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Abstract

This paper introduces an approach to human-aware epistemic
planning in which a rational intelligent agent plans its actions
for encouraging a human to proceed in a social virtual real-
ity (VR) environment. In order to persuade the human user to
execute specific actions, the agent adapts the virtual environ-
ment by adjusting motivators in the environment. The agent’s
model of the human is based on the theory of planned behav-
ior (TPB), a cognitive theory to explain and predict human
behavior. The intelligent agent manipulates the environment,
a process where the agent conducts epistemic actions, i.e.,
adapting the environment and observing human responses, in
order to understand the human’s behavior and encourage hu-
man actions. An action reasoning framework is introduced
that defines transitions between goal-oriented human activi-
ties in the virtual scenario. The proposed human-aware plan-
ning architecture can also be applied in environments that are
not virtual, by utilizing modern mobile devices which have
built-in sensors that measure motion, orientation, and various
environmental conditions.

Introduction
Making a lasting behavior-change is rarely a simple process.
It usually involves a substantial commitment of time and ef-
fort to overcome behavioral challenges. One key stage in a
behavior-change process is to take action by confronting the
situations in which the unwanted behavior arises (Prochoska
and Velicer 1997). This is a goal-driven activity, aimed to-
wards a human’s contemplated goals. Assuming one final
goal, along the way there are a series of sub-goals that
may lie in a sequence, successively pursued to finally reach
the final goal. However, the sub-goals can also be mutu-
ally exclusive, more or less necessary, recurring, ongoing,
temporary, and with certain probability due to the stochas-
tic human behavior. A problem in human-aware planning is
whether these dynamic sub-goals of the human can be pre-
served in an autonomous system’s predictive model of the
human (Giorgini et al. 2002). This requires a model that
can identify the current situation, which sub-goals that are
present in the human’s plan, which sub-goal the human is
currently pursuing, which goals are achieved, and which are
coming next.

Epistemic planning (Bolander 2017) concerns the prob-
lem where an agent has gaps in its current state of knowl-
edge. These gaps must be filled in order to reach a desired
state of knowledge. Thus, the agent might have to acquire
additional knowledge, to reason, or to draw conclusions that
fill the gaps. To collect the missing knowledge, epistemic ac-
tions, e.g., sensing or world altering actions (Shvo and McIl-
raith 2020), can be taken towards the environment, by testing
how the environment behaves in response to these actions.
The agent can also involve other agents that may possess the
relevant knowledge, by asking or reasoning about the other
agents’ beliefs. In a scenario where an agent’s task is to pro-
mote human actions, the human’s mental state can only be
interpreted; the agent can merely attempt to encourage hu-
man actions, and observe the human’s behavior in response.
In such a scenario, epistemic actions can be taken to acquire
a theory of mind (Frith and Frith 2005) of the human to fig-
ure out the current intentions, behavioral motivators and be-
havioral inhibitors of the human, to provide timely interven-
tions. This paper approaches this problem through human-
aware planning.

Human-aware planning is a way to improve the ability
of autonomous systems to plan its actions in a space that
is populated and affected by humans (Chakraborti 2018).
In human-aware planning, the intelligent system is required
to make alternative hypotheses of the humans’ plans, i.e.,
predict the actions that the human might perform in the
future (Cirillo, Karlsson, and Saffiotti 2010). In addition,
the intelligent system is required to manage human goal
achievement, i.e., to understand the relationship between
human goals and which partial goals are required to be
achieved for reaching a future goal.

This paper introduces an theoretical action reasoning
framework1 to deal with scenarios where the intelligent
agent’s task is to promote human behavior-change by assist-
ing a human user in reaching their goals in a virtual reality
environment. In these virtual scenarios, dynamic sub-goals
of the human must be kept in the agent’s planning process
while pursuing the human’s higher goal. The human has a
final goal, but along the way there are a series of sub-goals

1https://github.com/Interactive-Intelligent-Systems/ha-tpb-
planner
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that may lie in a sequence, successively pursued to finally
reach the goal. However, the sub-goals can also be mutu-
ally exclusive, more or less necessary, recurring, ongoing,
temporary, and with certain probability due to the stochastic
human behavior. Given this human-aware planning problem,
the following research questions arise:

• By considering an agent that has control over manipulat-
ing an environment, how can the agent reason about dy-
namic goals in human-aware planning?

• How can an environment be dynamically adapted based
on the interactions with a human user in order to promote
human behavior-change?

An action reasoning (Gelfond and Lifschitz 1998) frame-
work is proposed, which is prototyped in the disjunctive
logic planner DLV-K (Eiter et al. 2003). The architecture
is modelled in accordance with the Theory of Planned Be-
havior (TPB) (Ajzen and others 1991), a cognitive theory
to explain and predict an individual’s intention to engage
in a behavior at a specific time and place. The general idea
is that the individual’s beliefs about a behavior have causal
effects on the individual’s attitudes, subjective norms, and
perceived behavioral control in the behavior, which in turn
promotes or inhibits engagement in the behavior.

