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Abstract

Autonomous robotic systems are often safety-critical
since unsafe behavior can have disastrous conse-
quences. In this paper, we survey existing frameworks
that can incorporate safety guarantees or constraints in
the design of an autonomous system. Rather than veri-
fying the guarantees during simulation or testing, such
frameworks can enforce them upfront. Furthermore, in
a physical setting, the effects of an agent’s actions can
not be considered deterministic. The frameworks have
to take into account the uncertain or probabilistic effects
of actions. Different frameworks provide different types
of guarantees. Yet no comprehensive overview of such
frameworks and the guarantees they offer exists today.
This survey tries to answer the need for an overview.
Probabilistic planning is often tackled using Markov
Decision Processes (MDPs). Many extensions of MDPs
exist, some of which can provide explicit safety guaran-
tees. In the existing research, constraints on objective
functions, reachable states, and execution paths of the
system are obtained. For scheduling, Simple Temporal
Networks (STNs) are addressed. STNs inherently in-
corporate temporal constraints, enforcing temporal re-
lations. As an extension, probabilistic constraints on
failure can be imposed as well.

Introduction
Autonomous robotic systems are becoming popular in both
industry and domestic applications. An autonomous system
makes decisions autonomously to, ideally, achieve or maxi-
mize its objective. The input relevant for the decisions often
originates from (noisy) sensor values. For safety-critical ap-
plications, explicit safety guarantees are desirable since un-
safe behavior can have disastrous consequences. An atten-
tive and thoughtful planning strategy regarding the agent’s
actions is required.

When a system is deployed in a physical environment,
the effects of the system’s actions can not be considered
fully deterministic. This uncertainty has to be taken into ac-
count during planning. For example, the effects on the agent
and its environment could be modeled probabilistically. The
strength of the obtainable guarantees will suffer from this
uncertainty as well, leading to probabilistic claims.

Traditionally, autonomous systems can be verified once
they are designed. Properties are checked after planning,

for example, using a model checking tool (Kwiatkowska,
Norman, and Parker 2002). Making use of model checking
as a building block, a plan that provides concrete guarantees
can be attained via a non-trivial iteration of planning and
verification. In each iteration, the plan has to be adapted in
such a way that the guarantees become more likely, until the
verification step yields satisfactory results. It becomes in-
teresting to investigate frameworks that can take constraints
into account in one single planning step.

In the literature, different frameworks exist, taking into
account different kinds of uncertainty, and providing differ-
ent kinds of guarantees. However, a systematic overview
that supports understanding which frameworks are relevant
for which needs is lacking. Such an overview is relevant,
both for researchers and practitioners, to identify the most
appropriate instrument for a particular problem situation.
This paper aims to provide such an overview, focusing on
the guarantees that can be provided by the different frame-
works.

As an illustrative example, consider the deployment of
Unmanned Aerial Vehicles (UAVs) for inspection tasks on
industrial sites, alongside people and potentially hazardous
equipment. In such a setting, it is highly desirable to obtain
safety guarantees. From a planning perspective, safe deci-
sion making is essential. For example, a safety guarantee
can state that the behavior of the UAV will not cause it to
crash into other agents. We do not consider external haz-
ardous events such as hardware failure. Furthermore, spin-
ning the rotors of the UAV for a certain amount of time at a
certain speed does not yield a deterministic translation of the
UAV in the physical world. Many external factors, such as
the wind and the UAV’s payload, influence the movement of
the UAV. When discussing the different frameworks, we use
this UAV example to clarify their possibilities and strengths.

In the remainder of this section, we outline the methodol-
ogy used in this survey and elaborate on related surveys. In
the next section, we elaborate on the different frameworks
that emerge in our study. We investigate the practical contri-
butions of the different frameworks regarding their abilities
to provide guarantees. In the final section, we summarize
the overall conclusions and discuss future work. The inabil-
ity to provide hard guarantees for practical applications of
systems in uncertain environments will emerge.



Methodology
The methodology followed to obtain the overview of frame-
works present in this study is based on the approach de-
scribed in the Guidelines for performing Systematic Liter-
ature Reviews in Software Engineering (Kitchenham and
Charters 2007). However, in an effort to cover most of the
relevant and interesting research, we rely on snowballing as
well (Wohlin 2014).

The scope of this survey is delimited to planning for au-
tonomous systems that interact with the physical world. In
other words, we are primarily interested in planning for au-
tonomous robotic systems, which can cope with uncertainty
regarding the effects of their actions. We formulate the re-
search question: “What kinds of guarantees related to safety
can be provided on the behavior of a physical, autonomous
system, using different probabilistic planning approaches?”
The corresponding search criteria are “probabilistic plan-
ning”, together with the term “safe” and the term “guaran-
tee” or “constraint”. Variants on those terms are taken into
account as well.

The initial search is limited to the first ten pages on
Google Scholar (on February 12, 2020). Many papers are
considered out of scope or irrelevant, to focus on the rele-
vant core of the existing research. Papers that are not related,
such as most medical papers, are ignored. For the papers that
are related, we focus on the frameworks they address. We
only take into account papers that describe (robust) planning
frameworks with explicit guarantees or frameworks that pro-
vide an essential basis for this requirement. We do not look
into the specific algorithms that support these frameworks.
For the reader interested in the solution strategies, we refer
to the corresponding literature.

