
Integrating Task Planning with Robust Execution for Autonomous Robotic
Manipulation in Space

Emma Zemler Shaun Azimi Kevin Chang
Robotic Systems Technology Branch

NASA Johnson Space Center
2101 NASA Parkway
Houston, TX 77058

emma.zemler@nasa.gov

Robert A. Morris Jeremy Frank
Intelligent Systems Division

NASA Ames Research Center
Moffett Field, California 94035

robert.a.morris@nasa.gov

Abstract

Future space exploration missions will include robotic as-
sistants in human- habitable vehicles that perform complex
tasks in logistics, vehicle maintenance, science experiments,
and to respond to safety-threatening events. Such robotic
systems will require the integration of deliberative behaviors
such as task planning with reactive behaviors like percep-
tion and motion control. Such capabilities require the combi-
nation of expressive languages for generating and executing
plans, with robust strategies for executing plans in a chang-
ing world. This paper describes a technology demonstration
project involving robotic arm manipulation tasks using a sci-
ence scenario inspired by bio-medical research performed on
the International Space Station (ISS). The work described
here significantly expands previous work performed by the
same team (Azimi, Zemler, and Morris 2019) by adding ca-
pabilities in goal management, execution monitoring, and re-
planning.

Introduction
Future space missions will be enabled by a combination of
human and robotic explorers. For example, a space station in
Lunar orbit (Gateway 2018) will serve as a communications
hub, science laboratory, habitation module, and holding area
for rovers. Mobile and manipulation robots will assist crew
in many different types of operational scenarios, including
logistics (loading, unloading, configuring); maintenance (in-
spection, repair); science experiments (assisting crew, stor-
ing/retrieving samples); and ensuring vehicle safety (identi-
fying and preventing fires or leaks). Human-robot teaming
will thus ensure efficiency and safety of operations, and sig-
nificantly reduce human workload. Similarly, for Lunar or
Martian surface operations, robots will assist humans in con-
struction and in-situ resource utilization (ISRU) tasks.

Although certain inter-space tasks might be best accom-
plished by robotic tele-operation, the complexity and size
of operations will require a measured and varying degree of
robotic autonomy. Robotic autonomy consists of an inte-
grated combination of deliberative goal-directed and reac-
tive behaviors to act efficiently and safely, and to respond
effectively and in a timely manner to unexpected changes
in the operational environment. AI planning offers rich ex-
pressive languages and high performance heuristic search
algorithms for modeling deliberative behaviors. There is a

wealth of research in combining deliberative task planning
with low-level control to manage complex robot behaviors
in a dynamic world.

NASA’s Autonomous Systems and Operations (ASO)
project develops and tests systems that assist crew members
in performing science or logistic tasks in space. This paper
describes a technology demonstration of autonomous plan-
ning and execution for a dexterous manipulator that is fixed
in place. A mock-up of an International Space Station (ISS)
science lab and an ISS-inspired bio-medical science scenario
are used. This work extends previous work by the same team
(Azimi, Zemler, and Morris 2019) by adding capabilities for
planning and plan execution to make the system more robust
to unexpected changes in the world. These capabilities in-
clude reasoning about time and goal preferences, monitoring
execution, and mechanisms for plan repair and replanning.
We use ROS and the ROSPlan framework to build an archi-
tecture that supports these capabilities, and to implement the
layered architecture for robot behaviors.

Following a summary of related work, we describe the
ISS science scenario in detail, followed by a complete
overview of the technical approach. We discuss the demon-
stration and lessons learned, and conclude with a summary
of current activity.

Related Work
Research in integrating task planning with the dynamics of
a robotic system for autonomous manipulation is actively
being explored by a number of research teams. A detailed
review of this research is beyond the scope of this paper;
here we only mention a handful of the efforts that are in
specific ways related to our work.