In order to formalize a computational model, Action Rea-
soning (Gelfond and Lifschitz 1998) is utilized. To reason
about the goals of the human, the agent perceives the current
state of the environment and generates an action plan based
on the specified constraints; e.g., temporal and sequential
constraints between activities, human preferences, subjec-
tive norms, and by perceiving and identifying the human’s
mental and physical state. By defining the human’s physi-
cal and mental state based on variables of the environment,
plans can be generated for providing goal-oriented interven-
tions.

A final step in the proposed architecture is the conduction
of counterfactual actions. The system starts an evaluation
process in which it generates hypotheses about the human’s
future behavior. In this evaluation process, the alternative
plans generated by the logic planner are evaluated in relation
to weights tailored for the individual human, selecting a final
plan for adapting the virtual scenario. The planning agent
thus utilizes counterfactual actions to reflect upon the hu-
man’s mental state, and then epistemic actions by which the
environment is adapted. The epistemic actions are followed
by an observation of the human’s actual behavior, which pro-
vides input for the next counterfactual planner execution.

A general model of the proposed architecture can be ap-
plied in any human-centered scenario for promoting behav-
ior change, given that relevant knowledge for the specific
domain has been elicited and incorporated in the model. In
this paper, the use-case for evaluating the architecture is a
VR game, developed for children with autism for practic-
ing social scenarios, scenarios that children with autism of-
ten find stressful or scary. The particular use-case represents
a cafeteria environment (see Figure 1 and 2). For this use-
case, stressors and motivators must be incorporated in the
model, which the intelligent agent can utilize in its epistemic
planning for promoting behavior change. The environment

Figure 1: The virtual environment represents a school cafete-
ria. The environment is built in the Unity 3D Game Engine.

Figure 2: The virtual cafeteria is represented by a grid in
which smaller areas are defined. These areas can be related
to certain activities in the scenario in order to help the system
in activity recognition.

model, as well as the generic user model, is based on inter-
views with domain experts, i.e., psychologists and special
education teachers. The VR game has been evaluated in con-
trolled user-tests to find directions for further development.

The rest of this paper is organized as follows. First,
we briefly present the theoretical framework; the theory of
planned behavior (TPB), and a definition of transition sys-
tems and action reasoning. The state-of-the-art in human-
aware planning is then presented and how this is related to
epistemic planning. Finally, a specification of the proposed
intelligent system architecture is presented which introduces
an action reasoning approach to human-aware planning that
utilizes the theory of planned behavior. The paper is con-
cluded by a discussion of the architecture’s potential, limita-
tions, possible use-cases, and directions for future work.

Theoretical Framework
This section explains the cognitive theory that has influ-
enced the modeling of the proposed action reasoning frame-
work for human-aware planning; Theory of Planned Be-
havior (Ajzen and others 1991). Computational paradigms



of the proposed architecture are then explained; Transition
systems (Gelfond and Lifschitz 1998) and Action reason-
ing (Gelfond and Lifschitz 1998).

Theory of Planned Behavior
Theory of Planned Behavior (TPB) (Ajzen and others
1991), later reformed as The Reasoned Action Approach
(RAA) (Fishbein and Ajzen 2011), is a cognitive theory ex-
plaining and predicting an individual’s intention to engage
in a behavior at a specific time and place. The general idea
is that the individual’s beliefs about a behavior have causal
effects on the individual’s attitudes, subjective norms, and
perceived behavioral control in the behavior, which in turn
promotes or inhibits engagement in the behavior. The key
component in this model is as such behavioral intentions
which are influenced by (1) the individual’s attitude about
a behavior, (2) the individual’s subjective norms in relation
to the behavior, and (3) the individual’s perceived behavioral
control in conducting the behavior.

Attitude (A) refers to the degree to which an individual
has a positive or negative evaluation of the behavior. This
entails a consideration of the outcomes of performing the
behavior. The overall attitude towards the behavior is a con-
sideration of each expected outcome b of the behavior, mul-
tiplied with the individual’s valuation e of that outcome.
These expectancy-value pairs in the behavior are summa-
rized, resulting in the overall attitude towards the behavior.

