the current path represents a successful
internal execution, external constraints may still
force the PLP to fail. This is captured by “main”’s
invariant  condition  “concurrent_constraints
&& resources_constraints”. In case of failure
caused by a concurrent condition, concurrent
module, or resource, the PTA transitions to
“trap_concurrent_il” or “trap_resource_i2” re-
spectively. If the external constraints are fulfilled
while in "main”, the transition to “main_done”
is possible. Finally, the transition to “end” node
updates the goal conditions and side effects.

Logical conditions in the PLP are converted
to guard conditions in the PTA above as fol-
lows: 1. Preconditions to “preconditions”. 2. Con-
currency conditions and concurrent modules con-
straints are transformed into m; statements that
are conjoined to form “concurrent_constraints”.
For each statement i; € [l,ml] there is a

Itermination,
Itermination,

wait_maintain_true

ilure &&
concurrent_constraints &&
wait start choose resources_constraints

can_start? preconditions

ocal ==wa
probability_su cal_time i

O0—0—C

s && main_done

end

resources._

77777777777 -
local_time = 0, \ :Q\}t;::sz Ds0), rermination <uc side_effect,
running = true | 1ation_success

\ -

\ -
| running = false o concurrent_i1
| Iconcurrent_constraint_i1

running = false

trap_resources_i2
\ Iresource_constraint_i2
\

pY

(@)

O

\ g = O
| failure i3 TINNIng = false
local_time <= run_time
\ trap_failure_i3
local_time == run_time

running = false

running = false
trap_failure_termination

Figure 3: Template for PTAprp maintain

path to “trap_concurrent_il” from “main” with
a guard "!concurrent_constraint_il”. 3. Required
resources are gathered into m;, statements and con-
joined to form the “resources_constraints”. For

each statement i, € [1, mz], there is a path to
“trap_resource_i2” from “main” with a guard
”Iresource_constraint_i2”. 4. The Repeat state of a
PLP is represented by boolean variable “repeat”.
Assignment conditions in the PLP are converted
to assignments in the PTA above as follows: 1. The
transition between “main_done” to “end” takes
care of updating the PLP’s goal condition to true.
(This is the “goal” statement there.) 2. The def-
inition of side effects in PLPs does not specify
the time in which the side effect occurs, and we
therefore decided to make this change immediately
before the PTA completes the transition between
“main_done” and “end”.

Constraints between concurrent modules are en-
forced by using the "running” status variable. This
is a flag that indicates, for each PTAprp, whether
its underlying module is currently being executed.
Every PTA can include guard conditions that refer
to the running state of another PTA, and thus either
restrict or require its concurrent execution.

Maintain

PTApLp maintain, shown above in Figure@ is sim-
ilar to PTApLp achieve with a few changes: 1. An
additional node "wait_maintain_true” that models
the time needed by PLP Maintain for the main-
tained condition to become true. 2. The condition
maintained by the PLP is converted to an assign-

©




ment (to model the change caused by the under-
lying module). This assignment appears here as
“maintained”, which is an update on a transition
from “wait_maintain_true” to “main” node. 3.
Successful termination of the PLP is accomplished
by the “termination_success” condition that can
force a transition to “"main_done”. 4. Unsuccess-
ful termination is accomplished by the “termina-
tion_failure” condition that can force a transition
to “trap_failure_termination” .

In the template above, the PTAp; p maintain im-
plements the maintained condition (i.e., forces it
to be true) using the “maintained” assignment.
This is done only once, before “main” node. It
is also possible to ensure that the assignments in
“maintained” are not overwritten with other val-
ues during the execution of the PTA. This can be
accomplished by converting the "maintained” as-
signments to a logical condition in the invariant
of the “main” node, and creating a failure state in
case it changes while in "main”.

Verifying Complex Controllers

Given a controller that calls different code mod-
ules, for each of which we have a PLP, we gen-
erate a set of interacting PTAs that represent
the entire program. These PTAs can be fed into
UPPAAL-SMC, a PTA verification tool, which can
be queried to verify various conditions. Below we
describe our formalization of such controllers and
the main ideas behind their mapping to PTAs.
See |Kovalchuk] (2018) for additional details.

Control Graphs

We use control graphs to describe algorithms con-
trolling execution of robotic modules specified by
PLPs. They allow for probabilistic and conditional
branching, as well as parallel execution.

