
ROS-POMDP – A Platform for Robotics Planning using PLPs and
RDDL in ROS

Or Wertheim and Ronen I. Brafman and Shashank Shekhar and Tal Feiner and Igal Pinsky
Ben-Gurion University of the Negev, Beer Sheva, Israel
{orwert,brafman,shekhar,talfe,pinsky}@post.bgu.ac.il

Abstract

ROS-based software provides many basic skills
for robotics, including navigation, arm-movement,
mapping, object recognition, and more. Yet, there
is little support for task-level autonomy, with
the ROSPlan platform being the major exception.
ROSPlan supports planning and plan-execution
within ROS. Originally, for deterministic, fully ob-
servable models, but more recently, for contin-
gent planning, and limited types of probabilis-
tic planning. More specifically, most contingent
planners assume deterministic actions and sens-
ing, and ROSPlan’s support for partial observabil-
ity is limited in scope. ROS-POMDP attempts to
fill this gap. It builds on the more realistic POMDP
model, with stochastic actions and sensing, and
seeks to make it very easy for roboticists to re-
place hand-written scripts/controller with princi-
pled POMDP-based controllers. This paper de-
scribes ROS-POMDP and our initial experiments
with its use.

INTRODUCTION
Most autonomous robotic systems are built by uti-
lizing software components, locally written, or im-
ported, each of which handles a particular capabil-
ity. More sophisticated behavior is then obtained
by combining these behaviors in various ways us-
ing an adequate controller. The problem with such
pre-written controllers is their brittleness. In some
sense, their designer is expected to foresee all pos-
sible scenarios and tasks the robot will face. In-
stead, the planning-based approach uses an online
planner to select which component is to be acti-
vated and when. Online planners are able to react
to new events, and they can often generate near-

optimal behavior that a human designer would find
difficult to synthesize on her own.

The ROSPlan platform (Cashmore et al. 2015)
was a major development in this area. It provided
tools and a methodology for supporting the use
of planners in ROS-based systems (Quigley et al.
2009). The ROSPlan platform supports both plan-
ning and plan-execution of ROS-based software,
and provides support for a rich set of planning
formalism: classical, temporal, contingent, and
most recently, stochastic planning. The latter two
models are especially important because realistic
robotics application involve uncertainty and partial
observability – key elements in this model. But the
contingent planning model has many weaknesses.
First, its notion of a goal is too weak to specify the
diverse objectives we often have, and their relative
tradeoffs. Second, and related, contingent planning
models uncertainty using non-determinism. Non-
determinism is fine when one seeks to find a so-
lution that is guaranteed to achieve a certain goal.
But, if the goal is not always reachable, or can be
costly to reach, one would like to make tradeoffs
between likelihood of success of different plans
and their cost. Moreover, given limited compu-
tational resources, one would prefer to invest ef-
fort in more likely scenarios. This is not possible
within the contingent model.

Instead, most work in robotics has focused
on the POMDP (partially observable Markov de-
cision process) model (e.g., (Hanna Kurniawati
2008; Seiler, Kurniawati, and Singh 2015; Chen
et al. 2016). POMDPS capture partial observ-
ability, stochastic actions, stochastic sensing, and
complex goals expressed using a reward function.



POMDP algorithms support this full range of be-
havior, and recent sampling-based solution meth-
ods for POMDPS have been able to scale up to
real-time behavior in very complex domains (Sil-
ver and Veness 2010). Finally, statistical estima-
tion techniques and reinforcement learning algo-
rithms can help us improve the model with experi-
ence.

Indeed, recently, the ROSPlan platform has
been extended to allow, standardized integration of
RDDL and ROSPlan, enabling the straightforward
application of probabilistic planners in robotic do-
mains using ROS. In addition, there is a ROSPlan
interface with any RDDL planner that can be used
with the RDDLSim server used in the IPPC (Canal
et al. 2019). However, this extension allows actions
with non-deterministic effects only if this uncer-
tainty is on sensed state variables. These sensed
variables are state variables for which there is
an action that can deterministically sense their
value. If we combine the supported probabilistic
action with their sensing actions, the combined ac-
tion is non-deterministic, but its outcome is fully-
observable. Hence, this model is a weak version
of POMDP. Indeed, in ROSPlan’s Online Planning
and Execution with RDDL Planners, the architec-
ture is a Client/Server architecture similar to that
of the International Probabilistic Planning Com-
petition (IPPC). ROSPlan’s knowledge base holds
the server state, and even though planning consid-
ers probabilistic effects and rewards, the state is
always observable to ROSPlan. In this paper we
describe the ROS-POMDP framework, which sup-
ports the full POMDP model.