Definition 1 (Attitude) Let OUTa = {out0, ..., outn}
be a set of propositional atoms that denote the ex-
pected outcomes of an activity a. Let OUT ′

a =
{(out0, e0, b0), ..., (outn, en, bn)}, where ∀(outi, bi, ei) ∈
OUT ′

a, 0 ≤ i ≤ n, bi ∈ [0, 1] is the quantification of the
expected outcome outi and ei ∈ [0, 1] is an agent’s sub-
jective quantitative evaluation of outi. We call OUT ′

a the
agent’s outcome assessment of a. We define the agent’s atti-
tude towards the behavior outcomes, denoted by A(OUT ′

a),
as follows:

A(OUT ′
a) :=

∑
(x,b,e)∈OUT ′

a

b ∗ e

Subjective norm (SN) refers to the belief about whether
people approve or disapprove of the behavior i. The indi-
vidual’s beliefs about what people of importance to the per-
son think of their, or the individual’s, engagement in the be-
havior. This involves social norms, which are normative be-
havior for a group of people. The overall subjective norms
towards the behavior is a consideration of each normative
belief n of the behavior, multiplied with the individual’s mo-
tivation m to comply with that norm. All norm-compliance
pairs in the behavior are then summarized, resulting in the
individual’s overall evaluation of subjective norms towards
the behavior.

Definition 2 (Subjective norm)
Let INFa = {inf0, ..., infu} be a set of proposi-
tional atoms that denote the social influences in an activity
a. Let INF ′

a = {(inf0,m0, n0), ..., (infu,mu, nu)},
where ∀(ni,mi) ∈ INF ′

a, 0 ≤ i ≤ u, ni ∈ [0, 1] is the

quantification of the social influences infi and mi ∈ [0, 1]
is an agent’s subjective quantitative motivation to comply
with infi. We call INF ′

a the agent’s norm assessment
of a. We define the agent’s subjective norm towards the
behavior’s social influences, denoted by SN(INF ′

a), as
follows:

SN(INF ′
a) :=

∑
(x,n,m)∈INF ′

a

n ∗m

Perceived behavioral control (PBC) refers to an individ-
ual’s perception of the ease or difficulty of performing the
behavior i. Perceived behavioral control can vary for an
individual depending on the activity or action that is to
be performed. The overall perceived behavioral control to-
wards the behavior is a consideration of each performance
p aspect of the behavior, multiplied with the individual’s
perceived controllability c of that aspect. All performance-
controllability pairs in the behavior are then summarized,
resulting in the overall perceived behavioral control towards
the behavior.

Definition 3 (Perceived behavioral control)
Let PERa = {per0, ..., pern} be a set of proposi-
tional atoms that denote the performance aspects of an
activity a. Let PER′

a = {(per0, c0, p0), ..., (pern, cn, pn)},
where ∀(pi, ci) ∈ PER′

a, 0 ≤ i ≤ n, pi ∈ [0, 1] is
the quantification of the performance aspects peri and
ci ∈ [0, 1] is an agent’s subjective perceived controllability
of peri. We call PER′

a the agent’s control assessment
of a. We define the agent’s perceived behavioral control
towards the behavior’s performance aspects, denoted by
PBC(PER′

a), as follows:

PBC(PER′
a) :=

∑
(x,p,c)∈PER′

a

p ∗ c

According to TPB, behavioral intention (BI) is the mo-
tivational factor that influences a given behavior, the likeli-
hood that the human will initiate in the behavior. Behavioral
intention is the sum of the overall attitude, subjective norm,
and perceived behavioral control. Specific activities can be
more or less affected by these three predictors. Thus, an ac-
tivity specific weight w is added to each predictor.

Definition 4 (Behavioral intention) Let a be an activity,
let OUT ′

a be an agent’s outcome assessment of a, let INF ′
a

be the agent’s norm assessment of a, and let PER′
a be the

agent’s control assessment of a. We define the agent’s be-
havioral intention towards an activity a, denoted by BI(a),
as follows:

BI(a) :=

w1A(OUT
′
a) + w2SN(INF ′

a) + w3PBC(PER
′
a)

, where ∀w ∈ {w1, w2, w3}, w ∈ [0, 1].

Let us introduce a running example to first demonstrate an
application of TPB; later, we will continue this example to
demonstrate our human-aware epistemic planning approach.



Example 1 Suppose that John, 13 years old, has social anx-
iety in new situations involving unknown people and unpre-
dictable events. Such a place is a school cafeteria. The en-
vironment is usually noisy, with sounds of people talking,
laughing, and shouting; chairs are being pulled and hitting
each other. Different kinds of social interactions may be in-
volved, such as with the cashier. The queuing and payment
procedure is stressful to John, due to people in the queue
standing in front and behind; he may reason about how these
people will think of John’s behavior, and possible complica-
tions that may arise in the payment procedure. There could
be a large number people in the cafeteria and most tables
could be occupied. While looking for a table, John may oc-
casionally get eye contact with people, and several people
may walk past John as he searches the cafeteria for a table.
John gets anxiety when he is unsure about the procedures.
Any new or unpredictable aspect of the situation can lead
to stress, such as not knowing how to queue and pay for the
food, how to find a table, and what to do with the tray after
the meal is finished.

