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Abstract

Given recent deep learning results that demonstrate the ability to effectively opti-
mize high-dimensional non-convex functions with gradient descent optimization on
GPUs, we ask in this paper whether symbolic gradient optimization tools such as
Tensorflow can be effective for planning in hybrid (mixed discrete and continuous)
nonlinear domains with high dimensional state and action spaces? To this end, we
demonstrate that hybrid planning with Tensorflow and RMSProp gradient descent
is competitive with mixed integer linear program (MILP) based optimization on
piecewise linear planning domains (where we can compute optimal solutions)
and substantially outperforms state-of-the-art interior point methods for nonlinear
planning domains. Furthermore, we remark that Tensorflow is highly scalable,
converging to a strong plan on a large-scale concurrent domain with a total of
576,000 continuous action parameters distributed over a horizon of 96 time steps
and 100 parallel instances in only 4 minutes. We provide a number of insights that
clarify such strong performance including observations that despite long horizons,
RMSProp avoids both the vanishing and exploding gradient problems. Together
these results suggest a new frontier for highly scalable planning in nonlinear hybrid
domains by leveraging GPUs and the power of recent advances in gradient descent
with highly optimized toolkits like Tensorflow.

1 Introduction

Many real-world hybrid (mixed discrete continuous) planning problems such as Reservoir Con-
trol [Yeh, 1985], Heating, Ventilation and Air Conditioning (HVAC) [Erickson et al., 2009; Agarwal
et al., 2010], and Navigation [Faulwasser and Findeisen, 2009] have highly nonlinear transition and
(possibly nonlinear) reward functions to optimize. Unfortunately, existing state-of-the-art hybrid
planners [Ivankovic et al., 2014; Löhr et al., 2012; Coles et al., 2013; Piotrowski et al., 2016] are not
compatible with arbitrary nonlinear transition and reward models. While HD-MILP-PLAN [Say et
al., 2017] supports arbitrary nonlinear transition and reward models, it also assumes the availability of
data to learn the state-transitions. Monte Carlo Tree Search (MCTS) methods [Coulom, 2006; Kocsis
and Szepesvári, 2006; Keller and Helmert, 2013] including AlphaGo [Silver et al., 2016] that can use
any (nonlinear) black box model of transition dynamics do not inherently work with continuous action
spaces due to the infinite branching factor. While MCTS with continuous action extensions such as
HOOT [Weinstein and Littman, 2012] have been proposed, their continuous partitioning methods do
not scale to high-dimensional continuous action spaces (for example, 100’s or 1,000’s of dimensions
as used in this paper). Finally, offline model-free reinforcement learning (for example, Q-learning)
with function approximation [Sutton and Barto, 1998; Szepesvári, 2010] and deep extensions [Mnih
et al., 2013] do not require any knowledge of the (nonlinear) transition model or reward, but they also
do not directly apply to domains with high-dimensional continuous action spaces. That is, offline
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Figure 1: The evolution of RMSProp gradient descent based Tensorflow planning in a two-
dimensional Navigation domain with nested central rectangles indicating nonlinearly increasing
resistance to robot movement. (top) In initial RMSProp epochs, the plan evolves directly towards the
goal shown as a star. (bottom) As later epochs of RMSProp descend the objective cost surface, the
fastest path evolves to avoid the central obstacle entirely.

learning methods like Q-learning [Watkins and Dayan, 1992] require action maximization for every
update, but in high-dimensional continuous action spaces such nonlinear function maximization is
non-convex and computationally intractable at the scale of millions or billions of updates.

To address the above scalability and expressivity limitations of existing methods, we turn to Tensor-
flow [Abadi et al., 2015], which is a symbolic computation platform used in the machine learning
community for deep learning due to its compilation of complex layered symbolic functions into a
representation amenable to fast GPU-based reverse-mode automatic differentiation [Linnainmaa,
1970] for gradient-based optimization. Given recent results in gradient descent optimization with deep
learning that demonstrate the ability to effectively optimize high-dimensional non-convex functions,
we ask whether Tensorflow can be effective for planning in discrete time, hybrid (mixed discrete and
continuous) nonlinear domains with high dimensional state and action spaces?