A control graph is a directed graph with a sin-
gle root node in which execution starts. The nodes
of the control graph correspond to code modules.
Transitions between nodes depend on the system
state obtained when the parent node(s) terminates
execution. They can be stochastic or conditional
on the current state. Each node type comes in two
variations: 1. Starts only when all of its immediate
parents terminated. 2. Starts whenever at least one
of its parents terminated.

There are four types of control nodes: 1. PTApyp
launcher node — launches sequence of PTApyp that

‘move_to(doorway)
is_door_open

false == door_open

Figure 4: Example of a control graph

execute one at a time. 2. Probabilistic node —
chooses a single edge to proceed with based on
the edge’s probability. This allows implementing
methods that require some randomization, e.g., to
escape from cycles. 3. Conditional node — chooses
a single edge to proceed with. Only an edge whose
condition is satisfied can be selected. If more than
edge condition is satisfied, one is selected non-
deterministically. (If no condition is satisfied, then
this is viewed as a failure.) 4. Concurrent node —
executes all the outdoing edges concurrently.

An important aspect of control graphs is the
ability to express loops by allowing backwards
edges. This allows us to specify a much larger class
of algorithms. Circular execution can be ended by
probability node or conditional node.

Nodes in the control graph can update the value
of variables that are used both by PTAsp;p and
other nodes in the control graph.

Figure [4] illustrates a control graph for an au-
tonomous robot with an arm whose task is to
move the robot from one room to another through
a doorway. The door in not locked and can be
either open or closed. The control graph refers
to three PTAsp p: 1. move_to(doorway | target |
through_doorway) — moves the robot according to
its parameter. 2. is_door_open — checks if the door
is open. 3. open_door — opens the door. This con-
trol graph starts with a node that executes move-
to-doorway and checks if the door is open. Then, it
uses a conditional node to check if the door should
be opened. In case the door is closed, it opens it.
Eventually, it moves through the doorway to the



target at the other room.

The Control Graph Verifier

To verify control graphs with PLPs, we produce a
set of PTAs representing this system. We then use
UPPAAL-SMC to answer queries about the sys-
tem. UPPAAL is a software package for modeling,
validation, and verification of real-time systems
modeled as networks of timed automata, extended
with data types (Behrmann et al.,|2006). UPPAAL-
SMC is its extension for stochastic model check-
ing.

UPPAAL allows us to query temporal properties
of the whole system such as: 1. Possible reachabil-
ity: Is there an execution path in which p will be
eventually true? 2. Guaranteed reachability: Will p
be eventually true in all execution path? 3. Safety:
Will p be true at all times in all execution path? 4.
Possible safety: Is there an execution path in which
p will always hold? 5. Conditional versions of 1-4.
6. Probability of reachability: What is the proba-
bility that p will be eventually true? 7. Probability
of an invariant: What is the probability that p will
always be true?

To convert control graphs to a network of PTAs,
we associate a PTA with each node of the graph
(PTANode)- PTASNoge exist alongside PTAsprp and
can influence each other through shared variables
and channels. This mapping is quite technical, and
its details appear in |Kovalchuk! (2018)).

Empirical Evaluation

We evaluate the performance and scalability of
this approach, as implemented in our verification
software, available at https://github.com/a-l-e-x-d-s-
9/plps_verification. We evaluate resource demands
of the system in two phases: The first phase is the
compilation of a control graph and PLPs for UP-
PAAL. We expect the compilation time will grow
as with more variables, complex conditions, com-
plex and larger PLPs and control graph. The sec-
ond phase is verification of queries on an already
compiled system in UPPAAL. The querying phase
is performed on a single file that contains the PTAs
that correspond to all the initial PLPs and control
nodes. With larger and more complex graphs of
PTAs, we expect UPPAAL will require more time
and more memory to answer queries.

To evaluate the practical restrictions of the sys-
tem in both phases we use two independent test

.
’ ~
Launch PLPs: Launch PLPs:
Observe PLP Maintain PLP

Condition

true == variable

Launch PLPs: Launch PLPs:
Achieve PLP Achieve PLP

Figure 6: Second Part of First Control Graph

cases. The first test case is a comprehensive con-
trol graph with most of our functional elements,
all types of control nodes and all PLPs types ex-
cept detect PLP. The control graph of this system
is composed of two conceptual parts: The first part
is a full binary tree of probabilistic nodes. Our gen-
erator takes the desired height of the tree, and gen-
erates a control graph of the form shown in Fig-
ure [5] whose number leaf nodes is exponential on
its height.