In the following running example, scores are presented in
a 7 point bipolar scale ranging from -3 to 3, which later on
can be normalized to a score between 0.0 and 1.0.

As John enters the school cafeteria with his teacher, he
can hear the noisy sound of people talking and laughing.
Due to the noise, he expects there to be a large number of
people in there (+3) and evaluates this as unsettling (-1). As
he walks into the lobby area, he can see multiple unknown
people, and expect it to be likely (+2) that these people may
be looking at him as he passes them. This is stressful (-2)
for John, as he evaluates people looking at him as negative.
John is not sure about the queuing procedure. He expects
the queuing procedure to be complicated (+3) and evaluate
his controllability of this procedure to be low (-1). However,
John values his teacher’s expertise in this situation (+3), and
he has confidence in following her lead (+3).

By analysing these simplified sets of beliefs through the
theory of planned behavior, John’s attitude A(OUT ′

a) to-
ward the behavior, the expectancy of people, can be cal-
culated as -3 = (+3) * (-1); John’s subjective norms
SN(INF ′

a), influence of people looking at him, can be cal-
culated as -4 = (+2) * (-2); and John’s perceived behavioral
control PBC(PER′

a) of standing in the queue, can be cal-
culated as 6 = ((+3) * (-1)) + ((+3)*(+3)). Together, these
values can be summed to calculate the behavioral intention
BI(a), i.e., -9 = (-9)+(-6)+(+6). This intention-score can
possibly be turned positive by removing factors of uncer-
tainty, and adding factors of motivation.

The system can approach this by, e.g., decreasing sounds,
decreasing people, and adding guides that show how to pro-
ceed in the queue, how to pick food, and how to interact with
the cashier. The changes in expectancy and value of these
adaptations can then be scored in a similar way as seen in
the above example, and an estimation of John’s behavioral
intention can be achieved.

Human-Aware Transition Systems and Action
Reasoning
Let us start introducing some basic concepts of action speci-
fication languages. In particular, we will introduce a generic
syntax and semantics of an action language called CTPB that
is based on other actions languages such as CTAIL that was
introduced by Dworshak et al. (Dworschak et al. 2008).
CTPB is an extension of the language A, which was in-

troduced by Gelfond and Vladimir (Gelfond and Lifschitz
1993).

The alphabet of CTPB consists of two nonempty disjoint
sets of symbols F and A. They are called the set of fluents
F and the set of actions A. A fluent expresses the property
of an object in a world, and forms part of the description
of states of this world. A fluent literal is a fluent or a fluent
preceded by ¬. A state σ is a collection of fluents. We say a
fluent f holds in a state σ if f ∈ σ. We say a fluent literal
¬f holds in σ if f /∈ σ.

Definition 5 (Human-aware alphabet) Let A be a non-
empty set of actions and F be a non-empty set of fluents.

• F = FE ∪ FH such that FE is a non-empty set of fluents
describing observable items in an environment and FH is
a non-empty set of fluents describing the mental-states of
humans: attitude, subjective norm and control.

• A = AE∪AH such that AE is a non-empty set of actions
that can be performed by a software agent and AH is non-
empty set of actions that can be performed by a human
agent.

CTPB is defined by three sub-languages: an action de-
scription language, an action observation language and an
action query language.

Definition 6 A human-aware domain description language
Dh(A,F) in CTPB consists of expressions of the following
form:

(a causes f1, . . . , fn if g1, . . . gm) (1)
(a influences attitude f if g1, . . . gm) (2)
(a influences subjective norm f if g1, . . . gm) (3)
(a influences control f if g1, . . . gm) (4)
(f1, . . . , fn influences attitude f) (5)
(f1, . . . , fn influences subjective norm f) (6)
(f1, . . . , fn influences control f) (7)
(f1, . . . , fn if g1, . . . gm) (8)
(f1, . . . , fn triggers a) (9)
(f1, . . . , fn allows a) (10)
(f1, . . . , fn inhibits a) (11)
(f1, . . . , fn promotes a) (12)
(f1, . . . , fn demotes a) (13)
(noconcurrency a1, . . . , an) (14)
(default f) (15)

where ai ∈ A (0 ≤ i ≤ n) and fj ∈ F, (0 ≤ j ≤ n).
The semantics of a domain description D(A,F ) is de-

fined in terms of transition systems. An interpretation I over
F is a complete and consistent set of fluents.