Our results answer this question affirmatively, where we demonstrate that hybrid planning with
Tensorflow and RMSProp gradient descent [Tieleman and Hinton, 2012] is surprisingly effective at
planning in complex hybrid nonlinear domains1. As evidence, we reference figure 1, where we show
Tensorflow with RMSProp efficiently finding and optimizing a least-cost path in a two-dimensional
nonlinear Navigation domain. In general, Tensorflow with RMSProp planning results are competitive
with optimal MILP-based optimization on piecewise linear planning domains. The performance
directly extends to nonlinear domains where Tensorflow with RMSProp substantially outperforms
interior point methods for nonlinear function optimization. Furthermore, we remark that Tensorflow
converges to a strong plan on a large-scale concurrent domain with 576,000 continuous actions
distributed over a horizon of 96 time steps and 100 parallel instances in 4 minutes.

To explain such excellent results, we note that gradient descent algorithms such as RMSProp are
highly effective for non-convex function optimization that occurs in deep learning. Further, we
provide an analysis of many transition functions in planning domains that suggest gradient descent
on these domains will not suffer from either the vanishing or exploding gradient problems, and hence
provide a strong signal for optimization over long horizons. Together these results suggest a new
frontier for highly scalable planning in nonlinear hybrid domains by leveraging GPUs and the power
of recent advances in gradient descent with Tensorflow and related toolkits.

2 Hybrid Nonlinear Planning via Tensorflow

In this section, we present a general framework of hybrid nonlinear planning along with a compilation
of the objective in this framework to a symbolic recurrent neural network (RNN) architecture with
action parameter inputs directly amenable to optimization with the Tensorflow toolkit.

2.1 Hybrid Planning

A hybrid planning problem is a tuple 〈S,A, T ,R, C〉 with S denoting the (infinite) set of hybrid
states with a state represented as a mixed discrete and continuous vector,A the set of actions bounded
by action constraints C, R : S × A → R the reward function and T : S × A → S the transition

1The approach in this paper is implemented in Tensorflow, but it is not specific to Tensorflow. While “scalable
hybrid planning with symbolic representations, auto-differentiation, and modern gradient descent methods for
non-convex functions implemented on a GPU” would make for a more general description of our contributions,
we felt that “Tensorflow” succinctly imparts at least the spirit of all of these points in a single term.
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Figure 2: An recurrent neural network (RNN) encoding of a hybrid planning problem: A single-step
reward and transition function of a discrete time decision-process are embedded in an RNN cell.
RNN inputs correspond to the starting state and action; the outputs correspond to reward and next
state. Rewards are additively accumulated in V . Since the entire specification of V is a symbolic
representation in Tensorflow with action parameters as inputs, the sequential action plan can be
directly optimized via gradient descent using the auto-differentiated representation of V.

function. There is also an initial state s0 and the planning objective is to maximize the cumulative
reward over a decision horizon of H time steps. Before proceeding, we outline the necessary notation:

• st: mixed discrete, continuous state vector at time t.
• at: mixed discrete, continuous action vector at time t.
• R(st,at): a non-positive reward function (i.e., negated costs).
• T (st,at): a (nonlinear) transition function.

• V =
∑H
t=1 rt =

∑H−1
t=0 R(st,at): cumulative reward value to maximize.

In general due to the stochastic nature of gradient descent, we will run a number of planning domain
instances i in parallel (to take the best performing plan over all instances), so we additionally define
instance-specific states and actions:

• sitj : the jth dimension of state vector of problem instance i at time t.
• aitj : the jth dimension of action vector of problem instance i at time t.

2.2 Planning through Backpropagation

Backpropagation [Rumelhart et al.] is a standard method for optimizing parameters of large mul-
tilayer neural networks via gradient descent. Using the chain rule of derivatives, backpropagation
propagates the derivative of the output error of a neural network back to each of its parameters in a
single linear time pass in the size of the network using what is known as reverse-mode automatic
differentiation [Linnainmaa, 1970]. Despite its relative efficiency, backpropagation in large-scale
(deep) neural networks is still computationally expensive and it is only with the advent of recent
GPU-based symbolic toolkits like Tensorflow [Abadi et al., 2015] that recent advances in training
very large deep neural networks have become possible.

In this paper, we reverse the idea of training parameters of the network given fixed inputs to instead
optimizing the inputs (i.e., actions) subject to fixed parameters (effectively the transition and reward
parameterization assumed a priori known in planning). That is, as shown in figure 2, given transition
T (st,at) and reward function R(st,at), we want to optimize the input at for all t to maximize the
accumulated reward value V . Specifically, we want to optimize all actions a = (a1, . . . ,aH−1) w.r.t.
a planning loss L (defined shortly) that we minimize via the following gradient update schema

a′ = a− η ∂L
∂a

, (1)
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where η is the optimization rate and the partial derivatives comprising the gradient based optimization
in problem instance i are computed as

∂L

∂aitj
=

∂L

∂Li

∂Li
∂aitj
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=
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T∑
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[
∂Li
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κ=τ

∂siκ
siκ−1

].