First, this work intersects with work in developing frame-
works that extend planning models to prioritize goals (Vat-
tam et al. 2013). Second, this work overlaps with recent
efforts in temporal flexibility in planning (Cashmore et al.
2017) (Huang et al. 2019), and as part of an execution sys-
tem (Kim, Williams, and Abramson 2001). More generally,
an execution monitoring framework has been proposed by
many as a way to improve robustness in robotic systems
(Pettersson 2005). Third, developing capabilities for plan
repair and plan revision triggered by changes in the op-
erational environment is an active area of research in the
planning community (Fox et al. 2006), (Nebel and Koehler



1995).
Overall, the work described here follows the terminol-

ogy and design framework proposed in (Ingrand and Ghallab
2017). More concretely, we view this work as consisting of
developing a robotic deliberation system, in which a robot
is performing actions in a goal-directed (or more broadly
task-directed) manner to change the state of itself and its en-
vironment. Actions are either primitive or compound, and
are organized in an abstraction hierarchy such that an action
can be primitive at one level and compound at a lower (more
reactive) level. A command is an action at the most primitive
level, and is executed directly by the robot platform (the col-
lection of sensors and actuators). Plans are organized collec-
tions of actions; skills are collections of actions that include
commands. We will also sometimes speak of deliberative or
reactive behaviors that characterize the functionality of the
robot. This work broadly intersects with the vast literature
on models and frameworks for integrating task planning and
other high-level deliberation with motion planning, obser-
vation systems, and closed-loop actuation (Bagnell 2012),
(Kaelbling and Lozano-Perez 2011), (Srivastava et al. 2014).

Operational Scenario
To illustrate diversity in handling different operational sca-
narios, the demonstration scenario here combines a science
experiment with an emergency response. Many biological
and materials experiments on the ISS utilize samples that
are kept frozen until the experiment is conducted. Most ex-
periments involve data products that include microscopic or
other forms of imagery,and many of them also specify some
other processing, such as mixing, separation (such as by cen-
trifuge), heating etc.

The high level tasks for accomplishing a typical experi-
ment are:

• Remove samples (centrifuge tubes) from freezer

• Defrost all samples;

• Expose samples to UV;

• Run some of the samples through a centrifuge; and

• Image all of the samples in the microscope (some after
being spun, some not).

Furthermore, imaging tasks should not be performed during
a Loss of Service (LOS) when data downlink with ground
control is not possible.

The demonstration science experiment scenario reported
here is an enhancement of the scenario presented in (Azimi,
Zemler, and Morris 2019). In the remainder of this section
we will describe two primary enhancements to the nominal
scenario for improving the expressive power and robustness
of the system.

First, to improve the expressive power of the task planning
system a capability for prioritizing and clustering goals was
added. Three priority levels, high, medium and low can be
assigned to imaging tasks, and lower priority goals might not
be accomplished as part of the generated plan. In addition,
goal priorities are defined in terms of pairs of tubes to be
processed.

Second, temporal constraints are added to the planning
framework in order to model time-constrained activities
such as those requiring data downlink or crew availabil-
ity. PDDL planners such as LPG-td (Gerevini and Serina
2008) enforce these temporal constraints during plan gener-
ation. During plan execution, a timeline structure was used
to enable monitoring of the progress of a plan in the pres-
ence of duration uncertainty. If an activity took longer than
expected during execution, and the plan can no longer be
executed successfully, a replanning activity was triggered,
where goals can be removed or added based on priority.

Figure 1 shows a simplified illustration of a timeline and
the replanning process. The top panel (A) shows a timeline
with a planned sequence of tasks (with stacking to indicate
that the tasks are performed concurrently). The blue dotted
line indicates a deadline for the completion of all the tasks
in the plan. Panel (B) illustrates the partial completion of
the plan at a point at which failure of the original plan has
been detected and repair actions initiated. The cause of the
failure is the imaging task for Tube E taking longer than
expected. Propagating the effects forward, it is determined
that the deadline constraint will be violated (red bar overlap-
ping deadline bar). As a result of repairing the plan (Panel
C), certain lower priority tasks have been replaced by higher
priority tasks, and the deadline constraint is again adhered
to.