Planners, however, are not a silver bullet. They
are as good as their model is, and in robotics we
have to model complex temporal components that
perform navigation, manipulation, object detection
etc. Their rich behavior is not always easy to model
using standard planning languages. For this reason,
we have been developing the language of Perfor-
mance Level Profiles (PLPs) (Brafman, Bar-Sinai,
and Ashkenazi 2016), a language for specifying
the expected behavior of functional components.
PLPs describe a number of key aspects of the per-
formance of functional modules. They combine
ideas from planning language (PDDL 2.1 (Fox
and Long 2003), probabilistic PDDL (Younes and
Littman 2004), RDDL (Sanner 2010)), achieve-
ment and maintenance goals (Ingrand et al. 1996;

Kaminka et al. 2007), and new notions such as
progress measures and a repeat construct aimed at
making explicit the frequency by which input pa-
rameters are read and output parameters are pub-
lished. Unlike action languages that limit their ex-
pressiveness to meet the requirements imposed by
state-of-the-art planning technology, PLPs seek to
provide expressiveness that can be used for other
tasks. Thanks to their structured, machine readable
syntax, PLPs can be manipulated automatically for
the purpose of online monitoring (Brafman, Bar-
Sinai, and Ashkenazi 2016), validation, and plan-
ning (Ashkenazi, Bar-Sinai, and Brafman 2016a).

In this paper we describe the ROS-POMDP
platform. ROS-POMDP provides support for
POMDP-based planning, and in particular, Monte-
Carlo-based planning in POMDPs, where the ba-
sic ”actions” correspond to calls to functional code
documented using PLPs or RDDL. Given a PLP
describing each component, ROS-POMDP auto-
matically generates an RDDL description of the
component as well as a java-based simulator of the
component. The RDDL code can be used as in-
put to diverse, offline and online, POMDP solvers,
while the JAVA simulator provides the service of
sampling a random effect of each action. Using
this component, ROS-POMDP runs the POMCP
algorithm (Silver and Veness 2010) to solve the
planning problem online. Each time it selects the
next action, it executes the corresponding code,
and continues the process. The reward function for
the solver is build based on the users specified goal,
but it can be combined with diverse other objec-
tives (e.g., safety, speed) easily.

In the rest of this paper we provide some
background on PLPs, POMDPs and MCTS-based
methods for their solution, we describe the archi-
tecture of the system, and we describe an initial
empirical evaluation conducted in simulation on a
ROS-based mobile robot with an arm. We are cur-
rently working on testing the system on the real-
world Armadillo robot used in this simulation.

Background
We briefly describe PLPs (Brafman, Bar-Sinai, and
Ashkenazi 2016), POMDPs (Kaelbling, Littman,
and Cassandra 1998), and Monte-Carlo-based
planning for POMDPs, as used in the POMCP
planner (Silver and Veness 2010).



RDDL
The Relational Dynamic Influence Diagram Lan-
guage (RDDL) (Sanner 2010) is a language for de-
scribing the evolution of structured fully or par-
tially observed (stochastic) processes. In this lan-
guage, it is assumed that states, actions, and ob-
servations (whether discrete or continuous) are pa-
rameterized variables and the system’s evolution is
specified via (stochastic) functions over next state
variables conditioned on current state and action
variables. Parameterized variables are simply tem-
plates for ground variables that can be obtained
when given a particular problem instance defining
possible domain objects. Because actions are de-
scribed by means of variables, the language sup-
ports concurrent execution of actions, too.

Semantically, RDDL is simply a dynamic Bayes
net (DBN) (Dean and Kanazawa 1989) (with po-
tentially many intermediate layers) extended with
a simple influence diagram (ID) (Howard and
Matheson 2005) utility node representing imme-
diate reward. An objective function specifies how
these immediate rewards should be optimized over
time for optimal control. For a ground instance,
RDDL is just a factored MDP (or POMDP, if par-
tially observed).

POMDP
A partially observable Markov decision process
(POMDP) is a model for decision making under
uncertainty and partial observability.

Formally, it is a tuple < S,A,T ,R,Ω,O, γ,I >
• S is the state space.
• A is the actions set.
• T is the state transition function, T (s, a, s′) is

the probability to reach s′ ∈ S from s ∈ S using
a ∈ A.