A number of the obtained papers relate to safety in the ex-
ploration phase of Reinforcement Learning approaches. In
this survey, we do not look into such frameworks for un-
known models. For safety-critical systems, a naive explo-
ration approach would lead to disastrous effects. However,
we are aware that much recent research is tackling this prob-
lem.

The obtained set of papers form a good basis for snow-
balling, leading to additional relevant research. This survey
summarizes the available research, and as such, provides an
overview and a point of reference for further research. For
the relevant frameworks, we indicate what kinds of explicit
guarantees they can provide.

Related Work
For safety-critical systems, safety guarantees are of utmost
importance. To the best of our knowledge, there is currently
no survey investigating different probabilistic planning or
scheduling frameworks, focusing on the guarantees they can
provide.

A related survey on motion planning addresses uncertain-
ties that can arise in practical applications (Dadkhah and
Mettler 2012). The autonomous guidance of UAVs is con-
sidered, and the different sources of uncertainty that can oc-
cur are distinguished. The survey discusses relevant tech-
niques for the planning of a system in the presence of uncer-
tainties. Contributions from both the Artificial Intelligence

and Robotics and the Dynamical Systems and Controls com-
munity are included.

Another survey, regarding decision making and optimiza-
tion, looks deeper into the uncertainty representations (Keith
and Ahner 2019). Many different strategies are compared.
The use of uncertainty sets seems to remain a popular tech-
nique. In both surveys, Markov Decision Processes and rele-
vant extensions thereon, make an appearance. In our survey,
we majorly focus on frameworks that additionally provide
guarantees on the achieved plan.

Furthermore, Probabilistic Model Checking is conceptu-
ally related to our focus of interest. Probabilistic guarantees
can be achieved on the model of a system (Katoen 2016;
Kwiatkowska, Norman, and Parker 2002). In contrast to our
focus, the guarantees are obtained after designing the sys-
tem. A complete model of the system, including its plan, is
required to be able to apply model checking or verification
in general. We are interested in probabilistic planning or
scheduling frameworks that can inherently provide the de-
sired guarantees.

In general, we observe that the most popular frameworks
for probabilistic planning are based on Markov Decision
Processes (MDPs). Note that MDPs also provide an ap-
propriate basis for model checking (Baier, Hermanns, and
Katoen 2019; Kwiatkowska, Norman, and Parker 2002).
From a scheduling point of view, Simple Temporal Networks
(STNs) are applicable. As we focus on explicit safety guar-
antees, traditional MDPs, and to some extent, traditional
STNs, will not suffice.

Frameworks

In this section, we take a look at the different frameworks
that are present in the literature and what guarantees they
can provide. As we do not look into the specific algo-
rithms to obtain solutions for each of the frameworks, we
want to make a general remark upfront. For some frame-
works, different algorithms are available to solve the prob-
lem at hand, possibly resulting in different solutions. For
more elaborate and fine-grained problems, obtaining an ex-
act solution, using sound and complete algorithms, becomes
infeasible. Faster algorithms, which return approximate so-
lutions, might be preferred. The precision and correctness
of the obtained guarantees will depend on the properties of
the used algorithm.

The different frameworks are illustrated using a practical
example. We look into the modeling of an application of a
UAV. The UAV has to operate on an industrial plant, exe-
cuting surveillance and visual inspection of the infrastruc-
ture and the operation of other agents. In the real, physical
world, the effects of the UAV executing actions can not be
predicted precisely. Different frameworks will address this
uncertainty in different ways. An illustrative safety property
could state that the autonomous UAV should never fly into
other agents. More feasibly, one could demand that the au-
tonomous UAV only makes contact with other agents with a
probability below some small threshold.



Markov Decision Process
The most popular framework used for probabilistic plan-
ning is a Markov Decision Process (MDP) (Puterman 2014).
MDPs are being addressed in numerous fields (White 1985;
1988; 1993). A traditional MDP is, however, not able to pro-
vide explicit safety guarantees. We elaborate on MDPs first,
since several other frameworks are based on them.

In an MDP, actions and states of the system have asso-
ciated rewards or costs. Solving an MDP corresponds to
finding a policy1 that maximizes the expected cumulative re-
ward. This cumulative reward is calculated as the discounted
sum of rewards (positive) and costs (negative).

Formally, an MDP is defined as a 6-tuple
〈H, γ, S,As, Ta,s, Ra,s〉, where H represents the pos-
sibly infinite decision horizon; γ ∈ [0, 1] denotes the
discount factor; S is the set of all possible states; As

holds the available actions for each state s; Ta,s holds the
transition probabilities to the succeeding states, for execut-
ing action a in state s; and Ra,s holds the corresponding
rewards. Algorithms to solve an MDP are usually based on
Value Iteration or Policy Iteration.