Definition 7 A state s ∈ S of the domain description
Dh(A,F ) is an interpretation over F such that for every
static clausal law f1, . . . , fn if g1, . . . gm) ∈ Dh(A,F ),



we have {f1, . . . , fn} ⊆ s whenever {g1, . . . gm} ∈ s. S
denotes all the possible states of Dh(A,F ).

Definition 8 The action observation language of CTPB

consists of expressions of the following form:

(f at ti) (a occurs at ti) (16)

where f ∈ FH , a is an action and ti is a point of time.

Definition 9 (Action Theory) Let D be a domain descrip-
tion and O be a set of observations. The pair (D,O) is
called an action theory.

Definition 10 (Trajectory Model) Let (D,O) be an action
theory. A trajectory s0, A1, s1, A2, . . . , An, Sn ofD is a tra-
jectory model of (D,O), if it satisfies all observations of O
in the following way:

1. if (f at t) ∈ O, then f ∈ st
2. if (f occurs at t) ∈ O, then a ∈ At+1.

Let us observe that giving a trajectory
s0, A1, s1, A2, . . . , An, Sn where Ai ⊆ A (0 ≤ i ≤ n)
and A is a set of actions that can be performed either
by a human-agent or a software planner-agent. Actions
performed by a human-agent can be movement between
areas in the environment, while actions by a software
planner-agent are adaptations of the environment that
indirectly influences a human-agent’s mental-state fluents,
i.e., attitude, subjective norm and control.

Human-aware theoretical framework
The aim of the human-aware planner agent is to adapt the en-
vironment in order to change the mental state of the human.
The planner agent is modeled as an action theory (D,O), uti-
lizing a domain description D, which explains how human
mental states relate to fluents of the environment, and a set
of observations O, i.e., the observable environment, such as
lights, sounds, and people, and the partly observable mental
state of the human, i.e., attitude stress, normative stress, and
control stress.

The agent models a human agent, utilizing the observed
human actions in the environment and causal laws, specified
for the planner agent’s adaptive actions of the environment,
to estimate the human’s future actions. The planner agent’s
generated plan can be represented as a trajectory P ; a se-
quence of actions a0, . . . , an leading from a starting config-
uration of fluents s0 towards a goal configuration of fluents
sn denoted by Plan P = 〈s0, a0, s1, a1, . . . , an, sn〉. Each
action directly changes fluents of the environment and in-
directly changes fluents of the mental state of the human.
See Table 1 and 2 for a demonstration of the planner agent’s
planning process in response to different sets of observa-
tions. Each table presents a transition in the cafeteria sce-
nario. Table 1 presenting a transition from the lobby area to
the queue area, and Table 2 a transition from the queue area
to the food area. Each transition has a set of observations and
a set of planner actions, i.e., adaptations of the environment.

Human-Aware Epistemic Planning
The states of the environment, according to the theory of
planned behavior, is based on three dimensions; attitudes,
subjective norms and perceived behavioral control. Accord-
ing to TPB, a change in any of these dimensions can affect
the behavioral intention, which in turn is a predictor to be-
havioral achievement.

Each state of the environment is a unique configuration
of these environment variables, which describes the motiva-
tional factor of the state. This definition of motivation can
be used to try to predict the human’s behavioral intention.
Changing these variables can configure states that provide
appropriate levels of difficulty, assisting the human in com-
pleting the scenario while still providing sufficient practice.

In order to successfully provoke behavior change, the
adaptation should provoke a change in the evaluation of one
of three sets of beliefs, i.e., the evaluation of the attitudes,
the subjective norms, or the perceived behavioral control.
This can be achieved through appropriate actions that take
in consideration the current state of the human and the en-
vironment, and does proper adaptations which results in a
change of beliefs.

The human enters the scenario with a goal. In order to
achieve this goal there are a variety of sub-goals along the
way. Whether or not the human will be able to meet these
interim goals depends on the difficulty of the environment
and on the state of the human. The intelligent system thus
has the task of adapting the environment at every stage of
the scenario to help the human reach the next intermediate
goal, and finally reach the final goal.

A goal is represented by a configuration of fluents, i.e.,
variables of the environment, and the representation of the
environment is composed by these possible configurations,
defining the state space. The intelligent system’s task is to
find a configuration of fluents that best represents the next
goal. In every such goal, some fluents are required, e.g., a
certain human position in the environment or that certain
objects must be present in the scene, etc. However, fluents
can also be dynamic and instead have a preferred value, e.g.,
the human’s stress can vary but is preferred to be as low
as possible. Similarly, the number of stressors can vary but
is preferred to meet the learning objective. In this way, the
intelligent system aims to find a plan that leads the human
from the current configuration of fluents to the next goal.