Finally, we studied and tested the required enhancements
to a task planning system to enable an urgent response to a
potential emergency. For this, we added an urgent response
scenario. At any time during execution of an experiment, a
fire detection alarm may be received. This indicates that a
fire may be somewhere within the vicinity of the manipula-
tor. The alarm triggers an emergency response by the system
with the goal of isolating the specific location of the fire by
probing fire ports with a smoke particle detector. The smoke
detection data is reported to the ground station operator.

Technical Approach
We used the ROS module ROSPlan (Cashmore et al. 2015)
to implement deliberative behaviors and provide the inter-
face with lower level control of a manipulation system. Fig-
ure 2 provides a visual overview. The system is arranged
in a standard layered structure, with deliberative capabil-
ities controlling and receiving feedback from lower, more
reactive layers, and the interactions among the components
based on a client-server protocol. The deliberative layers
consist of a ROSPlan manager (RPM), that commands and
monitors the overall system. Within the RPM is a Goal Man-
ager, that maintains a priority ordering of goals and man-
ages the selection of goals for planning. The planning sys-
tem generates and executes task plans. The plan dispatcher
commands and receives feedback from the robot behavior
components, which are themselves composed of sequences
of simple actions. A Plan Viability Checker (PVC) serves as
a monitor of the executing plan. The PVC can detect plan
failure and trigger replanning. The world state is routinely
updated and stored in a database.

The system components will now be described in more
detail.



Figure 1: Illustration of Prediction of plan failure and re-planning with priority goals

Figure 2: Integration of Task Planning with Robot Behaviors
using ROSPlan

ROSPlan Manager/Goal Manager
Future intra-space activity will combine numerous science
tasks with logistics and maintenance tasks that are time- and
resource constrained. To maintain continuous goal forma-
tion, planning, execution, monitoring and replanning, the
ROSPlan manager module (RPM) was developed as part of
our effort. RPM provides a single interface for all feedback
from the system. RPM enables automatic replanning upon
plan failure if unachieved goals exist. It serves as a plan Ex-
ecutive. Finally, it provides the entry point for human users
of the system for setting goals and priorities.

RPM contains a Goal Manager (GM) that can continu-
ously manage and update activity itineraries (sets of goals).
The GM follows the architectural structure of (Roberts et
al. 2016), providing a goal reasoning capability both during
planning time and execution time.

GM allows a user to cluster a set of related goals that need
to be achieved together, or simply are considered equally im-
portant. The cluster of goals can then be assigned to a pri-
ority level (low, medium, high, or immediate) and added as

a single entry to the GM queue. The GM determines which
goals to add to a planning problem, and maintains a queue
of uncompleted goals for a future planning problem, e.g., as
a result of re-planning during execution.

The input to the GM is a set of goals, either user-generated
or the result of previous processing (either during planning
or execution, including the special case of the result of sens-
ing a fire alarm). The goals are passed to the plan generator
to determine the feasibility of the plan. If it is feasible, it
is dispatched by the RPM. Otherwise, the GM updates the
set of goals by shedding lower priority goals and invokes
the planner again. This continues until a feasible plan (or
no plan) is found. The overall goal ordering mechanism is
loosely based on goal prioritization in PDDL3.0 (Gerevini
and Long 2005), and the search mechanism for finding high
priority plans resembles the hill-climbing approach for solv-
ing partial CSPs (Voudouris and Tsang 2000).

GM avoids the combinatorial complexity of solving the
general optimal goal selection problem by applying a set of
rules for ordering and removing goals. First, the GM will
try to plan for the entire set of input goals. If this problem
is infeasible, then the lower priority goals are removed, one
at a time, until the planner returns a feasible plan. Finally, if
the set of goals contains only goals of one level of priority,
then the goals are removed using a user-specified pre-order
of oldest-first or newest-first.

Finally, GM supports an ’emergency response’ capability
in response to alarms or other sensing of safety-threatening
events by loading emergency response goals, such as isolat-
ing the location of a fire in the proximity of the ISS Express
Rack (see below for a detailed description of the demonstra-
tion platform).