We describe a traditional MDP for the UAV application at
hand.2 For simplicity reasons, S and As are often assumed
to be discrete and finite. However, continuous domains are
often more appropriate, even for a simple example like this
UAV. Numerous research has been dealing with this, as well.
A number of properties contribute to the state of the system.
Examples of these properties are the UAV’s location L, its
height H , and its battery level B. The domain of each of
those properties can be represented as a set. For example, if
the battery level is expressed using a percentage, the domain
is defined as B = {0, 1, . . . , 100}. The entire state space is
represented as a set S = L×H ×B × . . ., containing ev-
ery possible state of the UAV.

For a UAV, the set of actions A can be defined as
{Lift, Lower,Hover,MoveNorth, . . . }. We assume that
all actions are applicable in all states. It is the responsibil-
ity of the autopilot (and hence in the end, of the planner) to
make sure that no unsafe actions are executed.

The decision horizon H has to be set sufficiently large
so that a complete flight path of the UAV can be taken into
account. If a recurrent inspection is desired and the plan-
ning includes a recharging procedure for the UAV’s battery,
a much larger, perhaps infinite horizon might be preferred.

The discount factor γ is set close to 1. A lower discount
factor stimulates the UAV to reach its objective faster (since
a later reward gets discounted more) and could cause the
UAV to take more risks.

The transition probabilities in Ta,s describe the effects of
the UAV executing its actions. For example, a Lift ac-
tion could make the UAV increase its height by one step3

1For an MDP, a policy contains a mapping from every possible
state of the system to the action that has to be executed by the
system in that state.

2We do not provide a complete and detailed MDP. The applica-
tion is simplified in order to provide a comprehensive example.

3As we did not specify how the domain of height is modeled,
“one step” could refer to one unit, one level, . . .

with a probability of 0.8, while the height may remain con-
stant with a probability of 0.2. Further, the effects are state-
dependent. Executing a Lower action when the UAV is hov-
ering at a certain height, will likely cause this height to de-
crease. Executing a Lower action when the UAV is landed
on the ground, should decrease its height only with a proba-
bility of 0.

Finally, a simple reward functionRa,s assigns a high, pos-
itive reward to states or actions that achieve a (partial) goal,
such as acquiring some visual inspection. Unsafe or unde-
sired states and actions get a large, negative reward to stim-
ulate the UAV to avoid them.

As mentioned, planning with a traditional MDP does not
provide explicit guarantees. MDPs only try to maximize the
reward or minimize the cost. However, many other frame-
works are based on this traditional MDP.

Partially Observable MDP
A first extension of MDPs is related to the agent’s inabil-
ity to observe the current state. If the system is determined
by a known MDP, but the agent can not always observe the
system’s underlying state, the agent should instead maintain
a probability distribution over the possible states in which
the system could be. This distribution is referred to as the
agent’s belief. Such an extension of an MDP is called a Par-
tially Observable MDP (POMDP).

Formally, a POMDP is defined similarly to an MDP, ex-
tended with the notions of observations and beliefs. For this
purpose, the original 6-tuple is extended with Ω, being the
set of possible observations, and the probabilistic observa-
tion function O, which correlates the observations with ac-
tual states. Finally, the initial belief b0 can be added to the
tuple as well. The solution of a POMDP consists of a policy
that provides a mapping from beliefs to actions.

Different approaches and algorithms related to POMDPs
were already investigated decades ago (Monahan 1982).
Since then, much further research has become available
(Lovejoy 1991; White 1991; Cassandra 1998b; Aberdeen
2003). Similar to MDPs, POMDPs are being used in many
different fields (Cassandra 1998a).

The precise state of the UAV is not known at each mo-
ment in time. The observations mainly depend on sensor
data. For properties such as the Location and the Height,
the system relies on data from cameras and GPS sensors.
Such data does not always yield correct or complete infor-
mation. For example, if the UAV explores an environment
under low light conditions or in the presence of too few GPS
connections, information may lack. A POMDP addresses
this inability of an agent to precisely determine its current
state. The current belief is determined by the previous belief
and the executed action, along with the current observation
and the transition probabilities (which, to some extent, rep-
resent the theoretical, physical behavior of the UAV).

Analogous to MDPs, POMDPs can not provide explicit
safety guarantees. However, POMDPs take into account un-
certainty regarding state observation. This feature is highly
relevant for the planning of physical systems. Numerous
other frameworks are based on POMDPs.



Robust (PO)MDP
When using (PO)MDPs for planning the behavior of physi-
cal agents, the transition probabilities are usually estimated
from data gathered during previous executions. This estima-
tion inherently introduces some level of uncertainty on these
parameters. The obtained policy and the expected total re-
ward can be very sensitive to small changes in the transition
probabilities. Robust (PO)MDPs take such uncertainty into
account (Nilim and El Ghaoui 2005; Xu and Mannor 2010;
Wiesemann, Kuhn, and Rustem 2013; Tamar, Mannor, and
Xu 2014; Osogami 2015).

Formally, a Robust MDP is defined similarly to a tradi-
tional MDP, except for the transition probabilities Ta,s. An
uncertainty set τa,s can be used to denote the uncertain tran-
sitions, rather than using known, fixed probabilities. Fur-
thermore, probabilistic information regarding the unknown
parameters can be considered, for example, using confi-
dence regions. The resulting policy has to attain the highest
worst-case performance over that confidence region. Uncer-
tainty regarding the observation parameters can be taken into
account as well.