• R is the reward function, R(a, s) is the reward
for applying a ∈ A from state s ∈ S.

• Ω is the state observation space.
• O(s, a, o) is the probability to see observation

o ∈ O after applying action a ∈ A and reach-
ing state s ∈ S.

• b0 ∈ Π[S] is a distribution over S, that repre-
sents the initial state.
Modeling robot planning problems using

POMDPs is natural since a robot actions’ out-
comes are usually not deterministic, the state of

the world is usually not fully observable to the
robot and robots’ sensors are typically noisy.

Because the agent’s observations provide partial
information, it typically does not know the state it
is in. Instead, it maintains a belief state b ∈ Π[S],
i.e., a distribution over the state space, starting
from an initial belief b0. Using Bayes’ rule, the
agent can compute a new belief state b′ given its
previous belief state b, the action excuted, a, and
the observation received, o.

This exact computation, when the state space is
large, is infeasible. In fact, just representing one’s
belief state explicitly, i.e., maintaining an explicit
distribution over a large state space, in infeasi-
ble. Instead, one usually uses an approximate rep-
resentation of b using a particle filter. A parti-
cle filter b̂k consists of some k particles, or states
s1, . . . , sk. b̂k represents the following distribution
over states: Pr(s) = 1

k Σk
i=1δsi,s where δi,s is the

Kronecker delta function. The initial set of par-
ticles is sampled from the initial belief state, b0,
and the update function uses the action and the
observations to sample new particles/states given
the old particles. This approximation method ap-
proaches the true belief state with sufficient parti-
cles, limk→∞b̂k(s) = b(s)

POMCP
POMCP (Silver and Veness 2010) uses Monte-
Carlo Tree Search (Tesauro and Galperin 1997) to
solve large POMDPs online. The algorithm com-
bines Monte-Carlo update of the agent’s belief
state with Monte-Carlo tree search from the cur-
rent belief state. POMCP has two important prop-
erties that enable it to plan effectively in signifi-
cantly larger POMDPs than has previously been
possible. First, Monte-Carlo sampling is used to
break the curse of dimensionality both during be-
lief state updates and during planning. Second,
only a black box simulator of the POMDP is re-
quired, rather than explicit model. Many realistic
domains have very large state space, making an
explicit POMDP model difficult to formulate and
manipulate, whereas a simulator is much easier to
write.

In Monte-Carlo planning, the agent uses a simu-
lator G as a generative model of the POMDP. The
simulator provides a sample of a successor state,
observation and reward, given a state and action:
(st+1, ot+1, rt+1) ∼G(st, at). It can also be reset to a



start state s. The simulator is used to generate se-
quences of states, observations and rewards. These
simulations are used to update the value function,
without ever looking inside the black box describ-
ing the model’s dynamics. In addition, Monte-
Carlo methods have a sample complexity that is
determined only by the underlying difficulty of the
POMDP, rather than the size of the state space or
observation space (Silver and Veness 2010)

PLPs
The primary objective of a PLP is to clarify the role
and expected/normal behavior of a module. There
are four PLP types, corresponding to four module
types. Achieve modules attempt to achieve a new
state of the world or generate a new object. For
example, changing the orientation of the robot to
some goal orientation. Maintain modules attempt
to maintain some property. For example, maintain-
ing some orientation; or, ensuring that the robot
remains within some confined area. Observe mod-
ules attempt to recognize some property of the cur-
rent state of the world. For example, the robot’s
location, or whether there is a cup on the table.
Finally, Detect modules monitor the state of the
world until some condition holds.

PLPs XML documents. Each document must
conform to an XML Schema Definition (XSD)
that defines the syntax of PLPs, with one XSD
for every PLP type. The schema can be found
in https://github.com/PLPbgu/PLP-repo together
with an example of a PLP of each type. Below we
provide an informal description of the information
contained in the respective XML/XSD documents.

PLPs have two abstract components. The second
component specifies the code’s expected behavior
– its ”guarantees”: what success means, possible
failure modes and their probabilities, a distribution
over running times, progress rates, and various sta-
tistical invariants. The first component provides the
conditions under which the ”guarantees” are valid:
properties of the world before and during execu-
tion and constraints on available resources. These
properties are necessarily observable by the robot.
For example, a sensor may guarantee normal oper-
ation under some temperature range, independent
of whether the robot has a thermostat.