The intelligent architecture can through a representation
of the environment, interaction constraints and a set of
causal rules make a plan on how to adapt the environment
in order to promote human behavior change. The planning
starts with a disjunctive logic planner (DLV-K) modelled
by concepts based on the theory of planned behavior. The
DLV-K planner generates alternative plans for adaptations
of the virtual environment. The next step, which is a central
strategy in this architecture, is the conduction of counterfac-
tual actions. The system creates a counterfactual instance of
the scenario, i.e., an evaluation process in which the system
makes a specific assumption w.r.t. the human’s future behav-
ior. In this evaluation process, the alternative plans generated
by the DLV-K planner are scored in relation to weights tai-
lored to the individual human. In the counterfactual instance,



Test case Stress observation Planner agent actions with plan length 4
1 A(1), N(1), C(1) (no action); (no action); (no action); move(queue)
2 A(1), N(1), C(3) increase guides(2); (no action); (no action); move(queue)
3 A(1), N(3), C(3) increase guides(2); decrease light(2); decrease light(1); move(queue)
4 A(2), N(3), C(3) increase guides(2); decrease light(2); decrease sound(2); move(queue)
5 A(3), N(3), C(1) decrease sound(2); decrease light(2); decrease light(1); move(queue)
6 A(3), N(3), C(3) increase guides(2); decrease sound(2); decrease light(2); move(queue)

Table 1: This table presents test runs of the human-aware planning process, presenting 6 combinations of observed attitude stress
(A), normative stress (N), and control stress (C). Value 3 = high; Value 2 = medium; Value 1 = low. The initial observation of
the environment in all cases are: at(human, lobby), lights(3), sound(3), guides(1). The goal in all cases are: at(human, queue).
This means that the planner’s goal is to move the figurative human from the Lobby area to Queue area, while following the
restrictions specified for the transition. The transition from Lobby to Queue requires all three stress fluents to have values below
high. The plan length is set to 4, i.e., 3 planner actions, and 1 figurative move of the human. Each adaptation of the environment
causes a change in stress, i.e., in A, N or C, of the figurative human, which finally results in an acceptable move to the next area,
i.e., the next goal of the planner. The action decrease sound(X) relieves attitude stress, the action decrease light(X) relieves
normative stress, and the action increase guides(X) relieves control stress.

Test case Stress observation Planner agent actions with plan length 6
7 A(1), N(1), C(1) (no action); (no action); (no action); (no action);

(no action); move(food)
8 A(1), N(1), C(3) increase guides(2); increase guides(3); (no action); (no action);

(no action); move(food)
9 A(1), N(3), C(3) increase guides(2); decrease light(2); increase guides(3); decrease light(1);

(no action); move(food)
10 A(2), N(3), C(3) decrease sound(2); increase guides(2); increase guides(3); (no action);

decrease light(2); move(food)
11 A(3), N(3), C(1) decrease sound(2); decrease light(2); decrease sound(1); (no action);

(no action); move(food)
12 A(3), N(3), C(3) increase guides(2); decrease sound(2); decrease light(2); increase guides(3);

(no action); move(food)

Table 2: This table presents test runs of the human-aware planning process, presenting 6 combinations of observed attitude stress
(A), normative stress (N), and control stress (C). Value 3 = high; Value 2 = medium; Value 1 = low. The initial observation of
the environment in all cases are: at(human, queue), lights(3), sound(3), guides(1). The goal in all cases are: at(human, food).
This means that the planner’s goal is to move the figurative human from the Queue area to Food area, while following the
restrictions specified for the transition. The transition from Queue to Food requires attitude stress fluents and normative stress
fluents to have values below high, and control stress fluents to have value below medium. The plan length is set to 6, i.e., 5
planner actions, and 1 figurative move of the human. Each adaptation of the environment causes a change in stress, i.e., in A,
N or C, of the figurative human, which finally results in an acceptable move to the next area, i.e., the next goal of the planner.
The action decrease sound(X) relieves attitude stress, the action decrease light(X) relieves normative stress, and the action
increase guides(X) relieves control stress. A higher focus on control stress relief can be seen in this transition.



Figure 3: System flowchart. The agent holds a representa-
tion of the virtual environment and the state of the user.
In order to generate a plan, the agent creates a counterfac-
tual instance of the representation of the environment. In the
counterfactual instance, the agent can make forecasts of the
user’s activity and stress reactions by utilizing the specified
constraints inspired by theory of planned behavior. When
a plan is generated, the planner agent can finally adapt the
virtual environment. Actual behavior of the user can then
be observed as the user perceives and reacts to the actual
changes of the environment.

the system reflects upon future ”what if” scenarios in which
a counterfactual human walks through the scenario in ways
promoted by the system. The counterfactual human’s stress
is aggregated or relieved depending on counterfactual adap-
tations of the environment. In this way, the counterfactual
adaptations can explore what could happen if an actual adap-
tation was made. When this counterfactual process is com-
plete, a final plan is selected specifying how to do actual
adaptations of the environment for promoting the human’s
actual behavior (see Figure 3).