The example we provided earlier, in which the UAV’s
Lift action has a probability of 0.8 to succeed (and 0.2 to
fail), is purely illustrative. Practically, such probabilities are
indeed estimated from data gathered over previous flights.
After sufficient flights, the achieved data becomes represen-
tative, but some level of uncertainty remains. Ideally, a Ro-
bust (PO)MDP also takes the quantity of, or confidence in,
the gathered flight data into account.

Robust (PO)MDPs do not achieve explicit safety guaran-
tees. However, we did opt to include them in this survey, as
they contribute to handling uncertainty. In practical, phys-
ical applications, Robust (PO)MDPs can be more useful as
they take into account the reality that transition probabilities
may not be known exactly. We did not want to withhold this
insight from the reader.

Constrained (PO)MDP
In our research question, we emphasize the need for safety
guarantees. The fundamental MDP and POMDP frame-
works only maximize the reward. They do not take into
account additional constraints. From here on, we look into
MDP-based extensions that do.

A first step is to take into account additional constraints
on expected costs or resource usage (Altman 1999). This
extension turns the traditional (PO)MDP into a Constrained
(PO)MDP (C(PO)MDP).

Formally, a C(PO)MDP corresponds to a traditional
(PO)MDP, extended with κa,s, an n-dimensional cost vec-
tor, for each action a in each state s. Apart from the tra-
ditional reward that is to be maximized, n other objectives
are expressed, related to the n respective costs. On these
secondary objectives, constraints are applicable. Such con-
straints can limit expected costs or utilization of certain re-
sources to a maximum threshold. An illustrative example of
such a resource is the available time. Each action requires
some time to execute. The corresponding constraint then
represents the maximum expected duration of the agent’s ex-
ecution.

This extension turns the problem at hand into a con-
strained optimization problem. The resulting policy is still
a policy that maximizes the overall reward, yet obeys the
posed constraints. The book “Constrained Markov Deci-
sion Processes” by Eitan Altman, 1999 provides a thor-
ough overview of CMDPs, examples of applications, and
approaches for obtaining solutions (Altman 1999). CMDPs
are addressed for strategic mission planning with constraints
(Ding, Pinto, and Surana 2013) and form an appropriate ba-
sis for reinforcement learning problems as well (Maeda et
al. 2019).

Several algorithms to solve CPOMDPs have been pro-
posed. Initially, an exact dynamic programming update
was presented (Isom, Meyn, and Braatz 2008). Subse-
quently, more efficient online and approximate approaches
were introduced (Undurti and How 2010; Lee et al. 2018;
Kim et al. 2011; Poupart et al. 2015; Walraven and Spaan
2018).

Intuitively, one could argue that constraints can, to some
extent, be dealt with using the normal cost function of a tra-
ditional MDP. For illustrative purposes, assume a scenario
in which constraints are present on individual states of the
system. By assigning an arbitrarily high penalty to unde-
sired states, the planner tries to avoid these states. This ap-
proach, however, does not necessarily lead to proper solu-
tions. If an undesired state has a very high cost assigned to
it, while (under normal operation) this state could uninten-
tionally get reached with a relatively small probability, the
planner might behave too conservatively. The system will
make sure to avoid such states, even if this behavior leads
to zero progress. Lowering the penalty does not solve the
problem either. The planner can switch from being too con-
servative to too risky (Undurti and How 2010).

A property relevant for a UAV is that it should not run out
of battery power during flight. Simply assigning a high cost
to states that correspond with a low battery level, provides
no guarantees. However, since each action has a specific
power consumption, we can define an objective that keeps
track of the total power consumption. A CMDP can then
be addressed to add a constraint to limit the expected power
usage, preferably, to a threshold smaller than the capacity of
the battery.

Chance Constrained (PO)MDP
Besides constraints on costs and the use of resources,
probabilistic constraints are relevant as well. This con-
cept is addressed by Chance Constrained (PO)MDPs (CC-
(PO)MDPs). They still maximize the expected cumula-
tive reward, yet bound the probability (“chance”) of certain
events occurring during execution. Chance Constraints can
be used to put bounds on the probabilities of violating safety
constraints or of failure.

Formally, a CC-POMDP can correspond to a traditional
POMDP extended with a set C, containing constraints de-
fined over the states of the system; and a vector ∆, contain-
ing thresholds on the probabilities of violating constraints
defined by C (Santana, Thiébaux, and Williams 2016). Al-
ternatively, ∆ can denote a joint risk budget, that is, a thresh-
old on the probability of visiting any state of a predefined



set of risky or unsafe states (Khonji, Jasour, and Williams
2019). The risk can also be bounded as a function of the re-
ward (Ayton and Williams 2018). Constraints regarding the
state probability distribution have been subject to research
as well (El Chamie et al. 2018).