(2)

We must now connect our planning objective to a standard Tensorflow loss function. First, however,
let us assume that we have N structurally identical instances i of our planning domain given in
Figure 2, each with objective value Vi; then let us define V = (. . . , Vi, . . .). In Tensorflow, we
choose Mean Squared Error (MSE), which given two continuous vectors Y and Y∗ is defined as
MSE(Y,Y∗) = 1

N ‖Y
∗ −Y‖2. We specifically choose to minimize L = MSE(0,V) with inputs

of constant vector 0 and value vector V in order to maximize our value for each instance i; we remark
that here we want to independently maximize each non-positive Vi, but minimize each positive V 2

i
which is achieved with MSE. We will further explain the use of MSE in a moment, but first we digress
to explain why we need to solve multiple problem instances i.

Since both transition and reward functions are not assumed to be convex, optimization on a domain
with such dynamics could result in a local minimum. To mitigate this problem, we use randomly
initialized actions in a batch optimization: we optimize multiple mutually independent planning
problem instances i simultaneously since the GPU can exploit their parallel computation, and then
select the best-performing action sequence among the independent simultaneously solved problem
instances. MSE then has dual effects of optimizing each problem instance i independently and
providing fast convergence (faster than optimizing V directly). We remark that simply defining the
objective V and the definition of all state variables in terms of predecessor state and action variables
via the transition dynamics (back to the known initial state constants) is enough for Tensorflow to
build the symbolic directed acyclic graph (DAG) representing the objective and take its gradient with
respect to to all free action parameters as shown in (2) using reverse-mode automatic differentiation.

2.3 Planning over Long Horizons

The Tensorflow compilation of a nonlinear planning problem reflects the same structure as a recurrent
neural network (RNN) that is commonly used in deep learning. The connection here is not superficial
since a longstanding difficulty with training RNNs lies in the vanishing gradient problem, that is,
multiplying long sequences of gradients in the chain rule usually renders them extremely small and
make them irrelevant for weight updates, especially when using nonlinear transfer functions such
as a sigmoid. However in hybrid planning problems, continuous state updates often take the form
si(t+1)j = sitj + ∆ for some ∆ function of the state and action at time t. Critically we note that
the transfer function here is linear in sitj which is the largest determiner of si(t+1)j , hence avoiding
vanishing gradients.

In addition, a gradient can explode with the chain rule through backpropagation if the elements of
the Jacobian matrix of state transitions are too large. In this case, if the planning horizon is large
enough, a simple Stochastic Gradient Descent (SGD) optimizer may suffer from overshooting the
optimum and never converge (as our experiments appear to demonstrate for SGD). The RMSProp
optimization algorithm has a significant advantage for backpropagation-based planning because of
its ability to perform gradient normalization that avoids exploding gradients and additionally deals
with piecewise gradients [Balduzzi et al., 2016] that arise naturally as conditional transitions in
many nonlinear domains (e.g., the Navigation domain of Figure 1 has different piecewise transition
dynamics depending on the starting region). Specifically, instead of naively updating action aitj
through equation 1, RMSProp maintains a decaying root mean squared gradient value G for each
variable, which averages over squared gradients of previous epochs

G′aitj = 0.9Gaitj + 0.1(
∂L

∂aitj
)2, (3)
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and updates each action variable through

a′itj = aitj −
η√

Gaitj + ε

∂L

∂aitj
. (4)

Here, the gradient is relatively small and consistent over iterations. Although the Adagrad [Duchi
et al., 2011] and Adadelta [Zeiler, 2012] optimization algorithms have similar mechanisms, their
learning rate could quickly reduce to an extremely small value when encountering large gradients. In
support of these observations, we note the superior performance of RMSProp in Section 3.

2.4 Handling Constrained and Discrete Actions

In most hybrid planning problems, there exist natural range constraints for actions. To handle those
constraints, we use projected stochastic gradient descent. Projected stochastic gradient descent
(PSGD) is a well-known descent method that can handle constrained optimization problems by
projecting the parameters (actions) into a feasible range after each gradient update. To this end, we
clip all actions to their feasible range after each epoch of gradient descent.