The system takes the current state of the environment as
input, and matches this state against the causal rules that are
specified, the User Model (UM) and the Environment Model
(EM). The UM represents the human’s current stress level,
divided into three fluents based on the theory of planned be-
havior, i.e., attitude stress, normative stress, and behavioral
control stress. The UM also defines an estimation of the hu-
man’s current position in the scenario. The EM represents
the environment’s current composition of fluents, i.e., stres-
sors or motivators in the environment. These models, are
comprised of (1) fluents that can be changed through adap-
tive actions of the system, (2) weights that are tailored and
learned for the individual human, and (3) static variables,
e.g., the position linked to a specific state.

Environment fluents Environment fluents (EF) are vari-
ables that can be observed and adapted in the environ-
ment, such as objects, sounds, locations, behaviors, etc.
Environment fluents are grouped into three sets of flu-
ents: (1) attitude stress-provoking fluents, (2) normative
stress-provoking fluents, and (3) behavioral control stress-

provoking fluents. An environment variable has the role of
provoking certain changes of attitudes, subjective norms, or
perceived behavioral control in the UM. In the pursue of
reaching goals in the environment, and in this process chang-
ing the variables of the UM, the variables of the EM must be
adapted.

Tailored weights Tailored weights (TW) are values as-
sociated with each set of environment fluents in a state.
The tailored weights are: (1) attitude weights, (2) normative
weights, and (3) control weights. The tailored weights rep-
resent the impact of the corresponding set of fluents on the
human’s stress in a state. A specific sub-activity can in this
way be more susceptible to certain stressors for an individ-
ual. The attitude weights specify the impact of attitude flu-
ents, the normative weights specify the impact of normative
fluents, and the control weights specify the impact of behav-
ioral control fluents. In addition, a specific tailored weight
is associated with each fluent in the set, providing a greater
degree of personalization. Thus, a state can have a more or
less, e.g., normative impact on stress, and a specific stressor
in that state can have its own weight that enhances or inhibits
this specific fluent in regard to stress.

Counterfactual actions and Epistemic actions The ac-
tions of the system can be grouped in two sets of actions: (1)
counterfactual actions and (2) epistemic actions.

Counterfactual actions are executed in the counterfactual
instance by the system. In this phase, the human is repre-
sented as an agent that can move in the scenario according
to the specified constraints and causal rules of the environ-
ment. In this process, the human’s stress levels are affected
by counterfactual adaptations of the forecasted scenario. The
counterfactual process attempts to determine the best plan
that the system should perform in order to promote behavior-
change, or to encourage the human doing an activity.

Epistemic actions are the actions that are executed in the
environment in order to promote behavior. The fluents of
the environment can be changed through epistemic actions,
an exploration process that observes actual human behavior
in response to adaptations. The logic planner generates al-
ternative plans that follow the causal effects of the actions
that are specified. A general challenge with logic planners
is to select one of the generated plans. Here is where the
counterfactual instance comes into play. In the counterfac-
tual instance, the alternative plans that are generated by the
logic planner are evaluated to find the best suitable plan.
Evaluations are done in accordance with the equations spec-
ified in the theory of planned behavior (see Definitions 1, 2,
and 3). The counterfactual instance is created, in which each
plan’s potential outcome is evaluated in relation to attitude
fluents, normative fluents, and control fluents, and their cor-
responding tailored weights. A plan is selected and finally
executed through epistemic actions that changes the envi-
ronment. New observations can then be made to do further
planning.

Causal effects of actions Actions are defined by a set
of preconditions and post-conditions. Preconditions specify
when actions are executable, i.e., in which configuration of



fluents can, e.g., an increase or decrease of fluents be exe-
cuted. Post-conditions specify which fluents will change af-
ter the action is executed, e.g., an increase of a fluent value.
Each action has a set of causal effects defined by causal laws.

Causal effects of actions determine changes in the envi-
ronment after the execution of planner actions. In addition,
a set of indirect causal effects are defined which specify the
estimated result of changes in the environment on the hu-
man’s stress levels. These rules eventually help to predict be-
havioral intention and behavioral achievement of the human
through the planning process. The planner agent conducts
these counterfactual actions, i.e., it simulates what would be
the result if the human agent executes a certain action with
the current configuration of environment fluents. The system
makes counterfactual adaptations to the environment, lead-
ing to counterfactual movements of the human, in order to
generate a plan that is finally executed resulting in epistemic
actions, i.e., actual adaptations of the environment.