For the UAV application, a set of unsafe states can be
considered in which the UAV will likely experience failure.
Straightforward examples consist of states in which the UAV
runs out of battery power during flight and states in which
the UAV flies into other agents. Both examples lead to sce-
narios in which the UAV would crash. A CC-(PO)MDP can
be addressed to constrain the probability of visiting such un-
desired states. For the UAV at hand, as for any safety-critical
system, this kind of guarantee is highly relevant. We can de-
mand that the expected probability of the UAV showing such
unsafe behavior remains below some arbitrarily low thresh-
old.

Different sorts of unsafe behavior could be given dif-
ferent thresholds. Operation under low battery conditions
might be considered less unsafe, as a low battery indicator
can still signal the UAV to return home, before draining the
battery completely. A higher threshold might be adequate.
The threshold for approaching other agents too closely, how-
ever, should be set sufficiently low. Finally, states violating
both constraints (that is, the UAV approaches other agents
too closely while experiencing a low battery level) might be
considered more unsafe than those violating the individual
constraints. The UAV might have a delayed reaction time to
critical observations due to reduced power availability.

It is important to remark that an accurate model of the
environment of the UAV and the effects of its actions is re-
quired to obtain precise guarantees. Parameters like the tran-
sition probabilities, which might not be straightforward to
estimate in the first place, have to be known precisely.

Finally, interesting to note is the relation between CC-
POMDPs and CPOMDPs. It has been observed that the
latter is more general than the former (Khonji, Jasour, and
Williams 2019). As a result, any CC-POMDP problem can
be reduced to a CPOMDP problem. It follows that an al-
gorithm to solve CPOMDPs can also be used to solve CC-
POMDPs.

Path Constrained MDP
Constraints on consecutive states of the system have been
studied as well. Path Constrained MDPs (PC-MDPs) were
proposed to combine a probabilistic model checking aspect
with a planning approach (Teichteil-Königsbuch 2012). The
resulting policy is obtained in a single design pass. PC-
MDPs allow the user to express constraints on the execution
traces of the system, in Probabilistic (Real Time) Compu-
tation Tree Logic (PCTL). Execution of the obtained policy
satisfies the posed probabilistic path constraints.

Formally, a PC-MDP corresponds to a traditional MDP,
extended with a set Λ, containing a number of PCTL path
constraints; and P denoting the set of probabilities cor-
responding to these constraints. The constraints are ex-
pressed using strong until temporal operators. λi = fU�pi

g
indicates that there is at least (� ∈ {≥, >}), at most
(� ∈ {≤, <}), or exactly (� ∈ {=}) a probability of pi that

eventually g will become true, and that f is and remains true
until then. The formulas f and g are boolean state functions
that map each state to a boolean value.

For the UAV application, an entire execution path can be
interpreted as a complete flight scenario, from take-off to
landing. An illustrative constraint expresses that in each pos-
sible path, no landing procedure should be initiated (for ex-
ample, by considerably decreasing the thrust) before all en-
vironment checks have been run successfully. A PC-MDP
can take such constraints into account. The constraint can
be written as (¬l)Uc, where l holds in a state if the land-
ing procedure is initiated and c denotes whether the envi-
ronment checks have been executed successfully. More ex-
pressive and realistic, using a probabilistic variant thereon,
(¬l)U≥0.99c states that the temporal formula must hold with
a probability of at least 0.99, for a randomly sampled flight.
Exceptions could, for example, be tolerated when uncontrol-
lable factors cause an emergency landing to obtain priority
to avoid more disastrous hazards. Note that constraints of
the form (True)U<ph can be used to ensure that a state in
which h holds is only visited with a probability below p.

If the probabilistic expressiveness is not required
(pi = 0 or 1), a more efficient approach can be addressed
(Sprauel, Kolobov, and Teichteil-Königsbuch 2014). The
strong until operators then express more traditional state
constraints. For example, (¬f)U=0g ensures that a state
where g holds should not be visited before a state is vis-
ited where f holds. The constraint (True)U=0g ensures that
no state should ever get reached where g holds. Similarly,
(True)U=1g ensures that a mandatory goal g gets reached
eventually.

POMDPs with Safe-Reachability Objectives
The goal of POMDPs with safe-reachability objectives is to
satisfy a safe-reachability objective in all possible execution
paths of the system, that is, including worst-case scenarios
(Wang, Chaudhuri, and Kavraki 2018a).

A safe-reachability objective can ensure that a goal state
is eventually reached with a probability above a certain
threshold. Simultaneously, the probability of visiting an un-
safe state is always kept below some threshold. It follows
that POMDPs with safe-reachability objectives contrast with
C(PO)MDPs and CC-(PO)MDPs, as the latter obtain a pol-
icy that maximizes the agent’s expected cumulative reward
while bounding an expected cost or risk. Furthermore, to
stimulate reaching the goal, C-POMDPs and CC-POMDPs
typically hold large reward values for goal states. This ap-
proach is unable to provide any hard guarantees. POMDPs
with safe-reachability objectives, on the other hand, inher-
ently try to make the agent reach its goal state with a prob-
ability above a certain threshold. It follows that POMDPs
with safe-reachability objectives can provide stronger guar-
antees.