The GM provides the ’expertise’ for re-planning per-
formed by the RPM. The RPM can be invoked for re-
planning either during planning time, as the result of failure
to find a plan for an initial set of goals, or during execu-
tion, when the dispatcher notifies the RPM that an executing
plan has failed. RPM formulates a new planning problem by
reading the current world state and the list of goals provided
by the GM. The RPM re-plan loop succeeds if there exists a



Figure 3: Robot Inspecting a Fire Port

set of goals that results in a valid plan; otherwise, the RPM
fails and no plan is dispatched.

Task Planning
Planning problems are formulated by defining a PDDL 2.1
domain model and problem. For the science scenario, PDDL
actions for picking and placing test tubes to and from either
storage locations or from a centrifuge, for opening a closing
a freezer door and centrifuge lid, and for imaging samples
under a microscope, were defined (this action model is vir-
tually the same as the one described in (Azimi, Zemler, and
Morris 2019).)

To test the new desired deliberative capabilities (specif-
ically robust execution and smart responses to potential
threats to the spacecraft) the action domain was extended to
include actions for inspecting a fire port using a fire probe, as
well as actions that quickly transition the science work space
into a safe state prior to inspecting for fire (see Figure 3).

The resulting planning problem is solved using the heuris-
tic forward search planner LPG-td (Gerevini and Serina
2002). The ROSPlan system outputs a Esterel plan (Berry
2000). An Esterel plan is a directed acyclic graph with nodes
representing the start or end of activities and the edges rep-
resenting either causal or temporal orderings in the plan.
The ROSPlan dispatcher, in conjunction with the Plan Vi-
ability Checker (see below) executes each enabled action in
the plan.

Temporal constraints in the form of Timed Initial Liter-
als (TILs) (Gerevini et al. 2004) add expressive power to the
planning language by constraining the duration of certain
actions. In space domains TILs are useful in specifying re-
source constraints such as crew availability or loss of signal

for downlinking data.

Plan Viability Checker
Acting in an uncertain world requires a combination of ex-
pressive planning models and capabilities for robust plan ex-
ecution. In this effort we selected an approach to robustness
based on execution monitoring and re-planning. A viable
alternative that has been explored extensively in the liter-
ature is to incorporate the property of robustness into the
plan itself through the representation of temporal flexibil-
ity and uncontrollable events (Morris, Muscettola, and Vidal
2001). We chose here to limit the expressive power of the
plan model in favor of robust execution for the sake of faster
planning; we are aware of the potential limitations of this
approach and are interested in exploring hybrid approaches
to ensuring robustness in future work.

Execution monitoring is a capability for tracking the evo-
lution of the world state while a plan is executed. Systems
robust to plan failure should respond to unpredicted changes
to the world state that cause a plan to fail by triggering cor-
rective actions. The Plan Viability Checker (PVC) is an exe-
cution monitoring system that continuously checks whether
a partially executed plan is viable given changes to the world
state (represented in the ROSPlan Knowledge Base). It is a
similar, although simplified, capability to the one described
in (Muise, Beck, and McIlraith 2013).

The PVC handles two kinds of unexpected change: in the
duration of events (actions takes longer than expected) and
in the truth values of fluents that are preconditions for future
actions. Change in duration requires an ability to propagate
the effects of the change into the future to determine whether
a temporal constraint will be violated. Temporal constraints
can either be with respect to points in time (e.g. deadlines)
or intervals of time (a period where certain actions cannot be
performed), such as loss of downlink.

The PVC operates in parallel with (an enhancement of)
the ROSPlan dispatcher of Esterel plans. The Esterel plan
graph consists of a set of action nodes. An action node is dis-
patched when all the preceding nodes in the graph are com-
pleted. Furthermore, an action start node completes once
the action is dispatched, while a action end node completes
when the execution of the action returns success by the ac-
tion components.