The formal definition of PLPs rests on the spec-
ification of properties of states of the world. These

are defined by specifying properties of various
state variables. In addition, each module may need
access to certain resources. These resources could
be energy or memory, some actuator, or some re-
gion of space. These must be specified, much like
state variables, and coherent and consistent use of
these names is required. In fact, resources can be
viewed as a special class of state variables, whose
state indicates the status of the resource (e.g., avail-
able, > 100 gallons, etc.). However, because they
carry special significance to programmers and op-
erators, we distinguish them from other variables.

Common Elements All modules specify the fol-
lowing elements: Parameters (values supplied to
the module as input or provided by the module as
its output), local variables and their ranges, and
the following set of conditions specifying the con-
texts in which the PLP is valid: required resources,
optional bounds on the maximal rate of change for
resources, concurrency conditions that must hold
at execution time, invariants, other code modules
that must or must-not be executed concurrently,
and the frequency by which each parameter must
be read or written (optional).

Each module has an intended effect, or role.
However, it may also have side-effects that are a re-
sult of executing this module, but are not a measure
of its success or failure. Resource consumption is
a primary example. In addition, modules that per-
form continuous work to achieve or maintain their
goals may specify a minimal rate of change per
time unit. For example, the rate of change of a po-
sition while navigating. Making these expectations
explicit makes it easier to recognize problematic
behaviour while the module executes.

PLP Types Achieve modules attempt to reach a
state of the world in which some desirable prop-
erty holds. For example, fuel tank is full, robot is
standing, plane has landed, etc. Achieve also covers
cases where the goal is to generate some virtual ob-
ject, such as a map or a path. Beyond the common
elements, their PLP contain an the achievement
goal, failure modes, probabilities associated with
success and each failure mode, and the running-
time distribution given success and given failure.

Maintain modules attempt to maintain the value
of a variable or the truth value of a boolean con-
dition, e.g., maintain speed or maintain perimeter
clean. The condition need not be true initially, and



so the module may need to initially attain the con-
dition. It may also become false during execution
and regained, as in the case of a cleaning robot.
This is reminiscent of a closed-loop controller that
always attempts to decrease some distance to the
desired goal condition. PLP of maintain modules
contains: the condition to be maintained, whether
it is initially true, termination conditions, one for
successful termination (optional) and one for fail-
ure, failure modes, the probability of successful
termination and different failure modes, and the
runtime distribution given success and failure.

Observe modules attempt to identify the value of
some variable(s) or a Boolean state condition, e.g.,
distance to wall or whether an object is held. Ob-
serve PLPs contain additional fields for the obser-
vation goal, the probability of failure to observe,
the probability the observation is correct or some
form of error specification, such as confidence in-
terval and confidence level, and the running-time
distribution given success and given failure.

Detect modules attempt to identify some con-
dition that is either not true now, or that is not im-
mediately observable. For example, detect intruder
or detect temperature change. Their PLPs contain
additional fields for the condition being detected,
and the probability the condition will be detected
given that it holds (true positive) and given that it
does not hold (false positive).

PLP Glue files
Glue files connect PLP file meta-data concepts
to code module operation components. They may
contain mappings between PLP parameters to their
location in ROS (e.g., the topic), or required im-
ports, in order to work with the needed messages
and classes (Brafman, Bar-Sinai, and Ashkenazi
2016).

The ROS-POMDP Platform
ROS-POMDP is part of our plug-n-play vision for
operating autonomous robots. The robot user can
write new software, or import an available pack-
age, and as long that these packages come with
machine-readable documentation in the form of a
PLP and RDDL, ROS-POMDP will be able to plan
and execute behaviors that utilize this software in
order to autonomously operate the robot and reach
the user’s goals.

To support true plug-n-play, documentation
of different packages must use compatible ter-
minology and consistent modeling choices, and
stronger code-generation support is still required.
We started addressing the first issue by provid-
ing PLPs specification tools that maintain a li-
brary of variable names. However, stronger consis-
tency is needed and calls for more powerful tools
and the creation of appropriate ontologies. In ear-
lier work in the context of classical planing using
ROSPlan, we provided tools for autogeneration of
code (Ashkenazi, Bar-Sinai, and Brafman 2016b),
and we intend to extend them to support our cur-
rent system.