Discussion
This work has defined a human-aware planning architecture
that is utilizing action reasoning to represent behaviors, con-
straints, states, goals, and causal rules for actions to adapt
the environment. The composite structure presented in this
work is novel in the area of human-aware planning, using
the theory of planned behavior as its theoretical base, in or-
der to understand the human’s behavior and provide suitable
adaptations of the environment.

An early-stage proof of concept prototype has been im-
plemented to demonstrate the potential of the intelligent ar-
chitecture. The prototype’s focus is on one specific scenario,
representing a cafeteria environment. This can limit the po-
tential insights from an evaluation. In order to get a wider
perspective, a set of scenarios should be implemented, eval-
uated and compared. A general model of the proposed archi-
tecture can be applied in any human-centered scenario for
promoting behavior change, given that relevant knowledge
for the specific domain has been elicited and incorporated in
the model. The architecture can thus be evaluated in a vari-
ety of settings.

Related Work
The human-aware planning problem has in general been ex-
plored in scenarios where a robot is situated in an envi-
ronment involving humans (Chakraborti, Sreedharan, and
Kambhampati 2018). A survey of recent efforts in human-
aware planning is presented in (Chakraborti, Sreedharan,
and Kambhampati 2018) and in (Ahrndt, Fähndrich, and Al-
bayrak 2014). In contrast, this paper has explored how a
software agent can understand the human’s behavior in an
environment, and generate a plan on how to adapt the envi-
ronment in order to promote human actions.

There is a diverse body of research related to the ideas
presented in the current work. Plan recognition as planning,
originally introduced by Ramirez and Geffner (Ramırez and
Geffner 2009), use planning algorithms to enable an agent
recognize the goals and plans of other agents. This relates

to the current study where the agent generates plans for esti-
mating and promoting human behavior.

Empathetic Planning (Shvo and McIlraith 2019) is intro-
duced. In their work, empathy is defined as the ability to
understand and share the thoughts and feelings of another.
Following this definition, an assistive empathetic agent is
formalized able to reason about the preferences of an em-
pathizee (Shvo and McIlraith 2019). The current study uses
a formalization of the theory of planned behavior (TPB) for
modeling the human, i.e., in an attempt to understand the
human’s preferences and feelings in relation to the environ-
ment.

In Active Goal Recognition (AGR) (Shvo and McIlraith
2020), an AGR agent actively senses and acts as part of the
goal recognition process. While pursuing its goal, the agent
executes sensing and world altering actions (Shvo and McIl-
raith 2020). This relates to the notion of epistemic actions
in the current work, where the agent actively senses the en-
vironment and the human’s behavior in response to world
altering actions.

Goal Recognition Design (Keren, Gal, and Karpas 2014)
presents way to modify a domain model in order for an agent
acting in the model to reveal its objective as early as possible
(Keren, Gal, and Karpas 2014). This is related to the current
work where an agent adapts the environment in order to ob-
serve, and estimate, human responses and promote human
actions.

In the academic community, a commonly applied concept
for implementing cognitive agents is the so-called Belief-
Desire-Intention (BDI) approach (Rao and Georgeff 1995).
BDI agents can be considered, roughly speaking, rational
agents that, based on their beliefs about the world, act ful-
fill their desires to the greatest extent possible. However, in
the context of our approach to human-aware planning, a the-
ory of human cognition is needed that focusses on the non-
rational aspects of human cognition. Consequently, TPB,
which bears some resemblance to Kahneman’s and Tver-
sky’s prospect theory (Daniel, Amos, and others 1979), but
has a stronger focus on social and emotional aspects can
be considered a suitable boundedly rational formal model.
In that, our work attempts to solve a different problem
than works on BDI agents and theory of mind (Panisson
et al. 2019; Kampik, Nieves, and Lindgren 2019), which,
even though they might relax the agents’ rationality proper-
ties, but provide primarily ”computationally”-oriented mod-
els and not models rooted in behavioral psychology.

Conclusion and Future Work
In contrast to typical applications of human-aware planning,
where a robot is situated in an environment populated by hu-
mans (Köckemann, Pecora, and Karlsson 2014), this study
has explored how a software agent can promote human ac-
tions by adapting the environment. In the use-case of this
work, in contrast to plan merging (Gravot and Alami 2001)
in robot architectures, the agent can only adapt the environ-
ment attempting to encourage human actions.

Possible use-cases are training application using virtual
reality and augmented reality technologies (Kumar et al.



2020), enabling a human to practice in realistic environ-
ments. The architecture is personalizable in that stressors of
the environment can be weighted for each individual. Fu-
ture work concerns the integration with automated learning
approaches, e.g., reinforcement learning (Sutton, Barto, and
others 1998), to shape the weights, i.e., the impact of certain
stressors on the specific individual, in a dynamic manner. In
this way, the weights can be adjusted during training ses-
sions.
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