The PVC is called to check to see if the plan is still viable
after an action succeeds. PVC requires a limited ability to
simulate the effects of changes to the world state in the fu-
ture to determine whether an executing plan remains valid
despite unplanned changes in world state. To do this, PVC
creates and maintains a ’shadow knowledge base’ (shadow-
KB), initialized to the current world state. It simulates the
execution of the remainder of the plan, in order, updating the
shadow-KB to reflect the effects of the actions, determining
whether action preconditions and overall conditions of du-
rative actions hold for future actions. A plan is viable if the
effect of the simulation is that the plan succeeds. Otherwise,
the plan fails and the RPM is called to replan.

A feature provided by the enhanced dispatcher and the
PVC is the ability to shift the timeline due to violated tem-
poral constraints with respect to the original dispatch time of



Figure 4: RVIZ visualization of robot executing the pick of
a test tube.

an action as defined by the plan. The PVC will check to see
if the failing precondition is a timed initial literal and will at-
tempt to simulate the plan as if the action begins at the TIL
application time, shifting all other actions in the plan as well.
If the PVC is successful, RPM can avoid full replanning.

Integration with Low Level Behaviors
To integrate deliberative task-planning with low-level be-
haviors using ROSPlan, The ROSPlan Action Interface was
designed to map actions in the PDDL domain model to low-
level components. When ROSPlan dispatches an action to
a component, the component will invoke the behavior re-
quired for completing the action. Upon successful comple-
tion of the behavior, the ROSPlan Knowledge Base is up-
dated, with the effects of the action, using sensor data as
verification prior to updating as applicable.

A number of different modeling languages for behaviors
was employed for this domain. FlexBE (Schillinger 2017),
was used as a modeling tool and behavior engine for manip-
ulating the freezer door. At the lowest level, an action like
opening the freezer door is mapped to a Finite State Ma-
chine of atomic commands like ’release gripper’. Branching
in the FSM allowed for a degree of modeling failed actions
or intermediate states like a partially closed door. Compli-
mentary behaviors (opening, closing door) are arranged in a
hierarchy of behavior meta-patterns that are managed by a
mediator that decides which patterns to invoke.

Dispatching a fundamental manipulation action such as
’pick’ or ’place’ requires solving a motion planning prob-
lem. To facilitate the integration of task and motion plan-
ning, the Affordance Template framework was used (Hart,
Dinh, and Hambuchen 2015). An affordance template is a
graphical representation that exists in a 3D immersive envi-
ronment (such as RViz) to provide robot task goals (includ-
ing spatial end-effector way- points, contact points for in-
teraction, force magnitudes) and parameters (object scales,
locations) in object-centric coordinate frames. If a template
is placed in such an environment (a location that is said to

afford the task behavior) with the associated goals and pa-
rameters, they can be sent to the robot’s control system to
perform the task (see (Azimi, Zemler, and Morris 2019) for
a more detailed description of how Affordance Templates
were used in this system). Figure 4 shows an RVIZ visual-
ization of a pick action with the Affordance Template frame-
work.

Demonstration Platform Design
The demonstration platform used for these experiments was
an enhancement of the one described in (Azimi, Zemler, and
Morris 2019), and so will be only summarized here. The
platform was inspired by existing scientific facilities aboard
the International Space Station (ISS). The use case scenario
specifies that the robot is attached to an ISS EXPRESS rack
and interacts with rack payloads. Since an ISS EXPRESS
rack is effectively just a cabinet frame with rack mount rails
Figure 5), we opted to build an equivalent sized frame us-
ing aluminum T-slot rails rather than acquire an expensive
duplicate rack.

Figure 5: ISS Express Rack

Four standard size rack-mount “payloads” were then de-
signed to fit within the frame: (1) A mechanical mock-up
freezer modelled after the MERLIN freezer used on ISS, (2)
a mock up centrifuge with a twist-lock lid that is simulated
by a modified kitchen appliance; (3) a combination test tube
rack and (functional) digital microscope; and (4) a mock-
up of a set of fire ports to be used for inspecting with a fire
probe. Figure 6 summarizes the platform configuration.