Formally, a traditional POMDP gets supplemented with
a safe-reachability objective. This safe-reachability objec-
tive essentially defines a tuple 〈Safe,Goal〉, where Safe
and Goal are sets of safe and goal states, respectively. Fur-
ther, a minimum threshold (ζg) on the probability of reach-
ing a goal state (∈ Goal) and a maximum threshold (ζs) on



the probability of reaching unsafe states (S \ Safe) are in-
cluded. Concretely, the resulting policy makes the agent
reach a belief for which the probability of being in a goal
state exceeds the threshold ζg . Each belief encountered until
this goal was reached, corresponds to an unsafe state only
with a probability below the threshold ζs.

Offline policy synthesis methods to solve POMDPs with
safe-reachability objectives have been proposed in the liter-
ature (Wang, Chaudhuri, and Kavraki 2018a; 2019). Fur-
ther, an online approach (Wang, Chaudhuri, and Kavraki
2018b) and a sampling-based approach (Newaz, Chaudhuri,
and Kavraki 2019) address efficiency and scalability.

Applied to the UAV example, a double guarantee regard-
ing the behavior of the UAV and its mission can be enforced.
We can formulate an objective claiming that the inspection
flight goal of the UAV gets achieved with a minimum prob-
ability, while the probability of crashing is bounded. The
flight goal is achieved in any state in which the required in-
spection footage has been obtained, and the UAV is landed
safely back at its home base. The set of unsafe states con-
tains states in which the UAV will be likely to crash, as dis-
cussed before. This safe-reachability objective will be sat-
isfied in all executions traces that result from the obtained
policy.

Other MDP Extensions

Probabilistic Goal MDPs acquire a policy that maximizes
the probability of achieving a predetermined minimum re-
ward (Xu and Mannor 2011). This approach is inher-
ently different from a traditional MDP, which maximizes
the expected reward itself. No additional guarantees are
acquired. However, a variant making use of a CMDP can
put a constraint on this probability, rather than maximizing
it (Xu and Mannor 2011). This Chance-Constrained vari-
ant does obtain strong guarantees. Furthermore, Risk Sensi-
tive POMDPs (RS-POMDPs) yield a policy that maximizes
the probability of the cumulative cost being below a certain
predefined threshold (Hou, Yeoh, and Varakantham 2016).
Again, note the difference with minimizing the cost itself,
as a traditional (PO)MDP does. RS-POMDPs do not pro-
vide additional guarantees.

Less interesting from a safety point of view is the con-
cept of maximizing the probability of the agent achieving its
goal (Lacerda, Parker, and Hawes 2015; Lacerda et al. 2019;
Steinmetz, Hoffmann, and Buffet 2016), or better, putting
a constraint on that probability (Steinmetz, Hoffmann, and
Buffet 2016; Lacaze-Labadie, Lourdeaux, and Sallak 2017).
From a liveness point of view, however, such guarantees are
desirable. Note, when unsafe behavior is only considered
to correspond to reaching dead-ends4, the achievement of a
goal can provide an indirect additional safety value. When
the agent reaches a goal, no unsafe state has been visited
before doing so.

4Dead-ends are considered states from which no recovery is
possible, such as a fatal crash.

Simple Temporal Network
Another kind of framework we include in this survey, next
to MDPs and their extensions, are Simple Temporal Net-
works5 (STNs) (Dechter, Meiri, and Pearl 1991). The prob-
lem tackled by an STN is by nature different from that tack-
led by an MDP. Whereas MDPs support planning, at the
level of states and actions with probabilistic effects, STNs
are used as a temporal scheduling tool. Non-deterministic
influences on the agent and its behavior will affect the du-
ration of an action (as we elaborate upon in the next sec-
tion), rather than the state reached after the action. Com-
pared to MDPs, this can be interpreted as planning on
a higher abstraction level. Efficient algorithms for solv-
ing STNs have been proposed (Xu and Choueiry 2003;
Planken, de Weerdt, and van der Krogt 2008).

For an STN, a set of time-point variables is considered,
along with a set of constraints on these variables. From a
planning point of view, a time-point variable can be used to
indicate the start point of an action or the occurrence of any
relevant event in general. The constraints limit the amount
of time that elapses between such events. If two events rep-
resent the start and end of an action, a constraint can express
the duration possible for this action. As a result, depending
on the application at hand, STNs can be used as a planning
tool, taking a temporal approach.

Formally, an STN is defined as a tuple 〈T,C〉,
where T represents the set of time-point variables
{t0, t1, t2, . . . , tn}, and C is the set of temporal con-
straints of the form ti − tj ≤ cij . The solution of this STN
consists of a value assignment for each of the variables
{t1 = s1, t2 = s2, . . . , tn = sn}, si ∈ R, obeying all con-
straints. Further, t0 is used to represent a fixed, arbitrarily
chosen reference point in time.

Since an STN is inherently modeled using temporal dif-
ference constraints, safety constraints of this format can be
added without additional effort. Stating that event a and b
should occur within the same n time frame can be expressed
as |ta − tb| ≤ n. Stating that event c should occur before
event d, corresponds to td − tc > 0.