For planning problems with discrete actions, we use a one-hot encoding for optimization purposes
and then use a {0, 1} projection for the maximal action to feed into the forward propagation. In this
paper, we focus on constrained continuous actions which are representative of many hybrid nonlinear
planning problems in the literature.

3 Experiments

In this section, we introduce our three benchmark domains and then validate Tensorflow planning
performance in the following steps. (1) We evaluate the optimality of the Tensorflow backpropagation
planning on linear and bilinear domains through comparison with the optimal solution given by
Mixture Integer Linear Programming (MILP). (2) We evaluate the performance of Tensorflow
backpropagation planning on nonlinear domains (that MILPs cannot handle) through comparison
with the Matlab-based interior point nonlinear solver FMINCON. (4) We investigate the impact of
several popular gradient descent optimizers on planning performance. (5) We evaluate optimization
of the learning rate. (6) We investigate how other state-of-the-art hybrid planners perform.

3.1 Domain Descriptions

Navigation: The Navigation domain is designed to test the ability of optimization of Tensorflow
in a relatively small environment that supports different complexity transitions. Navigation has a
two-dimensional state of the agent location s and a two-dimensional action a. Both of state and
action spaces are continuous and constrained by their maximum and minimum boundaries separately.

The objective of the domain is for an agent to move to the goal state as soon as possible (cf. figure 1).
Therefore, we compute the reward based on the Manhattan distance from the agent to the goal state at
each time step as R(st,at) = −‖st − g‖1, where g is the goal state.

We designed three different transitions; from left to right, nonlinear, bilinear and linear:

dt = ‖st − z‖

λ =
2

1 + exp(−2dt)
− 0.99

p = st + λat
T (st,at) = max(u,min(l,p)),

(5)

dt =

2∑
j=1

|stj − zj |

λ =

{
dt
4 , dt < 4

1, dt ≥ 4

p = st + λat
T (st,at) = max(u,min(l,p)),

(6)

dt = ‖st − z‖1

λ =



0.8, 3.6 ≤ dt < 4

0.6, 2.4 ≤ dt < 3.6

0.4, 1.6 ≤ dt < 2.4

0.2, 0.8 ≤ dt < 1.6

0.05, dt < 0.8

1, dt ≥ 4

p = st + λat
T (st,at) = max(u,min(l,p)),

(7)
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The nonlinear transition has a velocity reduction zone based on its Euclidean distance to the center z.
Here, dt is the distance from the deceleration zone z, p is the proposed next state, λ is the velocity
reduction factor, and u,l are upper and lower boundaries of the domain respectively.

The bilinear domain is designed to compare with MILP where domain discretization is possible. In
this setting, we evaluate the efficacy of approximately discretizing bilinear planning problems into
MILPs. Equation 6 shows the bilinear transition function.

The linear domain is the discretized version of the bilinear domain used for MILP optimization. We
also test Tensorflow on this domain to see the optimality of the Tensorflow solution. Equation 7
shows the linear transition function.

Reservoir Control: Reservoir Control [Yeh, 1985] is a system to control multiple connected
reservoirs. Each of the reservoirs in the system has a single state sj ∈ R that denotes the water level
of the reservoir j and a corresponding action to permit a flow aj ∈ [0, sj ] from the reservoir to the
next downstream reservoir.

The objective of the domain is to maintain the target water level of each reservoir in a safe range and
as close to half of its capacity as possible. Therefore, we compute the reward through:

cj =


0, Lj ≤ sj ≤ Uj
−5, sj < Lj
−100, sj > Uj

R(st,at) = −‖c− 0.1 ∗ | (u− l)

2
− st|‖1,

where cj is the cost value of Reservoir j that penalizes water levels outside a safe range.

In this domain, we introduce two settings: namely, Nonlinear and Linear. For the nonlinear domain,
nonlinearity due to the water loss ej for each reservoir j includes water usage and evaporation. The
transition function is

et = 0.5 ∗ st � sin(
st
m

), T (st,at) = st + rt − et − at + atΣ, (8)

where � represents an elementwise product, r is a rain quantity parameter, m is the maximum
capacity of the largest tank, and Σ is a lower triangular adjacency matrix that indicates connections to
upstream reservoirs.

For the linear domain, we only replace the nonlinear function of water loss by a linear function:

et = 0.1 ∗ st, T (st,at) = st + rt − et − at + atΣ, (9)

Unlike Navigation, we do not limit the state dimension of the whole system into two dimensions. In
the experiments, we use domain setting of a network with 20 reservoirs.