In order to know the state of the world without having to
rely on a perception suite, the apparatus was augmented with



limit switches placed at various locations in the experiment
area. These switches map to discrete on or off signals when
pressed. In our scenario, switches were located at positions
that allowed us to determine the state of fluents related to
the states of the centrifuge and freezer. In the case of the
centrifuge, one switch is triggered when the lid is at its open
position, while a different switch is triggered when the lid is
at its closed position. The freezer’s switches were deployed
in a similar way. Having these switches allowed us the ad-
ditional functionality of changing the state of fluents in the
domain in a way that is unexpected to both the planner and
robot.

Figure 6: Drawing of ISS Express Rack Design with freezer,
centrifuge,storage areas, and fire ports for inspection.

Experiments and Lessons Learned
The goals of the experiments were to enhance the capabili-
ties of the system described in (Azimi, Zemler, and Morris
2019), using much of the same science scenario, in three
ways:
• Adding goal preferences and the ability to plan based on

goal priorities;
• Illustrating robustness to time delay through executing

monitoring and replanning; and
• Illustrating smart autonomous response to potential

threats.
In the nominal scenario, science imaging goals were de-

fined for six test tubes using different set-up steps: all re-
quired removal from freezer and defrosted before taking

Figure 7: Sawyer Robot Executing PDDL Formulated Sci-
ence Goals

an image; some were imaged without first being spun in
a centrifuge; others were imaged after spinning. Finally,
for added variety, still others were first exposed to UV be-
fore imaging. Each goal was assigned a priority of small,
medium, or high. The nominal scenario schedules a maxi-
mum set of high-priority goals using the approach described
above.

During execution, the nominal scenario was modified in
one of three ways: either to increase the duration of an imag-
ing action to delay the execution of the plan; an unexpected
state change of a fluent; or to randomly trigger a fire alarm
event.

Injecting delay into the executing plan required the system
to determine correctly whether the remaining plan will even-
tually fail as a result of violation of temporal constraints;
and, if failure is detected, trigger re-planning actions that
adheres to goal priority ordering.

An unexpected state change was triggered by changing
the state of an object that interacts with the limit switches
on the ISS Express Rack mockup. This state change will get
propagated to the Knowledge Base, which the PVC uses. If
the unexpected state change violates any proceeding action
in the plan, the PVC detects the failure, and triggers a re-
planning

To test threat response, at a random time during plan ex-
ecution, a fire alarm signal will trigger. The goal is for
the system to cancel the plan in progress; finish the current
robotic behavior to get to a predefined known state by per-
forming a sequence of make-safe commands (using a finite
state machine at the behavior level); and re-plan with imme-
diate priority goal ”find fire”, where an immediate goal is
one that super-cedes all other goals and is never planned for
with other goals. The resulting plan will include actions for
putting down any held test tube in a safe spot, and closing
freezer door if it is open.

The scenario was successfully demonstrated on the
robotic platform described above, using ROSPlan for task
planning and execution. With proper tuning of input param-
eters, optimal plans (based on makespan) could be generated



by LPG in a matter of a few seconds, Plan lengths were in the
range of a few dozen, and the plan model contained roughly
10 durative actions and 50 predicates.

Performance Analysis and Lessons Learned
Due to the nature of the described system, there is inherit
flexibility regarding the inputs of our problem. For exam-
ple, we could add multiple loss of signal (LOS) intervals
that would prevent the image from transmitting from station
to ground. We also varied the initial starting state of the
items in our experiment, such as the centrifuge open versus
closed or the initial positions of test tubes. The robot oper-
ators would adjust the input parameters to the system to test
different aspects of the robotic operation, such as modify-
ing and reducing the overall operations deadline to force the
Goal Manager to reduce goals, adding a LOS during execu-
tion time (not planning time) to see if the enhanced esterel
dispatcher and PVC would shift actions until the acquisition
of signal (AOS), or the operator would move the centrifuge
lid from open to closed during execution to see if the PVC
recognizes the unexpected state change and force a replan.
The emergent actions required to locate the “fire” required
more complex robotic behavior modeling, as the desire was
for the robot to stop execution in the quickest manner result-
ing in a known configuration. This required vast testing to
ensure the success of the behavior model. Throughout all
the testing, we ran the robotic system upwards of 100 times
to the expected completion based on the varying conditions.