The UAV application at hand is approached as a temporal
scheduling problem, rather than a planning problem. We ob-
tain a temporal plan, describing which action to execute, at
which point in time, instead of a state-based policy. Whereas
for an MDP, the state of the UAV and the influence of the
actions thereon form essential input for the planning prob-
lem, we now only have temporal events and constraints at
our disposal. We have to represent the actions of the UAV
using temporal events. Each action a has a duration, which
falls within a corresponding interval Ta = [p, q]. The start-
ing point ta,begin and endpoint ta,end of the action are ex-
pressed as temporal variables. The duration is expressed as
a constraint p ≤ ta,end − ta,begin ≤ q. For example, the ac-
tion TakeOff can take between 1 and 10 seconds to execute:

1s ≤ tTakeOff,end − tTakeOff,begin ≤ 10s.

5In the literature, the terms “Simple Temporal Problem” (STP)
and “Simple Temporal Network” (STN), that is, the graph repre-
sentation of the former, are used interchangeably. We will, consis-
tent with the majority of the literature, commit to the latter.



Navigating between two locations can take more time:

120s ≤ tMoveFromAtoB,end−tMoveFromAtoB,begin ≤ 600s.

The time interval in which inspection is desired can be con-
strained as well. For example, the time for inspection can be
determined by the presence of a moving entity:

10:10AM ≤ tinspection,begin ≤ 10:15AM.

After defining a reference time point t0, for example, the
time of deployment of the UAV, the STN is defined com-
pletely. A solution of an STN instantiates all the tempo-
ral variables. This solution provides information regarding
when the UAV has to execute the different actions, by pro-
viding the timestamp at which the actions start and end. A
temporal plan is achieved.

Any safety constraint that was taken into account in the
model will be satisfied as well. For example, the constraint

tTakeOff,begin − tPreF lightCheck,end ≥ 0

ensures that the PreF lightCheck is always completed be-
fore TakeOff is executed.

Finally, an STN can be extended with observation nodes
(Tsamardinos, Vidal, and Pollack 2003) and decision nodes
(Cairo et al. 2017) to add conditional functionality and deci-
sions to the framework, resulting in Conditional STNs (with
Decisions) (CSTN(D)s). Depending on the concrete deci-
sions at hand, a CSTND could provide additional guaran-
tees. Such guarantees are, however, entirely application de-
pendent. We do not look further into them.

STN with Uncertainty
In practice, the duration of actions and the time intervals be-
tween related events are often not controllable by the agent.
An STN with Uncertainty (STNU) elaborates on this real-
ity (Vidal and Fargier 1999; Morris and Muscettola 2000;
Cimatti et al. 2014). The durations are still said to be
bounded by a set interval, yet not controllable. A new kind
of constraint is added, called a contingent constraint. Con-
tingent constraints take into account that the exact duration
of an action, or more generally, the time between two events,
is beyond the control of the planning entity.

Formally, an STNU can be defined as a tuple 〈T,C, U〉,
where 〈T,C〉 is interpreted as a traditional STN, and U de-
notes the set of contingent constraints. A contingent con-
straint has the same form as a traditional constraint but de-
pends on an uncontrollable variable.

Using a traditional STN, we seemingly were able to ob-
tain a proper solution for the scheduling problem of the UAV.
However, an STN indeed assumes that the duration of the
actions is controllable. The scheduler is able to set both
the start and end timestamps of the actions. For example,
the UAV’s travel time between two locations can be set to
a well-chosen value in order to meet the other constraints.
In reality, this travel time is determined by external effects
such as wind and the payload of the UAV. The exact dura-
tion of the action is not controllable by the autopilot. An
STNU takes this uncontrollable nature of the duration into

account. The provided intervals no longer describe a dura-
tion range from which the scheduler can choose, but rather
provide bounds for the uncontrollable duration.

A relevant property of STNUs is their controllability (Vi-
dal and Fargier 1999; Morris and Muscettola 2000; 2005;
Morris 2006; Cimatti et al. 2014). An STNU is said to be
weakly controllable if a solution exists that satisfies all con-
straints, given upfront how the uncontrollable durations turn
out. More useful in practical applications, an STNU is said
to be strongly controllable if a solution exists that satisfies all
constraints, regardless of how the uncontrollable durations
could turn out. In dynamic planning applications, the STNU
can be said to be dynamically controllable if a solution ex-
ists that satisfies all (future) constraints, given how the past
durations turned out. If such solutions are addressed, we
consider the resulting temporal plan to be safe. Otherwise,
at least one of the temporal constraints could get violated.
The UAV might fail to execute the flight correctly and end
up in an unsafe state.

STNUs, compared to STNs, achieve more realistic mod-
eling of the system’s behavior, while they satisfy the same
kinds of temporal constraints.

Conditions and decisions can be added to STNUs as well
(Hunsberger, Posenato, and Combi 2012; Combi, Huns-
berger, and Posenato 2013; Zavatteri and Viganò 2019). Fur-
thermore, Conditional STNUs can be extended to take into
account runtime resource constraints (Combi et al. 2019).