Each leaf node is associated with an indepen-
dent control sub-graph shown in Figure[6] The root
node in this sub-graph allows concurrent execu-
tion of two paths: the first path contains a main-
tain PLP that maintains a certain condition needed
by the other execution path. The other execution
path executes an observe PLP, which is followed
by a conditional node whose choice depends on
the previously observed variable. This conditional
node leads to the execution of an achieve PLP that
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achieves a certain goal, but it also requires the con-
current maintain PLP to run at the same time.

The second test case is a simple control graph
with a single node that launches sequence of PLPs.
All PLPs are functionally identical but recognized
by the system as unique. It is an extreme form of a
PTAs tree, with all PTAs concentrated along a sin-
gle path, contrary to the first test case with a full
and balanced tree of PTAs. The first test case can
be more challenging to compile due to an abun-
dance of elements and connections, the second test
can be more challenging for query evaluation.

The results presented below were obtained on
a system running an Intel Core i7-4700MQ CPU,
2.40GHz x 8 with 16 GB RAM, SSD, Java 1.8.0
171, and Ubuntu 17.10 64bit. We used the latest
64bit version of UPPAAL (specifically “verifyta”
— terminal based query verifier of UPPAAL) for
Linux —4.1.19. Results are averaged over ten runs.

Generally, every PLP and control node in the
system is converted to a single PTA in UPPAAL. In
the first test case, this number increases exponen-
tially with height. To make the two test cases com-
parable, in the second test case we use a total num-
ber of PTAs similar to the first. The proportions
between PLPs and control nodes vary between the
two test cases and are shown in Figure[7]

We tested the compilation process with up to
90,000 PTAs. Figures[8and 0] describe its run-time
and memory consumption for both test cases as a
function of total amount of PTAs in a system (axes
are logarithmic). These results clearly indicate that
the compilation process, which is a one-time pro-
cess, is quick and scales to very large problems.
In fact, we cannot envision, in the near future, a
system with more than a few dozen components,
hence compilation will not be a bottleneck.
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Figure 9: Average RAM Consumed by Compila-
tion

The compilation process produces a single file
for UPPAAL. As can be seen in Figure [T0] even
a system with 90,000 PTAs produces files of size
smaller than 1GB.

Once the system is compiled, we can test its
properties with UPPAAL queries. The time and
memory needed to verify queries by UPPAAL de-
pends both on the query itself and on the properties
of the PTAs graph, the length of paths and num-
ber of paths needed to evaluate the query. There-
fore, results for specific queries may vary even in
the same system. The first kind of query we eval-
uate is a path existence query ("E <>). For both
test cases, we test whether the system can reach the
most distant PTApy p from the initial state.

The time and memory consumed by the query
are shown in Figures [T1] and [I2] Query cost does
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not scale up as well as compilation cost. In particu-
lar, systems with over 700 PTAs cause UPPAAL to
crash due to stack overflow. However, for moder-
ate system sizes, it is relatively efficient, and mul-
tiple queries can be carried out in reasonable time.
In fact, in system with less than 200 PTAs, online
queries for evaluating plans can be supported.

The second query we tested was a probability
(’Pr <>") query of reaching successfully the most
distant PTAp p from the initial state. We defined
each PLP with one failure and one success path,
both with certain probabilities. UPPAAL calcu-
lates probability by multiple evaluations (i.e., by
sampling runs) which may take a long time.

The results are show in Figures and
Again, we see that query time for smaller models is
reasonable. Certainly, verifying controller proper-
ties off-line is realistic, and on, e.g., a service robot
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operating in the home environment without severe
time pressure, online evaluation is possible, too.

Summary and Future Work

We described a formal semantics for Performance
Level Profiles (PLPs) by mapping them to prob-
abilistic timed automata (PTAs). Because PLPs
have a formal syntax, they are machine readable
and processable, allowing us to leverage this se-
mantics to actually map actual PLPs to PTA spec-
ifications. We then extended this mapping to com-
positions of PLPs, enabling us to capture com-
plex control structures that use concurrency, con-
ditions, loops, and randomization. This allows us
to map complex scripts that invoke code fragments
for which a PLP exists, into interacting PTAs. By
feeding the resulting PTAs into a verification en-
gine, we can verify various properties of the script,
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such as the probability it will achieve certain con-
ditions, the probability it will maintain an invari-
ant, and more. Our empirical evaluation indicates
that this approach is quite scalable.
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