To provide the automated planning functional-
ity, ROS-POMDP takes the RDDL or PLP files and
uses them to create a POMDP model of the prob-
lem. More precisely, it uses these files to create a
black box, generative model of the POMDP. It then
solves the POMDP using a POMCP based online
solver that continuously outputs the best next ac-
tion to execute, dispatches it for execution by the
robot, receives an observation returned from that
action, updates its state, and repeats. ROS-POMDP
translates actions received from the solver to an
activation call to the corresponding code module.
The code module may return a response, that is
translated to an observation delivered back to the
solver updating its current belief state. This execu-
tion loop continues until goal reached observation
is received and the process ends. ROS-POMDP
currently supports online planning using Monte-
Carlo sampling. Domains with parameterized ac-
tions, parameterized boolean state variables, and
discrete observations.

We now describe in more details the compo-
nents of the system and its operation:

Solver Our current solver module supports a ver-
sion of the POMCP algorithm, but support for
other planners should be easy to add.

Simulator The simulator module contains both
the black box generative model of the POMDP,
and an initial state generator that can sample initial
states from the POMDP initial state distribution. It
is needed for the creation of the particle filter that
approximates the initial belief state. The POMDP
may be modeled using either PLPs or RDDL.
When PLPs are used, we automatically generate
the Java simulator module using our PLP con-



Figure 1: ROS-POMDP Components and Interfaces

verter module. This module can also generate an
RDDL description from the PLP. When POMDP
is modeled using RDDL, the simulator module is
based on a version of Scott Sanner’s Java server
implementation for the International Probabilistic
Planning Competitions (IPPCs). When comparing
the efficiency of these simulator modules on an
identical POMDP, the RDDL simulator black box
generated 957 samples per second, while the PLP
simulator generated 82,844 samples per second.
In addition, we allow the user to define the initial
state using a PLP Environment file, because, unlike
RDDL, it allows probabilistic initial states.

Action Dispatching For communication be-
tween the solver and ROS, we use the solver mid-
dleware and ROS dispatcher modules. Messages
are transferred using TCP. ROS dispatcher trans-
lates actions received to activation call to the cor-
responding code module.

Observation Dispatching ROS services re-
sponses are converted by the ROS dispatcher to
valid observations, sent to the solver middle-ware,
and from it to the solver. When using RDDL The
ROS dispatcher will convert each ROS service re-
sponse to a symbolic observation, known to the

solver. The number of observation types that can
be defined is unlimited (e.g., ”success”, ”failure:
lack of fuel”, ”partial success”, etc..). When PLPs
are used, the ROS dispatcher will convert the ROS
services response to symbolic observation, known
to the solver. But at present, only pre-defined fixed
types of observations are supported for PLPs (’suc-
cess’ or ’failure’ for Achieve and ’failure’, ’suc-
cess, observed false’ or ’success, observed true’ for
Observe).

In both PLPS and RDDL, an additional special
observation of ’invalid action’ is sent when a ser-
vice detects that the pre-conditions of a requested
action are not met.

Generating the Model When working with
RDDL, ROS-POMDP receives as input the RDDL
domain and instance files. The domain file must
contain an action-fluent for each ROS action. If a
ROS service returns an observation, an observe-
fluent should be defined, and some naming conven-
tions must be followed to allow for the translation.

When using PLPs, each PLP file defines a sin-
gle POMDP action, while environment objects and
state variables are defined in the newly introduced
PLP XML Environment file. In the future, we in-
tend to automate the generation of some of these



elements.
PLPs support domains with parameterized ac-

tions and parameterized state variable (predicates)
as in RDDL. Each parameter has a type, and only
objects from that type can be used to ground it. The
Environment file has an objects declaration section
that allows us to define typed objects so they can
be used as parameters for actions and/or state vari-
ables.

PLPs also support preconditions, which are not
typically supported by POMDP solvers. Indeed, it
may be the case that some action a is optimal for
most states in the agent’s current belief state, but
there is some probability that a’s preconditions are
not satisfied. Ruling a out completely in such a be-
lief state is too restrictive. Instead, the model ROS-
POMDP constructs associates a fixed penalty (neg-
ative reward) with the application of an action in a
state that does not satisfy its preconditions. This al-
lows the planner to trade off the benefits of apply-
ing the action on legal states with the disadvantage
of applying it in an illegal state.