HVAC: Heating, Ventilation, and Air Conditioning [Erickson et al., 2009; Agarwal et al., 2010] is
a centralized control problem, with concurrent controls of multiple rooms and multiple connected
buildings. For each room j there is a state variable sj denoting the temperature and an action aj for
sending the specified volume of heated air to each room j via vent actuation.

The objective of the domain is to maintain the temperature of each room in a comfortable range and
consume as little energy as possible in doing so. Therefore, we compute the reward based through:

dt = | (u− l)

2
− st|, et = at ∗ C, R(st,at) = −‖et + dt‖1,

where C is the unit electricity cost.

Since thermal models for HVAC are inherently nonlinear, we only present one version with a nonlinear
transition function:

θt = at � (F vent − st), φt = (stQ− st �
J∑
j=1

qj)/wq

ϑt = (F outt − st)� o/wo, φt = (Fhallt − st)� h/wh
T (st,at) = st + α ∗ (θt + φt + ϑt + φt),

(10)
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where F vent, F outt and Fhallt are temperatures of the room vent, outside and hallway, respectively,
Q. o and h are respectively the adjacency matrix of rooms, adjacency vector of outside areas, and the
adjacency vector of hallways. wq, wo and wh are thermal resistances with a room and the hallway
and outside walls, respectively.

In the experiments, we work with a building layout with five floors and 12 rooms on each floor for a
total of 60 rooms. For scalability testing, we apply batched backpropagation on 100 instances of such
domain simultaneously, of which, there are 576,000 actions needed to plan concurrently.

3.2 Planning Performance

In this section, we investigate the performance of Tensorflow optimization through comparison with
the MILP on linear domains and with Matlab’s fmincon nonlinear interior point solver on nonlinear
domains. We ran our experiments on Ubuntu Linux system with one E5-1620 v4 CPU, 16GB RAM,
and one GTX1080 GPU. The Tensorflow version is beta 0.12.1, the Matlab version is R2016b, and
the MILP version is IBM ILOG CPLEX 12.6.3.

3.2.1 Performance in Linear Domains
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Figure 3: The total reward comparison (values are negative, lower bars are better) among Tensorflow
(Red), MILP optimization guided planning (Green) and domain-specific heuristic policy (Blue). Error
bars show standard deviation across the parallel Tensorflow instances; most are too small to be visible.
The heuristic policy is a manually designed baseline solution. In the linear domains (a) and (c), the
MILP is optimal and Tensorflow is near-optimal for five out of six domains.

In Figure 3, we show that Tensorflow backpropagation results in lower cost plans than domain-specific
heuristic policies, and the overall cost is close to the MILP-optimal solution in five of six linear
domains.

While Tensorflow backpropagation planning generally shows strong performance, when comparing
the performance of Tensorflow on bilinear and linear domains of Navigation to the MILP solution
(recall that the linear domain was discretized from the bilinear case), we notice that Tensorflow does
much better relative to the MILP on the bilinear domain than the discretized linear domain. The
reason for this is quite simple: gradient optimization of smooth bilinear functions is actually much
easier for Tensorflow than the piecewise linear discretized version which has large piecewise steps that
make it hard for RMSProp to get a consistent and smooth gradient signal. We additionally note that
the standard deviation of the linear navigation domain is much larger than the others. This is because
the piecewise constant transition function computing the speed reduction factor λ provides a flat loss
surface with no curvature to aid gradient descent methods, leading to high variation depending on the
initial random starting point in the instance.

3.2.2 Performance in Nonlinear Domains

In figure 4, we show Tensorflow backpropagation planning always achieves the best performance
compared to the heuristic solution and the Matlab nonlinear optimizer fmincon. For relatively simple
domains like Navigation, we see the fmincon nonlinear solver provides a very competitive solution,
while, for the complex domain HVAC with a large concurrent action space, the fmincon solver shows
a complete failure at solving the problem in the given time period.

In figure 5(a), Tensorflow backpropagation planning shows 16 times faster optimization in the first
15s, which is close to the result given by fmincon at 4mins. In figure 5(b), the optimization speed of
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Figure 4: The total reward comparison (values are negative, lower bars are better) among Tensorflow
backpropagation planning (Red), Matlab nonlinear solver fmincon guided planning (Purple) and
domain-specific heuristic policy (Blue). We gathered the results after 16 minutes of optimization time
to allow all algorithms to converge to their best solution.
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Figure 5: Optimization comparison between Tensorflow RMSProp gradient planning (Green) and
Matlab nonlinear solver fmincon interior point optimization planning (Orange) on Nonlinear Reservoir
Domains with Horizon (a) 60 and (b) 120. As a function of the logarithmic time x-axis, Tensorflow is
substantially faster and more optimal than fmincon.