Probabilistic STN

When applying an STNU, it can be troublesome to model a
fixed, non-trivial interval for the time required by an agent
to execute an action. For example, a UAV traveling between
two locations could take more time than expected. There
is always a non-zero chance for the UAV to require more
time to complete the action, as a result of external influ-
ences. Furthermore, some values in the interval might be
more likely than others. In a Probabilistic STN (PSTN), the
uncontrollable events are modeled with probability distribu-
tions (Tsamardinos 2002), rather than relying on finite, uni-
form intervals for the durations. Note, as durations are no
longer bound, compliance with the temporal difference con-
straints can not be guaranteed. A PSTN can only maximize
the probability of such correct execution.

Formally, a PSTN is defined similarly to an STNU, except
for the set of contingent constraints, which have to make
room for a set of conditional probability density functions.
The time required by the UAV to travel between two loca-
tions can now be modeled more correctly. The timestamp
tMoveFromAtoB,end is modeled using a normal distribution,
conditional to tMoveFromAtoB,begin. As a result, the du-
ration of the travel action is normally distributed. Sufficient
flight data is required to estimate an accurate probability dis-
tribution.

A combination of the two frameworks that address un-
certainty (STNUs and PSTNs), introduced as PSTNUs, has
been investigated as well (Santana et al. 2016).



Chance Constrained PSTN
Lastly, we elaborate on Chance Constrained PSTNs (CC-
PSTNs), which build further on PSTNs. A CC-PSTN
bounds the risk of temporal inconsistencies while a util-
ity objective is maximized (Fang, Yu, and Williams 2014).
Hence, as their name implies, Chance Constrained PSTNs
are semantically related to Chance Constrained (PO)MDPs,
which bound the probability of exhibiting unsafe behavior
while maximizing the expected reward. CC-PSTNs were
proposed to address the over-conservatism that occurs in
methods that solely try to minimize the risk, such as tra-
ditional PSTNs.

Formally, CC-PSTNs are defined similarly to PSTNs, ex-
cept for the uncontrollable durations. Rather than having
uncontrollable time points, conditioned on activating time
points, the uncontrollable durations are modeled explicitly.
As a result, the user can also define constraints between un-
controllable events, resulting in a more expressive frame-
work. Furthermore, an upper bound δ ∈ [0, 1] on the risk of
failure, that is, the probability of violating at least one con-
straint, is added, as well as an objective function V , which
is a function of the assigned time-point variables.

A computationally more efficient variant exists, which
deals with multiple chance constraints defined over subsets
of the entire plan (Wang and Williams 2015). This variant
does not maximize an objective function. The main goal is
to satisfy all posed constraints.

A straightforward application of a utility objective is plan-
ning the UAV to finish its inspection task as fast as possible.
The objective function, which is to be minimized, is natu-
rally set to the timestamp corresponding to the completion
of the task V = tfinish. At the same time, the chance of
experiencing temporal inconsistencies is kept below some
predefined threshold. Note, this constraint can, to some ex-
tent, be interpreted as a bound on the probability of the UAV
showing unsafe behavior. If during execution, no incon-
sistencies occur, the UAV behaves concordant the intended
model, which we assume to be safe. However, when incon-
sistencies do occur, not all constraints are satisfied, and the
execution might deviate from the intended model. Safe be-
havior can not be guaranteed.

Conclusion
Most frameworks present in the literature are based on
Markov Decision Processes, or to a smaller extent, on Sim-
ple Temporal Networks. Despite our followed methodology
being quite extensive, we want to emphasize that our sum-
mary might not be complete. Nonetheless, the overview in-
dicates the popularity of using MDPs for probabilistic plan-
ning and STNs for temporal scheduling.

Making use of MDP based frameworks, guarantees can
be provided regarding: the use of resources (C(PO)MDP);
probabilities on visited states (CC-(PO)MDP), if desired si-
multaneously for reachability and safety (safe-reachability
objectives); and probabilities on entire execution paths (PC-
MDP) of the system at hand. Using STNs, guarantees are
either related to temporal constraints (STN) or the chance of
failure (CC-PSTN). An overview is present in Table 1. Note

that the accuracy and correctness of the achieved guarantees
stands or falls with the accuracy and correctness of the used
algorithms and data.

Future research should look into the extremes of what
can be guaranteed in practical applications. In our study,
we came across different MDP extensions that deal with
constraints or provide explicit guarantees. Further, we en-
countered Robust (PO)MDPs, frameworks addressing the
uncertainty regarding transition probabilities, which arises
in practical applications. Future research should focus on a
combination of both. Being able to provide hard guarantees
for practical systems dealing with this uncertainty would be
desirable. From a scheduling point of view, (CC-)PSTNs
already deal with such uncertainties to some extent, better
than STNUs.

Table 1: A high-level overview of the covered approaches,
and the concepts regarding which they provide guarantees

Framework Provided Guarantees
(PO)MDP & Robust (PO)MDP ∅
C(PO)MDP Resource usage and costs
CC-(PO)MDP Probabilities on events
PC-MDP Probabilities on paths
POMDP with safe-reachability Probabilities on reaching

objectives unsafe & goal states
STN & STNU Temporal differences
PSTN ∅
CC-PSTN Probabilities on failure
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