The operators, through the Goal Manager, would config-
ure the task planner to solve up to six goals with a model
containing 29 actions, with a potential to reduce to a total of
two goals, depending on the solvability of all the goals based
on the configuration of other inputs, such as an overall op-
erations deadline. The planning time with the GM is depen-
dent on the settings for the planner being used. Ultimately,
to reduce to the highest priority two goals, the GM would
have three planning cycles. For our settings with LPG-td
(Gerevini and Serina 2008), we specified that the planner
use a cpu time of 45 seconds, for a total of up to 2:15 min-
utes of planning time. For locating the “fire”, the GM would
invoke the immediate goals, and the robot would proceed to
execute the plan, resulting in approximately 10 seconds of
planning. For the GM, the ability to customize the planner
command depending on whether the goal is an immediate
goal versus a different priority level was necessary.

The Plan Viability Checker was invoked prior to the dis-
patch of every action. As the PVC creates a copy of the
knowledge base, we can determine as soon as possible a
failure that is expected to occur in the future, triggering a
replanning cycle to attempt to recover from the event. The
system can begin the recovery plan in as little as 45 seconds
(based on the settings of the task planner). Future improve-
ments can include invoking the PVC during the execution of
actions to parallelize the process.

Although the tests conducted here consistently resulted in
a response time for the deliberation system (planner and ex-
ecution) that is consistent with possible operational require-
ments, more work is required to further quantify the the re-
sults on a range of realistic scenarios.

Summary and Future Work
Building an effective manipulator that combines delibera-
tive and reactive behaviors requires a careful blend of plan
modeling techniques; automated planner and plan represen-
tation; plan dispatching and execution; and goal reason-
ing and high level mission management. It also requires a
framework for integrating deliberative models and decision-
makers with lower level models and behaviors.

Future deep space assets, such as NASA’s Gateway, will
involve “cutting-edge robotics and computers [that] will op-
erate experiments inside and outside the spaceship, automat-
ically returning data back to Earth” (Gateway 2018). Future
work includes generalizing the approach to integrating task
planning with robotic manipulation to a multi-robot setting.
We are seeking to determine whether the multi-agent plan-
ning framework (Stolba and Komenda 2017) could be use to
characterize and plan for tasks that need to be coordinated
for multiple agents (both human and robotic).

Future space explorers will combine smart robotic assets
with automated vehicle system management and crew su-
pervision. The RPM and Goal manager system components
provide the basis for integrating human and machine activi-
ties, but much more work is needed in all aspects of human-
robot collaboration, including knowledge sharing, behavior
and intent prediction, goal sharing and negotiation, and trust
building (Mainprice and Berenson 2013).

This paper has described a successful technology demon-
stration of integrated task planning for a in-space intra-
vehicle activity application of a robot manipulator. The ap-
proach combines task planning and execution using PDDL
planning, augmented with capabilities for enhanced opti-
mized planning and robust execution.

Acknowlegements
This work was performed under NASA’s Autonomous Sys-
tems and Operations (ASO) Project. The authors would
like to thank team members Mike Goza, Alex Hansen, and
Michael Park for their contributions to this effort. We also
thank the anonymous reviewers for helpful feedback.

References
Azimi, S.; Zemler, E.; and Morris, R. A. 2019. Autonomous
robotics manipulation for in-space intra-vehicle activity. In
Workshop on Planning and Robotics (PlanRob).
Bagnell, J. a. 2012. An Integrated System for Autonomous
Robotics. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2955–2962.
Berry, G. 2000. The foundations of esterel. In Plotkin,
G. D.; Stirling, C.; and Tofte, M., eds., Proof, Language,
and Interaction, Essays in Honour of Robin Milner, 425–
454. The MIT Press.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Huros, N.; and Carreras,
M. 2015. Rosplan: Planning in the robot operating system.
In Proceedings of the Twenty-Fifth International Conference
on Automated Planning and Scheduling, 333–341. ICAPS.