ROS-POMDP also support intermediate vari-
ables, in the spirit of RDDL. Intermediate vari-
ables were added because PLPs, like RDDL, cap-
ture information that cannot be described by a two-
layer dynamic bayesian network, such as corre-
lated post-action values. Other aspects, such as
side effects, cost, success probability, etc., are
taken from the respective fields in the PLP. Finally,
both RDDL and PLPs support an initial state and
goal specification formats.

Examples for modeling using RDDL, PLP
and RDDL with a PLP Environment file can be
found on (tttMaor Ashkenzi, Bar-Sinai, and Braf-
man ) https://github.com/bguplp/ROS-POMDP-
Examples. Naturally, the more accurate the PLP
model of action effects and observations, the better
will a robot using ROS-POMDP be able to achieve
its goals.

Empirical Validation
Currently, due to the challenges of COVID-19, our
work is focused on using ROS-POMDP to solve
simulation models of a ROS operated, autonomous
service robot in the Gazebo 3D simulation plat-
form. The experiments test ROS-POMDP’s ability
to effectively find appropriate actions online, re-
ceive observations, perform appropriate belief up-
date, and achieve its goal.

The set up the experiment, having implemented
or imported various low-level actions, we first had
to describe the action’s modules by PLP, writing
the Environment file description, and adding code
to the ROS dispatcher module that translates a
planner’ invoke-action message to an appropriate
module activation, and translating back the mod-
ule’ response to an observation the planner can
read. This is the effort needed from a programmer
using ROS-POMDP, and we hope to reduce the lat-
ter elements farther in the future using automated
code-generation.

Figure 2: ARMadillo service robot

ARMadillo
The robot used is an ARMadillo service robot (see
Figure 2) (of which we have two in our lab). Its
dimensions are H 110-150 x W 50 x L 50 cm, its
weight is 80 kg, and has a torso joint range of 400
mm Vertical prismatic. It is equipped with a Head
HD camera mounted on Pan-Tilt system, skid drive
steering with a max speed of 1 m/s, designed to op-
erate on flat surfaces, a laser scanner range 2000◦/4
m or 30 m, a GPS, a front sonar, a microphone and
speaker, Intel i7 CPU, 16 GB of RAM, 156 GB
of SSD storage, 10.1 inc multi-touch touch screen,
and runs Ubuntu 16.04 OS with ROS Kinect. The
ARMadillo has an arm with a max payload of 2.3
kg, a wrist RGB-D camera, an arm joints feedback
of position / velocity and effort, and a two fingers
arm gripper with position and torque control.

Experiment Layout
We created two duplicate Gazebo worlds, simulat-
ing our office floor. We located the ARMadillo near
the elevator. Tables were positioned at the corridor,
auditorium, and outside lab 211. In ’world 1’ we



Figure 3: Experiment Layout, stars are used to
mark the discrete locations, navigation is only pos-
sible between locations that are connected with a
red line

placed a can on the corridor table, while in ’world
2’ the can was placed on the table outside lab 211
(See Figure 3). Our goal is to have the can at the
auditorium table, and the robot in its original loca-
tion.

As in POMDPs, ROS-POMDP only knows its
original belief state (0.6 chance of ’world 1’ and
0.4 chance of world ’2’), and receives the observa-
tions resulted by its actions. Any other information
is not observable.

Actions
We implemented the following actions for AR-
Madillo, often using well-known ROS packages.
Sense observes if the can is located at the robot’s
location. Pick can be applied when the robot has
an adjacent pickable object. Place places an object
on an adjacent table. Push button is used to open
the elevator door (applicable from within or out-
side of the elevator). Finally the Navigation action
is used to navigate between connected discrete lo-
cations (as marked in Figure 3). Estimated actions
success probability is 0.93, except for Sense that
succeeds 99% of the time. When Sense is executed

successfully, its observation is accurate with prob-
ability 0.8 - that it, it is a noisy sensor. Each ac-
tion returns a boolean value indicating whether it
succeeded or not. If the Sense action succeeds, its
observation tells us if the can was observed or not.
Pick returns ”invalid” if the robot was not near the
can when it was applied.

Modeling
We used PLPs with an Environment file to model
the POMDP actions and domain. We believe PLPs
are more appropriate as a documentation method
for code. Second, because the PLP-based simulator
is much faster than the RDDL one.1

An Environment file was created, describing the
planning domain (e.g., state variables, typed ob-
jects, etc.) and specific problem details (e.g hori-
zon, discount, initial belief state, goal, etc.) For
each action module, a PLP model was created, de-
scribing its parameters, preconditions, effects and
observations.