Tensorflow shows it to be hundreds of times faster than the fmincon nonlinear solver to achieve the
same value (if fmincon does ever reach it). These remarkable results demonstrate the power of fast
parallel GPU computation of the Tensorflow framework.

3.2.3 Scalability

In table 1, we show the scalability of Tensorflow backpropagation planning via the running times
required to converge for different domains. The results demonstrate the extreme efficiency with
which Tensorflow can converge on exceptionally large nonlinear hybrid planning domains.

Domain Dim Horizon Batch Actions Time
Nav. 2 120 100 24000 < 1mins
Res. 20 120 100 240000 4mins

HVAC 60 96 100 576000 4mins
Table 1: Timing evaluation of the largest instances of the three domains we tested. All of these tests
were performed on the nonlinear versions of the respectively named domains.

3.2.4 Optimization Methods

In this experiment, we investigate the effects of different backpropagation optimizers. In figure 6(a),
we show that the RMSProp optimizer provides exceptionally fast convergence among the five standard
optimizers of Tensorflow. This observation reflects the previous analysis and discussion concerning
equation (4) that RMSProp manages to avoid exploding gradients. As mentioned, although Adagrad
and Adadelta have similar mechanisms, their normalization methods may cause vanishing gradients
after several epochs, which corresponds to our observation of nearly flat curves for these methods.
This is a strong indicator that exploding gradients are a significant concern for hybrid planning with
gradient descent and that RMSProp performs well despite this well-known potential problem for
gradients over long horizons.
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Figure 6: (a) Comparison of Tensorflow gradient methods in the HVAC domain. All of these
optimizers use the same learning rate of 0.001. (b) Optimization learning rate comparison of
Tensorflow with the RMSProp optimizer on HVAC domain. The optimization rate 0.1 (Orange) gave
the fastest initial convergence speed but was not able to reach the best score that optimization rate
0.001 (Blue) found.

3.2.5 Optimization Rate

In figure 6(b), we show the best learning optimization rate for the HVAC domain is 0.01 since this
rate converges to near-optimal extremely fast. The overall trend is smaller optimization rates have a
better opportunity to reach a better final optimization solution, but can be extremely slow as shown for
optimization rate 0.001. Hence, while larger optimization rates may cause overshooting the optima,
rates that are too small may simply converge too slowly for practical use. This suggests a critical
need to tune the optimization rate per planning domain.

3.3 Comparison to State-of-the-art Hybrid Planners

Finally, we discuss and test the scalability of the state-of-art hybrid planners on our hybrid domains.
We note that neither DiNo [Piotrowski et al., 2016], dReal [Bryce et al., 2015] nor SMTPlan [Cash-
more et al., 2016] support general metric optimization. We ran ENHSP [Scala et al., 2016] on a
much smaller version of the HVAC domain with only 2 rooms over multiple horizon settings. We
found that ENHSP returned a feasible solution to the instance with horizon equal to 2 in 31 seconds,
whereas the rest of the instances with greater horizon settings timed out with an hour limit.

4 Conclusion

We investigated the practical feasibility of using the Tensorflow toolbox to do fast, large-scale
planning in hybrid nonlinear domains. We worked with a direct symbolic (nonlinear) planning domain
compilation to Tensorflow for which we optimized planning actions directly through gradient-based
backpropagation. We then investigated planning over long horizons and suggested that RMSProp
avoids both the vanishing and exploding gradient problems and showed experiments to corroborate
this finding. Our key empirical results demonstrated that Tensorflow with RMSProp is competitive
with MILPs on linear domains (where the optimal solution is known — indicating near optimality
of Tensorflow and RMSProp for these non-convex functions) and strongly outperforms Matlab’s
state-of-the-art interior point optimizer on nonlinear domains, optimizing up to 576,000 actions in
under 4 minutes. These results suggest a new frontier for highly scalable planning in nonlinear hybrid
domains by leveraging GPUs and the power of recent advances in gradient descent such as RMSProp
with highly optimized toolkits like Tensorflow.

For future work, we plan to further investigate Tensorflow-based planning improvements for domains
with discrete action and state variables as well as difficult domains with only terminal rewards that
provide little gradient signal guidance to the optimizer.
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