Cashmore, M.; Cimatti, A.; Magazzeni, D.; Micheli, A.;
and Zehtabi, P. 2017. Robustness envelopes for temporal
plans. Proceedings of the AAAI Conference on Artificial In-
telligence 33:7538–3545.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In ICAPS, vol-
ume 6, 212–221.
Gateway. 2018. Q&A: NASA’s New Space-
ship. https://www.nasa.gov/feature/
questions-nasas-new-spaceship.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in pddl3 - the language of the fifth international
planning competition. Technical report.
Gerevini, A., and Serina, I. 2002. Lpg: A planner based
on local search for planning graphs with action costs. In
Proceedings of the Sixth International Conference on Artifi-
cial Intelligence Planning Systems, AIPS’02, 13–22. AAAI
Press.
Gerevini, A., and Serina, A. S. I. 2008. An approach to
efficient planning with numerical fluents and multi-criteria
plan quality. Artificial Intelligence 172(8-9):899–944.
Gerevini, A.; Saetti, A.; Serina, I.; and Toninelli, P. 2004.
Lpg-td: a fully automated planner for pddl2.2 domains. In
In Proc. of the 14th Int. Conference on Automated Planning
and Scheduling (ICAPS-04) International Planning Compe-
tition abstracts.
Hart, S.; Dinh, P.; and Hambuchen, K. A. 2015. The af-
fordance template ros package for robot task programming.
2015 IEEE International Conference on Robotics and Au-
tomation (ICRA) 6227–6234.
Huang, X.; Hong, S.; Hofmann, A.; and Williams, B. C.
2019. Online risk-bounded motion planning for autonomous
vehicles in dynamic environments.
Ingrand, F., and Ghallab, M. 2017. Deliberation for au-
tonomous robots. Artif. Intell. 247(C):10–44.
Kaelbling, L. P., and Lozano-Perez, T. 2011. Hierarchical
task and motion planning in the now. In IEEE Conference
on Robotics and Automation (ICRA). Finalist, Best Manip-
ulation Paper Award.
Kim, P.; Williams, B. C.; and Abramson, M. 2001. Exe-
cuting reactive, model-based programs through graph-based
temporal planning. In IJCAI, 487–493.
Mainprice, J., and Berenson, D. 2013. Human-robot col-
laborative manipulation planning using early prediction of
human motion. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 299–306.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In Proceedings
of the 17th International Joint Conference on Artificial In-
telligence - Volume 1, IJCAI’01, 494–499. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.
Muise, C.; Beck, J. C.; and McIlraith, S. A. 2013. Flex-
ible execution of partial order plans with temporal con-
straints. International Joint Conference on Artificial Intel-
ligence 2328–2335.

Nebel, B., and Koehler, J. 1995. Plan reuse versus plan
generation: A theoretical and empirical analysis. Artificial
Intelligence (AIJ) 76(1-2):427–454. Special Issue on Plan-
ning and Scheduling.
Pettersson, O. 2005. Execution monitoring in robotics: A
survey. Robotics and Autonomous Systems 53(2):73–88.
Roberts, M.; Shivashankar, V.; Alford, R.; Leece, M.;
Gupta, S. K.; and Aha, D. W. 2016. Goal reasoning, plan-
ning, and acting with actorsim, the actor simulator.
Schillinger, P. 2017. FlexBE Behavior Engine. http:
//philserver.bplaced.net/fbe/index.php.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer.
In IEEE International Conference on Robotics and Automa-
tion (ICRA).
Stolba, M., and Komenda, A. 2017. The madla planner:
Multi-agent planning by combination of distributed and lo-
cal heuristic search. Artificial Intelligence 252.
Vattam, S.; Klenk, M.; Molineaux, M.; and Aha, D. W.
2013. Breadth of approaches to goal reasoning: A research
survey. Technical report, Naval Research Lab Washington
DC.
Voudouris, C., and Tsang, E. 2000. Partial constraint satis-
faction problems and guided local search.