The experiment layout map can be seen in Fig-
ure 3.

Reward Model
POMDP solution attempt to maximize expected
reward. The reward model we used is as follows:
Each action was assigned with a cost (negative re-
ward). The costs were, Sense -120, Push button -
160, Navigate -120, Pick -100, Place -100. Reach-
ing the goal results with a reward of 1400, and ex-
ecuting an invalid action – i.e., one whose precon-
ditions are not satisfied in the current true state –
causes a negative reward of -3400.

Results
We used the PLP Converter to generate a simulator
module and we used a particle filter with 80 parti-
cles. For each decision, ROS-POMDP was given
10 seconds to plan, which is negligible in respect
with the execution time of each action.

We briefly describe some of the plans generated,
so one can see how the use of POMDPS allows us
to address the issue of partial observability with
noisy sensing. Videos of the experiments can be
found on https://youtu.be/2DjMdOZUruk (world
1) and https://youtu.be/w3F5vhDF6oI (world 2).

1Of course, this is not an inherent property of the
representation, simply a byproduct of the more efficient
simulator generator we wrote.



The planning phase is identical to that of
POMCP (Silver and Veness 2010), which our code
implements, and we expect ROS-POMDP to be-
have similarly.

World 1 Experiment:
1. Navigate to corridor was successful.
2. A sense action was executed 3 times. The first

sense action yielded a noisy observation indicat-
ing that the can is not there. The other two ob-
servations were accurate. We can see here that
the planner takes into account the accuracy of
the sensor, and for this reason, does not rely on
a single observation.

3. The can was picked successfully.
4. Navigation to the auditorium was successful.
5. The can was placed on the table, successfully.
6. Navigation to elevator area succeeded, and the

goal was reached.
World 2 experiment:

1. Navigate to corridor was successful.
2. A sense action was executed 3 times. All obser-

vations were correct – indicating that the can is
not there.

From this point on, all actions were performed suc-
cessfully: Navigate to corner area, navigate to out-
side lab 211, pick can, navigate to corner area, nav-
igate to auditorium, place can, navigate to elevator
area (goal).

Summary and Future Work
In this work we introduced ROS-POMDP, our new
planning and execution framework for ROS. The
platform’s main innovation is its support for full-
fledged POMDPs and for their documentation us-
ing PLPs. The platform was validated in a simu-
lation of an autonomous service robot task with
some partial observability. The experiment showed
that ROS-POMDP configuration can handle mul-
tiple real world non-observable scenarios, operat-
ing the robot until reaching its goal. Robustness
was demonstrated in the planner’s response to ac-
tion failure, demonstrating the power of probabilis-
tic planning. We believe that the strengths of the
POMDP model will be essential for good real-
world performance: sensing in the real world is
noisier than in simulation, and failures in the real-
world are more common, and the POMDP model

is able to make more informed choices than mod-
els that are currently supported by other systems.

In future work we intend to enhance the ROS-
POMDP platform to support model learning, us-
ing reinforcement learning techniques, and provide
additional automated code-generation to farther re-
duce the need for integration code by users of the
system.

Acknowledgements We thank the reviewers for
their useful comments. This work was supported
by ISF Grants 1651/19, by the Israel Ministry of
Science and Technology Grant 54178, and by the
Lynn and William Frankel Center for Computer
Science, and by the Helmsley Charitable Trust
through the Agricultural, Biological and Cognitive
Robotics Center of Ben-Gurion University of the
Negev.

References
[Ashkenazi, Bar-Sinai, and Brafman 2016a]
Ashkenazi, M.; Bar-Sinai, M.; and Brafman, R. I.
2016a. Planning and monitoring with performance
level profiles. In ICAPS’16 Workshop on Planning
and Robotics (PlanRob).

[Ashkenazi, Bar-Sinai, and Brafman 2016b]
Ashkenazi, M.; Bar-Sinai, M.; and Brafman, R.
2016b. Planning and monitoring with performance
level profiles. In ICAPS’16 Workshop on Planning
and Robotics (PlanRob).

[Brafman, Bar-Sinai, and Ashkenazi 2016]
Brafman, R. I.; Bar-Sinai, M.; and Ashke-
nazi, M. 2016. Performance level profiles: A
formal language for describing the expected
performance of functional modules. In 2016
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 1751–1756. IEEE.

[Canal et al. 2019] Canal, G.; Cashmore, M.;
Krivić, S.; Alenyà, G.; Magazzeni, D.; and Torras,
C. 2019. Probabilistic planning for robotics
with rosplan. In Annual Conference Towards
Autonomous Robotic Systems, 236–250. Springer.

[Cashmore et al. 2015] Cashmore, M.; Fox, M.;
Long, D.; Magazzeni, D.; Ridder, B.; Carrera, A.;
Palomeras, N.; Hurtos, N.; and Carreras, M. 2015.
Rosplan: Planning in the robot operating system.
In Twenty-Fifth International Conference on Auto-
mated Planning and Scheduling.



[Chen et al. 2016] Chen, M.; Frazzoli, E.; Hsu, D.;
and Lee, W. S. 2016. Pomdp-lite for robust robot
planning under uncertainty. In 2016 IEEE Inter-
national Conference on Robotics and Automation,
ICRA 2016, Stockholm, Sweden, May 16-21, 2016,
5427–5433.

[Dean and Kanazawa 1989] Dean, T., and
Kanazawa, K. 1989. A model for reasoning
about persistence and causation. Computational
intelligence 5(2):142–150.

[Fox and Long 2003] Fox, M., and Long, D. 2003.
Pddl2. 1: An extension to pddl for expressing tem-
poral planning domains. Journal of artificial intel-
ligence research 20:61–124.

[Hanna Kurniawati 2008] Hanna Kurniawati,
David Hsu, W. S. L. 2008. SARSOP: Efficient
point-based POMDP planning by approximating
optimally reachable belief spaces. In Proceedings
of Robotics: Science and Systems IV.

[Howard and Matheson 2005] Howard, R. A., and
Matheson, J. E. 2005. Influence diagrams. Deci-
sion Analysis 2(3):127–143.

[Ingrand et al. 1996] Ingrand, F.; Catilla, R.;
Alami, R.; and Robert, F. 1996. A high level
supervision and control language for autonomous
mobile robots. In 43-49., ed., IEEE ICRA.

[Kaelbling, Littman, and Cassandra 1998]
Kaelbling, L. P.; Littman, M. L.; and Cas-
sandra, A. R. 1998. Planning and acting in
partially observable stochastic domains. Artificial
Intelligence 101:99–134.

[Kaminka et al. 2007] Kaminka, G. A.; Yakir, A.;
Erusalimchik, D.; and Cohen-Nov, N. 2007. To-
wards collaborative task and team maintenance. In
Autonomous Agents and Multi-Agent Systems.

[Quigley et al. 2009] Quigley, M.; Conley, K.;
Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler,
R.; and Ng, A. Y. 2009. Ros: an open-source
robot operating system. In ICRA workshop on
open source software, volume 3, 5. Kobe, Japan.

[Sanner 2010] Sanner, S. 2010. Relational dynamic
influence diagram language (rddl): Language de-
scription. Unpublished ms. Australian National
University 32:27.

[Seiler, Kurniawati, and Singh 2015] Seiler, K. M.;
Kurniawati, H.; and Singh, S. P. N. 2015. An on-
line and approximate solver for pomdps with con-
tinuous action space. In IEEE International Con-

ference on Robotics and Automation, ICRA 2015,
Seattle, WA, USA, 26-30 May, 2015, 2290–2297.

[Silver and Veness 2010] Silver, D., and Veness, J.
2010. Monte-carlo planning in large pomdps.
2164–2172.

[Tesauro and Galperin 1997] Tesauro, G., and
Galperin, G. R. 1997. On-line policy improve-
ment using monte-carlo search. In Advances
in Neural Information Processing Systems,
1068–1074.

[tttMaor Ashkenzi, Bar-Sinai, and Brafman ]
tttMaor Ashkenzi; Bar-Sinai, M.; and Brafman,
R. I. PLP-Repository.

[Younes and Littman 2004] Younes, H. L., and
Littman, M. L. 2004. Ppddl1. 0: An extension to
pddl for expressing planning domains with proba-
bilistic effects. Techn. Rep. CMU-CS-04-162 2:99.


	INTRODUCTION
	Background
	RDDL
	POMDP
	POMCP
	PLPs
	PLP Glue files

	The ROS-POMDP Platform
	Empirical Validation
	ARMadillo
	Experiment Layout
	Actions
	Modeling
	Reward Model
	Results

	Summary and Future Work

